Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Waste Package Materials Performance Peer Review | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review Waste Package Materials Performance Peer Review A consensus peer review of the current technical basis and the planned experimental and modeling program for the prediction of the long-term performance of waste package materials being considered for use in a proposed repository at Yucca Mountain, Nevada. Waste Package Materials Performance Peer Review A Compilation of Special Topic Reports Wastepackagematerials_PPRP_final.pdf Evaluation of the Final Report: Waste Package Materials Performance Peer Review Panel Multi-Purpose_Canister_System_Evaluation.pdf More Documents & Publications Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) A Review of Stress Corrosion Cracking/Fatigue Modeling for Light Water

2

EVALUATION OF THE FINAL REPORT: WASTE PACKAGE MATERIALS PERFORMANCE PEER  

Broader source: Energy.gov (indexed) [DOE]

EVALUATION OF THE FINAL REPORT: WASTE EVALUATION OF THE FINAL REPORT: WASTE PACKAGE MATERIALS PERFORMANCE PEER REVIEW PANEL B00000000-01717-5700-00005 REV 00 August 2002 This document is not an official copy and is for informational purposes only. QA: QA B00000000-01717-5700-00005 REV 00 August 2002 Evaluation of the Final Report: Waste Package Materials Performance Peer Review Panel Prepared by: Jack N. Bailey, Jack D. Cloud, Thomas E. Rodgers, and Tammy S.E. Summers Prepared for: U.S. Department of Energy Yucca Mountain Site Characterization Office P.O. Box 364629 North Las Vegas, Nevada 89036-8629 Prepared by: Bechtel SAIC Company, LLC 1180 Town Center Drive Las Vegas, Nevada 89144 Under Contract Number DE-AC28-01RW12101 Disclaimer Signature Page Change History Acknowledgments

3

FINAL REPORT WASTE PACKAGE MATERIALS PERFORMANCE PEER REVIEW PANEL  

Broader source: Energy.gov (indexed) [DOE]

REPORT REPORT WASTE PACKAGE MATERIALS PERFORMANCE PEER REVIEW PANEL FEBRUARY 28, 2002 This document is not an official copy and is for informational purposes only. Signature Page Preface Executive Summary TABLE OF CONTENTS 1. INTRODUCTION 1.1 Organization of the Peer Review 1.2 Objectives of the Review 1.3 Content of the Final Report 2. MAIN FINDINGS 2.1 Perspective 2.2 Overall Findings 2.3 Corrosion Degradation Modes 2.4 Higher or Lower Temperature Operating Modes 2.5 Long-Term Uniform Corrosion of Passive Metal 2.6 Alloy Specification and Comparison 2.7 Technical Issues to be Resolved 2.8 Organizational-Managerial Issues 3. SUMMARY OF DEGRADATION MODES AND CONTRIBUTING FACTORS 3.1 Introduction 3.2 Repository Conditions: Overview of Time, Temperature, Environment

4

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

5

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

6

Development of backfill material as an engineered barrier in the waste package system- Interim topical report  

SciTech Connect (OSTI)

A backfill barrier, emplaced between the containerized waste and the host rock, can both protect the other engineered barriers and act as a primary barrier to the release of radionuclides from the waste package. Attributes that a backfill should provide in order to carry out its required function have been identified. Primary attributes are those that have a direct effect upon the release and transport of radionuclides from the waste package. Supportive attributes do not directly affect radionuclide release but are necessary to support the primary attributes. The primary attributes, in order of importance, are: minimize (retard or exclude) the migration of ground water between the host rock and the waste canister system; retard the migration of selected chemical species (corrosive species and radionuclides) in the ground water; control the Eh and pH of the ground water within the waste-package environment. The supportive attributes are: self-seal any cracks or discontinuities in the backfill or interfacing host geology; retain performance properties at all repository temperatures; retain peformance properties during and after receiving repository levels of gamma radiation; conduct heat from the canister system to the host geology; retain mechanical properties and provide resistance to applied mechanical forces; retain morphological stability and compatibility with structural barriers and with the host geology for required period of time. Screening and selection of candidate backfill materials has resulted in a preliminary list of materials for testing. Primary emphasis has been placed on sodium and calcium bentonites and zeolites used in conjunction with quartz sand or crushed host rock. Preliminary laboratory studies have concentrated on permeability, sorption, swelling pressure, and compaction properties of candidate backfill materials.

Wheelwright, E.J.; Hodges, F.N.; Bray, L.A.; Westsik, J.H. Jr.; Lester, D.H.; Nakai, T.L.; Spaeth, M.E.; Stula, R.T.

1981-09-01T23:59:59.000Z

7

Using Single-Camera 3-D Imaging to Guide Material Handling Robots in a Nuclear Waste Package Closure System  

SciTech Connect (OSTI)

Nuclear reactors for generating energy and conducting research have been in operation for more than 50 years, and spent nuclear fuel and associated high-level waste have accumulated in temporary storage. Preparing this spent fuel and nuclear waste for safe and permanent storage in a geological repository involves developing a robotic packaging system—a system that can accommodate waste packages of various sizes and high levels of nuclear radiation. During repository operation, commercial and government-owned spent nuclear fuel and high-level waste will be loaded into casks and shipped to the repository, where these materials will be transferred from the casks into a waste package, sealed, and placed into an underground facility. The waste packages range from 12 to 20 feet in height and four and a half to seven feet in diameter. Closure operations include sealing the waste package and all its associated functions, such as welding lids onto the container, filling the inner container with an inert gas, performing nondestructive examinations on welds, and conducting stress mitigation. The Idaho National Laboratory is designing and constructing a prototype Waste Package Closure System (WPCS). Control of the automated material handling is an important part of the overall design. Waste package lids, welding equipment, and other tools must be moved in and around the closure cell during the closure process. These objects are typically moved from tool racks to a specific position on the waste package to perform a specific function. Periodically, these objects are moved from a tool rack or the waste package to the adjacent glovebox for repair or maintenance. Locating and attaching to these objects with the remote handling system, a gantry robot, in a loosely fixtured environment is necessary for the operation of the closure cell. Reliably directing the remote handling system to pick and place the closure cell equipment within the cell is the major challenge.

Rodney M. Shurtliff

2005-09-01T23:59:59.000Z

8

Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material  

SciTech Connect (OSTI)

Stress corrosion cracking is one of the most common corrosion-related causes for premature breach of metal structural components. Stress corrosion cracking is the initiation and propagation of cracks in structural components due to three factors that must be present simultaneously: metallurgical susceptibility, critical environment, and static (or sustained) tensile stresses. This report was prepared according to ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of this report is to provide an evaluation of the potential for stress corrosion cracking of the engineered barrier system components (i.e., the drip shield, waste package outer barrier, and waste package stainless steel inner structural cylinder) under exposure conditions consistent with the repository during the regulatory period of 10,000 years after permanent closure. For the drip shield and waste package outer barrier, the critical environment is conservatively taken as any aqueous environment contacting the metal surfaces. Appendix B of this report describes the development of the SCC-relevant seismic crack density model (SCDM). The consequence of a stress corrosion cracking breach of the drip shield, the waste package outer barrier, or the stainless steel inner structural cylinder material is the initiation and propagation of tight, sometimes branching, cracks that might be induced by the combination of an aggressive environment and various tensile stresses that can develop in the drip shields or the waste packages. The Stainless Steel Type 316 inner structural cylinder of the waste package is excluded from the stress corrosion cracking evaluation because the Total System Performance Assessment for License Application (TSPA-LA) does not take credit for the inner cylinder. This document provides a detailed description of the process-level models that can be applied to assess the performance of Alloy 22 (used for the waste package outer barrier) and Titanium Grade 7 (used for the drip shield) that are subjected to the effects of stress corrosion cracking. The use of laser peening or other residual stress mitigation techniques is considered as a means of mitigating stress corrosion cracking in the waste package final closure lid weld.

G. Gordon

2004-10-13T23:59:59.000Z

9

Tritium waste package  

DOE Patents [OSTI]

A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

1995-01-01T23:59:59.000Z

10

Tritium waste package  

DOE Patents [OSTI]

A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

1995-11-07T23:59:59.000Z

11

Nuclear Material Packaging Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. No cancellation. Certified 11-18-10.

2008-03-07T23:59:59.000Z

12

Depleted Uranium (DU) Cermet Waste Package  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

13

Roadmapping the Resolution of Gas Generation Issues in Packages Containing Radioactive Waste/Materials  

SciTech Connect (OSTI)

Gas generation issues, particularly hydrogen, have been an area of concern for the transport and storage of radioactive materials and waste in the Department of Energy (DOE) complex. Potentially combustible gases can be generated through a variety of reactions, including chemical reactions and radiolytic decomposition of hydrogen-containing materials. Transportation regulations prohibit shipment of explosives and radioactive materials together. This paper discusses the major gas generation issues within the DOE Complex and the research that has been and is being conducted by the transuranic (TRU) waste, nuclear materials (NM), and spent nuclear fuels (SNF) programs within DOE’s Environmental Management (EM) organization to address gas generation concerns. This paper presents a "program level" roadmap that links technology development to program needs and identifies the probability of success in an effort to understand the programmatic risk associated with the issue of gas generation. This "program level" roadmapping involves linking technology development (and deployment) efforts to the programs’ needs and requirements for dispositioning the material/waste that generates combustible gas through radiolysis and chemical decomposition. The roadmapping effort focused on needed technical & programmatic support to the baselines (and to alternatives to the baselines) where the probability of success is low (i.e., high uncertainty) and the consequences of failure are relatively high (i.e., high programmatic risk). A second purpose for roadmapping was to provide the basis for coordinating sharing of "lessons learned" from research and development (R&D) efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues.

Luke, Dale Elden; Rogers, Adam Zachary; Hamp, S.

2001-03-01T23:59:59.000Z

14

Radioactive material package seal tests  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (US Nuclear Regulatory Commission, 1983). The requirements for Type B packages provide a broad range of environments under which the system must contain the RAM without posing a threat to health or property. Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. A seal technology program, jointly funded by the US Department of Energy Office of Environmental Restoration and Waste Management (EM) and the Office of Civilian Radioactive Waste Management (OCRWM), was initiated at Sandia National Laboratories. Experiments were performed in this program to characterize the behavior of several static seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fluorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Because most elastomer O-ring applications are for hydraulic systems, manufacturer low-temperature ratings are based on methods that simulate this use. The seal materials tested in this program with a fixture similar to a RAM cask closure, with the exception of silicone S613-60, are not leak tight (1.0 {times} 10{sup {minus}7} std cm{sup 3}/s) at manufacturer low-temperature ratings. 8 refs., 3 figs., 1 tab.

Madsen, M.M.; Humphreys, D.L.; Edwards, K.R.

1990-01-01T23:59:59.000Z

15

The reduction of packaging waste  

SciTech Connect (OSTI)

Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

1994-04-01T23:59:59.000Z

16

44-BWR WASTE PACKAGE LOADING CURVE EVALUATION  

SciTech Connect (OSTI)

The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials.

J.M. Scaglione

2004-08-25T23:59:59.000Z

17

Reference waste package environment report  

SciTech Connect (OSTI)

One of three candidate repository sites for high-level radioactive waste packages is located at Yucca Mountain, Nevada, in rhyolitic tuff 700 to 1400 ft above the static water table. Calculations indicate that the package environment will experience a maximum temperature of {similar_to}230{sup 0}C at 9 years after emplacement. For the next 300 years the rock within 1 m of the waste packages will remain dehydrated. Preliminary results suggest that the waste package radiation field will have very little effect on the mechanical properties of the rock. Radiolysis products will have a negligible effect on the rock even after rehydration. Unfractured specimens of repository rock show no change in hydrologic characteristics during repeated dehydration-rehydration cycles. Fractured samples with initially high permeabilities show a striking permeability decrease during dehydration-rehydration cycling, which may be due to fracture healing via deposition of silica. Rock-water interaction studies demonstrate low and benign levels of anions and most cations. The development of sorptive secondary phases such as zeolites and clays suggests that anticipated rock-water interaction may produce beneficial changes in the package environment.

Glassley, W.E.

1986-10-01T23:59:59.000Z

18

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

19

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

20

YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM  

SciTech Connect (OSTI)

The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

G. Housley; C. Shelton-davis; K. Skinner

2005-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Remote Handling Equipment for a High-Level Waste Waste Package Closure System  

SciTech Connect (OSTI)

High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

Kevin M. Croft; Scott M. Allen; Mark W. Borland

2006-04-01T23:59:59.000Z

22

Second Generation Waste Package Design Study  

SciTech Connect (OSTI)

The following describes the objectives of Project Activity 023 “Second Generation Waste Package Design Study” under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion testenvironments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity.

Armijo, J.S.; Misra, M.; Kar, Piyush

2007-06-28T23:59:59.000Z

23

Background studies in support of a feasibility assessment on the use of copper-base materials for nuclear waste packages in a repository in tuff  

SciTech Connect (OSTI)

This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.

Van Konynenburg, R.A. [Lawrence Livermore National Lab., CA (USA); Kundig, K.J.A.; Lyman, W.S.; Prager, M.; Meyers, J.R.; Servi, I.S. [CDA/INCRA Joint Advisory Group, Greenwich, CT (USA)

1990-06-01T23:59:59.000Z

24

CH Packaging Operations for High Wattage Waste  

SciTech Connect (OSTI)

This document provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

Washington TRU Solutions LLC

2006-01-06T23:59:59.000Z

25

General Corrosion and Localized Corrosion of Waste Package Outer Barrier  

SciTech Connect (OSTI)

The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

K.G. Mon

2004-10-01T23:59:59.000Z

26

CERAMIC WASTE FORM DATA PACKAGE  

SciTech Connect (OSTI)

The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

Amoroso, J.; Marra, J.

2014-06-13T23:59:59.000Z

27

Roadmapping - A Tool for Resolving Science and Technology Issues Related to Processing, Packaging, and Shipping Nuclear Materials and Waste  

SciTech Connect (OSTI)

Roadmapping is an effective methodology to identify and link technology development and deployment efforts to a program's or project's needs and requirements. Roadmapping focuses on needed technical support to the baselines (and to alternatives to the baselines) where the probability of success is low (high uncertainty) and the consequences of failure are relatively high (high programmatic risk, higher cost, longer schedule, or higher ES&H risk). The roadmap identifies where emphasis is needed, i.e., areas where investments are large, the return on investment is high, or the timing is crucial. The development of a roadmap typically involves problem definition (current state versus the desired state) and major steps (functions) needed to reach the desired state. For Nuclear Materials (NM), the functions could include processing, packaging, storage, shipping, and/or final disposition of the material. Each function is examined to determine what technical development would be needed to make the function perform as desired. This requires a good understanding of the current state of technology and technology development and validation activities to ensure the viability of each step. In NM disposition projects, timing is crucial! Technology must be deployed within the project window to be of value. Roadmaps set the stage to keep the technology development and deployment focused on project milestones and ensure that the technologies are sufficiently mature when needed to mitigate project risk and meet project commitments. A recent roadmapping activity involved a 'cross-program' effort, which included NM programs, to address an area of significant concern to the Department of Energy (DOE) related to gas generation issues, particularly hydrogen. The roadmap that was developed defined major gas generation issues within the DOE complex and research that has been and is being conducted to address gas generation concerns. The roadmap also provided the basis for sharing ''lessons learned'' from R&D efforts across DOE programs to increase efficiency and effectiveness in addressing gas generation issues. The gas generation roadmap identified pathways that have significant risk, indicating where more emphasis should be placed on contingency planning. Roadmapping further identified many opportunities for sharing of information and collaboration. Roadmapping will continue to be useful in keeping focused on the efforts necessary to mitigate the risk in the disposition pathways and to respond to the specific needs of the sites. Other areas within NM programs, including transportation and disposition of orphan and other nuclear materials, are prime candidates for additional roadmapping to assure achievement of timely and cost effective solutions for the processing, packaging, shipping, and/or final disposition of nuclear materials.

Luke, Dale Elden; Dixon, Brent Wayne; Murphy, James Anthony

2002-06-01T23:59:59.000Z

28

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

2010-11-18T23:59:59.000Z

29

Energy implications of recycling packaging materials  

SciTech Connect (OSTI)

In 1992, Congress sought to rewrite the United States comprehensive solid waste legislation -- the Resource Conservation and Recovery Act (RCRA). Commodity-specific recycling rates were proposed for consumer-goods packaging materials and newsprint We compare the impacts on energy, materials use, and landfill volume of recycling at those rates to the impacts for alternative methods of material disposition to determine the optimum for each material. After products have served their intended uses, there are several alternative paths for material disposition. These include reuse, recycling to the same product, recycling to a lower-valued product, combustion for energy recovery, incineration without energy recovery, and landfill. Only options considered to be environmentally sound are Included. Both houses of Congress specifically excluded combustion for energy recovery from counting towards the recovery goats, probably because combustion is viewed as a form of disposal and is therefore assumed to waste resources and have n environmental effects. However, co-combustion in coal-fired plants or combustion in appropriately pollution-controlled waste-to-energy plants Is safe, avoids landfill costs, and can displace fossil fuels. In some cases, more fossil fuels can be displaced by combustion than by recycling. We compare the alternative life-cycle energies to the energies for producing the products from virgin materials. Results depend on the material and on the objective to be achieved. There are trade-offs among possible goals. For instance, paper packaging recycling conserves trees but may require greater fossil-fuel input than virgin production. Therefore, the objectives for proposed legislation must be examined to see whether they can most effectively be achieved by mandated recycling rates or by other methods of disposition. The optimal choices for the United States may not necessarily be the same as those for Europe and other parts of the world.

Gaines, L.L. [Argonne National Lab., IL (United States); Stodolsky, F. [Argonne National Lab., Washington, DC (United States)

1994-03-01T23:59:59.000Z

30

WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

N.D. Sudan

2000-06-22T23:59:59.000Z

31

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

32

Technical considerations for evaluating substantially complete containment of high-level waste within the waste package  

SciTech Connect (OSTI)

This report deals with technical information that is considered essential for demonstrating the ability of the high-level radioactive waste package to provide substantially complete containment'' of its contents (vitrified waste form or spent light-water reactor fuel) for a period of 300 to 1000 years in a geological repository environment. The discussion is centered around technical considerations of the repository environment, materials and fabrication processes for the waste package components, various degradation modes of the materials of construction of the waste packages, and inspection and monitoring of the waste package during the preclosure and retrievability period, which could begin up to 50 years after initiation of waste emplacement. The emphasis in this report is on metallic materials. However, brief references have been made to other materials such as ceramics, graphite, bonded ceramic-metal systems, and other types of composites. The content of this report was presented to an external peer review panel of nine members at a workshop held at the Center for Nuclear Waste Regulatory Analyses (CNWRA), Southwest Research Institute, San Antonio, Texas, April 2--4, 1990. The recommendations of the peer review panel have been incorporated in this report. There are two companion reports; the second report in the series provides state-of-the-art techniques for uncertainty evaluations. 97 refs., 1 fig.

Manaktala, H.K. (Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses); Interrante, C.G. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of High-Level Waste Management)

1990-12-01T23:59:59.000Z

33

Strategy for experimental validation of waste package performance assessment  

SciTech Connect (OSTI)

A strategy for the experimental validation of waste package performance assessment has been developed as part of a program supported by the Repository Technology Program. The strategy was developed by reviewing the results of laboratory analog experiments, in-situ tests, repository simulation tests, and material interaction tests. As a result of the review, a listing of dependent and independent variables that influence the ingress of water into the near-field environment, the reaction between water and the waste form, and the transport of radionuclides from the near-field environment was developed. The variables necessary to incorporate into an experimental validation strategy were chosen by identifying those which had the greatest effect of each of the three major events, i.e., groundwater ingress, waste package reactions, and radionuclide transport. The methodology to perform validation experiments was examined by utilizing an existing laboratory analog approach developed for unsaturated testing of glass waste forms. 185 refs., 9 figs., 2 tabs.

Bates, J.K.; Abrajano, T.A. Jr.; Wronkiewicz, D.J.; Gerding, T.J.; Seils, C.A.

1990-07-01T23:59:59.000Z

34

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

35

Cermet Waste Packages Using Depleted Uranium Dioxide and Steel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL CERMET WASTE PACKAGES USING DEPLETED URANIUM DIOXIDE AND STEEL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (865) 574-6783 Fax: (865) 574-9512 Email: forsbergcw@ornl.gov Manuscript Number: 078 File Name: DuCermet.HLWcon01.article.final Article Prepared for 2001 International High-Level Radioactive Waste Management Conference American Nuclear Society Las Vegas, Nevada April 29-May 3, 2001 Limits: 1500 words; 3 figures Actual: 1450 words; 3 figures Session: 3.6 Disposal Container Materials and Designs The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,

36

CRAD, Packaging and Transfer of Hazardous Materials and Materials of  

Broader source: Energy.gov (indexed) [DOE]

Packaging and Transfer of Hazardous Materials and Materials Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials

37

Waste package and underground facility design  

SciTech Connect (OSTI)

The design of the waste package and the underground facility for radioactive waste disposal presents many challenges never before addressed in an engineering design effort. The designs must allow for handling and emplacement of the waste and must ensure that the waste will be isolated over time periods that extend beyond those normally dealt with in engineering solutions. Once developed, these designs must be defended in a licensing arena to allow construction and operation of the disposal system. The design of the waste package and the repository is being conducted iteratively. Each iteration of the design is accompanied by an assessment of the performance of the design and an assessment of remaining design issues. These assessments are used to establish the basis for the next design phase. Design requirements are assessed and revised as necessary before the initiation of each design phase. In addition, the design effort is being closely integrated with the siting effort through the application of an issue identification and resolution strategy.

Frei, M.W.; Dayem, N.J.

1988-01-01T23:59:59.000Z

38

RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS  

SciTech Connect (OSTI)

Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

2011-06-06T23:59:59.000Z

39

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

2004-12-22T23:59:59.000Z

40

WAPDEG Analysis of Waste Package and Drip shield Degradation  

SciTech Connect (OSTI)

As directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), an analysis of the degradation of the engineered barrier system (EBS) drip shields and waste packages at the Yucca Mountain repository is developed. The purpose of this activity is to provide the TSPA with inputs and methodologies used to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. This analysis provides information useful to satisfy ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]) requirements. Several features, events, and processes (FEPs) are also discussed (Section 6.2, Table 15). The previous revision of this report was prepared as a model report in accordance with AP-SIII.10Q, Models. Due to changes in the role of this report since the site recommendation, it no longer contains model development. This revision is prepared as a scientific analysis in accordance with AP-SIII.9Q, ''Scientific Analyses'' and uses models previously validated in (1) ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]); (2) ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' (BSC 2004 [DIRS 169984]); and (3) ''General Corrosion and Localized Corrosion of Drip Shield'' (BSC 2004 [DIRS 169845]). The integrated waste package degradation (IWPD) analysis presented in this report treats several implementation-related issues, such as defining the number and size of patches per waste package that undergo stress corrosion cracking; recasting the weld flaw analysis in a form as implemented in the Closure Weld Defects (CWD) software; and, general corrosion rate manipulations (e.g., change of scale in Section 6.3.4). The weld flaw portion of this report takes input from an engineering calculation (BSC 2004 [DIRS 170024]) and uses standard mathematical methods to enable easier implementation. The IWPD analysis also provides guidance on implementation of early failures (importance sampling and multinomial distribution usage). These manipulations are evident from standard scientific practices, approaches, or methods and do not require changes to the previously validated models. The IWPD analysis itself (Section 6.4), not the resultant curves from executing the IWPD analysis presented in Section 6.5 (which are for illustrative purposes), is used directly in total system performance assessment (TSPA). The IWPD analysis simulates general corrosion and stress corrosion cracking of the waste package outer barrier and general corrosion of the drip shield. The effects of igneous and seismic events and localized corrosion on drip shield and waste package performance are not evaluated in this report. The outputs of this report are inputs and methodologies used by TSPA to evaluate waste package and drip shield degradation as a function of exposure time under exposure conditions anticipated in the repository. The analyses presented in this report are for the current repository design (BSC 2004 [DIRS 168489]).

K. Mon

2004-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview  

SciTech Connect (OSTI)

In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

1982-02-01T23:59:59.000Z

42

21-PWR WASTE PACKAGE WITH ABSORBER PLATES LOADING CURVE EVALUATION  

SciTech Connect (OSTI)

The objective of this calculation is to evaluate the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of spent nuclear fuel into the 21 PWR waste package with absorber plates design as provided in Attachment IV. This calculation is an example of the application of the methodology presented in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent U-235, and a burnup range of 0 through 45 GWd/MTU. Higher burnups were not necessary because 45 GWd/MTU was high enough for the loading curve determination. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing PWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials. This calculation is subject to the ''Quality Assurance Requirements and Description'' (QARD) (DOE 2004) because it concerns engineered barriers that are included in the ''Q-List'' (BSC 2004k, Appendix A) as items important to safety and waste isolation.

J.M. Scaglione

2004-12-17T23:59:59.000Z

43

Long-term Repository Benefits of Using Cermet Waste Packages  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Term Benefits Long-Term Benefits Long-term Repository Benefits of Using Cermet Waste Packages A cermet waste package may improve the long-term performance of the YM repository by two mechanisms: reducing (1) the potential for nuclear criticality in the repository and (2) the long-term release rate of radionuclides from the waste package. In the natural environment, the centers of uranium ore deposits have remained intact for very long time periods while the outer edges of the ore deposit have degraded. A cermet waste package may operate in the same way. The sacrificial, slow degradation of the waste package and the DU oxide protects the SNF uranium dioxide in the interior of the package long after the package has failed. Page 2 of 4 Follow the link below to learn more about Cermets:

44

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect (OSTI)

This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2005-04-04T23:59:59.000Z

45

CH Packaging Operations for High Wattage Waste at LANL  

SciTech Connect (OSTI)

This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2005-04-13T23:59:59.000Z

46

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

A. Alsaed

2005-07-28T23:59:59.000Z

47

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

J.K. Knudson

2003-10-02T23:59:59.000Z

48

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

1995-10-26T23:59:59.000Z

49

Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

1995-09-27T23:59:59.000Z

50

Material efficiency in Dutch packaging policy  

Science Journals Connector (OSTI)

...Currently, PET bottles are recycled as material, incinerated...to be abolished for plastic bottles (reusable or...g. through applying recycled content or specific...applied are inclusion of recycled materials or recycling...packaging materials (plastic (62%) and paper...

2013-01-01T23:59:59.000Z

51

Waste package/repository impact study: Final report  

SciTech Connect (OSTI)

The Waste Package/Repository Impact Study was conducted to evaluate the feasibility of using the current reference salt waste package in the salt repository conceptual design. All elements of the repository that may impact waste package parameters, i.e., (size, weight, heat load) were evaluated. The repository elements considered included waste hoist feasibility, transporter and emplacement machine feasibility, subsurface entry dimensions, feasibility of emplacement configuration, and temperature limits. The evaluations are discussed in detail with supplemental technical data included in Appendices to this report, as appropriate. Results and conclusions of the evaluations are discussed in light of the acceptability of the current reference waste package as the basis for salt conceptual design. Finally, recommendations are made relative to the salt project position on the application of the reference waste package as a basis for future design activities. 31 refs., 11 figs., 11 tabs.

