Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success...

2

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

3

OFFICE WASTE DATA 2010 Recyclable Materials 1680 tons / 62%  

E-Print Network (OSTI)

is used to stabilise temperatures within conventional Energy from Waste incineration plants as well waste from high temperature incineration (Clinical waste) to incineration with energy recovery (Offensive and hygiene waste). Benefits include: Lower CO2 emissions. Energy recovered in process. Direct

Gannarelli, Ché

4

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas Cleanup of 77 Waste Sites Meets Two TPA Milestones: 1.2 million tons of soil and debris disposed of from D, H Reactor Areas January 11, 2012 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE (509) 376-5365, Cameron.Hardy@rl.doe.gov Dieter Bohrmann, Ecology (509) 372-7954, Dieter.Bohrmann@ecy.wa.gov Emerald Laija, EPA (509) 376-4919, Laija.Emerald@epamail.epa.gov RICHLAND, WASH. - Department of Energy (DOE) contractor, Washington Closure Hanford, recently cleaned up 77 waste sites at Hanford to meet two Tri-Party Agreement (TPA) milestones before the end of 2011. The waste sites were located in the D and H Reactor Areas at Hanford along

5

Saving Tons at the Register  

SciTech Connect

Duct losses have a significant effect on the efficiency of delivering space cooling to U.S. homes. This effect is especially dramatic during peak demand periods where half of the cooling equipment's output can be wasted. Improving the efficiency of a duct system can save energy, but can also allow for downsizing of cooling equipment without sacrificing comfort conditions. Comfort, and hence occupant acceptability, is determined not only by steady-state temperatures, but by how long it takes to pull down the temperature during cooling start-up, such as when the occupants come home on a hot summer afternoon. Thus the delivered tons of cooling at the register during start-up conditions are critical to customer acceptance of equipment downsizing strategies. We have developed a simulation technique which takes into account such things as weather, heat-transfer (including hot attic conditions), airflow, duct tightness, duct location and insulation, and cooling equipment performance to determine the net tons of cooling delivered to occupied space. Capacity at the register has been developed as an improvement over equipment tonnage as a system sizing measure. We use this concept to demonstrate that improved ducts and better system installation is as important as equipment size, with analysis of pull-down capability as a proxy for comfort. The simulations indicate that an improved system installation including tight ducts can eliminate the need for almost a ton of rated equipment capacity in a typical new 2,000 square foot house in Sacramento, California. Our results have also shown that a good duct system can reduce capacity requirements and still provide equivalent cooling at start-up and at peak conditions.

Brown, Karl; Seigel, Jeff; Sherman, Max; Walker, Iain

1998-05-01T23:59:59.000Z

6

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons)  

U.S. Energy Information Administration (EIA)

Table 7.1 Coal Overview, 1949-2011 (Million Short Tons) Year: Production 1: Waste Coal Supplied 2: Trade: Stock Change 4,5: Losses and

7

How do I convert between short tons and metric tons? - FAQ - U ...  

U.S. Energy Information Administration (EIA)

Other FAQs about Conversion & Equivalents. How do I convert between short tons and metric tons? How do I compare heating fuels?

8

Transportation system benefits of early deployment of a 75-ton multipurpose canister system  

SciTech Connect

In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

Wankerl, M.W. [Oak Ridge National Lab., TN (United States); Schmid, S.P. [Science Applications International Corp., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

9

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton capacity, it...

10

Disposal Facility Reaches 15-Million-Ton Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone Disposal Facility Reaches 15-Million-Ton Milestone July 30, 2013 - 12:00pm Addthis Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. Matt McCormick, manager of the Richland Operations Office, commends a large group of Hanford workers for the 15-million-ton milestone at a public event at the Environmental Restoration Disposal Facility. RICHLAND, Wash. - EM's Environmental Restoration Disposal Facility (ERDF) - a massive landfill for low-level radioactive and hazardous waste at the Hanford site - has achieved a major cleanup milestone. Since beginning operations in 1996, workers supporting the Richland

11

Ton père et autre débris ; suivi de Entretien.  

E-Print Network (OSTI)

??Ce mémoire en création littéraire est constitué de deux parties. La première, Ton père et autres débris, est un récit composé de vingt-quatre tableaux divisés… (more)

Grenier, Jacques

2006-01-01T23:59:59.000Z

12

KCP relocates 18-ton machine | National Nuclear Security Administratio...  

NLE Websites -- All DOE Office Websites (Extended Search)

relocates 18-ton machine | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

13

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

with industries. Paper, woolen, flour, and cotton mills, starch factories, slaughterhouses, distilleriesTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

14

Department of Energy Releases New 'Billion-Ton' Study Highlighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Billion-Ton' Study 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources Department of Energy Releases New 'Billion-Ton' Study Highlighting Opportunities for Growth in Bioenergy Resources August 10, 2011 - 3:41pm Addthis Washington, D.C. - The U.S. Department of Energy today released a report - 2011 U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry - detailing U.S. biomass feedstock potential nationwide. The report examines the nation's capacity to produce a billion dry tons of biomass resources annually for energy uses without impacting other vital U.S. farm and forest products, such as food, feed, and fiber crops. The study provides industry, policymakers, and the agricultural community with county-level data and includes analyses of