Not Available

1985-09-01T23:59:59.000Z

52

Completion of the Radioactive Materials Packaging Handbook  

SciTech Connect (OSTI)

The Radioactive Materials Packaging Handbook: Design, Operation and Maintenance, which will serve as a replacement for the Cask Designers Guide (Shappert, 1970), has now been completed and submitted to the Oak Ridge National Laboratory (ORNL) electronics publishing group for layout and printing; it is scheduled to be printed in late spring 1998. The Handbook, written by experts in their particular fields, is a compilation of technical chapters that address the design aspects of a package intended for transporting radioactive material in normal commerce; it was prepared under the direction of M. E. Wangler of the US Department of Energy (DOE) and is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators on specific aspects of package design, and the types of analyses that should be considered when designing a package to carry radioactive materials.

Shappert, L.B.

1998-02-01T23:59:59.000Z

53

FABRICATION AND DEPLOYMENT OF THE 9979 TYPE AF RADIOACTIVE WASTE PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansion will be discussed.

Blanton, P.; Eberl, K.

2013-10-10T23:59:59.000Z

54

Packaging and transportation manual. Chapter on the packaging and transportation of hazardous and radioactive waste  

SciTech Connect (OSTI)

The purpose of this chapter is to outline the requirements that Los Alamos National Laboratory employees and contractors must follow when they package and ship hazardous and radioactive waste. This chapter is applied to on-site, intra-Laboratory, and off-site transportation of hazardous and radioactive waste. The chapter contains sections on definitions, responsibilities, written procedures, authorized packaging, quality assurance, documentation for waste shipments, loading and tiedown of waste shipments, on-site routing, packaging and transportation assessment and oversight program, nonconformance reporting, training of personnel, emergency response information, and incident and occurrence reporting. Appendices provide additional detail, references, and guidance on packaging for hazardous and radioactive waste, and guidance for the on-site transport of these wastes.

NONE

1998-03-01T23:59:59.000Z

55

The radioactive materials packaging handbook: Design, operations, and maintenance  

SciTech Connect (OSTI)

As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

Shappert, L.B.; Bowman, S.M. [Oak Ridge National Lab., TN (United States); Arnold, E.D. [Lockheed Martin Energy Systems, Oak Ridge, TN (United States)] [and others

1998-08-01T23:59:59.000Z

56

Electronic Packaging Materials and Their Functions in Thermal Managements  

Science Journals Connector (OSTI)

Advanced electronic packaging materials play a key role in the proper functioning and useful life of the packaged electronic assembly. These functions mainly include electrical conduction, electrical insulatio...

Xingcun Colin Tong

2011-01-01T23:59:59.000Z

57

Contact-Handled and Remote-Handled Transuranic Waste Packaging  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel other directives.

2011-08-09T23:59:59.000Z

58

Chemical compatibility screening results of plastic packaging to mixed waste simulants  

SciTech Connect (OSTI)

We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

Nigrey, P.J.; Dickens, T.G.

1995-12-01T23:59:59.000Z

59

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

60

Film Badge Application Radioactive Material Package Receipt Log  

E-Print Network [OSTI]

;RADIOACTIVE MATERIAL PACKAGE RECEIPT LOG DATE: DELIVERED BY: AUTHORIZED BY: Contamination Check DPM/100 cm2APPENDIX A Film Badge Application Radioactive Material Package Receipt Log Radioactive Material Package Receipt Form (Off-Campus Locations) Radiation / Contamination Survey Form #12;PERSONNEL MONITORING

Slatton, Clint

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Approval of Existent Waste Packages and New Package Designs in Preparation for the Konrad Repository  

SciTech Connect (OSTI)

Low and intermediate level radioactive waste from German nuclear and other industries, research facilities and increasingly decommissioned nuclear installations is handled and prepared for interim storage and later disposal in the licensed KONRAD repository. This paper presents aspects, experiences and perspectives of container design testing and qualification procedures. Several new container designs, in particular different types of steel plate containers, have been tested and licensed; some are handled at present or just applied. Examples from typical qualification procedures including drop tests from 0.8 and 5 m height with prototype containers are presented. On the other hand several thousand waste packages are currently stored in interim storage facilities, many of them for more than 10 or 15 years. Based on existing package documentation applications and safety assessments for KONRAD are prepared and have to be evaluated. The paper discusses aspects, difficulties and strategies to demonstrate sufficient compliance to the current KONRAD repository requirements for the large number of existent waste packages. (authors)

Volzke, H.; Nieslony, G.; Hagenow, P. [BAM Bundesanstalt fur Materialforschung und - prufung, Federal Institute for Materials Research and Testing, Berlin (Germany)

2008-07-01T23:59:59.000Z

62

TYPE B RADIOACTIVE MATERIAL PACKAGE FAILURE MODES AND CONTENTS COMPLIANCE  

SciTech Connect (OSTI)

Type B radioactive material package failures can occur due to any one of the following: inadequate design, manufacture, and maintenance of packages, load conditions beyond those anticipated in the regulations, and improper package loading and operation. The rigorous package design evaluations performed in the certification process, robust package manufacture quality assurance programs, and demanding load conditions prescribed in the regulations are all well established. This paper focuses on the operational aspects of Type B package loading with respect to an overbatch which may cause a package failure.

Watkins, R; Steve Hensel, S; Allen Smith, A

2007-02-21T23:59:59.000Z

63

Mass Transfer Model for a Breached Waste Package  

SciTech Connect (OSTI)

The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss.

C. Hsu; J. McClure

2004-07-26T23:59:59.000Z

64

Measurement of radionuclides in waste packages  

DOE Patents [OSTI]

A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

1984-09-12T23:59:59.000Z

65

Cleanup Verification Package for the 300 VTS Waste Site  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.

S. W. Clark and T. H. Mitchell

2006-03-13T23:59:59.000Z

66

Material efficiency in Dutch packaging policy  

Science Journals Connector (OSTI)

...Dutch packaging policy history: three voluntary agreements (1991-2005...global language for packaging and sustainability; a framework and a measurement...Part of The Consumer Goods Forum Sustainability Pillar. See http://www.vics...

2013-01-01T23:59:59.000Z

67

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

68

Aging and Phase Stability of Waste Package Outer Barrier  

SciTech Connect (OSTI)

This report was prepared in accordance with ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). This report provides information on the phase stability of Alloy 22, the current waste package outer barrier material. The goal of this model is to determine whether the single-phase solid solution is stable under repository conditions and, if not, how fast other phases may precipitate. The aging and phase stability model, which is based on fundamental thermodynamic and kinetic concepts and principles, will be used to provide predictive insight into the long-term metallurgical stability of Alloy 22 under relevant repository conditions. The results of this model are used by ''General Corrosion and Localized Corrosion of Waste Package Outer Barrier'' as reference-only information. These phase stability studies are currently divided into three general areas: Tetrahedrally close-packed (TCP) phase and carbide precipitation in the base metal; TCP and carbide precipitation in welded samples; and Long-range ordering reactions. TCP-phase and carbide precipitates that form in Alloy 22 are generally rich in chromium (Cr) and/or molybdenum (Mo) (Raghavan et al. 1984 [DIRS 154707]). Because these elements are responsible for the high corrosion resistance of Alloy 22, precipitation of TCP phases and carbides, especially at grain boundaries, can lead to an increased susceptibility to localized corrosion in the alloy. These phases are brittle and also tend to embrittle the alloy (Summers et al. 1999 [DIRS 146915]). They are known to form in Alloy 22 at temperatures greater than approximately 600 C. Whether these phases also form at the lower temperatures expected in the repository during the 10,000-year regulatory period must be determined. The kinetics of this precipitation will be determined for both the base metal and the weld heat-affected zone (HAZ). The TCP phases (P, {mu}, and {sigma}) are present in the weld metal in the as-welded condition. It may be possible to eliminate these phases through a solution anneal heat treatment, but that may not be possible for the closure weld because the spent nuclear fuel cladding cannot be heated to more than 350 C. The effects of any stress mitigation techniques (such as laser peening or solution heat treating) that may be used to reduce the tensile stresses on the closure welds must also be determined. Cold-work will cause an increase in dislocation density, and such an increase in dislocation density may cause an increase in diffusion rates that control precipitation kinetics (Porter et al. 1992 [DIRS 161265]; Tawancy et al. 1983 [DIRS 104991]). Long-range order (LRO) occurs in nickel (Ni)-Cr-Mo alloys (such as Alloy 22) at temperatures less than approximately 600 C. This ordering has been linked to an increased susceptibility of Ni-Cr-Mo alloys to stress corrosion cracking and hydrogen embrittlement (Tawancy et al. 1983 [DIRS 104991]). These analyses provide information on the rate at which LRO may occur in Alloy 22 under repository conditions. Determination of the kinetics of transformations through experimental techniques requires that the transformations being investigated be accelerated due to the fact that the expected service life is at least 10,000 years. Phase transformations are typically accelerated through an increase in temperature. The rate of transformation is determined at the higher temperature and is extrapolated to the lower temperatures of interest.

F. Wong

2004-09-28T23:59:59.000Z

69

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

70

CRAD, Packaging and Transfer of Hazardous Materials and Materials...  

Office of Environmental Management (EM)

and a Packaging, Transfer, and Transportation Plan DOE O 461.1, 4b(2)e, "Quality Assurance Plan and Packaging, Transfer, and Transportation Plan".. Training...

71

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

72

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

73

Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report  

SciTech Connect (OSTI)

Materials for neutron absorber, thermal shunt, and fill gas for use in the waste package were selected using a qualitative approach. For each component, selection criteria were identified; candidate materials were selected; and candidates were evaluated against these criteria. The neutron absorber materials evaluated were essentially boron-containing stainless steels. Two candidates were evaluated for the thermal shunt material. The fill gas candidates were common gases such as helium, argon, nitrogen, carbon dioxide, and dry air. Based on the performance of each candidate against the criteria, the following selections were made: Neutron absorber--Neutronit A978; Thermal shunt--Aluminum 6061 or 6063; and Fill gas--Helium.

V. Pasupathi

2000-01-28T23:59:59.000Z

74

THERMAL PERFORMANCE OF RADIOACTIVE MATERIAL PACKAGES IN TRANSPORT CONFIGURATION  

SciTech Connect (OSTI)

Drum type packages are routinely used to transport radioactive material (RAM) in the U.S. Department of Energy (DOE) complex. These packages are designed to meet the federal regulations described in 10 CFR Part 71. The packages are transported in specially designed vehicles like Safe Secure Transport (SST) for safety and security. In the transport vehicles, the packages are placed close to each other to maximize the number of units in the vehicle. Since the RAM contents in the packagings produce decay heat, it is important that they are spaced sufficiently apart to prevent overheating of the containment vessel (CV) seals and the impact limiter to ensure the structural integrity of the package. This paper presents a simple methodology to assess thermal performance of a typical 9975 packaging in a transport configuration.

Gupta, N.

2010-03-04T23:59:59.000Z

75

THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE  

SciTech Connect (OSTI)

The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

Gupta, N.; Abramczyk, G.

2012-03-26T23:59:59.000Z

76

DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

Blanton, P.; Eberl, K.

2008-09-14T23:59:59.000Z

77

ANALYSIS OF DAMAGE TO WASTE PACKAGES CAUSED BY SEISMIC EVENTS DURING POST-CLOSURE  

SciTech Connect (OSTI)

This paper presents methodology and results of an analysis of damage due to seismic ground motion for waste packages emplaced in a nuclear waste repository at Yucca Mountain, Nevada. A series of three-dimensional rigid body kinematic simulations of waste packages, pallets, and drip shields subjected to seismic ground motions was performed. The simulations included strings of several waste packages and were used to characterize the number, location, and velocity of impacts that occur during seismic ground motion. Impacts were categorized as either waste package-to-waste package (WP-WP) or waste package-to-pallet (WP-P). In addition, a series of simulations was performed for WP-WP and WP-P impacts using a detailed representation of a single waste package. The detailed simulations were used to determine the amount of damage from individual impacts, and to form a damage catalog, indexed according to the type, angle, location and force/velocity of the impact. Finally, the results from the two analyses were combined to estimate the total damage to a waste package that may occur during an episode of seismic ground motion. This study addressed two waste package types, four levels of peak ground velocity (PGV), and 17 ground motions at each PGV. Selected aspects of waste package degradation, such as effective wall thickness and condition of the internals, were also considered. As expected, increasing the PGV level of the vibratory ground motion increases the damage to the waste packages. Results show that most of the damage is caused by WP-P impacts. TAD-bearing waste packages with intact internals are highly resistant to damage, even at a PGV of 4.07 m/s, which is the highest level analyzed.

Alves, S W; Blair, S C; Carlson, S R; Gerhard, M; Buscheck, T A

2008-05-27T23:59:59.000Z

78

Digital Radiography of a Drop Tested 9975 Radioactive Materials Packaging  

SciTech Connect (OSTI)

This paper discusses the use of radiography as a tool for evaluating damage to radioactive material packaging subjected to regulatory accident conditions. The Code of Federal Regulations, 10 CFR 71, presents the performance based requirements that must be used in the development (design, fabrication and testing) of a radioactive material packaging. The use of various non-destructive examination techniques in the fabrication of packages is common. One such technique is the use of conventional radiography in the examination of welds. Radiography is conventional in the sense that images are caught one at a time on film stock. Most recently, digital radiography has been used to characterize internal damage to a package subjected to the 30-foot hypothetical accident conditions (HAC) drop. Digital radiography allows for real time evaluation of the item being inspected. This paper presents a summary discussion of the digital radiographic technique and an example of radiographic results of a 9975 package following the HAC 30-foot drop.

Blanton, P.S.

2001-05-30T23:59:59.000Z

79

Evaluation and compilation of DOE waste package test data: Biannual report, August 1987--January 1988  

SciTech Connect (OSTI)

This report summarizes results of the National Bureau of Standards (NBS) evaluations on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Since enactment of the Budget Reconciliation Act for Fiscal Year 1988, the Yucca Mountain, Nevada, site (in which tuff is the geologic medium) is the only site that will be characterized for use as high-level nuclear waste repository. During the reporting period of August 1987 to January 1988, five reviews were completed for tuff, and these were grouped into the categories: ferrous alloys, copper, groundwater chemistry, and glass. Two issues are identified for the Yucca Mountain site: the approach used to calculate corrosion rates for ferrous alloys, and crevice corrosion was observed in a copper-nickel alloy. Plutonium can form pseudo-colloids that may facilitate transport. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) and activities of the DOE Materials Characterization Center (MCC) for the 6-month reporting period are also included. 27 refs., 3 figs.

Interrante, C.; Escalante, E.; Fraker, A.; Ondik, H.; Plante, E.; Ricker, R.; Ruspi, J.

1988-08-01T23:59:59.000Z

80

A Robust Power Remote Manipulator for Use in Waste Sorting, Processing, and Packaging - 12158  

SciTech Connect (OSTI)

Disposition of radioactive waste is one of the Department of Energy's (DOE's) highest priorities. A critical component of the waste disposition strategy is shipment of Transuranic (TRU) waste from DOE's Oak Ridge Reservation to the Waste Isolation Plant Project (WIPP) in Carlsbad, New Mexico. This is the mission of the DOE TRU Waste Processing Center (TWPC). The remote-handled TRU waste at the Oak Ridge Reservation is currently in a mixed waste form that must be repackaged in to meet WIPP Waste Acceptance Criteria (WAC). Because this remote-handled legacy waste is very diverse, sorting, size reducing, and packaging will require equipment flexibility and strength that is not possible with standard master-slave manipulators. To perform the wide range of tasks necessary with such diverse, highly contaminated material, TWPC worked with S.A. Technology (SAT) to modify SAT's Power Remote Manipulator (PRM) technology to provide the processing center with an added degree of dexterity and high load handling capability inside its shielded cells. TWPC and SAT incorporated innovative technologies into the PRM design to better suit the operations required at TWPC, and to increase the overall capability of the PRM system. Improving on an already proven PRM system will ensure that TWPC gains the capabilities necessary to efficiently complete its TRU waste disposition mission. The collaborative effort between TWPC and S.A. Technology has yielded an extremely capable and robust solution to perform the wide range of tasks necessary to repackage TRU waste containers at TWPC. Incorporating innovative technologies into a proven manipulator system, these PRMs are expected to be an important addition to the capabilities available to shielded cell operators. The PRMs provide operators with the ability to reach anywhere in the cell, lift heavy objects, perform size reduction associated with the disposition of noncompliant waste. Factory acceptance testing of the TWPC Powered Remote Manipulators has completed at SAT's Colorado facility, and on-site training at TWPC is scheduled to start in early 2012. (authors)

Cole, Matt; Martin, Scott [S.A. Technology, Loveland, Colorado 80537, Transuranic Waste Processing Center, Lenoir City, TN 37771 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Parametric Thermal Analysis for Codisposal Waste Package Canister  

SciTech Connect (OSTI)

The engineering viability of disposal of aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) in a geologic repository requires a thermal analysis to provide the temperature history of the waste form. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the Mined Geologic Disposal System and as input to assess the chemical and physical behavior of the waste form within the waste package (WP).A thermal analysis methodology was developed to calculate peak temperatures and temperature profiles of Al-SNF in the DOE spent nuclear fuel canister within a codisposal WP. A two-dimensional baseline model with conduction and radiation coupled heat transport was developed to evaluate the thermal performance of Al-SNF directly stored in a canister in a codisposal WP over the range of possible heat loads and boundary conditions. In addition, a conduction model and a detailed model which includes convection were developed to identify the dominant cooling mechanism under the present WP configuration, to investigate physical cooling mechanism in detail, and to estimate the conservatism imbedded in the baseline model.The results of the baseline model showed that the direct disposal configuration with a helium-filled WP satisfied the present waste acceptance criteria (WAC) for the WP design in terms of the peak temperature criterion, Tmax {lt} 350 degrees C, under the reference boundary conditions. A period of 10 years` cooling time for the decay heat loads of the SNF and the High-level Waste Glass Log (HWGL) regions was used as one of the reference design conditions.

Lee, S.Y.; Sindelar, R.L.

1998-09-01T23:59:59.000Z

82

Safety evaluation for packaging (onsite) depleted uranium waste boxes  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) allows the one-time shipment of ten metal boxes and one wooden box containing depleted uranium material from the Fast Flux Test Facility to the burial grounds in the 200 West Area for disposal. This SEP provides the analyses and operational controls necessary to demonstrate that the shipment will be safe for the onsite worker and the public.

McCormick, W.A.

1997-08-27T23:59:59.000Z

83

Packaging and Transfer of Materials of National Security Interest Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Technical Manual establishes requirements for operational safety controls for onsite operations and provides Department of Energy (DOE) technical safety requirements and policy objectives for development of an Onsite Packaging and Transfer Program, pursuant to DOE O 461.1A, Packaging and Transfer or Transportation of Materials of National Security Interest. The DOE contractor must document this program in its Onsite Packaging and Transfer Manual/Procedures. Admin Chg 1, 7-26-05. Certified 2-2-07. Canceled by DOE O 461.2.

2000-09-29T23:59:59.000Z

84

Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

M. J. Appel and J. M. Capron

2007-07-25T23:59:59.000Z

85

The Recycling Models and Its Research Progress of the Packaging Waste Polymer in China  

Science Journals Connector (OSTI)

With the rapid development of economy as well as the rise of packaging industry in China, the polymer packaging products also increases gradually. However, most of these products are one-off products, which mean after being used for once, they are always ... Keywords: packaging, waste, polymer, recycling, mode

Changqing Fang; Maorong Zhang; Shisheng Zhou; Xin Wang

2008-12-01T23:59:59.000Z

86

Complex-wide representation of material packaged in 3013 containers  

SciTech Connect (OSTI)

The DOE sites packaging plutonium oxide materials packaged according to Department of Energy 3013 Standard (DOE-STD-3013) are responsible for ensuring that the materials are represented by one or more samples in the Materials Identification and Surveillance (MIS) program. The sites categorized most of the materials into process groups, and the remaining materials were characterized, based on the prompt gamma analysis results. The sites issued documents to identify the relationships between the materials packaged in 3013 containers and representative materials in the MIS program. These “Represented” documents were then reviewed and concurred with by the MIS Working Group. However, these documents were developed uniquely at each site and were issued before completion of sample characterization, small-scale experiments, and prompt gamma analysis, which provided more detailed information about the chemical impurities and the behavior of the material in storage. Therefore, based on the most recent data, relationships between the materials packaged in 3013 containers and representative materials in the MIS program been revised. With the prompt gamma analysis completed for Hanford, Rocky Flats, and Savannah River Site 3013 containers, MIS items have been assigned to the 3013 containers for which representation is based on the prompt gamma analysis results. With the revised relationships and the prompt gamma analysis results, a Master “Represented” table has been compiled to document the linkages between each 3013 container packaged to date and its representative MIS items. This table provides an important link between the Integrated Surveillance Program database, which contains information about each 3013 container to the MIS items database, which contains the characterization, prompt gamma data, and storage behavior data from shelf-life experiments for the representative MIS items.

Narlesky, Joshua E.; Peppers, Larry G.; Friday, Gary P.

2009-06-01T23:59:59.000Z

87

CORROSION OF LEAD SHIELDING IN NUCLEAR MATERIALS PACKAGES  

SciTech Connect (OSTI)

Inspection of United States-Department of Energy (US-DOE) model 9975 nuclear materials shipping package revealed corrosion of the lead shielding induced by off-gas constituents from organic components in the package. Experiments were performed to determine the corrosion rate of lead when exposed to off-gas or degradation products of these organic materials. The results showed that the room temperature vulcanizing (RTV) sealant was the most corrosive organic species followed by the polyvinyl acetate (PVAc) glue. The fiberboard material induced corrosion to a much lesser extent than the PVAc glue and RTV, and only in the presence of condensed water. The results indicated faster corrosion at temperatures higher than ambient and with condensed water as expected. A corrosion rate of 0.05 mm/year measured for coupons exposed to the most aggressive conditions was recommended as a conservative estimate for use in package performance calculations.

Subramanian, K; Kerry Dunn, K

2007-11-16T23:59:59.000Z

88

Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment  

SciTech Connect (OSTI)

This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O'Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

2001-02-01T23:59:59.000Z

89

Value Engineering Study for Closing Waste Packages Containing TAD Canisters  

SciTech Connect (OSTI)

The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

Colleen Shelton-Davis

2005-11-01T23:59:59.000Z

90

Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394  

SciTech Connect (OSTI)

The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)] [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

2013-07-01T23:59:59.000Z

91

Stailization, Packaging, and Storage of Plutonium-Bearing Materials  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-3013-2012 MARCH 2012 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/NuclearSafety/ns/techstds/ DOE-STD-3013-2012 iii ABSTRACT This Standard provides guidance for the stabilization, packaging, and safe storage of plutonium- bearing metals and oxides containing at least 30 wt% plutonium plus uranium. It supersedes DOE-STD-3013-2004, "Stabilization, Packaging, and Storage of Plutonium-Bearing Materials," and is approved for use by all DOE organizations and their contractors. Metals are stabilized by

92

TECHNICAL PEER REVIEW REPORT - YUCCA MOUNTAIN: WASTE PACKAGE CLOSURE CONTROL SYSTEM  

SciTech Connect (OSTI)

The objective of the Waste Package Closure System (WPCS) project is to assist in the disposal of spent nuclear fuel (SNF) and associated high-level wastes (HLW) at the Yucca Mountain site in Nevada. Materials will be transferred from the casks into a waste package (WP), sealed, and placed into the underground facility. The SNF/HLW transfer and closure operations will be performed in an aboveground facility. The objective of the Control System is to bring together major components of the entire WPCS ensuring that unit operations correctly receive, and respond to, commands and requests for data. Integrated control systems will be provided to ensure that all operations can be performed remotely. Maintenance on equipment may be done using hands-on or remote methods, depending on complexity, exposure, and ease of access. Operating parameters and nondestructive examination results will be collected and stored as permanent electronic records. Minor weld repairs must be performed within the closure cell if the welds do not meet the inspection acceptance requirements. Any WP with extensive weld defects that require lids to be removed will be moved to the remediation facility for repair.

NA

2005-10-25T23:59:59.000Z

93

Treatment of halogen-containing waste and other waste materials  

DOE Patents [OSTI]

A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1997-03-18T23:59:59.000Z

94

Treatment of halogen-containing waste and other waste materials  

DOE Patents [OSTI]

A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1997-01-01T23:59:59.000Z

95

Effect of aged waste package and basalt on radioelement release  

SciTech Connect (OSTI)

Results of experiments are described that combine backfill, radioactive waste, and repository host rock in a single flowing groundwater stream in a manner analogous to a hydraulic breach of a waste repository. The experimental design is used to identify the chemical interactions that would occur if repository components were breached by flowing water. The results indicate that of three parameters studied, the alteration of the repository components as might occur upon aging had the most substantial influence on the migration of radioactive elements dissolved from the solid radioactive waste. The other two parameters, the metal alloy used in the apparatus and an ionizing radiation field imposed on the experimental apparatus, had little or no measurable effect on radioactive element transport by flowing water. Inasmuch as the alteration of the repository materials represent aging in an actual repository, it is concluded that changes with age may detrimentally affect the ability of a repository to isolate plutonium and neptunium, and possibly other radioactive elements in nuclear waste. 37 references, 2 figures, 2 tables.

Seitz, M.G.; Vandegrift, G.F.; Bowers, D.L.; Gerding, T.J.

1983-01-01T23:59:59.000Z

96

NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING  

SciTech Connect (OSTI)

Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

Watkins, R; Leduc, D; Askew, N

2009-06-25T23:59:59.000Z

97

Operations to be Performed in the Waste Package Dry Remediation Cell  

SciTech Connect (OSTI)

Describes planned and proposed operations for remediating damaged and/or out-of-compliance waste packages, casks, DPCs, overpacks, and containers at the Yucca Mountain Dry Transfer Facility.

Norman E. Cole; Randy K. Elwood

2003-10-01T23:59:59.000Z

98

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

99

Assessment of fission product content of high-level liquid waste supernate on E-Area vault package criteria  

SciTech Connect (OSTI)

This report assesses the tank farm`s high level waste supernate to determine any potential impacts on waste certification for the E-Area vaults (EAV). The Waste Acceptance Criteria procedure (i.e., WAC 3.10 of the 1S manual) imposes administrative controls on radioactive material in waste packages sent to the EAV, specifically on six fission products. Waste tank supernates contain various fission products, so any waste package containing material contaminated with supernate will contain these radioactive isotopes. This report develops the process knowledge basis for characterizing the supernate composition for these isotopes, so that appropriate controls can be implemented to ensure that the EAV WAC is met. Six fission products are listed in the SRS 1S Manual WAC 3.10: Se-79, which decays to bromine; Sr-90, which decays to niobium; Tc-99, which decays to ruthenium; Sn-126, which decays to tellurium; I-129, which decays to xenon; and Cs-137, which decays to barium.

Brown, D.F.

1994-06-30T23:59:59.000Z

100

Yucca Mountain Waste Package Closure System Robotic Welding and Inspection System  

SciTech Connect (OSTI)

The Waste Package Closure System (WPCS), for the closure of radioactive waste in canisters for permanent storage of spent nuclear fuel (SNF) and high-level waste in the Yucca Mountain Repository was designed, fabricated, and successfully demonstrated at the Idaho National Laboratory (INL). This article focuses on the robotic hardware and tools necessary to remotely weld and inspect the closure lid welds. The system was operated remotely and designed for use in a radiation field, due to the SNF contained in the waste packages being closed.

C. I. Nichol; D. P. Pace; E. D. Larsen; T. R. McJunkin; D. E. Clark; M. L. Clark; K. L. Skinner; A. D. Watkins; H. B. Smartt

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

In-situ vitrification of waste materials  

DOE Patents [OSTI]

A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

Powell, J.R.; Reich, M.; Barletta, R.

1997-10-14T23:59:59.000Z

102

Evaluation and compilation of DOE waste package test data; Volume 8: Biannual report, August 1989--January 1990  

SciTech Connect (OSTI)

This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of some of the Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six-month period, August 1989--January 1990. This includes reviews of related materials research and plans, information on the Yucca Mountain, Nevada disposal site activities, and other information regarding supporting research and special assistance. Short discussions are given relating to the publications reviewed and complete reviews and evaluations are included. Reports of other work are included in the Appendices.

Interrante, C.G. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Fraker, A.C.; Escalante, E. [National Inst. of Standards and Technology (MSEL), Gaithersburg, MD (United States). Metallurgy Div.

1993-06-01T23:59:59.000Z

103

Evaluation and compilation of DOE [Department of Energy] waste package test data; Biannual report, February 1988--July 1988  

SciTech Connect (OSTI)

This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab.

Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

1989-10-01T23:59:59.000Z

104

Stabilization, Packaging, and Storage of Plutonium-Bearing Materials  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-3013-2000 September 2000 Superseding DOE-STD-3013-99 November 1999 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3013-2000 iii ABSTRACT This Standard provides guidance for the stabilization, packaging and safe storage of plutonium-

105

Criteria for Packaging and Storing Uranium-233-Bearing Materials  

Broader source: Energy.gov (indexed) [DOE]

3028-2000 3028-2000 July 2000 DOE STANDARD CRITERIA FOR PACKAGING AND STORING URANIUM-233-BEARING MATERIALS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3028-2000 iii ABSTRACT This Standard provides guidance for the packaging and long-term (50 years) storage of stabilized, separated uranium-233(

106

INSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material are physically received at the Department of Environmental  

E-Print Network [OSTI]

are monitored and contamination of the package exterior is assessed. The radioactive stock vialINSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material radionuclide packages. GENERAL PROCEDURES 1. Radioactive packages must be opened and inspected as soon

Firestone, Jeremy

107

Tabulation of thermodynamic data for chemical reactions involving 58 elements common to radioactive waste package systems  

SciTech Connect (OSTI)

The rate of release and migration of radionuclides from a nuclear waste repository to the biosphere is dependent on chemical interactions between groundwater, the geologic host rock, and the radioactive waste package. For the purpose of this report, the waste package includes the wasteform, canister, overpack, and repository backfill. Chemical processes of interest include sorption (ion exchange), dissolution, complexation, and precipitation. Thermochemical data for complexation and precipitation calculations for 58 elements common to the radioactive waste package are presented. Standard free energies of formation of free ions, complexes, and solids are listed. Common logarithms of equilibrium constants (log K's) for speciation and precipitation reactions are listed. Unless noted otherwise, all data are for 298.15/sup 0/K and one atmosphere.

Benson, L.V.; Teague, L.S.

1980-08-01T23:59:59.000Z

108

A Fruit of Yucca Mountain: The Remote Waste Package Closure System  

SciTech Connect (OSTI)

Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.

Kevin Skinner; Greg Housley; Colleen Shelton-Davis

2011-11-01T23:59:59.000Z

109

Packaging waste recycling in Europe: Is the industry paying for it?  

SciTech Connect (OSTI)

Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the “recycling system” are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting “prices”)

Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

2014-02-15T23:59:59.000Z

110

Vertical Drop of the Naval SNF Long Waste Package On Unyielding Surface  

SciTech Connect (OSTI)

The purpose of this calculation is to determine the structural response of a Naval SNF (Spent Nuclear Fuel) Long Waste Package (WP) subjected to 2 m-vertical drop on unyielding surface (US). The scope of this document is limited to reporting the calculation results in terms of maximum stress intensities. This calculation is associated with the waste package design; calculation is performed by the Waste Package Design group. AP-3.12Q, Revision 0, ICN 0, Calculations, is used to perform the calculation and develop the document. The finite element calculation is performed by using the commercially available ANSYS Version (V) 5.4 finite element code. The result of this calculation is provided in terms of maximum stress intensities.

S. Mastilovic

2006-07-21T23:59:59.000Z

111

EM Waste and Materials Disposition & Transportation  

Broader source: Energy.gov (indexed) [DOE]

On Closure Success On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief Technical Officer and Deputy Assistant Secretary for Technical and Regulatory Support Office of Environmental Management DOE's Radioactive Waste Management Priorities * Continue to manage waste inventories in a safe and compliant manner * Address high risk waste in a cost- ff ti effective manner * Maintain and optimize current disposal capability for future generations * Develop future disposal capacity in a complex environment * Promote the development of treatment and disposal alternatives in the 2 and disposal alternatives in the

112

Scale-up considerations relevant to experimental studies of nuclear waste-package behavior  

SciTech Connect (OSTI)

Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

Coles, D.G.; Peters, R.D.

1986-04-01T23:59:59.000Z

113

Calculation of the Naval Long and Short Waste Package Three-Dimensional Thermal Interface Temperatures  

SciTech Connect (OSTI)

The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.

H. Marr

2006-10-25T23:59:59.000Z

114

Review of the Lawrence Livermore Nationa Laboratory Identiified Defective Department of Transportation Hazardous Material Packages  

Broader source: Energy.gov (indexed) [DOE]

5 5 Site Visit Report - Review of the Lawrence Livermore National Laboratory Identified Defective Department of Transportation Hazardous Material Packages This site visit report documents the results of Office of Health, Safety and Security's review of the Lawrence Livermore National Laboratory (LLNL) identification, immediate actions, communications, documentation, evaluation, reporting and follow-up to the discovery of defective Department of Transportation (DOT) UN1A2 55- and 30-gallon open head single bolt closure steel drums intended for storage and transportation of hazardous waste and materials. This review, conducted on January 26-29, 2010, was sponsored by the DOE Livermore Site Office (LSO) to support interface with the lab and this report is intended to support follow-up

115

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

116

Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste  

SciTech Connect (OSTI)

This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

Wurm, K.J.; Miller, N.E.

1982-11-01T23:59:59.000Z

117

Assessment of Aging of Cork and TISAF Materials in the SAFKEG 3940A Package in KAMS  

SciTech Connect (OSTI)

This report provides an assessment of the potential for aging and degradation of the resin-bonded cork and the Thermal-Insulating, Shock-Absorbing Foam materials that are components of the SAFKEG 3940A package. This package may be used for interim storage of plutonium materials in the Savannah River Site K-Area Materials Storage.

Vormelker, P.R.

2003-12-10T23:59:59.000Z

118

Design of a nuclear-waste package for emplacement in tuff  

SciTech Connect (OSTI)

Design, modeling, and testing activities are under way at LLNL in the development of high level nuclear waste package designs. We discuss the geological characteristics affecting design, the 10CFR60 design requirements, conceptual designs, metals for containment barriers, economic analysis, thermal modeling, and performance modeling.

O`Neal, W.C.; Rothman, A.J.; Gregg, D.W.; Hockman, J.N.; Revelli, M.A.; Russell, E.W.; Schornhorst, J.R.

1983-02-01T23:59:59.000Z

119

Waste Form Release Data Package for the 2005 Integrated Disposal Facility Performance Assessment  

SciTech Connect (OSTI)

This data package documents the experimentally derived input data on the representative waste glasses; LAWA44, LAWB45, and LAWC22. This data will be used for Subsurface Transport Over Reactive Multi-phases (STORM) simulations of the Integrated Disposal Facility (IDF) for immobilized low-activity waste (ILAW). The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in July 2005. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali (Na+)-hydrogen (H+) ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow (PUF) and product consistency (PCT) tests where used for accelerated weathering or aging of the glasses in order to determine a chemical reaction network of secondary phases that form. The majority of the thermodynamic data used in this data package were extracted from the thermody-namic database package shipped with the geochemical code EQ3/6, version 8.0. Because of the expected importance of 129I release from secondary waste streams being sent to IDF from various thermal treatment processes, parameter estimates for diffusional release and solubility-controlled release from cementitious waste forms were estimated from the available literature.

Pierce, Eric M.; McGrail, B. Peter; Rodriguez, Elsa A.; Schaef, Herbert T.; Saripalli, Prasad; Serne, R. Jeffrey; Krupka, Kenneth M.; Martin, P. F.; Baum, Steven R.; Geiszler, Keith N.; Reed, Lunde R.; Shaw, Wendy J.

2004-09-01T23:59:59.000Z

120

Nuclear Materials: Reconsidering Wastes and Assets - 13193  

SciTech Connect (OSTI)

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ('assets') to worthless ('wastes'). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as 'waste' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest. (authors)

Michalske, T.A. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Method for recovering materials from waste  

DOE Patents [OSTI]

A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

Wicks, G.G.; Clark, D.E.; Schulz, R.L.

1994-01-01T23:59:59.000Z

122

7 - Assessing and modelling the performance of nuclear waste and associated packages for long-term management  

Science Journals Connector (OSTI)

Abstract: Examples of analytical approaches and methodologies for modelling the behaviour of waste forms and waste package metals in long-term management of spent nuclear fuel (SNF) and high level waste (HLW) are presented. Two cases, long-term geological disposal and interim extended dry storage, are considered. The integrity of the waste package (or canister) that serves as a barrier is dependent upon the performance of construction metals. Corrosion degradation modes of the construction metals are evaluated. The waste behaviour during SNF degradation is also evaluated. In each mode of corrosion or degradation, the associated risk insights are discussed in the system performance of disposal or storage.

T.M. Ahn

2013-01-01T23:59:59.000Z

123

Chemical Environment at Waste Package Surfaces in a High-Level Radioactive Waste Repository  

SciTech Connect (OSTI)

We have conducted a series of deliquescence, boiling point, chemical transformation, and evaporation experiments to determine the composition of waters likely to contact waste package surfaces over the thermal history of the repository as it heats up and cools back down to ambient conditions. In the above-boiling period, brines will be characterized by high nitrate to chloride ratios that are stable to higher temperatures than previously predicted. This is clearly shown for the NaCl-KNO{sub 3} salt system in the deliquescence and boiling point experiments in this report. Our results show that additional thermodynamic data are needed in nitrate systems to accurately predict brine stability and composition due to salt deliquescence in dust deposited on waste package surfaces. Current YMP models capture dry-out conditions but not composition for NaCl-KNO{sub 3} brines, and they fail to predict dry-out conditions for NaCl-KNO{sub 3}-NaNO{sub 3} brines. Boiling point and deliquescence experiments are needed in NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} systems to directly determine dry-out conditions and composition, because these salt mixtures are also predicted to control brine composition in the above-boiling period. Corrosion experiments are needed in high temperature and high NO{sub 3}:Cl brines to determine if nitrate inhibits corrosion in these concentrated brines at temperatures above 160 C. Chemical transformations appear to be important for pure calcium- and magnesium-chloride brines at temperatures greater than 120 C. This stems from a lack of acid gas volatility in NaCl/KNO{sub 3} based brines and by slow CO{sub 2}(g) diffusion in alkaline brines. This suggests that YMP corrosion models based on bulk solution experiments over the appropriate composition, temperature, and relative humidity range can be used to predict corrosion in thin brine films formed by salt deliquescence. In contrast to the above-boiling period, the below-boiling period is characterized predominately by NaCl based brines with minor amounts of K, NO{sub 3}, Ca, Mg, F, and Br at less than 70% relative humidity. These brines are identified as sulfate and bicarbonate brines by the chemical divide theory. Nitrate to chloride ratios are strongly tied to relative humidity and halite solubility. Once the relative humidity is low enough to produce brines saturated with respect to halite, then NO{sub 3}:Cl increases to levels and may inhibit corrosion. In addition to the more abundant NaCl-based brines some measured pore waters will evaporate towards acid NaCl-CaCl{sub 2} brines. Acid volatility also occurs with this brine type indicating that chemical transformations may be important in thin films. In contrast to the above-boiling period, comparison of our experimental data with calculated data suggest that current YMP geochemical models adequately predict in-drift chemistry in the below-boiling period.

Carroll, S; Alai, M; Craig, L; Gdowski, G; Hailey, P; Nguyen, Q A; Rard, J; Staggs, K; Sutton, M; Wolery, T

2005-05-26T23:59:59.000Z

124

Shipment of Small Quantities of Unspecified Radioactive Material in Chalfant Packagings  

SciTech Connect (OSTI)

In the post 6M era, radioactive materials package users are faced with the disciplined operations associated with use of Certified Type B packagings. Many DOE, commercial and academic programs have a requirement to ship and/or store small masses of poorly characterized or unspecified radioactive material. For quantities which are small enough to be fissile exempt and have low radiation levels, the materials could be transported in a package which provides the required containment level. Because their Chalfant type containment vessels meet the highest standard of containment (helium leak-tight), the 9975, 9977, and 9978 are capable of transporting any of these contents. The issues associated with certification of a high-integrity, general purpose package for shipping small quantities of unspecified radioactive material are discussed and certification of the packages for this mission is recommended.

Smith, Allen; Abramczyk, Glenn; Nathan, Steven; Bellamy, Steve

2009-06-12T23:59:59.000Z

125

Packaging and Transfer of Materials of National Security Interest Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this Technical Manual is to establish requirements for operational safety controls for onsite operations. This Technical Manual provides Department of Energy (DOE) technical safety requirements and policy objectives for development of an onsite packaging and transfer program, pursuant to DOE O 461.1; the DOE contractor must document this program in its onsite packaging and transfer manual/procedures. Does not cancel other directives.

2000-09-29T23:59:59.000Z

126

Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)  

SciTech Connect (OSTI)

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.

DI Kaplan; RJ Serne

2000-02-24T23:59:59.000Z

127

Compilation of current literature on seals, closures, and leakage for radioactive material packagings  

SciTech Connect (OSTI)

This report presents an overview of the features that affect the sealing capability of radioactive material packagings currently certified by the US Nuclear Regulatory Commission. The report is based on a review of current literature on seals, closures, and leakage for radioactive material packagings. Federal regulations that relate to the sealing capability of radioactive material packagings, as well as basic equations for leakage calculations and some of the available leakage test procedures are presented. The factors which affect the sealing capability of a closure, including the properties of the sealing surfaces, the gasket material, the closure method and the contents are discussed in qualitative terms. Information on the general properties of both elastomer and metal gasket materials and some specific designs are presented. A summary of the seal material, closure method, and leakage tests for currently certified packagings with large diameter seals is provided. 18 figs., 9 tabs.

Warrant, M.M.; Ottinger, C.A.

1989-01-01T23:59:59.000Z

128

Review of DOE Waste Package Program. Semiannual report, October 1984-March 1985. Volume 8  

SciTech Connect (OSTI)

A large number of technical reports on waste package component performance were reviewed over the last year in support of the NRC`s review of the Department of Energy`s (DOE`s) Environmental Assessment reports. The intent was to assess in some detail the quantity and quality of the DOE data and their relevance to the high-level waste repository site selection process. A representative selection of the reviews is presented for the salt, basalt, and tuff repository projects. Areas for future research have been outlined. 141 refs.

Davis, M.S. (ed.)

1985-12-01T23:59:59.000Z

129

Effects of tuff waste package components on release from 76-68 simulated waste glass: Final report  

SciTech Connect (OSTI)

An experimental matrix has been conducted that will allow evaluation of the effects of waste package constituents on the waste form release behavior in a tuff repository environment. Tuff rock and groundwater were used along with 304L, 316, and 1020M ferrous metals to evaluate release from uranium-doped MCC 76-68 simulated waste glass. One of the major findings was that in the absence of 1020M mild steel, tuff rock powder dominates the system. However, when 1020M mild steel is present, it appears to dominate the system. The rock-dominated system results in suppressed glass-water reaction and leaching while the 1020M-dominated system results in enhanced leaching - but the metal effectively scavenges uranium from solution. The 300-series stainless steels play no significant role in affecting glass leaching characteristics. 6 refs., 28 figs., 5 tabs.

McVay, G.L.; Robinson, G.R.

1984-04-01T23:59:59.000Z

130

Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites  

Science Journals Connector (OSTI)

The increasing demand for new food packaging materials which satisfy people requirements provided thrust for advancement of nano-materials science. Inherent permeability of polymeric materials to gases and vapours; and poor barrier and mechanical properties of biopolymers have boosted interest in developing new strategies to improve these properties. Research and development in polymeric materials coupled with appropriate filler, matrix-filler interaction and new formulation strategies to develop composites have potential applications in food packaging. Advancement in food packaging materials expected to grow with the advent of cheap, renewable and sustainable materials with enhanced barrier and mechanical properties. Nanoparticles have proportionally larger surface area and significant aspect ratio than their micro-scale counterparts, which promotes the development of mechanical and barrier properties. Nanocomposites are attracting considerable interest in food packaging because of these fascinating features. On the other hand, natural fibres are susceptible to microorganisms and their biodegradability is one of the most promising aspects of their incorporation in polymeric materials. Present review article explain about different categories of nanoclay and natural fibre based composite with particular regard to its applications as packaging materials and also gives an overview of the most recent advances and emerging new aspects of nanotechnology for development of hybrid composites for environmentally compatible food packaging materials.

K. Majeed; M. Jawaid; A. Hassan; A. Abu Bakar; H.P.S. Abdul Khalil; A.A. Salema; I. Inuwa

2013-01-01T23:59:59.000Z

131

Physical test report for drop test of a 9974 radioactive material shipping packaging  

SciTech Connect (OSTI)

This report presents the drop test results for the 9974 radioactive material shipping package being dropped onto 6-inch diameter, 40-inch long puncture pin. Also reported are the drop test resuls for a 30-foot impact that failed the drum confinement boundary. The purpose of these drops was to show that the package lid would remain attached to the drum.

Blanton, P.S. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1997-10-01T23:59:59.000Z

132

General Corrosion and Localized Corrosion of Waste Package Outer Barrier  

SciTech Connect (OSTI)

Alloy 22 is an extremely Corrosion Resistant Material, with a very stable passive film. Based upon exposures in the LTCTF, the GC rates of Alloy 22 are typically below the level of detection, with four outliers having reported rates up to 0.75 #mu#m per year. In any event, over the 10,000 year life of the repository, GC of the Alloy 22 (assumed to be 2 cm thick) should not be life limiting. Because measured corrosion potentials are far below threshold potentials, localized breakdown of the passive film is unlikely under plausible conditions, even in SSW at 120 deg C. The pH in ambient-temperature crevices formed from Alloy 22 have been determined experimentally, with only modest lowering of the crevice pH observed under plausible conditions. Extreme lowering of the crevice pH was only observed under situations where the applied potential at the crevice mouth was sufficient to result in catastrophic breakdown of the passive film above the threshold potential in non-buffered conditions not characteristic of the Yucca Mountain environment. In cases where naturally ocurring buffers are present in the crevice solution, little or no lowering of the pH was observed, even with significant applied potential. With exposures of twelve months, no evidence of crevice corrosion has been observed in SDW, SCW and SAW at temperatures up to 90 deg C. An abstracted model has been presented, with parameters determined experimentally, that should enable performance assessment to account for the general and localized corrosion of this material. A feature of this model is the use of the materials specification to limit the range of corrosion and threshold potentials, thereby making sure that substandard materials prone to localized attack are avoided. Model validation will be covered in part by a companion SMR on abstraction of this model.

Farmer, J.C.; McCright, R.D.

2000-01-28T23:59:59.000Z

133

COMPACTION OF FIBERBOARD OVERPACK MATERIALS IN A 9975 SHIPPING PACKAGE  

SciTech Connect (OSTI)

Compaction of lower layers in the 9975 fiberboard overpack has been observed in packages that contain excess moisture. Dynamic loading of the package during transportation may also contribute to compaction of the fiberboard. This condition is being tested and analyzed to better understand these compaction mechanisms and provide a basis from which to evaluate their impact to the safety basis for transportation (Safety Analysis Report for Packaging) and storage (facility Design Safety Analysis) at the Savannah River Site (SRS). A test program has been developed and is being implemented to identify the extent of the compaction as a function of fiberboard moisture and typical transport dynamic loadings. Test conditions will be compared to regulatory requirements for dynamic loading. Characterization of the recovery of short-term compaction following the application of dynamic loading is also being evaluated. Interim results from this test program will be summarized.

Stefek, T.; Daugherty, W.; Estochen, E.; Murphy, J.

2010-05-27T23:59:59.000Z

134

Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements.

1996-11-15T23:59:59.000Z

135

LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE  

SciTech Connect (OSTI)

Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

Dunn, K. [Savannah River National Laboratory; Bellamy, S. [Savannah River National Laboratory; Daugherty, W. [Savannah River National Laboratory; Sindelar, R. [Savannah River National Laboratory; Skidmore, E. [Savannah River National Laboratory

2013-08-18T23:59:59.000Z

136

Thermal Analysis and Test Results for the Overpack of a Typical Radioactive Materials Package  

SciTech Connect (OSTI)

In the course of the development and certification of the 9975 Package, extensive thermal analyses were performed and the package subjected to the regulatory HAC thermal test. The results of the thermal analysis and materials tests of the cane fiberboard overpack material were evaluated in comparison with the package HAC thermal test results. The evaluation confirmed that the thermal analysis correctly predicted the performance of the 9975 in the HAC fire test. The post test examination revealed that the heat affected region of the Celotex(R) overpack correlated well with the calculated temperature distribution

Smith, A.C.

2003-05-06T23:59:59.000Z

137

Chapter 21 - Recycling of Packaging  

Science Journals Connector (OSTI)

Abstract Packaging is so common throughout our lives and the world that we hardly realize the massive volume of material consumed for packaging. Packaging is the key factor determining the volume and composition of municipal solid waste in many countries. The volume and composition of packaging waste are affected by a number of factors. Economic development, population, and a variety of national factors are key drivers for the total volume. The composition changes over time due to technology and economic drivers, but it is also affected by national traditions and policies. Due to the important contribution to the total volume of waste generated, packaging has historically received a lot of attention in waste management policy. This had led to a range of experiences with different ways to collect packaging waste throughout the world. The type of collection scheme is driven by the type of packaging or material (i.e. reuse, recycling, or waste treatment). Recycling rates vary by material type, with the highest collection and recycling rates found for metals, glass, and paper. Collection and recycling rates of plastics are generally still very low. The effectiveness and efficiency of collection are affected by a variety of factors, including cultural, economic, and organizational factors.

Ernst Worrell

2014-01-01T23:59:59.000Z

138

Waste and Materials Disposition Information | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste and Materials Disposition Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to identify alternatives and find a path that is cost-effective and in the best interest of the Federal government. In many instances, waste disposition, (processing, treatment and disposal) is part of cleanup agreements and is of interest to stakeholders and requires the oversight of regulators.

139

Contaminant Release Data Package for Residual Waste in Single-Shell Hanford Tanks  

SciTech Connect (OSTI)

The Hanford Federal Facility Agreement and Consent Order requires that a Resource Conservation and Recovery Act (RCRA) Facility Investigation report be submitted to the Washington State Department of Ecology. The RCRA Facility Investigation report will provide a detailed description of the state of knowledge needed for tank farm performance assessments. This data package provides detailed technical information about contaminant release from closed single-shell tanks necessary to support the RCRA Facility Investigation report. It was prepared by Pacific Northwest National Laboratory (PNNL) for CH2M HILL Hanford Group, Inc., which is tasked by the U.S. Department of Energy (DOE) with tank closure. This data package is a compilation of contaminant release rate data for residual waste in the four Hanford single-shell tanks (SSTs) that have been tested (C-103, C-106, C-202, and C-203). The report describes the geochemical properties of the primary contaminants of interest from the perspective of long-term risk to groundwater (uranium, technetium-99, iodine-129, chromium, transuranics, and nitrate), the occurrence of these contaminants in the residual waste, release mechanisms from the solid waste to water infiltrating the tanks in the future, and the laboratory tests conducted to measure release rates.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.

2007-12-01T23:59:59.000Z

140

INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS  

SciTech Connect (OSTI)

During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles, (Stegobium paniceum (L.) Coleoptera: Anobiidae), were found within the fiberboard subassemblies of two 9975 Shipping Packages. Initial indications were that the beetles were feeding on the Celotex{trademark} assemblies within the package. Celotex{trademark} fiberboard is used in numerous radioactive material packages serving as both a thermal insulator and an impact absorber for both normal conditions of transport and hypothetical accident conditions. The Department of Energy's Packaging Certification Program (EM-63) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex{trademark}. The Savannah River National Laboratory is conducting the investigation with entomological expertise provided by Clemson University. The two empty 9975 shipping packages were transferred to the Savannah River National Laboratory in the fall of 2007. This paper will provide details and results of the ongoing investigation.

Loftin, B; Glenn Abramczyk, G

2008-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Low-cost flexible packaging materials for batteries.  

SciTech Connect (OSTI)

Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.

Jansen, A. N.; Amine, K.; Newman, A. E.; Vissers, D. R.; Henriksen, G. L.; Chemical Engineering

2002-03-01T23:59:59.000Z

142

Material Recovery and Waste Form Development FY 2014 Accomplishments Report  

SciTech Connect (OSTI)

Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

Lori Braase

2014-11-01T23:59:59.000Z

143

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR GENERAL PURPOSE RADIOACTIVE MATERIALS PACKAGINGS  

SciTech Connect (OSTI)

Polyurethane foam has been employed in impact limiters for large radioactive materials packagings since the early 1980's. Its consistent crush response, controllable structural properties and excellent thermal insulating characteristics have made it attractive as replacement for the widely used cane fiberboard for smaller, drum size packagings. Accordingly, polyurethane foam was chosen for the overpack material for the 9977 and 9978 packagings. The study reported here was undertaken to provide data to support the analyses performed as part of the development of the 9977 and 9978, and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2009-02-18T23:59:59.000Z

144

Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426  

SciTech Connect (OSTI)

The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

2012-07-01T23:59:59.000Z

145

Packaging and Transfer or Transportation of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and responsibilities for the Transportation Safeguards System (TSS) packaging and transportation and onsite transfer of nuclear explosives, nuclear components, Naval nuclear fuel elements, Category I and Category II special nuclear materials, special assemblies, and other materials of national security interest. Cancels: DOE 5610.12 and DOE 5610.14.