15

U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry  

SciTech Connect

The report, Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply (generally referred to as the Billion-Ton Study or 2005 BTS), was an estimate of 'potential' biomass based on numerous assumptions about current and future inventory, production capacity, availability, and technology. The analysis was made to determine if conterminous U.S. agriculture and forestry resources had the capability to produce at least one billion dry tons of sustainable biomass annually to displace 30% or more of the nation's present petroleum consumption. An effort was made to use conservative estimates to assure confidence in having sufficient supply to reach the goal. The potential biomass was projected to be reasonably available around mid-century when large-scale biorefineries are likely to exist. The study emphasized primary sources of forest- and agriculture-derived biomass, such as logging residues, fuel treatment thinnings, crop residues, and perennially grown grasses and trees. These primary sources have the greatest potential to supply large, reliable, and sustainable quantities of biomass. While the primary sources were emphasized, estimates of secondary residue and tertiary waste resources of biomass were also provided. The original Billion-Ton Resource Assessment, published in 2005, was divided into two parts-forest-derived resources and agriculture-derived resources. The forest resources included residues produced during the harvesting of merchantable timber, forest residues, and small-diameter trees that could become available through initiatives to reduce fire hazards and improve forest health; forest residues from land conversion; fuelwood extracted from forests; residues generated at primary forest product processing mills; and urban wood wastes, municipal solid wastes (MSW), and construction and demolition (C&D) debris. For these forest resources, only residues, wastes, and small-diameter trees were considered. The 2005 BTS did not attempt to include any wood that would normally be used for higher-valued products (e.g., pulpwood) that could potentially shift to bioenergy applications. This would have required a separate economic analysis, which was not part of the 2005 BTS. The agriculture resources in the 2005 BTS included grains used for biofuels production; crop residues derived primarily from corn, wheat, and small grains; and animal manures and other residues. The cropland resource analysis also included estimates of perennial energy crops (e.g., herbaceous grasses, such as switchgrass, woody crops like hybrid poplar, as well as willow grown under short rotations and more intensive management than conventional plantation forests). Woody crops were included under cropland resources because it was assumed that they would be grown on a combination of cropland and pasture rather than forestland. In the 2005 BTS, current resource availability was estimated at 278 million dry tons annually from forestlands and slightly more than 194 million dry tons annually from croplands. These annual quantities increase to about 370 million dry tons from forestlands and to nearly 1 billion dry tons from croplands under scenario conditions of high-yield growth and large-scale plantings of perennial grasses and woody tree crops. This high-yield scenario reflects a mid-century timescale ({approx}2040-2050). Under conditions of lower-yield growth, estimated resource potential was projected to be about 320 and 580 million dry tons for forest and cropland biomass, respectively. As noted earlier, the 2005 BTS emphasized the primary resources (agricultural and forestry residues and energy crops) because they represent nearly 80% of the long-term resource potential. Since publication of the BTS in April 2005, there have been some rather dramatic changes in energy markets. In fact, just prior to the actual publication of the BTS, world oil prices started to increase as a result of a burgeoning worldwide demand and concerns about long-term supplies. By the end of the summer, oil pri

Downing, Mark [ORNL; Eaton, Laurence M [ORNL; Graham, Robin Lambert [ORNL; Langholtz, Matthew H [ORNL; Perlack, Robert D [ORNL; Turhollow Jr, Anthony F [ORNL; Stokes, Bryce [Navarro Research & Engineering; Brandt, Craig C [ORNL

2011-08-01T23:59:59.000Z

16

Department of Energy Releases New 'Billion-Ton' Study Highlighting...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

report supports the conclusion of the original 2005 Billion-Ton Study with added in-depth production and costs analyses and sustainability studies. The 2011 report uses more...

17

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

of the following homes per month: 10,343 286 tons of plastic 95 tons of aluminum 0 KW-Hrs of Electricity from Waste-to-Energy: This provides enough energy to heat and cool at a Waste-to-Energy (WTE) the following homes per month: 10Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company

Delgado, Mauricio

18

THERMAL MODELING ANALYSIS OF SRS 70 TON CASK  

SciTech Connect

The primary objective of this work was to perform the thermal calculations to evaluate the Material Test Reactor (MTR) fuel assembly temperatures inside the SRS 70-Ton Cask loaded with various bundle powers. MTR fuel consists of HFBR, MURR, MIT, and NIST. The MURR fuel was used to develop a bounding case since it is the fuel with the highest heat load. The results will be provided for technical input for the SRS 70 Ton Cask Onsite Safety Assessment. The calculation results show that for the SRS 70 ton dry cask with 2750 watts total heat source with a maximum bundle heat of 670 watts and 9 bundles of MURR bounding fuel, the highest fuel assembly temperatures are below about 263 C. Maximum top surface temperature of the plastic cover is about 112 C, much lower than its melting temperature 260 C. For 12 bundles of MURR bounding fuel with 2750 watts total heat and a maximum fuel bundle of 482 watts, the highest fuel assembly temperatures are bounded by the 9 bundle case. The component temperatures of the cask were calculated by a three-dimensional computational fluid dynamics approach. The modeling calculations were performed by considering daily-averaged solar heat flux.

Lee, S.; Jordan, J.; Hensel, S.

2011-03-08T23:59:59.000Z

19

Dilution Refrigeration of Multi-Ton Cold Masses  

E-Print Network (OSTI)

Dilution refrigeration is the only means to provide continuous cooling at temperatures below 250 mK. Future experiments featuring multi-ton cold masses require a new generation of dilution refrigeration systems, capable of providing a heat sink below 10 mK at cooling powers which exceed the performance of present systems considerably. This thesis presents some advances towards dilution refrigeration of multi-ton masses in this temperature range. A new method using numerical simulation to predict the cooling power of a dilution refrigerator of a given design has been developed in the framework of this thesis project. This method does not only allow to take into account the differences between an actual and an ideal continuous heat exchanger, but also to quantify the impact of an additional heat load on an intermediate section of the dilute stream. In addition, transient behavior can be simulated. The numerical model has been experimentally verified with a dilution refrigeration system which has been designed, ...

Wikus, P; CERN. Geneva

2007-01-01T23:59:59.000Z

20

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly...

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

Metric Tons of Plutonium by Turning it into Fuel for Civilian Reactors January 23, 2002 Washington, DC DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for...

22

Wind emission of OB supergiants and the influence of clumping  

E-Print Network (OSTI)

The influence of the wind to the total continuum of OB supergiants is discussed. For wind velocity distributions with \\beta > 1.0, the wind can have strong influence to the total continuum emission, even at optical wavelengths. Comparing the continuum emission of clumped and unclumped winds, especially for stars with high \\beta values, delivers flux differences of up to 30% with maximum in the near-IR. Continuum observations at these wavelengths are therefore an ideal tool to discriminate between clumped and unclumped winds of OB supergiants.

Kraus, Michaela; Krticka, Jiri

2007-01-01T23:59:59.000Z

23

Wind emission of OB supergiants and the influence of clumping  

E-Print Network (OSTI)

The influence of the wind to the total continuum of OB supergiants is discussed. For wind velocity distributions with \\beta > 1.0, the wind can have strong influence to the total continuum emission, even at optical wavelengths. Comparing the continuum emission of clumped and unclumped winds, especially for stars with high \\beta values, delivers flux differences of up to 30% with maximum in the near-IR. Continuum observations at these wavelengths are therefore an ideal tool to discriminate between clumped and unclumped winds of OB supergiants.

Michaela Kraus; Jiri Kubat; Jiri Krticka

2007-08-06T23:59:59.000Z

24

Disposal Facility Reaches 15-Million-Ton Milestone  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – EM’s Environmental Restoration Disposal Facility (ERDF) — a massive landfill for low-level radioactive and hazardous waste at the Hanford site — has achieved a major cleanup milestone.

25

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

26

Conceptual design study on incorporating a 25-ton/day pyrolysis unit into an operating total energy system. Final report  

DOE Green Energy (OSTI)

The results of a conceptual design study on incorporating a pyrolysis unit into an existing total energy plant are presented. The objectives of this study were to examine the institutional, technical and economic factors affecting the incorporation of a 25-ton/day pyrolysis unit into the Indian Creek Total Energy Plant. The Indian Creek total energy plant is described. Results of the conceptual design are presented. A survey of the availability of waste materials and a review of health and safety ordinances are included. The technical aspects of the pyrolysis system are discussed, including the results of the review of facilities requirements for the pyrolysis unit, the analysis of necessary system modification, and an estimate of the useful energy contribution by the pyrolysis unit. Results of the life-cycle cost analysis of the pyrolysis unit are presented. The major conclusions are that: there appears to be no institutional or technical barriers to constructing a waste pyrolysis unit at the Indian Creek Total Energy Plant; pyrolysis gas can be consumed in the engines and the boilers by utilizing venturi mixing devices; the engines can consume only 5% of the output of the 25-ton/day pyrolysis unit; Therefore, consumption of pyrolysis gas will be controlled by boiler energy demand patterns; a waste pyrolysis unit is not cost effective at the current natural gas price of $0.90/10/sup 6/ Btu; and pyrolysis is economically attractive at natural gas prices above $3.00/10/sup 6/ Btu.

None

1976-12-13T23:59:59.000Z

27

Application guide for 25-ton solar system (unitized)  

DOE Green Energy (OSTI)

Arkla has developed a unitary solar system for air conditioning, heating and service hot water loads in commercial buildings of up to 25 tons cooling requirement. A semi-exploded view shows the basic elements of the Arkla system. These elements, listed below, are described in individual sections of the guide in sufficient detail to enable a competent designer to duplicate the Arkla unitary system in a site built system. The elements are: (1) collectors with summary procedure guide; (2) storage/receiver; (3) pumps/piping/valves; (4) controls; (5) chiller; (6) cooling tower; (7) gas boiler back-up; (8) central air handling unit; and (9) service and DHW. Any successful solar HVAC system requires careful analysis of the integration of the elements. This is particularly true due to the large year-round variation in the temperature of the solar HW available. Several items of this nature are discussed in the element sections. Consequently, the designer should review this entire guide before proceeding to individual elements particularly A and B. This guide presumes that the monthly (and design) hot water loads have been determined for the heating, cooling, and service-DHW water Btu requirements. In addition to these normal calculations, an hourly profile for a typical day each month should be made. The hourly profile is necessary to maximize the solar fraction for a given amount of collector surface in conjunction with the size of the storage system; that is, the coincidence, or lack of, sunshine to the instantaneous demands.