2000-09-29T23:59:59.000Z

146

EVALUATION OF THE CORROSIVITY OF DUST DEPOSITED ON WASTE PACKAGES AT YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

Potentially corrosive brines can form during post-closure by deliquescence of salt minerals in dust deposited on the surface of waste packages at Yucca Mountain during operations and the pre-closure ventilation period. Although thermodynamic modeling and experimental studies of brine deliquescence indicates that brines are likely to form, they will be nitrate-rich and non-corrosive. Processes that modify the brines following deliquescence are beneficial with respect to inhibition of corrosion. For example, acid degassing (HCl, HNO{sub 3}) could dry out brines, but kinetic limitations are likely to limit the effect to increasing their passivity by raising the pH and increasing the NO{sub 3}/Cl ratio. Predicted dust quantities and maximum brine volumes on the waste package surface are small, and physical isolation of salt minerals in the dust may inhibit formation of eutectic brines and decrease brine volumes. If brines do contact the WP surface, small droplet volumes and layer thicknesses do not support development of diffusive gradients necessary for formation on separate anodic-cathodic zones required for localized corrosion. Finally, should localized corrosion initiate, corrosion product buildup will stifle corrosion, by limiting oxygen access to the metal surface, by capillary retention of brine in corrosion product porosity, or by consumption of brine components (Cl{sup -}).

C. Bryan; R. Jack; T, Wolery; D. Shields; M. Sutton; E. Hardin; D. Barr

2005-08-03T23:59:59.000Z

147

Carbon Foam Thermal Management Materials for Electronic Packaging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technologies Office: 2008 Propulsion Materials R&D Annual Progress Report Environmental Effects on Power Electronic Devices Low Cost Carbon Fiber from Renewable Resources...

148

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

149

EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages  

SciTech Connect (OSTI)

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations), of the simulations are limited to time periods up to 3.17 x 10{sup 5} years. This longer time frame is closer to the one million year time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years, most of the materials of interest (fissile and absorber materials) will have either been removed from the WP, reached a steady state, or been transmuted. The calculation included elements with high neutron-absorption cross sections, notably gadolinium (Gd), as well as the fissile materials. The results of this analysis will be used to ensure that the type and amount of criticality control material used in the WP design will prevent criticality.

S. Arthur

2000-09-14T23:59:59.000Z

150

Coupling High-Energy Radiography And Photon Activation Analysis (PAA) To Optimize The Characterization Of Nuclear Waste Packages  

SciTech Connect (OSTI)

Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The alpha-activity, mainly due to the presence of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu,...) inside the package, is one of the most important parameter to assess during the characterization. Photon Activation Analysis (PAA) is a non-destructive active method (NDA method) based on the photofission process and on the detection of delayed particles (neutrons and gammas). This technique is well-adapted to the characterization of large concrete waste packages. However, PAA methods often require a simulation step which is necessary to analyze experimental results and to quantify the global mass of actinides. The weak point of this approach is that characteristics of the package are often not well-known, these latter having a huge impact on the final simulation result. High-energy radiography, based on the use of a linear electron accelerator (LINAC), allows to visualize the content of the package and is also a performing way to tune simulation models and to optimize the characterization process by PAA. In this article, we present high-energy radiography results obtained for two different large concrete waste packages in the SAPHIR facility (Active Photon and Irradiation System). This facility is dedicated to PAA study and development and setup for a decade in CEA Saclay. We also discuss possibilities offered by the coupling between high-energy radiography and PAA techniques.

Carrel, F.; Agelou, M.; Gmar, M.; Laine, F.; Lamotte, T.; Lazaro, D.; Poumarede, B.; Rattoni, B. [CEA, LIST, F-91191, Gif-sur-Yvette (France)

2009-12-02T23:59:59.000Z

151

Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding.

Rob P. Rechard; Michael D. Voegele

2014-01-01T23:59:59.000Z

152

Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package  

SciTech Connect (OSTI)

This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

1985-10-01T23:59:59.000Z

153

System for chemically digesting low level radioactive, solid waste material  

DOE Patents [OSTI]

An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

1982-01-01T23:59:59.000Z

154

Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report  

SciTech Connect (OSTI)

One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containm

Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

2011-08-31T23:59:59.000Z

155

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network [OSTI]

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well materials and to produce a combustible product. This involves the removal of inert and compostable materials

Guillas, Serge

156

Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers. Final report  

SciTech Connect (OSTI)

One of the most significant factors impacting the performance of waste package container materials under repository relevant conditions is the thermal environment. This environment will be affected by the areal power density of the repository, which is dictated by facility design, and the dominant heat transfer mechanism at the site. The near-field environment will evolve as radioactive decay decreases the thermal output of each waste package. Recent calculations (Buscheck and Nitao, 1994) have addressed the importance of thermal loading conditions on waste package performance at the Yucca Mountain site. If a relatively low repository thermal loading design is employed, the temperature and relative humidity near the waste package may significantly affect the degradation of corrosion allowance barriers due to moist air oxidation and radiolytically enhanced corrosion. The purpose this report is to present a literature review of the potential degradation modes for moderately corrosion resistant nickel copper and nickel based candidate materials that may be applicable as alternate barriers for the ACD systems in the Yucca Mountain environment. This report presents a review of the corrosion of nickel-copper alloys, summaries of experimental evaluations of oxidation and atmospheric corrosion in nickel-copper alloys, views of experimental studies of aqueous corrosion in nickel copper alloys, a brief review of galvanic corrosion effects and a summary of stress corrosion cracking in these alloys.

Vinson, D.W.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1995-09-22T23:59:59.000Z

157

Packaging and Transportation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

158

Preliminary Criticality Analysis of Degraded SNF Accumulations to a Waste Package (SCPB: N/A)   

SciTech Connect (OSTI)

This study is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probability of criticality in the far-field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses. The objective of this evaluation is to provide input to a risk analysis which will show that criticalities involving commercial spent nuclear fuel (SNF) are not credible, or indicate additional measures that are required for the Engineered Barrier Segment (EBS) to make such events incredible. Minimum critical volumes and masses of UO{sub 2}/H{sub 2}O/tuff mixtures are determined without application of regulatory safety limits. This study does not address or demonstrate compliance with regulatory limits.

J.W. Davis

2005-12-15T23:59:59.000Z

159

DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES  

SciTech Connect (OSTI)

The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

Gupta, N.

2010-03-03T23:59:59.000Z

160

Yucca Mountain project canister material corrosion studies as applied to the electrometallurgical treatment metallic waste form  

SciTech Connect (OSTI)

Yucca Mountain, Nevada is currently being evaluated as a potential site for a geologic repository. As part of the repository assessment activities, candidate materials are being tested for possible use as construction materials for waste package containers. A large portion of this testing effort is focused on determining the long range corrosion properties, in a Yucca Mountain environment, for those materials being considered. Along similar lines, Argonne National Laboratory is testing a metallic alloy waste form that also is scheduled for disposal in a geologic repository, like Yucca Mountain. Due to the fact that Argonne`s waste form will require performance testing for an environment similar to what Yucca Mountain canister materials will require, this report was constructed to focus on the types of tests that have been conducted on candidate Yucca Mountain canister materials along with some of the results from these tests. Additionally, this report will discuss testing of Argonne`s metal waste form in light of the Yucca Mountain activities.

Keiser, D.D.

1996-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management  

Broader source: Energy.gov (indexed) [DOE]

60.1C 60.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT DOE O 460.1C and 460.2A Familiar Level June 2011 1 DOE O 460.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to perform the following: 1. What are the objectives of U.S. Department of Energy (DOE) O 460.1C? 2. What is the DOE/National Nuclear Security Administration (NNSA) exemption process in DOE O 460.1C? 3. What are the onsite safety requirements specified by DOE O 460.1C? 4. What are the objectives of DOE O 460.2A?

162

Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSA/Nevada Site Office Facility Representative Division Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders 461.1 and 460.1B Criteria: Verify that safety requirements for the proper packaging and transportation of DOE/NNSA offsite shipments and onsite transfers of hazardous materials and for modal transport have been established [DOE O 460.1B, 1, "Objectives"]. Verify that the contractor transporting a package of hazardous materials is in compliance with the requirements of the Hazardous Materials Regulations

163

Estimating heat of combustion for waste materials  

SciTech Connect (OSTI)

Describes a method of estimating the heat of combustion of hydrocarbon waste (containing S,N,Q,C1) in various physical forms (vapor, liquid, solid, or mixtures) when the composition of the waste stream is known or can be estimated. Presents an equation for predicting the heat of combustion of hydrocarbons containing some sulfur. Shows how the method is convenient for estimating the heat of combustion of a waste profile as shown in a sample calculation.

Chang, Y.C.

1982-11-01T23:59:59.000Z

164

A COMPARISON OF TWO THERMAL INSULATION AND STRUCTURAL MATERIALS FOR USE IN TYPE B PACKAGINGS  

SciTech Connect (OSTI)

This paper presents the summary of design features and test results of two Type B Shipping Package prototype configurations comprising different insulating materials developed by the Savannah River National Laboratory (SRNL) for the Department of Energy. The materials evaluated, a closed-cell polyurethane foam and a vacuformed ceramic fiber material, were selected to provide adequate structural protection to the package containment vessel during Normal Conditions of Transport (NCT) and Hypothetical Accident Condition (HAC) events and to provide thermal protection during the HAC fire. Polyurethane foam has been used in shipping package designs for many years because of the stiffness it provides to the structure and because of the thermal protection it provides during fire scenarios. This comparison describes how ceramic fiber material offers an alternative to the polyurethane foam in a specific overpack design. Because of the high operating temperature ({approx}2,300 F) of the ceramic material, it allows for contents with higher heat loads to be shipped than is possible with polyurethane foam. Methods of manufacturing and design considerations using the two materials will be addressed.

Blanton, P.; Eberl, K.

2010-07-16T23:59:59.000Z

165

APPLICATION OF POLYURETHANE FOAM FOR IMPACT ABSORPTION AND THERMAL INSULATION FOR RADIOACTIVE MATERIALS PACKAGINGS.  

SciTech Connect (OSTI)

Polyurethane foam has been widely used as an impact absorbing and thermal insulating material for large radioactive materials packages, since the 1980's. With the adoption of the regulatory crush test requirement, for smaller packages, polyurethane foam has been adopted as a replacement for cane fiberboard, because of its ability to withstand the crush test. Polyurethane foam is an engineered material whose composition is much more closely controlled than that of cane fiberboard. In addition, the properties of the foam can be controlled by controlling the density of the foam. The conditions under which the foam is formed, whether confined or unconfined have an affect on foam properties. The study reported here reviewed the application of polyurethane foam in RAM packagings and compared property values reported in the literature with published property values and test results for foam specimens taken from a prototype 9977 packaging. The study confirmed that, polyurethane foam behaves in a predictable and consistent manner and fully satisfies the functional requirements for impact absorption and thermal insulation.

Smith, A; Glenn Abramczyk, G; Paul Blanton, P; Steve Bellamy, S; William Daugherty, W; Sharon Williamson, S

2007-05-15T23:59:59.000Z

166

Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Testing  

SciTech Connect (OSTI)

The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (1) 233 K ({minus}40 {degrees}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degrees}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties.

Adkins, H.E.; Ferrell, P.C.; Knight, R.C.

1994-09-30T23:59:59.000Z

167

Radcalc: An Analytical Tool for Shippers of Radioactive Material and Waste  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) ships radioactive materials in support of its research and development, environmental restoration, and national defense activities. The Radcalc software program assists personnel working on behalf of DOE in packaging and transportation determinations (e.g., isotopic decay, decay heat, regulatory classification, and gas generation) for shipment of radioactive materials and waste. Radcalc performs: - The U.S. Department of Transportation determinations and classifications (i.e., activity concentration for exempt material Type A or B, effective A1/A2, limited quantity, low specific activity, highway route controlled quantity, fissile quantity, fissile excepted, reportable quantity, list of isotopes required on shipping papers) - DOE calculations (i.e., transuranic waste, Pu-239 equivalent curies, fissile-gram equivalents) - The U.S. Nuclear Regulatory Commission packaging category (i.e., Category I, II, or III) - Dose-equivalent curie calculations - Radioactive decay calculations using a novel decay methodology and a decay data library of 1,867 isotopes typical of the range of materials encountered in DOE laboratory environments - Hydrogen and helium gas calculations - Pressure calculations. Radcalc is a validated and cost-effective tool to provide consistency, accuracy, reproducibility, timeliness, quality, compliance, and appropriate documentation to shippers of radioactive materials and waste at DOE facilities nationwide. Hundreds of shippers and engineers throughout the DOE Complex routinely use this software to automate various determinations and to validate compliance with the regulations. The effective use of software by DOE sites contributes toward minimizing risk involved in radioactive waste shipments and assuring the safety of workers and the public. (authors)

Kapoor, A.K. [U.S. Department of Energy, Office of Transportation, Washington, DC (United States); Stuhl, L.A. [EnergySolutions Federal Services, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

168

Welding Robot and Remote Handling System for the Yucca Mountain Waste Package Closure System  

SciTech Connect (OSTI)

In preparation for the license application and construction of a repository for housing the nation's spent nuclear fuel and high-level waste in Yucca Mountain, the Idaho National Laboratory (INL) has been charged with preparing a mock-up of a full-scale prototype system for sealing the waste packages (WP). Three critical pieces of the closure room include two PaR Systems TR4350 Telerobotic Manipulators and a PaR Systems XR100 Remote Handling System (RHS). The TR4350 Manipulators are 6-axis programmable robots that will be used to weld the WP lids and purge port cap as well as conduct nondestructive examinations. The XR100 Remote Handling System is a 4-axis programmable robot that will be used to transport the WP lids and process tools to the WP for operations and remove equipment for maintenance. The welding and RHS robots will be controlled using separate PaR 5/21 CIMROC Controllers capable of complex motion control tasks. A tele-operated PaR 4350 Manipulator will also be provided with the XR100 Remote Handling System. It will be used for maintenance and associated activities within the closure room. (authors)

Barker, M.E.; Holt, T.E.; LaValle, D.R. [PaR Systems, Inc., Shoreview, MN (United States); Pace, D.P.; Croft, K.M.; Shelton-Davis, C.V. [Battelle Energy Alliance, LLC/Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

169

Physical test report to drop test of a 9975 radioactive material shipping packaging  

SciTech Connect (OSTI)

This report presents the drop test results for the 9975 radioactive material shipping package being dropped 30 feet onto a unyielding surface followed by a 40-inch puncture pin drop. The purpose of these drops was to show that the package lid would remain attached to the drum. The 30-foot drop was designed to weaken the lid closure lug while still maintaining maximum extension of the lugs from the drum surface. This was accomplished by angling the drum approximately 30 degrees from horizontal in an inverted position. In this position, the drum was rotated slightly so as not to embed the closure lugs into the drum as a result of the 30-foot drop. It was determined that this orientation would maximize deformation to the closure ring around the closure lug while still maintaining the extension of the lugs from the package surface. The second drop was from 40 inches above a 40-inch tall 6-inch diameter puncture pin. The package was angled 10 degrees from vertical and aligned over the puncture pin to solidly hit the drum lug(s) in an attempt to disengage the lid when dropped.Tests were performed in response to DOE EM-76 review Q5 inquires that questioned the capability of the 9975 drum lid to remain in place under this test sequence. Two packages were dropped utilizing this sequence, a 9974 and 9975. Test results for the 9974 package are reported in WSRC-RP-97-00945. A series of 40-inch puncture pin tests were also performed on undamaged 9975 and 9974 packages.

Blanton, P.S.

1997-11-11T23:59:59.000Z

170

Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

Church, A.; Gordon, J.; Montrose, J. K.

2002-02-26T23:59:59.000Z

171

Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages  

SciTech Connect (OSTI)

Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

2013-03-28T23:59:59.000Z

172

APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS  

SciTech Connect (OSTI)

This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

Blanton, P.; Eberl, K.; Abramczyk, G.

2012-07-11T23:59:59.000Z

173

EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages  

SciTech Connect (OSTI)

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to time periods up to 6.35 x 10{sup 5} years. This longer time frame is closer to the one million year time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years, most of the materials of interest (fissile materials) will have either been removed from the WP, reached a steady state, or been transmuted.

P. Bernot

2001-02-27T23:59:59.000Z

174

Productivity Techniques and Quality Aspects in the Criticality Safety Evaluation of Y-12 Type-B Fissile Material Packages  

SciTech Connect (OSTI)

The inventory of certified Type-B fissile material packages consists of ten performance-based packages for offsite transportation purposes, serving transportation programs at the Y-12 National Security Complex. The containment vessels range from 5 to 19 in. in diameter and from 17 to 58 in. in height. The drum assembly external to the containment vessel ranges from 18 to 34 in. in diameter and from 26 to 71 in. in height. The weight of the packaging (drum assembly and containment vessel) ranges from 239 to 1550 lb. The older DT-nn series of Cellotex-based packages are being phased-out and replaced by a new generation of Kaolite-based ('Y-12 patented insulation') packages capable of withstanding the dynamic crush test 10 CFR 71.73(c)(2). Three replacement packages are in various stages of development; two are in use. The U.S. Department of Transportation (DOT) 6M specification package, which does not conform to the U.S. Nuclear Regulatory Commission requirements for Type-B packages, is no longer authorized for service on public roads. The ES-3100 shipping package is an example of a Kaolite-based Type-B fissile material package developed as a replacement package for the DOT 6M. With expanded utility, the ES-3100 is designed and licensed for transporting highly enriched uranium and plutonium materials on public roads. The ES-3100 provides added capability for air transport of up to 7-kg quantities of uranium material. This paper presents the productivity techniques and quality aspects in the criticality safety evaluation of Y-12 packages using the ES-3100 as an example.

DeClue, J. F.

2011-06-28T23:59:59.000Z

175

The Use of Thermal Solar Energy to Treat Waste Materials  

Science Journals Connector (OSTI)

The processes employed in the various production sectors of trade and industry give rise to waste materials containing substances that can harm the environment to a greater or lesser extent. The volume of such...

H. Effelsberg; B. Barbknecht

1991-01-01T23:59:59.000Z

176

MATERIALS COMPATIBILITY OF SNAP FUEL COMPONENTS DURING SHIPMENT IN 9975 PACKAGING  

SciTech Connect (OSTI)

Materials Science and Technology has evaluated materials compatibility for the SNAP (Systems for Nuclear Auxiliary Power) fuel for containment within a 9975 packaging assembly for a shipping period of one year. The evaluation included consideration for potential for water within the convenience can, corrosion from water, galvanic corrosion, tape degradation, and thermal expansion risk. Based on a review of existing literature and assumed conditions, corrosion and/or degradation of the 304 stainless steel (SS) Primary Containment Vessel (PCV) and the 304 stainless steel convenience cans containing the SNAP fuel is not significant to cause failure during the 1 year time shipping period in the 9975 packaging assembly. However, storage beyond the 1 year shipping period has not been validated.

Vormelker, P

2006-11-14T23:59:59.000Z

177

March 10, 2005, Board letter forwarding Recommendation 2005-1, Nuclear Material Packaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACLLTIlEs FACLLTIlEs SAFETYBOARD John T. Conway, Chairman A.J. Eggenberger, Vice Chairman Joseph F. Bader John E. Mansfield R. Bruce Matthews 625 Indiana Avenue, NW, Suite 700, Wa5hington. D.C. 20004-2901 (202) 694-7000 March 10, 2005 The Honorable Samuel W. Bodman Secretary of Energy 1000 Independence Avenue, SW Washington, DC 20585-1000 Dear Secretary Bodman: On March 10,2005, the Defense Nuclear Facilities Safety Board (Board), in accordance with 42 U.S.C. 9 2286a(a)(5), unanimously approved Recommendation 2005- 1, Nuclear Material Packaging, which is enclosed for your consideration. This recommendation addresses issuance of a requirement that nuclear material packaging meet technically justified criteria for safe storage and handling outside of engineered contamination barriers.

178

Surveillance Guides - PTS 13.2 Packaging and Preparation for Shipment  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND PREPARATION FOR SHIPMENT PACKAGING AND PREPARATION FOR SHIPMENT 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's programs for packaging radioactive and hazardous wastes for shipment. The Facility Representative examines packages ready for shipment, observes preparation of packages, and reviews documents that establish the acceptability of packages. The Facility Representative verifies compliance with DOE requirements including requirements established by the Department of Transportation and the U.S. Nuclear Regulatory Commission. 2.0 References 2.1 DOE 5480.3, Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

179

Packaging and Transportation for Offsite Shipment of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Cancels DOE O 461.1A.

2010-12-20T23:59:59.000Z

180

THERMAL PROPERTIES OF FIBERBOARD OVERPACK MATERIALS IN THE 9975 SHIPPING PACKAGE  

SciTech Connect (OSTI)

The 9975 shipping package incorporates a cane fiberboard overpack for thermal insulation and impact resistance. Thermal properties (thermal conductivity and specific heat capacity) have been measured on cane fiberboard and a similar wood fiber-based product at several temperatures representing potential storage conditions. While the two products exhibit similar behavior, the measured specific heat capacity varies significantly from prior data. The current data are being developed as the basis to verify that this material remains acceptable over the extended storage time period.

VORMELKER, PHILLIP; DAUGHERTY, W. L.

2005-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PROPERTIES OF FIBERBOARD OVERPACK MATERIAL IN THE 9975 SHIPPING PACKAGE FOLLOWING THERMAL AGING  

SciTech Connect (OSTI)

Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions.

Daugherty, W

2007-01-10T23:59:59.000Z

182

Design of a European agrochemical plastic packaging waste management scheme—Pilot implementation in Greece  

Science Journals Connector (OSTI)

Abstract Mismanagement of Agrochemicals Plastic Packaging Waste (APPW) constitutes a major environmental problem, resulting in the pollution of soil, air and water resources and compromising the agricultural products safety, the protection of the environment and the public health. Systems for the management of APPW have been established in some European countries and they are operational for several years now. However, these schemes are incompatible while their operational conditions and technical criteria could be improved. In many countries no schemes exist yet for the management of APPW with serious negative consequences for the environment and public health. In response to these problems the European project AgroChePack has developed an environmental friendly, economically viable European APPW management scheme by transferring know-how from existing schemes, designing a new integrated APPW management scheme and testing it through pilot trials in five countries. This work presents the basic design principles established by AgroChePack by identifying problems and bottlenecks faced by existing schemes in Europe, by developing an integrated APPW scheme and by implementing, evaluating and optimising this scheme through pilot trials in Greece.

D. Briassoulis; M. Hiskakis; H. Karasali; C. Briassoulis

2014-01-01T23:59:59.000Z

183

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect (OSTI)

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

184

Material Recycling and Waste Disposal Document Control  

E-Print Network [OSTI]

of pollution, compliance with legislative requirements and continual improvement. The list of parties involved managers. Legislation referenced by this document. Environmental protection Act 1990 (EPA 1990). Waste. The clear bag bin liners are removed by the O&G Cleaners, tied closed, and taken to the building

Guillas, Serge

185

Processing of solid mixed waste containing radioactive and hazardous materials  

DOE Patents [OSTI]

Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

1998-05-12T23:59:59.000Z

186

Materials Degradation Issues in the U.S. High-Level Nuclear Waste Repository  

SciTech Connect (OSTI)

This paper reviews the state-of-the-art understanding of the degradation processes by the Yucca Mountain Project (YMP) with focus on interaction between the in-drift environmental conditions and long-term materials degradation of waste packages and drip shields within the repository system during the first 10,000-years after repository closure. This paper provides an overview of the degradation of the waste packages and drip shields in the repository after permanent closure of the facility. The degradation modes discussed in this paper include aging and phase instability, dry oxidation, general and localized corrosion, stress corrosion cracking, and hydrogen induced cracking of Alloy 22 and titanium alloys. The effects of microbial activity and radiation on the degradation of Alloy 22 and titanium alloys are also discussed. Further, for titanium alloys, the effects of fluorides, bromides, and galvanic coupling to less noble metals are considered. It is concluded that the materials and design adopted will provide sufficient safety margins for at least 10,000-years after repository closure.

K.G. Mon; F. Hua

2005-04-12T23:59:59.000Z

187

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

188

Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers  

SciTech Connect (OSTI)

Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel {approx} Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs.

Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

1988-08-01T23:59:59.000Z

189

Radioisotope thermoelectric generator package o-ring seal material validation testing  

SciTech Connect (OSTI)

The Radioisotope Thermoelectric Generator Package O-Ring Seal Material Validation Test was conducted to validate the use of the Butyl material as a primary seal throughout the required temperature range. Three tests were performed at (I) 233 K ({minus}40 {degree}F), (2) a specified operating temperature, and (3) 244 K ({minus}20 {degree}F) before returning to room temperature. Helium leak tests were performed at each test point to determine seal performance. The two major test objectives were to establish that butyl rubber material would maintain its integrity under various conditions and within specified parameters and to evaluate changes in material properties. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Adkins, H.E.; Ferrell, P.C.; Knight, R.C. [Westinghouse Hanford Company, P. O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

190

Remaining Sites Verification Package for the 120-F-1 Glass Dump Waste Site, Waste Site Reclassification Form 2008-028  

SciTech Connect (OSTI)

The 120-F-1 waste site consisted of two dumping areas located 660 m southeast of the 105-F Reactor containing laboratory equipment and bottles, demolition debris, light bulbs and tubes, small batteries, small drums, and pesticide contaminated soil. It is probable that 108-F was the source of the debris but the material may have come from other locations within the 100-F Area. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-06-27T23:59:59.000Z

191

Waste minimization for commercial radioactive materials users generating low-level radioactive waste  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

1991-07-01T23:59:59.000Z

192

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect (OSTI)

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

193

Performance-oriented packaging: A guide to identifying and designing. Identifying and designing hazardous materials packaging for compliance with post HM-181 DOT Regulations  

SciTech Connect (OSTI)

With the initial publication of Docket HM-181 (hereafter referred to as HM-181), the U.S. Department of Energy (DOE), Headquarters, Transportation Management Division decided to produce guidance to help the DOE community transition to performance-oriented packagings (POP). As only a few individuals were familiar with the new requirements, elementary guidance was desirable. The decision was to prepare the guidance at a level easily understood by a novice to regulatory requirements. This document identifies design development strategies for use in obtaining performance-oriented packagings that are not readily available commercially. These design development strategies will be part of the methodologies for compliance with post HM-181 U.S. Department of Transportation (DOT) packaging regulations. This information was prepared for use by the DOE and its contractors. The document provides guidance for making decisions associated with designing performance-oriented packaging, and not for identifying specific material or fabrication design details. It does provide some specific design considerations. Having a copy of the regulations handy when reading this document is recommended to permit a fuller understanding of the requirements impacting the design effort. While this document is not written for the packaging specialist, it does contain guidance important to those not familiar with the new POP requirements.

Not Available

1994-08-01T23:59:59.000Z

194

Potential applications of nanostructured materials in nuclear waste management.  

SciTech Connect (OSTI)

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01T23:59:59.000Z

195

Method of extruding and packaging a thin sample of reactive material, including forming the extrusion die  

DOE Patents [OSTI]

This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon, or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

Lewandowski, E.F.; Peterson, L.L.