Not Available

1983-01-01T23:59:59.000Z

28

Characterization of Arsenic Contamination on Rust from Ton Containers  

Science Conference Proceedings (OSTI)

The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5 oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.

Gary S. Groenewold; Recep Avci; Robert V. Fox; Muhammedin Deliorman; Jayson Suo; Laura Kellerman

2013-01-01T23:59:59.000Z

29

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpassing that goal. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds More Documents & Publications EIS-0355: Record of Decision EIS-0355: Draft Environmental Impact Statement EIS-0355: Final Environmental Impact Statement

30

Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Pumps (5.4 >=< 20 Tons) Heat Pumps (5.4 >=< 20 Tons) Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) October 8, 2013 - 2:22pm Addthis Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Project Type New Installation Replacement New Installation Condenser Type Air Source Water Source Air Source Existing Capacity * ton - Existing Cooling Efficiency * EER - Existing Heating Efficiency * COP - Existing IPLV Efficiency * IPLV - New Capacity ton 10 tons New Cooling Efficiency EER 10.1 EER New Heating Efficiency COP 3.2 COP New IPLV Efficiency IPLV 10.4 IPLV Energy Cost $ per kWh $0.06 per kWh

31

Drilling Waste Management Fact Sheet: Thermal Treatment  

NLE Websites -- All DOE Office Websites (Extended Search)

range from 75 to 150ton (Bansal and Sugiarto 1999). Many factors can impact treatment costs, including oil and moisture content of the waste, particle size distribution of the...

32

Utilization of biocatalysts in cellulose waste minimization  

DOE Green Energy (OSTI)

Cellulose, a polymer of glucose, is the principal component of biomass and, therefore, a major source of waste that is either buried or burned. Examples of biomass waste include agricultural crop residues, forestry products, and municipal wastes. Recycling of this waste is important for energy conservation as well as waste minimization and there is some probability that in the future biomass could become a major energy source and replace fossil fuels that are currently used for fuels and chemicals production. It has been estimated that in the United States, between 100-450 million dry tons of agricultural waste are produced annually, approximately 6 million dry tons of animal waste, and of the 190 million tons of municipal solid waste (MSW) generated annually, approximately two-thirds is cellulosic in nature and over one-third is paper waste. Interestingly, more than 70% of MSW is landfilled or burned, however landfill space is becoming increasingly scarce. On a smaller scale, important cellulosic products such as cellulose acetate also present waste problems; an estimated 43 thousand tons of cellulose ester waste are generated annually in the United States. Biocatalysts could be used in cellulose waste minimization and this chapter describes their characteristics and potential in bioconversion and bioremediation processes.

Woodward, J.; Evans, B.R.

1996-09-01T23:59:59.000Z

33

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

34

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

35

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

36

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

37

U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Removes Nine Metric Tons of Plutonium From Nuclear Weapons Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile U.S. Removes Nine Metric Tons of Plutonium From Nuclear Weapons Stockpile September 17, 2007 - 2:41pm Addthis Declaration Reinforces U.S. Commitment to Nonproliferation VIENNA, AUSTRIA - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's National Nuclear Security Administration (NNSA) will remove nine metric tons of plutonium from further use as fissile material in U.S. nuclear weapons, signifying the Bush Administration's ongoing commitment to nonproliferation. Nine metric tons of plutonium is enough material to make over 1,000 nuclear weapons. The Secretary made today's announcement while speaking before the International Atomic Energy Agency's annual general conference.

38

Billion-Ton Update: Home-Grown Energy Resources Across the Nation |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation Billion-Ton Update: Home-Grown Energy Resources Across the Nation August 11, 2011 - 3:59pm Addthis Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Total potential biomass resources by county in the contiguous U.S. from the baseline scenario of the Update (Figure 6.4, page 159) | Map from Billion-Ton Update Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy What does this mean for me? With continued developments in biorefinery capacity and technology, the feedstock resources identified in the report could produce about 85 billion gallons of biofuels -- enough to replace approximately 30 percent

39

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

40

Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory  

Science Conference Proceedings (OSTI)

In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

Wilson, K. L.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Moab Uranium Mill Tailings Remedial Action The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpass- ing that goal. "Although shipping 2 million tons was the original Recovery Act goal, we are planning to exceed this goal by shipping about 300,000 tons more using savings resulting from efficiencies we've gained in our first 2 years of moving tailings," Moab Federal Project Director Donald Metzler said. The project is using $108 million from the Recovery Act to move the tailings from the banks of the Colorado River by rail to a permanent

42

Moab Marks 6-Million-Ton Cleanup Milestone | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone Moab Marks 6-Million-Ton Cleanup Milestone June 20, 2013 - 12:00pm Addthis At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab’s uranium mill tailings pile to a plaque representing the disposal cell in recognition of the site achieving a milestone by shipping 6 million tons of the tailings. Grand County Council Chair Gene Ciarus is on the left and Grand County Council Vice Chair Lynn Jackson is on the right. At Tuesday's Grand County Council meeting in Utah, Moab Federal Project Director Donald Metzler, center, moves a piece from a plaque representing Moab's uranium mill tailings pile to a plaque representing the disposal

43

DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile DOE to Remove 200 Metric Tons of Highly Enriched Uranium from U.S. Nuclear Weapons Stockpile November 7, 2005 - 12:38pm Addthis Will Be Redirected to Naval Reactors, Down-blended or Used for Space Programs WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today announced that the Department of Energy's (DOE) National Nuclear Security Administration (NNSA) will remove up to 200 metric tons (MT) of Highly Enriched Uranium (HEU), in the coming decades, from further use as fissile material in U.S. nuclear weapons and prepare this material for other uses. Secretary Bodman made this announcement while addressing the 2005 Carnegie International Nonproliferation Conference in Washington, DC.

44

A Concept for a Scalable 2 kTon Liquid Argon TPC Detector for Astroparticle Physics  

E-Print Network (OSTI)

-module configuration and to its large liquid nitrogen consumption (~1 liquid m3 /hour), the 300-ton geometry purity (UHP) liquefied noble gas and for coping with the engineering and safety issues related

McDonald, Kirk

45

DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mississippi Project Hits 1-Million-Ton Milestone for Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 November 5, 2009 - 12:00pm Addthis Washington, DC - A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration

46

DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin February 27, 2009 - 12:00pm Addthis Washington, D.C. -- Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the Michigan Basin near Gaylord, Mich., in a deep saline formation, the Silurian-age Bass Island dolomite. The MRCSP is one of seven partnerships

47

NETL: News Release - DOE Regional Partnerships Find Up To 3.5 Billion Tons  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2007 7, 2007 DOE Regional Partnerships Find More Than 3,500 Billion Tons of Possible CO2 Storage Capacity Atlas Details Stationary Sources and Geologic Reservoirs in U.S. and Canada WASHINGTON, DC - The Department of Energy's Regional Carbon Sequestration Partnerships have identified the powerplant and other stationary sources of more than 3.8 billion tons a year of the greenhouse gas CO2 in the United States and Canada and companion candidate storage capacity for more than 3,500 billion tons. The results are detailed in the new Carbon Sequestration Atlas of the United States and Canada which became available online today. MORE INFO Link to NETL's Carbon Sequestration Atlas web page Link to the Interactive Carbon Sequestration Atlas Learn more about DOE's Regional Carbon Sequestration Partnership program

48

NETL: News Release - DOE Partner Begins Injecting 50,000 Tons of Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

February 27, 2009 February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of Carbon Dioxide in Michigan Basin Project Expected to Advance National Carbon Sequestration Program, Create Jobs Washington, DC-Building on an initial injection project of 10,000 metric tons of carbon dioxide (CO2) into a Michigan geologic formation, a U.S. Department of Energy (DOE) team of regional partners has begun injecting 50,000 additional tons into the formation, which is believed capable of storing hundreds of years worth of CO2, a greenhouse gas that contributes to climate change. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program DOE's Midwest Regional Carbon Sequestration Partnership (MRCSP), led by Battelle of Columbus, Ohio, began injecting the CO2 this week in the

49

NNSA's Global Threat Reduction Initiative Removes More Than One Ton of  

NLE Websites -- All DOE Office Websites (Extended Search)

Removes More Than One Ton of Removes More Than One Ton of Food | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA's Global Threat Reduction Initiative Removes More ... NNSA's Global Threat Reduction Initiative Removes More Than One Ton of Food Posted By Office of Public Affairs Contributing to DOE/NNSA's efforts to support the Office of Personnel

50

Waste Minimization in the Healthcare Industry: A Resource Guide  

Science Conference Proceedings (OSTI)

Hospitals dispose of about 2 million tons of waste annually, thereby contributing to the nation's waste disposal problem. Some hospitals have found that developing and implementing a waste minimization program not only supports environmental protection but also enhances occupational safety, reduces costs and liabilities, and improves community relations.

1999-10-29T23:59:59.000Z

51

Hanford Waste Treatment Plant Sets Massive Protective Shield door in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Sets Massive Protective Shield door Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The 102-ton shield door measures 52 feet wide and 15 feet tall The 102-ton shield door measures 52 feet wide and 15 feet tall The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December.

52

Discharge Characteristics and Changes over the Ob River Watershed in Siberia  

Science Conference Proceedings (OSTI)

This study analyzes long-term (1936–90) monthly streamflow records for the major subbasins within the Ob River watershed in order to examine discharge changes induced by human activities (particularly reservoirs and agricultural activities) and ...