1981-11-30T23:59:59.000Z

196

Method of extruding and packaging a thin sample of reactive material including forming the extrusion die  

DOE Patents [OSTI]

This invention teaches a method of cutting a narrow slot in an extrusion die with an electrical discharge machine by first drilling spaced holes at the ends of where the slot will be, whereby the oil can flow through the holes and slot to flush the material eroded away as the slot is being cut. The invention further teaches a method of extruding a very thin ribbon of solid highly reactive material such as lithium or sodium through the die in an inert atmosphere of nitrogen, argon or the like as in a glovebox. The invention further teaches a method of stamping out sample discs from the ribbon and of packaging each disc by sandwiching it between two aluminum sheets and cold welding the sheets together along an annular seam beyond the outer periphery of the disc. This provides a sample of high purity reactive material that can have a long shelf life.

Lewandowski, Edward F. (Westmont, IL); Peterson, Leroy L. (Joliet, IL)

1985-01-01T23:59:59.000Z

197

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect (OSTI)

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

198

FIRST STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE  

SciTech Connect (OSTI)

Samples have been prepared from a softwood fiberboard lower subassembly. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples. Some of the observed differences result from the limited exposure periods of the softwood fiberboard samples, and the impact of seasonal humidity levels. Testing following additional conditioning will continue and should eliminate this bias. Post-conditioning data have been measured on a single softwood fiberboard assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but much of the compression strength data tends toward the lower end of that range. Further understanding of the variability of softwood fiberboard properties will require testing of additional material. Cane fiberboard wall sheathing is specified for thermal insulation and impact resistance in 9975 shipping packages. Softwood fiberboard manufactured by Knight-Celotex was approved as an acceptable substitute for transportation in 2008. Data in the literature [1] show a consistent trend in thermal properties of fiberboard as a function of temperature, density and/or moisture content regardless of material source. Thermal and mechanical properties were measured for un-aged softwood fiberboard samples, and found to be sufficiently similar to those of un-aged cane fiberboard to support the acceptance of 9975 packages with softwood fiberboard overpack into KAMS for storage. The continued acceptability of aged softwood fiberboard to meet KAMS storage requirements was the subject of subsequent activities. This is an interim status report for experiments carried out per Task Technical Plan WSRC-TR-2008-00024 [2], which is part of the comprehensive 9975 package surveillance program [3]. The primary goal of this task is to validate the preliminary assessment that Knight-Celotex softwood fiberboard is an acceptable substitute for cane fiberboard in the 9975 shipping package overpack, and that the long-term performance of these two materials in a storage environment is comparable.

Daugherty, W.

2010-01-08T23:59:59.000Z

199

Report to Congress on the potential use of lead in the waste packages for a geologic repository at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE. The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.

NONE

1989-12-01T23:59:59.000Z

200

Survey of the degradation modes of candidate materials for high-level radioactive waste disposal containers  

SciTech Connect (OSTI)

Oxidation and atmospheric corrosion data suggest that addition of Cr provides the greatest improvement in oxidation resistance. Cr-bearing cast irons are resistant to chloride environments and solutions containing strongly oxidizing constituents. Weathering steels, including high content and at least 0.04% Cu, appear to provide adequate resistance to oxidation under temperate conditions. However, data from long-term, high-temperature oxidation studies on weathering steels were not available. From the literature, it appears that the low alloy steels, plain carbon steels, cast steels, and cast irons con-ode at similar rates in an aqueous environment. Alloys containing more than 12% Cr or 36% Ni corrode at a lower rate than plain carbon steels, but pitting may be worse. Short term tests indicate that an alloy of 9Cr-1Mo may result in increased corrosion resistance, however long term data are not available. Austenitic cast irons show the best corrosion resistance. A ranking of total corrosion performance of the materials from most corrosion resistant to least corrosion resistant is: Austenitic Cast Iron; 12% Cr = 36% Ni = 9Cr-1Mo; Carbon Steel = Low Alloy Steels; and Cast Iron. Since the materials to be employed in the Advanced Conceptual Design (ACD) waste package are considered to be corrosion allowance materials, the austenitic cast irons, high Cr steels, high Ni steels and the high Cr-Mo steels should not be considered as candidates for the outer containment barrier. Based upon the oxidation and corrosion data available for carbon steels, low alloy steels, and cast irons, a suitable list of candidate materials for a corrosion allowance outer barrier for an ACD waste package could include, A516, 2.25%Cr -- 1%Mo Steel, and A27.

Vinson, D.W.; Nutt, W.M.; Bullen, D.B. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01T23:59:59.000Z

202

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31T23:59:59.000Z

203

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents [OSTI]

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

204

Potential for the localized corrosion of alloy 22 Waste Packages in Multiple-Salt Deliquescent Brines in the Yucca Mountain Repository  

SciTech Connect (OSTI)

It has been postulated that the deliquescence of multiple-salt systems in dust deposits and the consequent localized corrosion in high-temperature brines could lead to premature failure of the Alloy 22 waste packages in the Yucca Mountain repository. EPRI has developed a decision tree approach to determine if the various stages leading to waste package failure are possible and whether the safety of the repository system could be compromised as a result. Through a series of arguments, EPRI has shown that it is highly unlikely that the multiple-salt deliquescent brines will form in the first place and, even if they did, that they would not be thermodynamically stable, that the postulated brines are not corrosive and would not lead to the initiation of localized corrosion of Alloy 22, that even if localized corrosion did initiate that the propagation would stifle and cease long before penetration of the waste package outer barrier, and that even if premature waste package failures did occur from this cause that the safety of the overall system would not be compromised. EPRI concludes, therefore, that the postulated localized corrosion of the waste packages due to high-temperature deliquescent brines is neither a technical nor a safety issue of concern for the Yucca Mountain repository. (authors)

King, F. [Integrity Corrosion Consulting, Ltd., Calgary, AB (Canada); Arthur, R.; Apted, M. [Monitor Scientific LLC, Denver, CO (United States); Kessler, J.H. [Electric Power Research Institute, Charlotte, NC (United States)

2007-07-01T23:59:59.000Z

205

EFFECT OF IMPACT LIMITER MATERIAL DEGRATION ON STRUCTURAL INTEGRITY OF 9975 PACKAGE SUBJECTED TO TWO FORKLIFT TRUCK IMPACT  

SciTech Connect (OSTI)

This paper evaluates the effect of the impact limiter material degradation on the structural integrity of the 9975 package containment vessel during a postulated accident event of forklift truck collision. The analytical results show that the primary and secondary containment vessels remain structurally intact for Celotex material degraded to 20% of the baseline value.

Wu, T

2007-07-09T23:59:59.000Z

206

CH Packaging Operations Manual  

SciTech Connect (OSTI)

This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

Washington TRU Solutions LLC

2005-06-13T23:59:59.000Z

207

PROCEDURE FOR OPENING PACKAGES CONTAINING RADIONUCLIDES Laboratory personnel should open and inspect packages immediately upon receipt.  

E-Print Network [OSTI]

as soon as possible to the vendor. Return of radioactive material to the vendor must be coordinated of absorbing material. 5. The inner packaging which includes the liner, shield, and absorbent materials may be contaminated; they are to be discarded in the radioactive waste container unless shown to be uncontaminated

Slatton, Clint

208

Waste package degradation from thermal and chemical processes in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of waste container degradation in performance assessments conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. As understanding of the Yucca Mountain disposal system increased, modeling of container degradation evolved from a component of the source term in 1984 to a separate module describing both container and drip shield degradation in 2008. A thermal module for evaluating the influence of higher heat loads from more closely packed, large waste packages was also introduced. In addition, a module for evaluating drift chemistry was added in later \\{PAs\\} to evaluate the potential for localized corrosion of the outer barrier of the waste container composed of Alloy 22, a highly corrosion-resistant nickel–chromium–tungsten–molybdenum alloy. The uncertainty of parameters related to container degradation contributed significantly to the estimated uncertainty of performance measures (cumulative release in assessments prior to 1995 and individual dose, thereafter).

Rob P. Rechard; Joon H. Lee; Ernest L. Hardin; Charles R. Bryan

2014-01-01T23:59:59.000Z

209

DOE-STD-3013-2004; Stabilization, Packaging, and Storage of Plutonium-Bearing Materials  

Broader source: Energy.gov (indexed) [DOE]

MEASUREMENT SENSITIVE DOE-STD-3013-2004 April 2004 Superseding DOE-STD-3013-2000 September 2000 DOE STANDARD STABILIZATION, PACKAGING, AND STORAGE OF PLUTONIUM-BEARING MATERIALS U.S. Department of Energy AREA PACK Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services. U.S. Department of Energy. (800) 473-4375, fax: (301) 903-9823. Available to the public from the U. S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605- 6000. DOE-STD-3013-2004 iii

210

FIFTH STATUS REPORT: TESTING OF AGED SOFTWOOD FIBERBOARD MATERIAL FOR THE 9975 SHIPPING PACKAGE  

SciTech Connect (OSTI)

Samples have been prepared from a 9975 lower fiberboard subassembly fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in elevated humidity environments, while some cane fiberboard properties degrade faster in the hotter dry environments. As a result, it is premature to assume both materials will age at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAC storage environment for up to 15 years. Aging and testing of softwood fiberboard will continue and additional data will be collected. Additional samples will be added to each aging environment, to support development of an aging model specific to softwood fiberboard. Post-conditioning data have been measured on samples from a single softwood fiberboard assembly, and baseline data are also available from a limited number of vendor-provided samples. This provides minimal information on the possible sample-to-sample variation exhibited by softwood fiberboard. Data to date are generally consistent with the range seen in cane fiberboard, but some portions of the data trends are skewed toward the lower end of that range. Two additional softwood fiberboard source packages have been obtained and will begin to provide data on the range of variability of this material.

Daugherty, W.; Skidmore, E.; Dunn, K.

2014-04-15T23:59:59.000Z

211

CH Packaging Operations Manual  

SciTech Connect (OSTI)

Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

Washington TRU Solutions LLC

2003-06-26T23:59:59.000Z

212

RH Packaging Program Guidance  

SciTech Connect (OSTI)

The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.

Washington TRU Solutions LLC

2008-01-12T23:59:59.000Z

213

RH Packaging Program Guidance  

SciTech Connect (OSTI)

The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.

Washington TRU Solutions LLC

2006-11-07T23:59:59.000Z

214

Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site  

SciTech Connect (OSTI)

This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

Reidel, Steve P.; Chamness, Mickie A.

2007-01-01T23:59:59.000Z

215

Vendor Assessment for the Waste Package Closure System (Yucca Mountain Project)  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

Shelton-Davis, C.V.

2003-09-26T23:59:59.000Z

216

Vendor Assessment for the Waste Package Closure System (Yucca Mtn. Project)  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) has been tasked with developing, designing, constructing, and operating a full-scale prototype of the work package closure system. As a precursor to developing the conceptual design, all commercially available equipment was assessed to identify any existing technology gaps. This report presents the results of that assessment for all major equipment.

Colleen Shelton-Davis

2003-09-01T23:59:59.000Z

217

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network [OSTI]

1 Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin on Waste Materials Recovery and Disposal who have invited me to address you today on landfill disamenities in New York State in the 1960's. We had many problems with polluting solid waste dumps, landfill fires

Columbia University

218

Improving D&D Planning and Waste Management with Cutting and Packaging Simulation  

SciTech Connect (OSTI)

The increased amount of decontamination and decommissioning (D&D) being performed throughout the world not only strains nuclear cleanup budgets, but places severe demands on the capacities of nuclear waste disposal sites. Although budgets and waste disposal sites have been able to accommodate the demand thus far, the increasing number of large facilities being decommissioned will cause major impacts to the waste disposal process. It is thus imperative that new and innovative technologies are applied within the D&D industry to reduce costs and waste disposal requirements for the decommissioning of our inventory of large and aging nuclear facilities. One of the most significant problems reactor owner’s deal with is the accurate determination of the types and volumes of wastes that will be generated during decommissioning of their facilities. Waste disposal costs, restrictions, and transportation issues can account for as much as 30% of the total costs to decommission a facility and thus it is very important to have accurate waste volume estimates. The use of simulation technologies to estimate and reduce decommissioning waste volumes provides a new way to manage risks associated with this work. Simulation improves the process by allowing facility owners to obtain accurate estimates of the types and amounts of waste prior to starting the actual D&D work. This reduces risk by permitting earlier and better negotiations with the disposal sites, and more time to resolve transportation issues. While simulation is a tool to be used by the D&D contractors, its real value is in reducing risks and costs to the reactor owners.

Richard H. Meservey; Jean-Louis Bouchet

2005-08-01T23:59:59.000Z

219

PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories  

SciTech Connect (OSTI)

This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

none,

1992-01-01T23:59:59.000Z

220

Improved method and composition for immobilization of waste in cement-based material  

DOE Patents [OSTI]

A composition and method for fixation or immobilization of aqueous hazardous waste material in cement-based materials (grout) is disclosed. The amount of drainable water in the cured grout is reduced by the addition of an ionic aluminum compound to either the waste material or the mixture of waste material and dry-solid cement- based material. This reduction in drainable water in the cured grout obviates the need for large, expensive amounts of gelling clays in grout materials and also results in improved consistency and properties of these cement-based waste disposal materials.

Tallent, O.K.; Dodson, K.E.; McDaniel, E.W.

1987-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Preliminary Study of Radioactive Waste Package Made of High-Strength and Ultra Low-Permeability Concrete for Geological Disposal of TRU Wastes  

SciTech Connect (OSTI)

We have been developing a radioactive waste package made of high-strength and ultra low-permeability concrete (HSULPC) for geological disposal of TRU wastes, which is expected to be much more impervious to water than conventional concrete. In this study, basic data for the HSULPC regarding its the impervious character and the thermodynamics during cement hydration were obtained through water permeability measurements using cold isostatic pressing (CIP) and adiabatic concrete hydration experiments, respectively. Then, a prediction tool to find concrete package construction conditions to avoid thermal cracking was developed, which could deal with coupled calculations of cement hydration, heat transfer, stress, and cracking. The developed tool was applied to HSULPC hydration on a small-scale cylindrical model to examine whether there was any effect on cracking which depended on the ratio of concrete cylinder thickness to its inner diameter. The results were compared to experiments. For concrete with a compressive strength of 200MPa, the water permeability coefficient was 4 x 10{sup 19} m/s. Dependences of activation energy and frequency factor on degree of cement hydration had a sharp peaking due to the nucleation rate-determining step, and a gradual increase region due to the diffusion rate-determining step. From analyses of the small-scale cylindrical model, dependences of the maximum principal stress on the radius were obtained. When the ratio of the concrete thickness to the heater diameter was around 1, the risk of cracking was predicted to be minimized. These numerical predictions from the developed tool were verified by experiments.

Matsuo, T.; Kawasaki, T.; Sakamoto, H.; Asano, E.; Takei, A.; Shibuya, K.; Katagiri, M.

2003-02-27T23:59:59.000Z

222

Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003  

SciTech Connect (OSTI)

The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-04-24T23:59:59.000Z

223

Method for co-processing waste rubber and carbonaceous material  

SciTech Connect (OSTI)

In a process for the co-processing of waste rubber and carbonaceous material to form a useful liquid product, the rubber and the carbonaceous material are combined and heated to the depolymerization temperature of the rubber in the presence of a source of hydrogen. The deploymerized rubber acts as a liquefying solvent for the carbonaceous material while a beneficial catalytic effect is obtained from the carbon black released on deploymerization the reinforced rubber. The reaction is carried out at liquefaction conditions of 380--600{degrees}C and 70--280 atmospheres hydrogen pressure. The resulting liquid is separated from residual solids and further processed such as by distillation or solvent extraction to provide a carbonaceous liquid useful for fuels and other purposes.

Farcasiu, M.; Smith, C.M.

1990-10-09T23:59:59.000Z

224

Remaining Sites Verification Package for the 100-D-2 Lead Sheeting Waste Site, Waste Site Reclassification Form 2007-030  

SciTech Connect (OSTI)

The 100-D-2 Lead Sheeting waste site was located approximately 50 m southwest of the 185-D Building and approximately 16 m north of the east/west oriented road. The site consisted of a lead sheet covering a concrete pad. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-19T23:59:59.000Z

225

Assessment and evaluation of a safety factor with respect to ocean disposal of waste materials  

E-Print Network [OSTI]

to the oceans is essential if ocean dumping is to be continued. The author has surveyed the available literature, bioassay studies, and pertinent research concerning chronic effects and the risk they impose on the marine ecosystem. The main purpose... OPERATIONS 10 History of Ocean Dumping Corps of Engineers' Letters of No Objection 10 12 Types of Materials Dumped Dredge Spoils Industrial Wastes Municipal Wastes Radioactive Wastes Solid Wastes Military Wastes Construction Debris 13 13 15 15...

Zapatka, Thomas Francis

1976-01-01T23:59:59.000Z

226

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

227

Nuclear Waste Storage in Gel-Derived Materials  

Science Journals Connector (OSTI)

For long life nuclear wastes (essentially actinides) research is in progress ... a process to prepare silica glass embedding the nuclear waste. Porous silica (gel) is used as a host matrix for nuclear waste. Neod...

T. Woignier; J. Reynes; J. Phalippou…

2000-12-01T23:59:59.000Z

228

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

229

Safety Evaluation for Packaging (onsite) T Plant Canyon Items  

SciTech Connect (OSTI)

This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

OBRIEN, J.H.

2000-07-14T23:59:59.000Z

230

Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM  

Broader source: Energy.gov [DOE]

Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

231

Salt Waste Processing Facility Fact Sheet | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Tank Waste and Waste Processing » Services » Waste Management » Tank Waste and Waste Processing » Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at SRS resulted in the generation of liquid radioactive waste that is being stored, on an interim basis, in 49 underground waste storage tanks in the F- and H-Area Tank Farms. SWPF Fact Sheet More Documents & Publications EIS-0082-S2: Amended Record of Decision Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report EIS-0082-S2: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation Site & Facility Restoration Deactivation & Decommissioning (D&D)

232

GRR/Section 18 - Waste and Hazardous Material Assessment Process | Open  

Open Energy Info (EERE)

- Waste and Hazardous Material Assessment Process - Waste and Hazardous Material Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18 - Waste and Hazardous Material Assessment Process 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Environmental Protection Agency Regulations & Policies RCRA CERCLA 40 CFR 261 Triggers None specified Click "Edit With Form" above to add content 18 - WasteAndHazardousMaterialAssessmentProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The use of underground and above ground storage tanks, discovery of waste

233

MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT  

E-Print Network [OSTI]

i MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT: CASE nutrient management, organic waste, wastewater and septage that contained high concentration of nutrients area. The nitrogen fluxes in relation to organic waste and wastewater were chosen as indicators

Richner, Heinz

234

Remaining Sites Verification Package for the 100-B-23, 100-B/C Area Surface Debris, Waste Site, Waste Site Reclassification Form 2008-027  

SciTech Connect (OSTI)

The 100-B-23, 100-B/C Surface Debris, waste consisted of multiple locations of surface debris and chemical stains that were identified during an Orphan Site Evaluation of the 100-B/C Area. Evaluation of the collected information for the surface debris features yielded four generic waste groupings: asbestos-containing material, lead debris, oil and oil filters, and treated wood. Focused verification sampling was performed concurrently with remediation. Site remediation was accomplished by selective removal of the suspect hazardous items and potentially impacted soils. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-06-16T23:59:59.000Z

235

HOW THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE DEVELOPED A NEW WASTE PACKAGE USING A POLYUREA COATING THAT IS SAFELY AND ECONOMICALLY ELIMINATING SIZE REDUCTION OF LARGE ITEMS  

SciTech Connect (OSTI)

One of the major challenges involved in closing the Rocky Flats Environmental Technology Site (RFETS) is the disposal of extremely large pieces of contaminated production equipment and building debris. Past practice has been to size reduce the equipment into pieces small enough to fit into approved, standard waste containers. Size reducing this equipment is extremely expensive, and exposes workers to high-risk tasks, including significant industrial, chemical, and radiological hazards. RFETS has developed a waste package using a Polyurea coating for shipping large contaminated objects. The cost and schedule savings have been significant.

Dorr, Kent A.; Hogue, Richard S.; Kimokeo, Margaret K.

2003-02-27T23:59:59.000Z

236

Waste Receiving and Packaging, Module 2A, Supplemental Design Requirements Document  

SciTech Connect (OSTI)

The Supplemental Design Requirements Document (SDRD) is used to communicate plant design information from Westinghouse Hanford Company (WHC) to the US Department of Energy (DOE) and the cognizant Architect Engineer (A/E). Information in the SDRD serves two purposes: to convey design requirements that are too detailed for inclusion in a Functional Design Criteria (FDC) report; and to serve as a means of change control for design commitments in the Conceptual Design Report. The mission of WRAP 2A on the Hanford site is the treatment of contact handled low level mixed waste (MW) for final disposal. The overall systems engineering steps used to reach construction and operation of WRAP 2A are depicted in Figure 1. The WRAP 2A SDRD focuses on the requirements to address the functional analysis provided in Figure 1. This information is provided in sections 2 through 5 of this SDRD. The mission analysis and functional analysis are to be provided in a separate supporting document. The organization of sections 2 through 5 corresponds to the requirements identified in the WRAP 2A functional analysis.

Lamberd, D.L.; Boothe, G.F.; Hinkle, A.L.; Horgos, R.M.; LeClair, M.D.; Nash, C.R.; Ocampo, V.P.; Pauly, T.R.; Stroup, J.L.; Weingardt, K.M.

1994-04-26T23:59:59.000Z

237

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Materials Characterization Paul McConnell, (505) 844-8361 The purpose of hazardous and radioactive materials, i.e., mixed waste, packaging is to enable this waste type to be transported without posing a threat to the health or property of the general public. To achieve this goal, regulations have been written establishing general design requirement for such packagings. Based on these regulatory requirements, a Mixed Waste Chemical Compatibility Testing Program is intended to assure regulatory bodies that the issue of packaging compatibility towards hazardous and radioactive materials has been addressed. Such a testing program has been developed in the Transportation Systems Department at Sandia National Laboratories. Materials Characterization Capabilities

238

State-of-the-art review of materials properties of nuclear waste forms.  

SciTech Connect (OSTI)

The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability.

Mendel, J. E.; Nelson, R. D.; Turcotte, R. P.; Gray, W. J.; Merz, M. D.; Roberts, F. P.; Weber, W. J.; Westsik, Jr., J. H.; Clark, D. E.

1981-04-01T23:59:59.000Z

239

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption necessitates addition of kaolinite before being used as a landfill material. The valence of the salt solutions

Aydilek, Ahmet

240

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Broader source: Energy.gov (indexed) [DOE]

Facilities, Materials, and Wastes Proposed for Facilities, Materials, and Wastes Proposed for Transfer to EM Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM More Documents & Publications Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

RADIOACTIVE MATERIAL SHIPPING PACKAGINGS AND METAL TO METAL SEALS FOUND IN THE CLOSURES OF CONTAINMENT VESSELS INCORPORATING CONE SEAL CLOSURES  

SciTech Connect (OSTI)

The containment vessels for the Model 9975 radioactive material shipping packaging employ a cone-seal closure. The possibility of a metal-to-metal seal forming between the mating conical surfaces, independent of the elastomer seals, has been raised. It was postulated that such an occurrence would compromise the containment vessel hydrostatic and leakage tests. The possibility of formation of such a seal has been investigated by testing and by structural and statistical analyses. The results of the testing and the statistical analysis demonstrate and procedural changes ensure that hydrostatic proof and annual leakage testing can be accomplished to the appropriate standards.

Loftin, B; Glenn Abramczyk, G; Allen Smith, A

2007-06-06T23:59:59.000Z

242

Waste Form Degradation Model Integration for Engineered Materials Performance  

Broader source: Energy.gov [DOE]

The collaborative approach to the glass and metallic waste form degradation modeling activities includes process model development (including first-principles approaches) and model integration—both...

243

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect (OSTI)

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

244

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

245

An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects  

SciTech Connect (OSTI)

This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates.

Sexton, R.A.

1993-03-01T23:59:59.000Z

246

Remaining Sites Verification Package for the 128-F-2, 100-F Burning Pit Waste Site, Waste Site Reclassification Form 2008-031  

SciTech Connect (OSTI)

The 128-F-2 waste site consisted of multiple burn and debris filled pits located directly east of the 107-F Retention Basin and approximately 30.5 m east of the northeast corner of the 100-F Area perimeter road that runs along the riverbank. The burn pits were used for incinerating nonradioactive, combustible materials from 1945 to 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-12-01T23:59:59.000Z

247

Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

1985-07-09T23:59:59.000Z

248

PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM  

SciTech Connect (OSTI)

This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

Blanton, P; Kurt Eberl, K

2007-10-23T23:59:59.000Z

249

E-Print Network 3.0 - advanced packaging materials Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Technology Council (WTERT) Collection: Renewable Energy 22 Kompetenzzentrum fr Automobil-und Industrieelektronik Summary: of materials for these advanced semiconductor...

250

Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste  

Science Journals Connector (OSTI)

Abstract The aim of this work is to study the feasibility and operational performance of plasmatron (plasma torch) gasification of municipal solid waste mixed with raw wood (MSW/RW) derived from the pretreatment of Steam Mechanical Heat Treatment (SMHT), as the target material (MRM). A 10 kW plasmatron reactor is used for gasification of the MRM. The production of syngas (CO and H2) is the major component, and almost 90% of the gaseous products appear in 2 min of reaction time, with relatively high reaction rates. The syngas yield is between 88.59 and 91.84 vol%, and the recovery mass ratio of syngas from MRM is 45.19 down to 27.18 wt% with and without steam with the energy yields of 59.07–111.89%. The concentrations of gaseous products from the continuous feeding of 200 g/h are stable and higher than the average concentrations of the batch feeding of 10 g. The residue from the plasmatron gasification with steam is between 0 and 4.52 wt%, with the inorganic components converted into non-leachable vitrified lava, which is non-hazardous. The steam methane reforming reaction, hydrogasification reaction and Boudouard reaction all contribute to the increase in the syngas yield. It is proved that MSW can be completely converted into bioenergy using SMHT, followed by plasmatron gasification.

Je-Lueng Shie; Li-Xun Chen; Kae-Long Lin; Ching-Yuan Chang

2014-01-01T23:59:59.000Z

251

Cleanup Verification Package for the 100-F-20, Pacific Northwest Laboratory Parallel Pits  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 100-F-20, Pacific Northwest Laboratory Parallel Pits waste site. This waste site consisted of two earthen trenches thought to have received both radioactive and nonradioactive material related to the 100-F Experimental Animal Farm.

M. J. Appel

2007-01-22T23:59:59.000Z

252

Packaging and Transfer or Transportation of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and responsibilities for offsite shipments of naval nuclear fuel elements, Category I and Category II special nuclear material, nuclear explosives, nuclear components, special assemblies, and other materials of national security interest. Cancels DOE O 461.1. Canceled by DOE O 461.1B and DOE O 461.2.