Daqing Yang; Baisheng Ye; Alexander Shiklomanov

2004-08-01T23:59:59.000Z

53

The Arabidopsis TRM1TON1 Interaction Reveals a Recruitment Network Common to Plant Cortical  

E-Print Network (OSTI)

microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible., 2006). CAP350 has also been proposed to specifically stabilize Golgi-associated microtubules

Paris-Sud XI, Université de

54

Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Incredible Journey -- Transporting a 50-ton An Incredible Journey -- Transporting a 50-ton Magnet Photo of the Week: An Incredible Journey -- Transporting a 50-ton Magnet July 11, 2013 - 4:38pm Addthis The Muon g-2 (pronounced gee minus two) is an experiment that will use the Fermilab accelerator complex to create an intense beam of muons -- a type of subatomic particle -- traveling at the speed of light. The experiment is picking up after a previous muon experiment at Brookhaven National Laboratory, which concluded in 2001. In this photo, the massive electromagnet is beginning its 3,200-mile journey from the woods of Long Island to the plains near Chicago, where scientists at Fermilab will refill its storage ring with muons created at Fermilab’s Antiproton Source. The 50-foot-diameter ring is made of steel, aluminum and superconducting wire. It will travel down the East Coast, around the tip of Florida, and up the Mississippi River to Fermilab in Illinois. Transporting the 50-ton device by truck requires meticulous precision -- just a tilt or a twist of a few degrees could leave the internal wiring irreparably damaged.

55

2 million tons per year: A performing biofuels supply chain for  

E-Print Network (OSTI)

1 2 million tons per year: A performing biofuels supply chain for EU aviation NOTE It is understood that in the context of this text the term "biofuel(s) use in aviation" categorically implies "sustainably produced biofuel(s)" according to the EU legislation. June 2011 #12;2 This technical paper was drafted

56

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

57

NETL: News Release - DOE-Sponsored Mississippi Project Hits 1-Million-Ton  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2 Project Helping Further CCS Technology and Meeting G-8 Goals for Deployment Washington, D.C. -A large-scale carbon dioxide (CO2) storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected. As a result, it is helping to both further carbon capture and storage (CCS) as a mitigation strategy for global climate change and move forward G-8 recommendations for launching 20 projects of this type internationally by 2010. MORE INFO Learn more about DOE's Regional Carbon Sequestration Partnership Program Link to SECARB web site The project, sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE), is located at the Cranfield site in Southwestern

58

U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments U.S. Manufacturers Save $1 Billion, 11 Million Tons of CO2 through Energy Efficiency Investments September 25, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's efforts to double energy productivity by 2030 and help businesses save money and energy, the Energy Department today recognized more than 120 manufacturers that are making smart investments to save on energy costs, cut greenhouse gas emissions and improve their bottom lines. Through the Department's Better Buildings, Better Plants Program (Better Plants), over 1,750 plants across the United States have saved about $1 billion in energy costs and

59

Great Plains Coal Gasification Project will make 17. 5 tons/day of methanol  

SciTech Connect

The Great Plains Coal Gasification Project will make 17.5 tons/day of methanol in addition to 125 million cu ft/day of pipeline-quality substitute natural gas (SNG), making the facility the first commercial producer of methanol-from-coal in the United States, according to the consortium building the $1.5 billion facility in Beulah, North Dakota. As originally conceived, the plant would have used 17 tons/day of purchased methanol to clean the raw-gas product stream of impurities, primarily sulfur. But based on the cost of transporting methanol to the plant site and storing it for use, the consortium decided it was more economical to produce its own methanol from lignite. The construction started in July 1980, and the facility is to come on stream in 1984.

Not Available

1980-11-17T23:59:59.000Z

60

The reduction of packaging waste  

Science Conference Proceedings (OSTI)

Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

62

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network (OSTI)

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

63

LANNDD -A line of liquid argon TPC detectors scalable in mass from 200 Tons to 100 KTons  

E-Print Network (OSTI)

and to its large liquid nitrogen consumption (~1 liquid m3/hour), the 300-ton geometry and construction required for a detector based on an ultra high purity (UHP) liquefied noble gas and for coping

McDonald, Kirk

64

Generating Steam by Waste Incineration  

E-Print Network (OSTI)

Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full production process steam requirements. The waste incineration system consists of a wood dunnage shredder, two Skid-Steer Loaders for incinerator charging, two incinerators, and a wet ash conveyor. The equipment is housed in a building with floor space to accommodate loads of combustible waste delivered for incineration. Incombustible material is segregated at the source. A review of operational experience and the results of a study on actual steam production costs will be presented with the intent that others will be able to use the information to advance the state of the art of high volume controlled air waste incineration.

Williams, D. R.; Darrow, L. A.

1981-01-01T23:59:59.000Z

65

NORDIC WASTE WATER TREATMENT SLUDGE TREATMENT  

E-Print Network (OSTI)

biogas, electricity and fertilizer from 30 000 tons of annually waste. The plant was opened in March 2008 together it an- nually produces 18,9 GWh biogas and around 10 GWh of elec- tricity. The Cambi THP ­process

66

Questions and Answers - How many atoms would it take to create a ton?  

NLE Websites -- All DOE Office Websites (Extended Search)

there in the world? there in the world? Previous Question (How many atoms are there in the world?) Questions and Answers Main Index Next Question (Could you please explain density?) Could you please explain density? How many atoms would it take to create a ton? There's a lot more to this question than first appears. There are many types of atoms and each of them has its own mass, so the answer varies depending on which atom you are talking about. Since even a tiny bit of matter has many atoms, it has become customary to use the unit "mole" to signify a standard number of atoms, namely, it is Avogadro's number which (almost) equals 6*1023, or 600,000 billion billon. If you look up the periodic table of elements, one of the numbers usually listed is the atomic mass which is the mass (in grams) of one mole of those atoms. Let's use

67

Dynamic performance testing of prototype 3 ton air-cooled carrier absorption chiller  

SciTech Connect

The performance of a prototype 3 ton cooling capacity air-cooled lithium bromide/water absorption chiller was tested using an absorption chiller test facility which was modified to expand its testing capabilities to include air-cooled chillers in addition to water-cooled chillers. Temperatures of the three externally supplied fluid loops: hot water, chilled water, and cooling air, were varied in order to determine the effects this would have on the two principal measures of chiller performance: cooling capacity and thermal coefficient of performance (COP). A number of interrelated factors were identified as contributing to less than expected performance. For comparison, experimental correlations of other investigators for this and other similar absorption chillers are presented. These have been plotted as both contour and three-dimensional performance maps in order to more clearly show the functional dependence of the chiller performance on the fluid loop temperatures.

Borst, R.R.; Wood, B.D.

1985-05-01T23:59:59.000Z

68

Background studies for a ton-scale argon dark matter detector (ArDM)  

E-Print Network (OSTI)

The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

L. Kaufmann; A. Rubbia

2006-12-05T23:59:59.000Z

69

EVALUATION OF ULTIMATE DISPOSAL METHOD FOR LIQUID AND SOLID RADIOACTIVE WASTES. PART I. INTERIM LIQUID STORAGE  

SciTech Connect

As the first part of a study to evaluate the economics of the various steps leading to and including the permanent disposal of high-activity liquid and solid radioactive waste, costs of interim liquid storage of acid and alkaline Purex and Thorex wastes were estimated for storage times of 0.5 to 30 years. A 6- ton/day plant was assumed, processing 1500 tons/year of uranium converter fuel at a burnup of 10,000 Mwd/ton and 270 tons/year of thorium converter fuel at a burnup of 20,000 Mwd/ton. Tanks of Savannah River design were assumed, with stainless steel construction for acid wastes and mild steel construction for neutralized wastes. The operating cycle of each tank was assumed to consist of equal filling and emptying periods plus a full (or dead) period. With interim storage time defined as filling time plus full time, tank costs were minimum when full time was 40 to 70% of the interim storage time, using present worth considerations. For waste storage times of 0.5 to 30 years, costs ranged from 2.2 x 10/sup -3/ to 9.5 x 10/sup -3/ mill/kwh/sub e/ for acid wastes and from 1.7 x 10/sup -3/ to 5.1 x 10/sup -3/ mill/kwh/sub e/ for neutralized wastes. (auth)

Bradshaw, R.L.; Perona, J.J.; Roberts, J.T.; Blomeke, J.O.

1961-08-22T23:59:59.000Z

70

Non-thermal radio emission from OB stars: an observer's view  

E-Print Network (OSTI)

Some early-type stars are detectable radio emitters; their spectra can present both thermal and non-thermal contributions. Here I review the public radio data on OB stars, focusing on the non-thermal sources. The analysis of the statistical results gives rise to many open questions that are expected to be addressed, at least in part, with the upgrades of current radio telescopes and the upcoming new generation instruments.

Benaglia, Paula

2009-01-01T23:59:59.000Z

71

The Sun's displacement from the galactic plane from spectroscopic parallaxes of 2400 OB stars  

E-Print Network (OSTI)

The Sun's vertical displacement from the galactic plane is determined model-independently from 3457 spectroscopic-parallax distance estimates for 2397 OB stars within 1200 pc of the Sun. The result, 19.5 +/- 2.2 pc, agrees well with other recent determinations. The distribution of stellar z-values with galactic longitude shows a slight sinusoidal dependence with an amplitude of about 26 pc.

B. Cameron Reed

2005-07-28T23:59:59.000Z

72

CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela-Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: A{sub V} = 1-1.5 mag produced by foreground dust with a ratio of total-to-selective absorption R{sub V} = 3.1 plus a contribution from local dust with R{sub V} > 4.0 in the Carina molecular clouds that increases as A{sub V} increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with L{sub bol} {approx}> 10{sup 4} L{sub sun} by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by {approx}50%. Correcting for incompleteness due to OB stars falling below the L{sub bol} cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.

Povich, Matthew S.; Townsley, Leisa K.; Broos, Patrick S.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gagne, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Babler, Brian L.; Meade, Marilyn R.; Townsend, Richard H. D. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Indebetouw, Remy; Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Robitaille, Thomas P., E-mail: povich@astro.psu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-05-01T23:59:59.000Z

73

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011  

SciTech Connect

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

NSTec Environmental Restoration

2012-02-16T23:59:59.000Z

74

RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada  

SciTech Connect

This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

,

2013-02-21T23:59:59.000Z

75

A generalized multistage optimization modeling framework for life cycle assessment-based integrated solid waste management  

Science Conference Proceedings (OSTI)

Solid waste management (SWM) is an integral component of civil infrastructure and the global economy, and is a growing concern due to increases in population, urbanization, and economic development. In 2011, 1.3 billion metric tons of municipal solid ... Keywords: Decision support, Life cycle assessment, Multi-stage, Optimization, Solid waste