2004-04-26T23:59:59.000Z

253

High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

254

Structural Dimensions, Fabrication, Materials, and Operational History for Types I and II Waste Tanks  

SciTech Connect (OSTI)

Radioactive waste is confined in 48 underground storage tanks at the Savannah River Site. The waste will eventually be processed and transferred to other site facilities for stabilization. Based on waste removal and processing schedules, many of the tanks, including those with flaws and/or defects, will be required to be in service for another 15 to 20 years. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a leak-tight barrier to the environment and by maintaining acceptable structural stability during design basis event which include loading from both normal service and abnormal conditions.

Wiersma, B.J.

2000-08-16T23:59:59.000Z

255

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM)  

E-Print Network [OSTI]

Radioactive Material Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form Declaration Form Exhibit to the Radioactive Waste Manual (RWM) 12/5/2013 (form date) SLAC-I-760-2A08Z-001 (RWM date) SLAC-I-760-2A08Z-001 (RWM number) Page 1 of 2 RADIOACTIVE MATERIAL DECLARATION FORM For RP use

Wechsler, Risa H.

256

Office of Packaging and Transportation Fiscal Year 2012 Annual Report |  

Broader source: Energy.gov (indexed) [DOE]

Packaging and Transportation Fiscal Year 2012 Annual Packaging and Transportation Fiscal Year 2012 Annual Report Office of Packaging and Transportation Fiscal Year 2012 Annual Report The Office of Environmental Management (EM) was established to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Many problems posed by its operations are unique, and include the transportation of unprecedented amounts of contaminated waste, water, and soil, and a vast number of contaminated structures during remediation of the contaminated sites. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material and waste. The mission of the Department of Energy (DOE) Office of Packaging and

257

Mineralogical investigations of the first package of the alternative buffer material test – I. Alteration of bentonites  

Science Journals Connector (OSTI)

...Pusch R. (2002a) The buffer and backfill handbook part 1 - Definitions, basic...Pusch R. (2002b) The buffer and backfill handbook part 2 - Materials and techniques...TR 02-12 . SKB (2010) Buffer, backfill and closure process...

S. Kaufhold; R. Dohrmann; T. Sandén; P. Sellin; D. Svensson

258

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

259

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

260

Remaining Sites Verification Package for the 100-F-31, 144-F Sanitary Sewer System, Waste Site Reclassification Form 2006-033  

SciTech Connect (OSTI)

The 100-F-31 waste site is a former septic system that supported the inhalation laboratories, also referred to as the 144-F Particle Exposure Laboratory (132-F-2 waste site), which housed animals exposed to particulate material. The 100-F-31 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fundamental properties of monolithic bentonite buffer material formed by cold isostatic pressing for high-level radioactive waste repository  

SciTech Connect (OSTI)

The methods of fabrication, handling, and emplacement of engineered barriers used in a deep geological repository for high level radioactive waste should be planned as simply as possible from the engineering and economic viewpoints. Therefore, a new concept of a monolithic buffer material around a waste package have been proposed instead of the conventional concept with the use of small blocks, which would decrease the cost for buffer material. The monolithic buffer material is composed of two parts of highly compacted bentonite, a cup type body and a cover. As the forming method of the monolithic buffer material, compaction by the cold isostatic pressing process (CIP) has been employed. In this study, monolithic bentonite bodies with the diameter of about 333 mm and the height of about 455 mm (corresponding to the approx. 1/5 scale for the Japanese reference concept) were made by the CIP of bentonite powder. The dry densities: {rho}d of the bodies as a whole were measured and the small samples were cut from several locations to investigate the density distribution. The swelling pressure and hydraulic conductivity as function of the monolithic body density for CIP-formed specimens were also measured. High density ({rho}d: 1.4--2.0 Mg/m{sup 3}) and homogeneous monolithic bodies were formed by the CIP. The measured results of the swelling pressure (3--15 MPa) and hydraulic conductivity (0.5--1.4 x 10{sup {minus}13} m/s) of the specimens were almost the same as those for the uniaxial compacted bentonite in the literature. It is shown that the vacuum hoist system is an applicable handling method for emplacement of the monolithic bentonite.

Kawakami, S.; Yamanaka, Y.; Kato, K.; Asano, H.; Ueda, H.

1999-07-01T23:59:59.000Z

262

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

263

A user's guide to the GoldSim/BLT-MS integrated software package:a low-level radioactive waste disposal performance assessment model.  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in the assessment of radioactive waste disposal and at the time of this publication is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. In countries with small radioactive waste programs, international technology transfer program efforts are often hampered by small budgets, schedule constraints, and a lack of experienced personnel. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available software codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission (NRC) and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, revitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a credible and solid computational platform for constructing probabilistic safety assessment models. This document is a reference users guide for the GoldSim/BLT-MS integrated modeling software package developed as part of a cooperative technology transfer project between Sandia National Laboratories and the Institute of Nuclear Energy Research (INER) in Taiwan for the preliminary assessment of several candidate low-level waste repository sites. Breach, Leach, and Transport-Multiple Species (BLT-MS) is a U.S. NRC sponsored code which simulates release and transport of contaminants from a subsurface low-level waste disposal facility. GoldSim is commercially available probabilistic software package that has radionuclide transport capabilities. The following report guides a user through the steps necessary to use the integrated model and presents a successful application of the paradigm of renewing legacy codes for contemporary application.

Knowlton, Robert G.; Arnold, Bill Walter; Mattie, Patrick D.

2007-03-01T23:59:59.000Z

264

Ion-exchange material and method of storing radioactive wastes  

DOE Patents [OSTI]

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31T23:59:59.000Z

265

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

266

STATUS REPORT FOR AGING STUDIES OF EPDM O-RING MATERIAL FOR THE H1616 SHIPPING PACKAGE  

SciTech Connect (OSTI)

This is an interim status report for tasks carried out per Task Technical Plan SRNL-STI-2011-00506. A series of tasks/experiments are being performed at the Savannah River National Laboratory to monitor the aging performance of ethylene propylene diene monomer (EPDM) Orings used in the H1616 shipping package. The data will support the technical basis to extend the annual maintenance of the EPDM O-rings in the H1616 shipping package and to predict the life of the seals at bounding service conditions. Current expectations are that the O-rings will maintain a seal at bounding normal temperatures in service (152 F) for at least 12 months. The baseline aging data review suggests that the EPDM O-rings are likely to retain significant mechanical properties and sealing force at bounding service temperatures to provide a service life of at least 2 years. At lower, more realistic temperatures, longer service life is likely. Parallel compression stress relaxation and vessel leak test efforts are in progress to further validate this assessment and quantify a more realistic service life prediction. The H1616 shipping package O-rings were evaluated for baseline property data as part of this test program. This was done to provide a basis for comparison of changes in material properties and performance parameters as a function of aging. This initial characterization was limited to physical and mechanical properties, namely hardness, thickness and tensile strength. These properties appear to be consistent with O-ring specifications. Three H1616-1 Containment Vessels were placed in test conditions and are aging at temperatures ranging from 160 to 300 F. The vessels were Helium leak-tested initially and have been tested at periodic intervals after cooling to room temperature to determine if they meet the criterion of leaktightness defined in ANSI standard N14.5-97 (< 1E-07 std cc air/sec at room temperature). To date, no leak test failures have occurred. The cumulative time at temperature ranges from 174 days for the 300 F vessel to 189 days for the 160 F vessel as of 8/1/2012. The compression stress-relaxation (CSR) behavior of H1616 shipping package O-rings is being evaluated to develop an aging model based on material properties. O-ring segments were initially aged at four temperatures (175 F, 235 F, 300 F and 350 F). These temperatures were selected to bound normal service temperatures and to challenge the seals within a reasonable aging period. Currently, samples aging at 300 F and 350 F have reached the mechanical failure point (end of life) which is defined in this study as 90% loss of initial sealing force. As a result, additional samples more recently began aging at {approx}270 F to provide additional data for the aging model. Aging and periodic leak testing of the full containment vessels, as well as CSR testing of O-ring segments is ongoing. Continued testing per the Task Technical Plan is recommended in order to validate the assumptions outlined in this status report and to quantify and validate the long-term performance of O-ring seals under actual service conditions.

Stefek, T.; Daugherty, W.; Skidmore, E.

2012-08-31T23:59:59.000Z

267

PTS 13.2 Packaging and Preparation for Shipment 4/10/95 | Department of  

Broader source: Energy.gov (indexed) [DOE]

PTS 13.2 Packaging and Preparation for Shipment 4/10/95 PTS 13.2 Packaging and Preparation for Shipment 4/10/95 PTS 13.2 Packaging and Preparation for Shipment 4/10/95 The objective of this surveillance is to evaluate the effectiveness of the contractor's programs for packaging radioactive and hazardous wastes for shipment. The Facility Representative examines packages ready for shipment, observes preparation of packages, and reviews documents that establish the acceptability of packages. The Facility Representative verifies compliance with DOE requirements including requirements established by the Department of Transportation and the U.S. Nuclear Regulatory Commission. PTS13-02.doc More Documents & Publications PTS 13.1 Radioactive And Hazardous Material Transportation 4/13/00 CMS 3.4 Temporary Changes, 4/10/95

268

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect (OSTI)

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

269

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

270

Utilizing New Binder Materials for Green Building has Zero Waste by Recycling Slag and Sewage Sludge Ash  

E-Print Network [OSTI]

binding material to save energy and to produce new innovative zero materials waste . The current research aims to investigate new binder materials as alternative of Portland cement. Alkali activated slag (AAS) blended with sewage sludge ash (SSA...

Zeedan, S. R.

2010-01-01T23:59:59.000Z

271

Experimental determination of the shipboard fire environment for simulated radioactive material packages  

SciTech Connect (OSTI)

A series of eight fire tests with simulated radioactive material shipping containers aboard the test ship Mayo Lykes, a break-bulk freighter, is described. The tests simulate three basic types of fires: engine room fires, cargo fires and open pool fires. Detailed results from the tests include temperatures, heat fluxes and air flows measured during the fires. The first examination of the results indicates that shipboard fires are not significantly different from fires encountered in land transport. 13 refs., 15 figs., 11 tabs.

Koski, J.A.; Bobbe, J.G.; Arviso, M. [and others

1997-03-01T23:59:59.000Z

272

Review of SAR for Packaging Report  

Broader source: Energy.gov [DOE]

This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material.

273

Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory  

SciTech Connect (OSTI)

This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

Smith, R.J.

1998-03-31T23:59:59.000Z

274

Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

Hakonson, T.E.

1986-02-01T23:59:59.000Z

275

RH Packaging Operations Manual  

SciTech Connect (OSTI)

This procedure provides operating instructions for the RH-TRU 72-B Road Cask, Waste Shipping Package. In this document, ''Packaging'' refers to the assembly of components necessary to ensure compliance with the packaging requirements (not loaded with a payload). ''Package'' refers to a Type B packaging that, with its radioactive contents, is designed to retain the integrity of its containment and shielding when subject to the normal conditions of transport and hypothetical accident test conditions set forth in 10 CFR Part 71. Loading of the RH 72-B cask can be done two ways, on the RH cask trailer in the vertical position or by removing the cask from the trailer and loading it in a facility designed for remote-handling (RH). Before loading the 72-B cask, loading procedures and changes to the loading procedures for the 72-B cask must be sent to CBFO at sitedocuments@wipp.ws for approval.

Washington TRU Solutions LLC

2003-09-17T23:59:59.000Z

276

Nitric-phosphoric acid oxidation of organic waste materials  

SciTech Connect (OSTI)

A wet chemical oxidation technology has been developed to address issues facing defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate a heterogenous mixture of radioactive-contaminated solid waste, the technology can also remediate other hazardous waste forms. The process, unique to Savannah River, offers a valuable alternative to incineration and other high-temperature or high-pressure oxidation processes. The process uses nitric acid in phosphoric acid; phosphoric acid allows nitric acid to be retained in solution well above its normal boiling point. The reaction converts organics to carbon dioxide and water, and generates NO{sub x} vapors which can be recycled using air and water. Oxidation is complete in one to three hours. In previous studies, many organic compounds were completely oxidized, within experimental error, at atmospheric pressure below 180{degrees}C; more stable compounds were decomposed at 200{degrees}C and 170 kPa. Recent studies have evaluated processing parameters and potential throughputs for three primary compounds: EDTA, polyethylene, and cellulose. The study of polyvinylchloride oxidation is incomplete at this time.

Pierce, R.A.; Smith, J.R.

1995-11-01T23:59:59.000Z

277

DOE - Safety of Radioactive Material Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAFE are radioactive material transportations packages? SAFE are radioactive material transportations packages? RAM PACKAGES TESTING & CERTIFICATION REGULATIONS & GUIDANCE SITE MAP This graphic was generated from a computer analysis and shows the results from a regulatory puncture test of a stainless steel packaging dropping 40 inches (10 MPH) onto a 6 inch diameter steel spike. U.S. DOE | Office of Civilian Radioactive Waste Management (OCRWM) Sandia National Laboratories | Nuclear Energy & Fuel Cucle Programs © Sandia Corporation | Site Contact | Sandia Site Map | Privacy and Security An internationally recognized web-site from PATRAM 2001 - the 13th International Symposium on the Packaging and Transportation of Radioactive Material. Recipient of the AOKI AWARD. PATRAM, sponsored by the U.S. Department of Energy in cooperation with the International Atomic Energy Agency brings government and industry leaders together to share information on innovations, developments, and lessons learned about radioactive materials packaging and transportation.

278

Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization  

SciTech Connect (OSTI)

The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

Li, Qiang

2009-04-30T23:59:59.000Z

279

Remaining Sites Verification Package for the 128-F-3 PNL Burn Pit, Waste Site Reclassification Form 2006-042  

SciTech Connect (OSTI)

The 128-F-3 waste site is a former burn pit associated with the 100-F Area experimental animal farm. The site was overlain by coal ash associated with the 126-F-1 waste site and could not be located during confirmatory site evaluation. Therefore, a housekeeping action was performed to remove the coal ash potentially obscuring residual burn pit features. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-10-20T23:59:59.000Z

280

Remaining Sites Verification Package for the 128-B-3 Burn Pit Site, Waste Site Reclassification Form 2006-058  

SciTech Connect (OSTI)

The 128-B-3 waste site is a former burn and disposal site for the 100-B/C Area, located adjacent to the Columbia River. The 128-B-3 waste site has been remediated to meet the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results of sampling at upland areas of the site also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Production and characterization of a composite insulation material from waste polyethylene teraphtalates  

SciTech Connect (OSTI)

The pollution of polyethylene teraphtalate (PET) is in huge amounts due to the most widely usage as a packaging material in several industries. Regional pumice has several desirable characteristics such as porous structure, low-cost and light-weight. Considering the requirements approved by the Ministry of Public Works on isolation, composite insulation material consisting of PET and pumice was studied. Sheets of composites differing both in particle size of pumice and composition of polymer were produced by hot-molding technique. Characterization of new composite material was achieved by measuring its weight, density, flammability, endurance against both to common acids and bases, and to a force applied, heat insulation and water adsorption capacity. The results of the study showed that produced composite material is an alternative building material due to its desirable characteristics; low weight, capability of low heat conduction.

Kurtulmus, Erhan; Karaboyac?, Mustafa; Yigitarslan, Sibel [Chemical Engineering Department of Suleyman Demirel University, 32200, Isparta (Turkey)

2013-12-16T23:59:59.000Z

282

Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM  

Broader source: Energy.gov (indexed) [DOE]

Non-Integrated Facilities Disposition Non-Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Complex-Wide Multi-State Assessment of Facilities, Materials, and Wastes Proposed for Transfer to EM Challenge In December 2007 the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Transfers of facilities, materials, and waste to EM will generate liabilities that are currently unfunded. For purposes of overall planning, it is important to understand the impacts of proposed transfers with regard to technical

283

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect (OSTI)

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

284

ONGOING INVESTIGATION OF THE EFFECT THAT DRUGSTORE BEETLES HAVE ON CELOTEX ASSEMBLIES FOUND WITHIN RADIOACTIVE MATERIAL PACKAGINGS  

SciTech Connect (OSTI)

During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles were found within the fiberboard subassemblies of two 9975 Shipping Packages. The Department of Energy's Packaging Certification Program (EM-60) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex. The Savannah River National Laboratory is continuing to conduct the investigation with entomological expertise being provided by Clemson University. The outcome from the investigation conducted over the previous year was that no discernible damage had been caused by the drugstore beetles. One of the two packages has been essentially untouched over the past year and has only been opened to visually inspect for additional damage. This paper will provide details and results of the ongoing investigation of that package.

Loftin, B.

2009-06-08T23:59:59.000Z

285

Initial Package Design Concepts Integrated Product Team (IPT) Summary Report  

SciTech Connect (OSTI)

Initially, the question of transporting TRU waste to WIPP was raised as part of the EM Integration activities. The issue was re-examined as part of the system-wide view to re-engineer the TRU waste program. Consequently, the National Transportation Program and the National TRU Waste Program, in a cooperative effort, made a commitment to EM-20 to examine the feasibility of using rail to transport TRU waste material to WIPP. In December of 1999 Mr. Philip Altomare assembled a team of subject matter experts (SME) to define initial concepts for a Type B package capable of shipping TRU waste by rail (see Attachment 1 for a list of team members). This same team of experts also provided input to a preliminary study to determine if shipping TRU waste by rail could offer cost savings or other significant advantages over the current mode of operation using TRUPACT-II packages loaded on truck. As part of the analysis, the team also identified barriers to implementing rail shipments to WIPP and outlined a path forward. This report documents the findings of the study and its initial set of recommendations. As the study progressed, it was expanded to include new packages for truck as well as rail in recognition of the benefits of shipping large boxes and contaminated equipment.

Moss, J.; Luke, Dale Elden

2000-03-01T23:59:59.000Z

286

Remaining Sites Verification Package for the 1607-F4 Sanitary Sewer System, Waste Site Reclassification Form 2004-131  

SciTech Connect (OSTI)

The 1607-F4 waste site is the former location of the sanitary sewer system that serviced the former 115-F Gas Recirculation Building. The system included a septic tank, drain field, and associated pipeline that were in use from 1944 to 1965. The 1607-F4 waste site received unknown amounts of sanitary sewage from the 115-F Gas Recirculation Building and may have potentially contained hazardous and radioactive contamination. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-12-03T23:59:59.000Z

287

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

1996-10-02T23:59:59.000Z

288

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

1995-09-27T23:59:59.000Z

289

Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas  

SciTech Connect (OSTI)

This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

Horton, Duane G.

2007-03-16T23:59:59.000Z

290

Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14  

SciTech Connect (OSTI)

This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G{sub eff}, is defined by: G{sub eff} - {Sigma}{sub M} (F{sub M} x G{sub M}) F{sub M}-fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials.

NONE

1994-10-01T23:59:59.000Z

291

Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), tire derived fuel (TDF), sewage sludge and industrial de-inking sludge. Conceptual designs of three power plants rated at 250 MWe, 150 MWe and 4 MWe were developed. The 4 MWe facility was chosen to represent a distributed power source for a remote location and designated to co-fire coal with MSW, TDF and sewage sludge while producing electricity for a small town. Heat and material balances were completed for each plant and costs determined including capital costs, operating costs and cost of electricity. With the PFBCs operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Since PFBCs have not been tested co-firing wastes, other critical performance factors were addressed and recommendations were provided for resolving potential technical issues. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-12-31T23:59:59.000Z

292

12/2000 Low-Level Waste Disposal Capacity Report Version 2 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Services » Waste Management » Waste Disposition » 12/2000 Services » Waste Management » Waste Disposition » 12/2000 Low-Level Waste Disposal Capacity Report Version 2 12/2000 Low-Level Waste Disposal Capacity Report Version 2 The purpose of this Report is to assess whether U.S. Department of Energy (DOE or the Department) disposal facilities have sufficient volumetric and radiological capacity to accommodate the low-level waste (LLW) and mixed low-level waste (MLLW) that the Department expects to dispose at these facilities. 12/2000 Low-Level Waste Disposal Capacity Report Version 2 More Documents & Publications EIS-0243: Record of Decision EIS-0200: Record of Decision EIS-0286: Record of Decision Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste Disposition Packaging and Transportation

293

Optimal segmentation and packaging process  

DOE Patents [OSTI]

A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

Kostelnik, Kevin M. (Idaho Falls, ID); Meservey, Richard H. (Idaho Falls, ID); Landon, Mark D. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

294

Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.  

SciTech Connect (OSTI)

A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

2003-10-01T23:59:59.000Z

295

Seal welded cast iron nuclear waste container  

DOE Patents [OSTI]

This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.

Filippi, Arthur M. (Pittsburgh, PA); Sprecace, Richard P. (Murrysville, PA)

1987-01-01T23:59:59.000Z

296

Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass  

SciTech Connect (OSTI)

With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

Forsberg, C.W.; Elam, K.R.

1995-01-31T23:59:59.000Z

297

Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047  

SciTech Connect (OSTI)

The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-04-26T23:59:59.000Z

298

Radioactive and nonradioactive waste intended for disposal at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

Transuranic (TRU) waste generated by the handling of plutonium in research on or production of US nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m{sup 3} of TRU waste, corresponding to 168,485 m{sup 3} of contact-handled (CH-) TRU waste and 7,079 m{sup 3} of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e., legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, the closure time for the repository. These wastes were produced at 27 US Department of Energy (DOE) sites in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by Sandia National Laboratories/New Mexico (SNL/NM).

SANCHEZ,LAWRENCE C.; DREZ,P.E.; RATH,JONATHAN S.; TRELLUE,H.R.

2000-05-19T23:59:59.000Z

299

Conversion of an aluminosilicate-based waste material to high-value efficient adsorbent  

Science Journals Connector (OSTI)

Abstract The recycling of waste printed circuit boards (PCBs) has become one of the global challenges in the technological era. The colossal volume of waste PCB generated annually coupled with its toxic nature and the existence of highly-precious metals in its composition intensifies the problems associated with waste PCB management and recycling. The two prevalent waste management options, landfill disposal and incineration, are being phased out for this special waste as a result of public health concerns. Hence, in the past few decades, several PCB recycling schemes are being introduced. The most efficient and environmentally-sound practice for waste PCB recycling has been the separation of metallic and nonmetallic fraction of \\{PCBs\\} by extensively-studied physico-mechanical approaches. Although the metallic fraction can be directly rendered into the market due to its high value, the nonmetallic fraction (NMF) is either disposed of in landfills causing secondary pollution or used as a low-value filler with the sole purpose of its safe disposal. This study presents a brief overview of the utilization of NMF as a filler in various industries. The main objective of the present review is to thoroughly examine the novel, highly efficient application of NMF as precursor for the production of a mesoporous structured adsorbent and its application in the removal of a myriad of heavy metals in single- and multi-component systems. In addition, the effects of the operational parameters on the adsorption behavior of the adsorbent material have been provided. Moreover, a comprehensive overview of the adsorption system modelling for single and binary-component systems for this novel material has been compiled.

Pejman Hadi; Chao Ning; Weiyi Ouyang; Carol Sze Ki Lin; Chi-Wai Hui; Gordon McKay

2014-01-01T23:59:59.000Z

300

Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Methods of chemical analysis for organic waste constituents in radioactive materials: A literature review  

SciTech Connect (OSTI)

Most of the waste generated during the production of defense materials at Hanford is presently stored in 177 underground tanks. Because of the many waste treatment processes used at Hanford, the operations conducted to move and consolidate the waste, and the long-term storage conditions at elevated temperatures and radiolytic conditions, little is known about most of the organic constituents in the tanks. Organics are a factor in the production of hydrogen from storage tank 101-SY and represent an unresolved safety question in the case of tanks containing high organic carbon content. In preparation for activities that will lead to the characterization of organic components in Hanford waste storage tanks, a thorough search of the literature has been conducted to identify those procedures that have been found useful for identifying and quantifying organic components in radioactive matrices. The information is to be used in the planning of method development activities needed to characterize the organics in tank wastes and will prevent duplication of effort in the development of needed methods.

Clauss, S.A.; Bean, R.M.

1993-02-01T23:59:59.000Z

302

Remaining Sites Verification Package for the 126-F-2, 183-F Clearwells, Waste Site Reclassification Form 2006-017  

SciTech Connect (OSTI)

The 126-F-2 site is the clearwell facility formerly used as part of the reactor cooling water treatment at the 183-F facility. During demolition operations in the 1970s, potentially contaminated debris was disposed in the eastern clearwell structure. The site has been remediated by removing all debris in the clearwell structure to the Environmental Restoration Disposal Facility. The results of radiological surveys and visual inspection of the remediated clearwell structure show neither residual contamination nor the potential for contaminant migration beyond the clearwell boundaries. The results of verification sampling at the remediation waste staging area demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

R. A. Carlson

2006-05-04T23:59:59.000Z

303

Remaining Sites Verification Package for the 1607-B1 Septic System, Waste Site Reclassification Form 2007-015  

SciTech Connect (OSTI)

The 1607-B1 Septic System includes a septic tank, drain field, and associated connecting pipelines and influent sanitary sewer lines. This septic system serviced the former 1701-B Badgehouse, 1720-B Patrol Building/Change Room, and the 1709-B Fire Headquarters. The 1607-B1 waste site received unknown amounts of nonhazardous, nonradioactive sanitary sewage from these facilities during its operational history from 1944 to approximately 1970. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-08-30T23:59:59.000Z

304

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents [OSTI]

A method of destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500.degree. C. to heat the particulate material to a temperature in the range of from about 200.degree. C. to about 900.degree. C. in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, Michael J. (Bolingbrook, IL); Arzoumanidis, Gregory G. (Naperville, IL)

1997-01-01T23:59:59.000Z

305

A method and system including a double rotary kiln pyrolysis or gasification of waste material  

SciTech Connect (OSTI)

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet.

McIntosh, M.J.; Arzoumanidis, G.G.

1995-12-31T23:59:59.000Z

306

Method and system including a double rotary kiln pyrolysis or gasification of waste material  

DOE Patents [OSTI]

A method is described for destructively distilling an organic material in particulate form wherein the particulates are introduced through an inlet into one end of an inner rotating kiln ganged to and coaxial with an outer rotating kiln. The inner and outer kilns define a cylindrical annular space with the inlet being positioned in registry with the axis of rotation of the ganged kilns. During operation, the temperature of the wall of the inner rotary kiln at the inlet is not less than about 500 C to heat the particulate material to a temperature in the range of from about 200 C to about 900 C in a pyrolyzing atmosphere to reduce the particulate material as it moves from the one end toward the other end. The reduced particulates including char are transferred to the annular space between the inner and the outer rotating kilns near the other end of the inner rotating kiln and moved longitudinally in the annular space from near the other end toward the one end in the presence of oxygen to combust the char at an elevated temperature to produce a waste material including ash. Also, heat is provided which is transferred to the inner kiln. The waste material including ash leaves the outer rotating kiln near the one end and the pyrolysis vapor leaves through the particulate material inlet. 5 figs.

McIntosh, M.J.; Arzoumanidis, G.G.

1997-09-02T23:59:59.000Z

307

Progress with heat resistant materials for waste incineration -- Alloy 45TM  

SciTech Connect (OSTI)

Heat resistant materials are used in a wide variety of modem industries such as metallurgical, chemical, petrochemical, heat treatment, heat recovery and waste incinerators and many others. The huge quantities of both municipal and industrial waste generated in the Western world has made ``controlled high temperature incineration`` a necessary technology for managing this problem. The evolution of this technology has not been without its cost. High temperature corrosion problems have led to many failures and unscheduled shutdowns. Proper materials of construction are vitally important for reliable, safe and cost effective operation of these systems. This paper describes the development of a new nickel based alloy, which combines the beneficial effects of high chromium and high silicon in combating these various corrosive environments encountered in incineration.

Agarwal, D.C. [VDM Technologies, Houston, TX (United States); Brill, U.; Kloewer, J. [Krupp-VDM GmbH, Werdohl (Germany)

1995-12-01T23:59:59.000Z

308

Testing of organic waste surrogate materials in support of the Hanford organic tank program. Final report  

SciTech Connect (OSTI)

To address safety issues regarding effective waste management efforts of underground organic waste storage tanks at the Hanford Site, the Bureau of Mines conducted a series of tests, at the request of the Westinghouse Hanford company. In this battery of tests, the thermal and explosive characteristics of surrogate materials, chosen by Hanford, were determined. The surrogate materials were mixtures of inorganic and organic sodium salts, representing fuels and oxidants. The oxidants were sodium nitrate and sodium nitrite. The fuels were sodium salts of oxalate, citrate and ethylenediamine tetraacetic acid (EDTA). Polyethylene powder was also used as a fuel with the oxidant(s). Sodium aluminate was used as a diluent. In addition, a sample of FeCN, supplied by Hanford was also investigated.

Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Miron, Y. [Bureau of Mines (United States)

1994-01-01T23:59:59.000Z

309

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING In general, building materials contain low levels of radioactivity. For example, the range of  

E-Print Network [OSTI]

4.0 RISK FROM URANIUM MINING WASTE IN BUILDING MATERIALS In general, building materials contain low, especially in buildings constructed with materials containing uranium TENORM mine wastes. In the Grand the wastes from uranium mines have been removed from mining sites and used in local and nearby communities

310

Mixed-layered bismuth-oxygen-iodine materials for capture and waste disposal of radioactive iodine  

DOE Patents [OSTI]

Materials and methods of synthesizing mixed-layered bismuth oxy-iodine materials, which can be synthesized in the presence of aqueous radioactive iodine species found in caustic solutions (e.g. NaOH or KOH). This technology provides a one-step process for both iodine sequestration and storage from nuclear fuel cycles. It results in materials that will be durable for repository conditions much like those found in Waste Isolation Pilot Plant (WIPP) and estimated for Yucca Mountain (YMP). By controlled reactant concentrations, optimized compositions of these mixed-layered bismuth oxy-iodine inorganic materials are produced that have both a high iodine weight percentage and a low solubility in groundwater environments.

Krumhansl, James L; Nenoff, Tina M

2013-02-26T23:59:59.000Z

311

Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste  

Science Journals Connector (OSTI)

Abstract In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material).

Muhammad Nasrullah; Pasi Vainikka; Janne Hannula; Markku Hurme; Janne Kärki

2014-01-01T23:59:59.000Z

312

Fluid flow through very low permeability materials: A concern in the geological isolation of waste  

SciTech Connect (OSTI)

The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

Deal, D.E.

1992-12-31T23:59:59.000Z

313

Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621  

SciTech Connect (OSTI)

For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a need for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be shown to meet the criteria for safe and fit for purpose packaging, by meeting the US DOT regulations, and the IAEA Standards for IP-1 and IP-2 including leak tightness. (authors)

Sanchez, Mike [VP Global Sales, PacTec, Inc. (United States)] [VP Global Sales, PacTec, Inc. (United States); Reeves, Wendall [National Sales Manager, PacTec, Inc. (United States)] [National Sales Manager, PacTec, Inc. (United States); Smart, Bill [Nuclear Sales Director, PacTec, Inc. (United States)] [Nuclear Sales Director, PacTec, Inc. (United States)

2013-07-01T23:59:59.000Z

314

Treatment of nitrate-rich water in a baffled membrane bioreactor (BMBR) employing waste derived materials  

Science Journals Connector (OSTI)

Abstract Nitrate removal in submerged membrane bioreactors (MBRs) is limited as intensive aeration (for maintaining adequate dissolved oxygen levels and for membrane scouring) deters the formation of anoxic zones essential for biological denitrification. The present study employs baffled membrane bioreactor (BMBR) to overcome this constraint. Treatment of nitrate rich water (synthetic and real groundwater) was investigated. Sludge separation was achieved using ceramic membrane filters prepared from waste sugarcane bagasse ash. A complex external carbon source (leachate from anaerobic digestion of food waste) was used to maintain an appropriate C/N ratio. Over 90% COD and 95% NO3–N reduction was obtained. The bagasse ash filters produced a clear permeate, free of suspended solids. Sludge aggregates were observed in the reactor and were linked to the high extracellular polymeric substances (EPS) content. Lower sludge volume index (40 mL/g compared to 150 mL/g for seed sludge), higher settling velocity (47 m/h compared to 10 m/h for seed sludge) and sludge aggregates (0.7 mm aggregates compared to <0.2 mm for seed sludge) was observed. The results demonstrate the potential of waste-derived materials viz. food waste leachate and bagasse ash filters in water treatment.

Subhankar Basu; Saurabh K. Singh; Prahlad K. Tewari; Vidya S. Batra; Malini Balakrishnan

2014-01-01T23:59:59.000Z

315

CORROSION STUDY OF REPLACEMENT MATERIALS FOR HAZARDOUS LOW LEVEL WASTE PROCESSING TANKS  

SciTech Connect (OSTI)

New waste tanks are to be constructed in H-area to store hazardous low level wastes. AISI Type 304L (304L) stainless steel was recommended as a suitable material of construction for these tanks. Cyclic polarization and coupon tests were performed to evaluate the corrosion resistance of 304L over a wide range of waste tank environments. The results of both tests indicated that 304L was not susceptible to attack under any of these conditions. Comparison tests were also performed with ASTM A537 carbon steel (A537) and Incoloy 825. The carbon steel corroded severely in some of the environments, while Incoloy 825 did not corrode. These tests, along with those for 304L, verified the correlation between cyclic polarization and coupon tests. Electrochemical Impedance Spectroscopy (EIS) was performed to monitor the breakdown of the protective oxide film on the surface of the material as a function of time and temperature. These results also correlated with those from the cyclic polarization and coupon tests.

Wiersma, B.; Mickalonis, J.

1991-03-28T23:59:59.000Z

316

Materials performance in a high-level radioactive waste vitrification system  

SciTech Connect (OSTI)

The Defense Waste Processing Facility (DWPF) is a Department of Energy Facility designed to vitrify highly radioactive waste. An extensive materials evaluation program has been completed on key components in the DWPF after twelve months of operation using nonradioactive simulated wastes. Results of the visual inspections of the feed preparation system indicate that the system components, which were fabricated from Hastelloy C-276, should achieve their design lives. Significant erosion was observed on agitator blades that process glass frit slurries; however, design modifications should mitigate the erosion. Visual inspections of the DWPF melter top head and off gas components, which were fabricated from Inconel 690, indicated that varying degrees of degradation occurred. Most of the components will perform satisfactorily for their two year design life. The components that suffered significant attack were the borescopes, primary film cooler brush, and feed tubes. Changes in the operation of the film cooler brush and design modifications to the feed tubes and borescopes is expected to extend their service lives to two years. A program to investigate new high temperature engineered materials and alloys with improved oxidation and high temperature corrosion resistance will be initiated.

Imrich, K.J.; Chandler, G.T.

1996-06-17T23:59:59.000Z

317

Selection of candidate canister materials for high-level nuclear waste containment in a tuff repository  

SciTech Connect (OSTI)

A repository located at Yucca Mountain at the Nevada Test Site is a potential site for permanent geological disposal of high-level nuclear waste. The repository can be located in a horizon in welded tuff, a volcanic rock, which is above the static water level at this site. The environmental conditions in this unsaturated zone are expected to be air and water vapor dominated for much of the containment period. Type 304L stainless steel is the reference material for fabricating canisters to contain the solid high-level wastes. Alternative stainless alloys are considered because of possible susceptibility of 304L to localized and stress forms of corrosion. For the reprocessed glass wastes, the canisters serve as the recipient for pouring the glass with the result that a sensitized microstructure may develop because of the times at elevated temperatures. Corrosion testing of the reference and alternative materials has begun in tuff-conditioned water and steam environments. 21 references, 8 figures, 8 tables.

McCright, R.D.; Weiss, H.; Juhas, M.C.; Logan, R.W.

1983-11-01T23:59:59.000Z

318

Ion implantation effects in insulators and the long-term stability of radioactive waste storage materials  

Science Journals Connector (OSTI)

Most insulator materials so far proposed for storing high-level radioactive wastes, such as glass and and the constituent minerals of ceramics are nuclear track detectors. Lead ion implantation experiments show that such materials should be transformed into “giant” nuclear tracks, when the internal fluence of heavy recoils emitted during the ?-decay of actinide elements stored in them exceeds a critical value, which corresponds to an equivalent storage period of a few thousand years for the wastes expected from a pressurized water reactor. In contrast, actinide bearing minerals are much more stable against ?-recoil damage. As nuclear tracks are extremely chemical reactive, ?-recoil damage is expected to shorten the lifetime of storage materials such as glass and ceramics against dissolution in ground waters. Fortunately new nuclear track concepts are already yielding guidelines for predicting and improving the long-term stability of storage materials. The results of the present studies also bear on the physics of ion implantation phenomena an insulator targets exposed to high fluences of low energy ions.

J.C. Dran; Y. Langevin; M. Maurette; J.C. Petit; B. Vassent

1981-01-01T23:59:59.000Z

319

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

320

Diffusion of Iodine and Rhenium in Category 3 Waste Encasement Concrete and Soil Fill Material  

SciTech Connect (OSTI)

Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). This understanding will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. A set of diffusion experiments using carbonated and non-carbonated concrete-soil half cells was conducted under unsaturated conditions (4% and 7% by wt moisture content). Spiked concrete half-cell specimens were prepared with and without colloidal metallic iron addition and were carbonated using supercritical carbon dioxide. Spikes of I and Re were added to achieve measurable diffusion profile in the soil part of the half-cell. In addition, properties of concrete materials likely to influence radionuclide migration such as carbonation were evaluated in an effort to correlate these properties with the release of iodine and rhenium.

Wellman, Dawn M.; Mattigod, Shas V.; Whyatt, Greg A.; Powers, Laura; Parker, Kent E.; Wood, Marcus I.

2006-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Use of silica waste from the Cerro Prieto geothermal field as construction material  

SciTech Connect (OSTI)

The Cerro Prieto geothermal field generates 620 MW of electric power and in the process produces 11,000 tonnes of brine per hour that is disposed of in surface ponds. Approximately 1300 tonnes of silica waste is the residual product from this hourly production of brine. At present, there is no use for this waste silica. Some experimental work has been undertaken by CFE to utilize this waste silica such as for surfacing roads with a cement-silica mixture and making bricks with various additives. However, none of this research has been documented. Approximately two years ago, a joint USDOE/CFE research project was proposed to investigate the use of the waste silica. The proposal included using the silica mixed with asphalt and cement to produce a suitable road surfacing material, and to combine the silica with various additives to be used as bricks for low cost housing. It was thought, that the low specific gravity of the silica and the proposed mixtures would give the bricks a high insulating value (low-thermal conductivity), thus protecting the residents from high solar heating, typical of Baja California and the area around Mexicali. Finally, since the geothermal fields of the area extend into the Imperial Valley of California where 420 MW of geothermal power is generated, it was hoped that this research would also be applicable to the U.S. side of the border. Some attempt has been made by UNOCAL at their Imperial Valley plant (now owned by Magma Power) to use the waste silica stabilized with cement for roads and dikes around the plant.

Lund, J.W.; Boyd, T.; Monnie, D.

1995-02-01T23:59:59.000Z

322

August 17, 2005, Department letter forwarding the Department's implementation plan in response to the Board's recommendation 2005-1, Nuclear Material Packaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 17,2005 August 17,2005 The Honorable A . J. Eggenberger Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, D.C. 20004 - 2901 Dear Mr. Chairman: We are pleased to forward the enclosed Implementation Plan (Plan) for the Defense Nuclear Facilities Safety Board's (Board) Recommendation 2005-1, Nuclear Material Packaging. This Plan provides the Department's approach to ensure safe storage and handling of nuclear material at our sites. We appreciate the support provided by the Board and its staff during the development of this Plan. We will keep you informed of our progress in completing the Plan. I have assigned Mr. Richard M. Stark as the responsible manager for ensuring the Plan's successful completion. You may contact Mr. Stark at (301) 903-4407 to answer any

323

CH Packaging Program Guidance  

SciTech Connect (OSTI)

The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

Washington TRU Solutions LLC

2005-02-28T23:59:59.000Z

324

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

325

Alternative techniques for low-level waste shallow land burial  

SciTech Connect (OSTI)

Experience to date relative to the shallow land burial of low-level radioactive waste (LLW) indicates that the physical stability of the disposal unit and the hydrologic isolation of the waste are the two most important factors in assuring disposal site performance. Disposal unit stability can be ensured by providing stable waste packages and waste forms, compacting backfill material, and filling the void spaces between the packages. Hydrologic isolation can be achieved though a combination of proper site selection, subsurface drainage controls, internal trench drainage systems, and immobilization of the waste. A generalized design of a LLW disposal site that would provide the desired long-term isolation of the waste is discussed. While this design will be more costly than current practices, it will provide additional confidence in predicted and reliability and actual site performance.

Levin, G.B.; Mezga, L.J.

1983-01-01T23:59:59.000Z

326

Removal and recovery of radionuclides and toxic metals from wastes, soils and materials  

SciTech Connect (OSTI)

A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites (Figure 1). In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (uranium trioxide) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.

Francis, A.J.

1993-07-01T23:59:59.000Z

327

Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020  

SciTech Connect (OSTI)

The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-11-30T23:59:59.000Z

328

Application of a passive electrochemical noise technique to localized corrosion of candidate radioactive waste container materials  

SciTech Connect (OSTI)

One of the key engineered barriers in the design of the proposed Yucca Mountain repository is the waste canister that encapsulates the spent fuel elements. Current candidate metals for the canisters to be emplaced at Yucca Mountain include cast iron, carbon steel, Incoloy 825 and titanium code-12. This project was designed to evaluate passive electrochemical noise techniques for measuring pitting and corrosion characteristics of candidate materials under prototypical repository conditions. Experimental techniques were also developed and optimized for measurements in a radiation environment. These techniques provide a new method for understanding material response to environmental effects (i.e., gamma radiation, temperature, solution chemistry) through the measurement of electrochemical noise generated during the corrosion of the metal surface. In addition, because of the passive nature of the measurement the technique could offer a means of in-situ monitoring of barrier performance.

Korzan, M.A.

1994-05-01T23:59:59.000Z

329

Imaging and Characterizing the Waste Materials Inside an Underground Storage Tank Using Seismic Normal Modes  

SciTech Connect (OSTI)

It is necessary to know something about the nature of the wastes in a Hanford underground storage tank (UST) so that the correct hardware can be inserted into a tank for sampling, sluicing, or pumping operations. It is also important to know if a layer of gas exists beneath solid and liquid layers of waste. Given that the tank will have only one liquid observation well (LOW), the authors examined the information that could be obtained from the natural seismic vibrations of a tank as a whole; that is, the normal modes of that tank. As in the case of a bell, the natural vibration, or normal modes, of a tank depend on many things, including the construction of the tank, the kinds of waste materials in the tank, the amount of each material in the tank, and where the energy is placed that excites the vibrations (i.e., where you will ''hit'' the tank). The nature of a normal mode of vibration can be given by its frequency and amplitude. For any given frequency, the amplitude of vibration can be given as a function of position in and around the tank. Since they assumed that one would be ''listening'' to a tank from locations along a LOW, they show their computed amplitudes as a function of position inside and around the tank, and in the case of the physical models they display the observations along various lines inside the tank model. This allowed us to see the complex geometry of each mode of oscillation as a function of increasing frequency.

M. N. Toksoz; R. M. Turpening

1999-09-14T23:59:59.000Z

330

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Waste-to-Energy Technologies  

E-Print Network [OSTI]

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency in South Korea, fueled by industrial waste (mainly fabric, wood, plastic, packaging materials

331

Method for making a low density polyethylene waste form for safe disposal of low level radioactive material  

DOE Patents [OSTI]

In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

Colombo, P.; Kalb, P.D.

1984-06-05T23:59:59.000Z

332

Description of the Canadian Particulate-Fill WastePackage (WP) System for Spent-Nuclear Fuel (SNF) and its Applicability to Ligh-Water Reactor SNF WPS with Depleted Uranium-Dioxide Fill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3502 3502 Chemical Technology Division DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL(SNF) AND ITS APPLICABILITY TO LIGHT- WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (423) 574-6783 Fax: (423) 574-9512 Email: forsbergcw@ornl.gov October 20, 1997 _________________________ Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the * U.S. Department of Energy. iii CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

333

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

334

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

2003-04-04T23:59:59.000Z

335

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

2010-05-14T23:59:59.000Z

336

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect (OSTI)

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

337

Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material  

SciTech Connect (OSTI)

Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to not only produce environmentally friendly products, but also forms that are proliferation resistant. All of these waste forms as well as others, are designed to take advantage of the unique properties of the ceramic systems.

Wicks, G.G.

2001-03-28T23:59:59.000Z

338

Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes  

SciTech Connect (OSTI)

Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

1996-04-01T23:59:59.000Z

339

Destruction of Plutonium and Other Nuclear Waste Materials Using the Accelerator-Driven Transmutation of Waste Concept  

Science Journals Connector (OSTI)

Each large nuclear power plant produces about 300 kilograms of ... about 120 kilograms of long-lived fission product wastes per year, with major constituents in terms ... humans either directly or by clandestine ...

F. Venneri

1997-01-01T23:59:59.000Z

340

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

MATERIALS PERFORMANCE TARGETED THRUST FY 2004 PROJECTS  

SciTech Connect (OSTI)

The Yucca Mountain site was recommended by the President to be a geological repository for commercial spent nuclear fuel and high-level radioactive waste. The multi-barrier approach was adopted for assessing and predicting system behavior, including both natural barriers and engineered barriers. A major component of the long-term strategy for safe disposal of nuclear waste is first to completely isolate the radionuclides in waste packages for long times and then to greatly retard the egress and transport of radionuclides from penetrated packages. The goal of the Materials Performance Targeted Thrust program is to further enhance the understanding of the role of engineered barriers in waste isolation. In addition, the Thrust will explore technical enhancements and seek to offer improvements in materials costs and reliability.

DOE

2005-09-13T23:59:59.000Z

342

Molten salt destruction as an alternative to open burning of energetic material wastes  

SciTech Connect (OSTI)

LLNL has built a small-scale (about 1 kg/hr throughput unit to test the destruction of energetic materials using the Molten Salt Destruction (MSD) process. We have modified the unit described in the earlier references to inject energetic waste material continuously into the unit. In addition to the HMX, other explosives we have destroyed include RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. We have also destroyed a liquid gun propellant comprising hydroxyl ammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, we have destroyed a number of commonly used formulations, such as LX-10 (HMX/Viton), LX-16 (PETN/FPC461, LX-17 (TATB/Kel F), and PBX-9404 (HMX)/CEF/Nitro cellulose). Our experiments have demonstrated that energetic materials can be safely and effectively treated by MSD.We have also investigated the issue of steam explosions in molten salt units, both experimentally and theoretically, and concluded that steam explosions can be avoided under proper design and operating conditions. We are currently building a larger unit (nominal capacity 5 kg/hr,) to investigate the relationship between residence time, temperature, feed concentration and throughputs, avoidance of back-burn, a;nd determination of the products of combustion under different operating conditions.

Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

1994-07-05T23:59:59.000Z

343

Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division  

Office of Legacy Management (LM)

AUG 0 3 1998 AUG 0 3 1998 Mr. Donald II. Simpson Uranium and Special Projects Unit Hazardous Materials and Waste Management Division Colorado Department of Public Health and Environment 4300 Cherry Creek Dr. S. Denver, Colorado 80222-1530 _,l ' 7. ,;:""" I,!._ -~~ . Dear Mr. Simpson: We have reviewed your letter of July 10, 1998, requesting that the Department of Energy (DOE) reconsider its decision to exclude the Marion Millsite in Boulder County, Colorado, from remediation under the Formerly Utilized Sites Remedial Action Program (FUSRAP). As you may know, FUSRAP is no longer administered and executed by DOE as Congress transferred the program to the U.S. Army Corps of Engineers beginning.in fiscal year 1998. Nonetheless, we weighed the information included in your letter against the

344

Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste  

Science Journals Connector (OSTI)

Abstract This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream.

Muhammad Nasrullah; Pasi Vainikka; Janne Hannula; Markku Hurme; Janne Kärki

2014-01-01T23:59:59.000Z

345

Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers  

SciTech Connect (OSTI)

The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

1993-08-01T23:59:59.000Z

346

The Packaging Handbook -- A guide to package design  

SciTech Connect (OSTI)

The Packaging Handbook is a compilation of 14 technical chapters and five appendices that address the life cycle of a packaging which is intended to transport radioactive material by any transport mode in normal commerce. Although many topics are discussed in depth, this document focuses on the design aspects of a packaging. The Handbook, which is being prepared under the direction of the US Department of Energy, is intended to provide a wealth of technical guidance that will give designers a better understanding of the regulatory approval process, preferences of regulators in specific aspects of packaging design, and the types of analyses that should be seriously considered when developing the packaging design. Even though the Handbook is concerned with all packagings, most of the emphasis is placed on large packagings that are capable of transporting large radioactive sources that are also fissile (e.g., spent fuel). These are the types of packagings that must address the widest range of technical topics in order to meet domestic and international regulations. Most of the chapters in the Handbook have been drafted and submitted to the Oak Ridge National Laboratory for editing; the majority of these have been edited. This report summarizes the contents.

Shappert, L.B.

1995-12-31T23:59:59.000Z

347

Hazardous Waste: Resource Pack for Trainers and Communicators | Open Energy  

Open Energy Info (EERE)

Hazardous Waste: Resource Pack for Trainers and Communicators Hazardous Waste: Resource Pack for Trainers and Communicators Jump to: navigation, search Tool Summary Name: Hazardous Waste: Resource Pack for Trainers and Communicators Agency/Company /Organization: International Solid Waste Association (ISWA), United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy, Land, Water Focus Area: Renewable Energy, - Waste to Energy Phase: Evaluate Options Topics: Adaptation, Implementation, Low emission development planning, -LEDS Resource Type: Guide/manual, Training materials Website: www.trp-training.info/ Cost: Paid Language: English References: Training Resource Pack[1] "The new TRP+ provides a structured package of notes, technical summaries, visual aids and other training material concerning the (hazardous) waste

348

Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste  

SciTech Connect (OSTI)

Abstract The reduction in nuclear arms and the production facilities that supported the weapons programs have produced some unique problems for nuclear material control and accountability (MC&A). Many of these problems are not limited to the weapons complex, but have the potential to appear in many legacy facilities as they undergo dismantlement and disposal. Closing facilities find that what was previously defined as product has become a waste stream bringing regulatory, human, and technological conflict. The sometimes unique compositions of these materials produce both storage and measurement problems. The nuclear material accounting and control programs have had to become very adaptive and preemptive to ensure control and protection is maintained. This paper examines some of the challenges to Safeguards generated by deinventory, decontamination decommissioning, dismantlement, demolition, and waste site remediation from predictable sources and some from unpredictable sources. 1.0 Introduction The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Additionally, the recovery of plutonium from dismantled weapons and reuse of components has eliminated the need to produce more plutonium for the near future. Because the nuclear weapons program and commercial applications generally do not mix in the United States, the facilities in the DOE complex that no longer have a weapon mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either geological sites or low-level waste sites. The type of waste from the decontamination and decommissioning (D&D) activities varies from uncontaminated construction materials to nuclear weapon components. This variety of forms, types, and composition of nuclear material presents many challenges to MC&A. It requires the creative application of regulations, but current regulations are adequate to ensure the security and control of the nuclear material. This paper examines some of the approaches used to meet regulatory requirements and problems that occurred during D&D. Experiences are drawn for the Hanford site and elsewhere in the DOE complex.

Schlegel, Steven C.

2007-07-10T23:59:59.000Z

349

Packaging and Transportation Support at LANL CTMA 2012  

SciTech Connect (OSTI)

Operations Support Packaging and Transportation (OS-PT) supports LANL in various functions. Some highlights of the past year have been with the work relating to environmental remediation, type B packaging, non-DOT compliant transfers, and special permit training. The TA-21 remediation project was part of the ARRA funding that LANL received. The $212 million in funding was used to demolish 24 buildings at TA-21, excavate the lab's oldest waste disposal site, and install 16 groundwater monitoring wells. The project was completed ahead of schedule and under budget. More than 300 tons of metal was recycled and all the soil excavated from MDA-B was replaced with clean fill. OS-PT supported this projected by transporting more than 7 million pounds of waste to TA-54 Area G with an addendum to their TSD. Because of the public access on the transfer route, Los Alamos County restricted the transfer to happen from 2:00 AM to 4:00 AM. OS-PT conducted 8 transfers in support of this project. Some concerns included the contaminated trailers at receipt facilities when transferring filled Super Sacks. Future Super Sacks were over packed into new IP-2 Super Sacks before shipping. OS-PT is also supporting the remediation of TA-54 Area G. LANL has an agreement with the State of New Mexico to remove all TRU waste currently stored above ground from at Area G. OS-PT supports this initiative with transfers of TRU waste under LANL's TSD and support of TRU shipments to WIPP. Another project supported by our organization is gas cylinder/dewar recycling and remediation. We are focusing on reducing risk associated with unneeded gasses at LANL. To minimized excessive ordering, to save money and time, and to minimize hazards OS-PT is supporting a gas recycling program. This program will allow programmatic organization across LANL to share unused/unneeded gasses. Instead of old dewars being disposed of, OS-PT has began identifying these dewars and sending them for refurbishment. To date, this effort has saved LANL $450K and estimated saving for future efforts will be more than $1.5 million. Some Projects that are happening here at LANL are offsite source recovery, weapon component transfers, and isotope science production. There are specific packages that help support these projects for the shipment of related materials. OS-PT provides support to these packages to ensure they are and will be available to continue this support. The Areva 435-B Overpack will help the Offsite Source Recovery Project recover high activity gamma sources from various locations across the globe. The Safety Analysis for Packaging is scheduled for initial completion June of 2012. The DPP-1 package is designed to replace the Model FL, which was designed by Rocky Flats and began service in 1990. LANL has collaborated on package design with LLNL, Pantex, Y-12, and KCP. LANL is supporting LLNL on component fixture development. Testing to 10 CFR 71 is to be completed in the Fall of 2012 and scheduled for NA-174 approval in 2014. The SAFESHIELD package helps supports LANL's Isotope production projects. This package can transfer highly irradiated materials from LANL's accelerator to material processing facilities. LANL worked to renew the SAFESHEILD's Certification for 5 more years.

Salazar, Nick [Los Alamos National Laboratory

2012-06-08T23:59:59.000Z

350

RH Packaging Program Guidance  

SciTech Connect (OSTI)

The purpose of this program guidance document is to provide technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the SARP and/or C of C shall govern. The C of C states: ''...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, ''Operating Procedures,'' of the application.'' It further states: ''...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, ''Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC approved, users need to be familiar with 10 CFR {section} 71.11, ''Deliberate Misconduct.'' Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions. Following these instructions assures that operations are safe and meet the requirements of the SARP. This document is available on the Internet at: ttp://www.ws/library/t2omi/t2omi.htm. Users are responsible for ensuring they are using the current revision and change notices. Sites may prepare their own document using the word-for-word steps in th is document, in sequence, including Notes and cautions. Site specific information may be included as necessary. The document, and revisions, must then be submitted to CBFO at sitedocuments@wipp.ws for approval. A copy of the approval letter from CBFO shall be available for audit purposes. Users may develop site-specific procedures addressing preoperational activities, quality assurance (QA), hoisting and rigging, and radiation health physics to be used with the instructions contained in this document. Users may recommend changes to this document by submitting their recommendations (in writing) to the WIPP M&O Contractor RH Packaging Maintenance Engineer for evaluation. If approved, the change(s) will be incorporated into this document for use by ALL users. Before first use and every 12 months after, user sites will be audited to this document to ensure compliance. They will also be audited within one year from the effective date of revisions to this document.

Washington TRU Solutions, LLC

2003-08-25T23:59:59.000Z

351

Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 2, Design data  

SciTech Connect (OSTI)

This is Volume 2 of the Engineered Materials Characterization Report which presents the design data for candidate materials needed in fabricating different components for both large and medium multi-purpose canister (MPC) disposal containers, waste packages for containing uncanistered spent fuel (UCF), and defense high-level waste (HLW) glass disposal containers. The UCF waste package consists of a disposal container with a basket therein. It is assumed that the waste packages will incorporate all-metallic multibarrier disposal containers to accommodate medium and large MPCs, ULCF, and HLW glass canisters. Unless otherwise specified, the disposal container designs incorporate an outer corrosion-allowance metal barrier over an inner corrosion-resistant metal barrier. The corrosion-allowance barrier, which will be thicker than the inner corrosion-resistant barrier, is designed to undergo corrosion-induced degradation at a very low rate, thus providing the inner barrier protection from the near-field environment for a prolonged service period.

Konynenburg, R.A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Roy, A.K. [B and W Fuel Co., Lynchburg, VA (United States); Jones, D.A. [Nevada Univ., Reno, NV (United States)

1995-08-01T23:59:59.000Z

352

Transuranic contaminated waste container characterization and data base. Revision I  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission (NRC) is developing regulations governing the management, handling and disposal of transuranium (TRU) radioisotope contaminated wastes as part of the NRC's overall waste management program. In the development of such regulations, numerous subtasks have been identified which require completion before meaningful regulations can be proposed, their impact evaluated and the regulations implemented. This report was prepared to assist in the development of the technical data base necessary to support rule-making actions dealing with TRU-contaminated wastes. An earlier report presented the waste sources, characteristics and inventory of both Department of Energy (DOE) generated and commercially generated TRU waste. In this report a wide variety of waste sources as well as a large TRU inventory were identified. The purpose of this report is to identify the different packaging systems used and proposed for TRU waste and to document their characteristics. This document then serves as part of the data base necessary to complete preparation and initiate implementation of TRU waste container and packaging standards and criteria suitable for inclusion in the present TRU waste management program. It is the purpose of this report to serve as a working document which will be used as appropriate in the TRU Waste Management Program. This report, and those following, will be compatible not only in format, but also in reference material and direction.

Kniazewycz, B.G.

1980-05-01T23:59:59.000Z

353

THE PERFORMANCE AND MODIFICATION OF RECYCLED ELECTRONIC WASTE PLASTICS FOR THE IMPROVEMENT OF ASPHALT PAVEMENT MATERIALS.  

E-Print Network [OSTI]

?? Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of… (more)

Colbert, Baron W.

2012-01-01T23:59:59.000Z

354

Use of Waste Materials from the Production of Synthetic Rubber for Preparing Aluminosilicate Ceramics  

Science Journals Connector (OSTI)

An aluminum-silicon-chromium powder (ASC) extracted from waste gases in synthetic rubber production is used as an addition to kaolin-...

V. N. Antsiferov; T. S. Golodnova; S. E. Porozova…

2002-09-01T23:59:59.000Z

355

Molecular environmental science using synchrotron radiation: Chemistry and physics of waste form materials  

E-Print Network [OSTI]

for radiation resistance in these materials. The ratio ofradiation resistance [4] of these same pyrochlore materials

Lindle, Dennis W.; Shuh, David K.

2005-01-01T23:59:59.000Z

356

Rev August 2006 Radiation Safety Manual Section 14 Radioactive Waste  

E-Print Network [OSTI]

Rev August 2006 Radiation Safety Manual Section 14 ­ Radioactive Waste Page 14-1 Section 14 Radioactive Waste Contents A. Proper Collection, Disposal, and Packaging and Putrescible Animal Waste.........................14-8 a. Non-Radioactive Animal Waste

Wilcock, William

357

Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report  

SciTech Connect (OSTI)

Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC`s Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula.

Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

1993-09-01T23:59:59.000Z

358

Remaining Sites Verification Package for the 116-F-16, PNL Outfall and the 100-F-43, PNL Outfall Spillway, Waste Site Reclassification Form 2006-046  

SciTech Connect (OSTI)

The 100-F-43 waste site is the portion of the former discharge spillway for the PNL Outfall formerly existing above the ordinary high water mark of the Columbia River. The spillway consisted of a concrete flume used to discharge waste effluents from the 100-F Experimental Animal Farm. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-14T23:59:59.000Z

359

Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery the Municipal Solid Wastes (the Municipal Solid Wastes (MSWMSW) of Beograd) of Beograd  

E-Print Network [OSTI]

Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery fromfrom;26.2World total 1.30.255.2Developing world 0.380.550.7 EU, Japan, Canada, Australia 0.331.10.3U.S.A. Tons MSW generated, billions Tons MSW per capita Population, billion Global generation of MSW Estimated SCG

Columbia University

360

Syngas Production by Thermochemical Gasification of Carbonaceous Waste Materials in a 150 kWth Packed-Bed Solar Reactor  

Science Journals Connector (OSTI)

The carbonaceous feedstocks experimentally investigated included coal,(9-11) petcoke,(12, 13) cellulose,(14, 15) biochar,(11, 16) and waste materials such as scrap tire chips and powders, dried sewage sludge, industrial sludges, and fluff. ... reactor for the steam-gasification of petcoke, carried out in a high-flux solar furnace. ... A petcoke-water slurry was continuously injected into a solar cavity-receiver to create a vortex flow directly exposed to concd. ...

Christian Wieckert; Albert Obrist; Peter von Zedtwitz; Gilles Maag; Aldo Steinfeld

2013-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Effects of simulant mixed waste on EPDM and butyl rubber  

SciTech Connect (OSTI)

The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

Nigrey, P.J.; Dickens, T.G.

1997-11-01T23:59:59.000Z

362

Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site  

SciTech Connect (OSTI)

This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

2007-09-28T23:59:59.000Z

363

ElectronicPackaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Packaging Packaging Manufacturing Technologies The Electronic Packaging technologies in the Thin Film, Vacuum, and Packaging Department are a resource for all aspects of microelectronic packag- ing. From design and layout to fabrication of proto- type samples, the staff offers partners the opportu- nity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropri- ate technology for manufacturing, analysis of per- formance characteristics and development of new and unique processes. Capabilities 1. Network Fabrication * Low Temperature Co-Fired Ceramic (LTCC) * Thick Film * Thin Film 2. Packaging and Assembly * Chip Level Packaging * MEMs Packaging * Hermetic Sealing * Surface Mount Technology

364

TRU waste-sampling program  

SciTech Connect (OSTI)

As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of /sup 238/Pu- and /sup 239/Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with /sup 239/Pu-contaminated waste, but three 8-month-old drums of /sup 238/Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs.

Warren, J.L.; Zerwekh, A.

1985-08-01T23:59:59.000Z

365

Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste  

E-Print Network [OSTI]

1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

366

Disposal of TRU Waste from the PFP in pipe overpack containers to WIPP Including New Security Requirements  

SciTech Connect (OSTI)

The Department of Energy is responsible for the safe management and cleanup of the DOE complex. As part of the cleanup and closure of the Plutonium Finishing Plant (PFP) located on the Hanford site, the nuclear material inventory was reviewed to determine the appropriate disposition path. Based on the nuclear material characteristics, the material was designated for stabilization and packaging for long term storage and transfer to the Savannah River Site, or a decision for discard was made. The discarded material was designated as waste material and slated for disposal to the Waste Isolation Pilot Plant (WIPP). Prior to preparing any residue wastes for disposal at the WIPP, several major activities need to be completed. As detailed a processing history as possible of the material including origin of the waste must be researched and documented. A technical basis for termination of safeguards on the material must be prepared and approved. Utilizing process knowledge and processing history, the material must be characterized, sampling requirements determined, acceptable knowledge package and waste designation completed prior to disposal. All of these activities involve several organizations including the contractor, DOE, state representatives and other regulators such as EPA. At PFP, a process has been developed for meeting the many, varied requirements and successfully used to prepare several residue waste streams including Rocky Flats incinerator ash, hanford incinerator ash and Sand, Slag and Crucible (SS and C) material for disposal. These waste residues are packed into Pipe Overpack Containers for shipment to the WIPP.

HOPKINS, A.M.

2003-02-01T23:59:59.000Z

367

The changing mindset in the management of waste  

Science Journals Connector (OSTI)

...of packaging waste must be recycled, with a minimum of 15% per...waste content, in particular plastic packaging? However significant...and associated costs. At GE Plastics in Grangemouth, a waste minimization...and gas; increased paper and plastics as the amount of packaging...

1997-01-01T23:59:59.000Z

368

A novel solidification technique for fluorine-contaminated bassanite using waste materials in ground improvement applications  

Science Journals Connector (OSTI)

This study investigates the development of solidification technology, based on the formation of ettringite, for fluorine-contaminated bassanite using waste and ... B in varying proportions to obtain the optimal ettringite

Takeshi Kamei; Aly Ahmed; Hideto Horai…

2014-04-01T23:59:59.000Z

369

High Level Waste management in Asia: R&D perspectives  

Science Journals Connector (OSTI)

The present work is an attempt to provide an overview, about the status of R&D and current trends in HLW management in Asian countries. The INIS database was selected for this purpose. Appropriate query formulations on the database, resulted in the retrieval of 4322 unique bibliographic records. Using the content analysis method, all the records were analyzed. Part One of the analysis details Scientometric R&D indicators, Part Two is a subject-based analysis, grouped under: A. Spent Fuel Recovery & Partitioning B. Waste Immobilization C. Waste Disposal and D. Waste Packaging Materials. The results of this analysis are summarized in the study.

Sangeeta Deokattey; K. Bhanumurthy; P.K. Wattal

2013-01-01T23:59:59.000Z

370

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

371

Summary of radioactive solid waste received in the 200 Areas during calendar year 1992  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1992-05-01T23:59:59.000Z

372

Summary of radioactive solid waste received in the 200 Areas during calendar year 1994  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1995-08-01T23:59:59.000Z

373

Summary of radioactive solid waste received in the 200 Areas during calendar year 1993  

SciTech Connect (OSTI)

Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

Anderson, J.D.; Hagel, D.L.

1994-09-01T23:59:59.000Z

374

Advantages of the shielded containers at the Waste Isolation Pilot Plant.  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) disposal operations currently employ two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement and therefore poses logistical constraints, in addition to the loss of valuable disposal capacity. To improve operational efficiency and disposal capacity, the Department of Energy (DOE) has proposed a shielded container for certain RH waste streams. RH waste with relatively low gammaemitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container is similar to the nominal 208-liter (55-gallon) drum, however it includes about 2.5 cm (1 in) of lead, sandwiched between thick steel sheets. Furthermore, the top and bottom are made of thick plate steel to strengthening the package to meet transportation requirements. This robust configuration provides an overpack for materials that otherwise would be RH waste. This paper describes the container and the regulatory approach used to meet the requirements imposed by regulations that apply to WIPP. This includes a Performance Assessment used to evaluate WIPP's long-term performance and the DOE's approach to gain approval for the transportation of shielded containers. This paper also describes estimates of the DOE's RH transuranic waste inventory that may be packaged and emplaced in shielded containers. Finally, the paper includes a discussion of how the DOE proposes to track the waste packaged into shielded containers against the RH waste inventory and how this will comply with the regulated volume.

Nelson, Roger A. (U.S. Department of Energy, Carlsbad, NM); Dunagan, Sean C.

2010-05-01T23:59:59.000Z

375

Remaining Sites Verification Package for the 100-F-26:13, 108-F Drain Pipelines, Waste Site Reclassification Form 2005-011  

SciTech Connect (OSTI)

The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-03T23:59:59.000Z

376

Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2006-055  

SciTech Connect (OSTI)

The 1607-B2 waste site is a former septic system associated with various 100-B facilities, including the 105-B, 108-B, 115-B/C, and 185/190-B buildings. The site was evaluated based on confirmatory results for feeder lines within the 100-B-14:2 subsite and determined to require remediation. The 1607-B2 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-03-21T23:59:59.000Z

377

Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank, Waste Site Reclassification Form 2006-019  

SciTech Connect (OSTI)

The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestricted future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-27T23:59:59.000Z

378

Remaining Sites Verification Package for the 116-F-8, 1904-F Outfall Structure and the 100-F-42, 1904-F Spillway, Waste Site Reclassification Form 2006-038  

SciTech Connect (OSTI)

The 116-F-8 waste site is the former 1904-F Outfall Structure used to discharge reactor cooling water effluent fro mthe 107-F Retention Basin to the Columbia River. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-25T23:59:59.000Z

379

A data base and a standard material for use in acceptance testing of low-activity waste products  

SciTech Connect (OSTI)

The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material.

Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

1998-04-01T23:59:59.000Z

380

An assessment of the value of retail ready packaging  

E-Print Network [OSTI]

Use of retail-ready packaging reduces the costs of replenishing store shelves by eliminating the labor of removing packaging materials and stocking individual items on shelves. While reducing costs for retailers, retail-ready ...

Jackson, Kathleen Anne

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Safety analysis report for packaging (onsite) steel drum  

SciTech Connect (OSTI)

This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

McCormick, W.A.

1998-09-29T23:59:59.000Z

382

Remaining Sites Verification Package for 132-H-1, 116-H Reactor Stack Burial Site, Waste Site Reclassification Form 2006-053  

SciTech Connect (OSTI)

The 132-H-1 waste site includes the 116-H exhaust stack burial trench and the buried stack foundation (which contains an embedded vertical 15-cm (6-in) condensate drain line). The 116-H reactor exhaust stack and foundation were decommissioned and demolished using explosives in 1983, with the rubble buried in situ beneath clean fill at least 1 m (3.3 ft) thick. Residual concentrations support future land uses that can be represented by a rural-residential scenario and pose no threat to groundwater or the Columbia River based on RESRAD modeling.

L. M. Dittmer

2007-06-26T23:59:59.000Z

383

Remaining Sites Verification Package for the 126-B-3, 184-B Coal Pit Dumping Area, Waste Site Reclassification Form 2005-028  

SciTech Connect (OSTI)

The 126-B-3 waste site is the former coal storage pit for the 184-B Powerhouse. During demolition operations in the 1970s, the site was used for disposal of demolition debris from 100-B/C Area facilities. The site has been remediated by removing debris and contaminated soils. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-07T23:59:59.000Z

384

Remaining Sites Verification Package for the 100-F-33, 146-F Aquatic Biology Fish Ponds, Waste Site Reclassification Form 2006-021  

SciTech Connect (OSTI)

The 100-F-33, 146-F Aquatice Biology Fish Ponds waste site was an area with six small rectangular ponds and one large circular pond used to conduct tests on fish using various mixtures of river and reactor effluent water. The current site conditions achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification and applicable confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-25T23:59:59.000Z

385

Remaining Sites Verification Package for the 116-F-8, 1904-F Outfall Structure and the 100-F-42, 1904-F Spillway, Waste Site Reclassification Form 2006-045  

SciTech Connect (OSTI)

The 100-F-42 waste site is the portion of the former emergency overflow spillway for the 1904-F Outfall Structure formerly existing above the ordinary high water mark of the Columbia River. The spillway consisted of a concrete flume designed to discharge effluent from the 107-F Retention Basin in the event that flows could not be completely discharged via the river outfall pipelines. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-09-26T23:59:59.000Z

386

Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2005-004  

SciTech Connect (OSTI)

The 100-F-26:8 waste site consisted of the underground pipelines that conveyed sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office to the 1607-F1 septic tank. The site has been remediated and presently exists as an open excavation. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-14T23:59:59.000Z

387

Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings  

SciTech Connect (OSTI)

This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope and requirements of reviews; and (5) Provide the above information to DOE organizations, contractors, other government agencies, and interested members of the general public. This PRG was originally published in September 1987. Revision 1, issued in October 1988, added new review sections on quality assurance and penetrations through the containment boundary, along with a few other items. Revision 2 was published October 1999. Revision 3 of this PRG is a complete update, and supersedes Revision 2 in its entirety.

DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

2007-04-12T23:59:59.000Z

388

Chapter 7: Integration and Packaging Page 127 Integration and Packaging  

E-Print Network [OSTI]

and bonded to its package. The chemical sensors are suspended on a platform, thermally isolated from the circuits in a sacrificial layer of opaque material such as metal. The fabrication of chemical sensors temperature) do not operate well at typical operating temperatures for chemical sensors (over 100°C

Wilson, Denise

389

Nuclear waste management using alpha particle physical phenomena by nanoscale investigations  

Science Journals Connector (OSTI)

Nuclear waste is investigated from the aspect of its nanoscale behaviour. Four materials are selected as the nuclear waste container. Using the irradiation-induced amorphisation, some characteristics are examined. The Displacement Per Atom (dpa) is affected by the ion dose using the Stopping and Range of Ions in Matter 2008 (SRIM 2008) code system, which is a computer package of molecular dynamic simulations. The dpa is changed completely and kinetic energy is transferred to the target by the nuclear collision. The length of the material is a function of the ion collisions. It is concluded that a thickness of 204 nm is the optimised length of a waste drum by crystalline silicotitanate.

Taeho Woo; Taewoo Kim

2011-01-01T23:59:59.000Z

390

Glass Ceramic Formulation Data Package  

SciTech Connect (OSTI)

A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

2012-06-17T23:59:59.000Z

391

Cost Estimation Package  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

1997-03-28T23:59:59.000Z

392

Remaining Sites Verification Package for the 100-F-26:12, 1.8-m (72-in.) Main Process Sewer Pipeline, Waste Site Reclassification Form 2007-034  

SciTech Connect (OSTI)

The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-04-29T23:59:59.000Z

393

Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain, Waste Site Reclassification Form 2008-021  

SciTech Connect (OSTI)

The 100-F-46 french drain consisted of a 1.5 to 3 m long, vertically buried, gravel-filled pipe that was approximately 1 m in diameter. Also included in this waste site was a 5 cm cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

J. M. Capron

2008-08-08T23:59:59.000Z

394

Remaining Sites Verification Package for the 100-C-9:1 Main Process Sewer Collection Line, Waste Site Reclassification Form 2004-012  

SciTech Connect (OSTI)

The 100-C-9:1 main process sewer pipeline, also known as the twin box culvert, was a dual reinforced process sewer that collected process effluent from the 183-C and 190-C water treatment facilities, discharging at the 132-C-2 Outfall. For remedial action purposes, the 100-C-9:1 waste site was subdivided into northern and southern sections. The 100-C-9:1 subsite has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-06-11T23:59:59.000Z

395

Handling and Packaging a Potentially Radiologically Contaminated Patient |  

Broader source: Energy.gov (indexed) [DOE]

Handling and Packaging a Potentially Radiologically Contaminated Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is to provide guidance to EMS care providers for properly handling and packaging potentially radiologically contaminated patients. This procedure applies to Emergency Medical Service care providers who respond to a radioactive material transportation incident that involves potentially contaminated injuries. Handling and Packaging a Potentially Radiologically Contaminated Patient.docx More Documents & Publications Pre-Hospital Practices for Handling a Radiologically Contaminated Patient Emergency Response to a Transportation Accident Involving Radioactive Material Radioactive Materials Transportation and Incident Response

396

Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot  

SciTech Connect (OSTI)

The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

Molecke, M.A.; Argueello, G.J.; Beraun, R.

1993-04-01T23:59:59.000Z

397

Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site  

SciTech Connect (OSTI)

Beginning in the 1940`s, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments.

Smith, R.J.

1995-02-01T23:59:59.000Z

398

Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization  

SciTech Connect (OSTI)

Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

Henghu Sun; Yuan Yao

2012-06-29T23:59:59.000Z

399

Exergy analysis of the Chartherm process for energy valorization and material recuperation of chromated copper arsenate (CCA) treated wood waste  

SciTech Connect (OSTI)

The Chartherm process (Thermya, Bordeaux, France) is a thermochemical conversion process to treat chromated copper arsenate (CCA) impregnated wood waste. The process aims at maximum energy valorization and material recuperation by combining the principles of low-temperature slow pyrolysis and distillation in a smart way. The main objective of the exergy analysis presented in this paper is to find the critical points in the Chartherm process where it is necessary to apply some measures in order to reduce exergy consumption and to make energy use more economic and efficient. It is found that the process efficiency can be increased with 2.3-4.2% by using the heat lost by the reactor, implementing a combined heat and power (CHP) system, or recuperating the waste heat from the exhaust gases to preheat the product gas. Furthermore, a comparison between the exergetic performances of a 'chartherisation' reactor and an idealized gasification reactor shows that both reactors destroy about the same amount of exergy (i.e. 3500 kW kg{sub wood}{sup -1}) during thermochemical conversion of CCA-treated wood. However, the Chartherm process possesses additional capabilities with respect to arsenic and tar treatment, as well as the extra benefit of recuperating materials.

Bosmans, A., E-mail: anouk.bosmans@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium); Auweele, M. Vanden; Govaerts, J.; Helsen, L. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Heverlee (Belgium)

2011-04-15T23:59:59.000Z

400

Molten salt destruction of energetic material wastes as an alternative to open burning  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory in conjunction with the Energetic Materials Center ( a partnership of Lawrence Livermore and Sandia National Laboratories), is developing methods for the safe and environmentally sound destruction of explosives and propellants as a part of the Laboratory`s ancillary demilitarization mission. As a result of the end of the Cold War and the shift in emphasis to a smaller stockpile, many munitions, both conventional and nuclear, are scheduled for retirement and rapid dismantlement and demilitarization. Major components of these munitions are the explosives and propellants, or energetic materials. The Department of Energy has thousands of pounds of energetic materials which result from dismantlement operations at the Pantex Plant. The Department of Defense has several hundred million pounds of energetic materials in its demilitarization inventory, with millions more added each year. In addition, there are vast energetic materials demilitarization inventories world-wide, including those in the former Soviet Union and eastern Bloc countries. Although recycling and reusing is the preferred method of dealing with these surplus materials, there will always be the necessity of destroying intractable or unusable energetic materials. Traditionally, open bum/open detonation (OB/OD) has been the method of choice for the destruction of energetic materials. Public concerns and increasingly stringent environmental regulations have made open burning and open detonation of energetic materials increasingly costly and nearly unacceptable. Thus, the impetus to develop environmentally sound alternatives to dispose of energetic materials is great.

Upadhye, R.S.; Pruneda, C.O.; Watkins, B.E.

1995-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "waste package materials" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of Type B shipping packages used to transport potentially flammable gas mixtures  

SciTech Connect (OSTI)

Using Type B shipping packages to transport radioactive materials within a potentially flammable gas mixture is a bold proposal. The Nuclear Regulatory Commission (NRC) has essentially prohibited such shipments. Furthermore, the NRC requires extensive modeling and/or testing of selective contents (e.g., Transuranic Waste) which are prone to generate hydrogen gas to demonstrate that, in general, a flammable mixture inside the containment vessel will not occur during shipment. Contrary to the NRC position, this paper proposes a rigorous containment vessel evaluation methodology to justify shipment of Type B quantities of radioactive materials in the presence of potentially flammable gas mixtures. The Department of Energy (DOE) is currently reviewing the methodology as applied to the 9975 package for shipment of plutonium oxide which may generate significant quantities of hydrogen gas.

Hensel, S.J.

2000-04-26T23:59:59.000Z

402

Debate over waste imperils 3-Mile cleanup  

SciTech Connect (OSTI)

The cleanup is a task of extraordinary proportions. Every step in the cleanup must be taken in a highly sensitive political and regulatory environment. A demineralizer or ion exchange filtration unit was installed in order that the fission products could be removed from the water spilled in the auxiliary and fuel handling buildings. GPU later vented krypton gas. Twice now engineers have made cautions entries into the containment building as part of the effort to size up the job. Cleanup will be costly, requiring many workers. Some wastes will require special packaging in hundreds of containers with shielded overpacks, plus bulky items of hardware and equipment that cannot be easily packaged. There will be the damaged fuel assemblies from the reactor core. Removing the fuel from the reactor may be difficult. A troublesome waste disposal question has to do with the material to be generated in cleaning up the containment building's sump water. GPU's man in charge of clean-up strategy is to collect the wastes in a form that permits maximum flexibility with respect to their stage, packaging, transport, and ultimate disposal. If plans for disposal of all the wastes from the cleanup are to be completed, an early commitment by Pennsylvania and other northeastern states to establish a burial ground for low level waste generated within the region is needed. Also a speedy commitment by NRC, DOE, and Congress to a plan for disposal of the first-stage zeolites is needed. Should there be a failure to cope with the wastes that Three Mile Island cleanup generates, the whole nuclear enterprise may suffer.

Carter, L.J.

1980-10-10T23:59:59.000Z

403

Infectious waste feed system  

DOE Patents [OSTI]

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

404

Remaining Sites Verification Package for the 100-F-26:15 Miscellaneous Pipelines Associated with the 132-F-6, 1608-F Waste Water Pumping Station, Waste Site Reclassification Form 2007-031  

SciTech Connect (OSTI)

The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2008-03-18T23:59:59.000Z

405

TRU waste certification compliance requirements for contact-handled wastes retrieved from storage for shipment to the WIPP  

SciTech Connect (OSTI)

Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE Orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste.

Not Available

1982-09-01T23:59:59.000Z

406

Nuclear waste management. Semiannual progress report, October 1983-March 1984  

SciTech Connect (OSTI)

Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characteriza