James W. Levis, Morton A. Barlaz, Joseph F. Decarolis, S. Ranji Ranjithan

2013-12-01T23:59:59.000Z

76

OPTICAL PHOTOMETRIC GTC/OSIRIS OBSERVATIONS OF THE YOUNG MASSIVE ASSOCIATION CYGNUS OB2  

Science Conference Proceedings (OSTI)

In order to fully understand the gravitational collapse of molecular clouds, the star formation process, and the evolution of circumstellar disks, these phenomena must be studied in different Galactic environments with a range of stellar contents and positions in the Galaxy. The young massive association Cygnus OB2, in the Cygnus-X region, is a unique target to study how star formation and the evolution of circumstellar disks proceed in the presence of a large number of massive stars. We present a catalog obtained with recent optical observations in the r, i, z filters with OSIRIS, mounted on the 10.4 m Gran Telescopio CANARIAS telescope, which is the deepest optical catalog of Cyg OB2 to date. The catalog consists of 64,157 sources down to M = 0.15 M{sub Sun} at the adopted distance and age of Cyg OB2. A total of 38,300 sources have good photometry in all three bands. We combined the optical catalog with existing X-ray data of this region, in order to define the cluster locus in the optical diagrams. The cluster locus in the r - i versus i - z diagram is compatible with an extinction of the optically selected cluster members in the 2.64{sup m} < A{sub V} < 5.57{sup m} range. We derive an extinction map of the region, finding a median value of A{sub V} = 4.33{sup m} in the center of the association, decreasing toward the northwest. In the color-magnitude diagrams, the shape of the distribution of main-sequence stars is compatible with the presence of an obscuring cloud in the foreground {approx}850 {+-} 25 pc from the Sun.

Guarcello, M. G.; Wright, N. J.; Drake, J. J.; Aldcroft, T.; Kashyap, V. L. [Smithsonian Astrophysical Observatory, MS-67, 60 Garden Street, Cambridge, MA 02138 (United States); Garcia-Alvarez, D. [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); Drew, J. E. [CAR/STRI, University of Hertfordshire, College Lane, Hatfield, AL10 9AB (United Kingdom)

2012-10-15T23:59:59.000Z

77

Methodology for Estimating ton-Miles of Goods Movements for U.S. Freight Mulitimodal Network System  

SciTech Connect

Ton-miles is a commonly used measure of freight transportation output. Estimation of ton-miles in the U.S. transportation system requires freight flow data at disaggregated level (either by link flow, path flows or origin-destination flows between small geographic areas). However, the sheer magnitude of the freight data system as well as industrial confidentiality concerns in Census survey, limit the freight data which is made available to the public. Through the years, the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) has been working in the development of comprehensive national and regional freight databases and network flow models. One of the main products of this effort is the Freight Analysis Framework (FAF), a public database released by the ORNL. FAF provides to the general public a multidimensional matrix of freight flows (weight and dollar value) on the U.S. transportation system between states, major metropolitan areas, and remainder of states. Recently, the CTA research team has developed a methodology to estimate ton-miles by mode of transportation between the 2007 FAF regions. This paper describes the data disaggregation methodology. The method relies on the estimation of disaggregation factors that are related to measures of production, attractiveness and average shipments distances by mode service. Production and attractiveness of counties are captured by the total employment payroll. Likely mileages for shipments between counties are calculated by using a geographic database, i.e. the CTA multimodal network system. Results of validation experiments demonstrate the validity of the method. Moreover, 2007 FAF ton-miles estimates are consistent with the major freight data programs for rail and water movements.

Oliveira Neto, Francisco Moraes [ORNL; Chin, Shih-Miao [ORNL; Hwang, Ho-Ling [ORNL

2013-01-01T23:59:59.000Z

78

European waste-to-energy systems: case study of Geneva-Cheneviers (Switzerland)  

DOE Green Energy (OSTI)

The City of Geneva, population 159,000 is the administrative center of the Canton of Geneva, population 340,000. The Canton owns a number of facilities for the treatment of waste. Geneva's chief waste treatment facility is the Cheneviers Incinerator. Two Von Roll integrated boiler incinerator furnaces have a rated capacity of 200 metric tons (220 short tons) per day each. Superheated steam at 360/sup 0/C and 32.4 bars (32 atm) powers a 6200 kW turbo-generator unit. The electricity is sold to the cantonal grid. Total incinerable waste in the Canton of Geneva has varied from 120,000 to 130,000 metric tons (132,000 to 144,000 short tons) annually during the last five years. For the last two years, total per capita tonnage have been declining. Per capita incinerable waste was 363 kilograms (800 lbs) in the year 1975, of which 257 kilograms (606 lbs) were household waste. Eighty-seven thousand, five hundred metric tons (96,386 short tons) of this waste was burned in the Cheneviers Incinerator in 1975. The remainder was landfilled, due to the lack of capacity at the incinerators. The system which began operating in 1966, cost approximately 40 million Swiss Francs ($9.3 million; 1965 or $23 million; 1976). Three-quarters of this sum was for land, buildings, construction, and equipment. A large station and dock for the transfer of waste accounted for the remainder. The Von Roll design ofthis plant is now out of date. Extensive modifications were made to correct corrosion problems in the furnace.

None

1977-05-01T23:59:59.000Z

79

Municipal solid waste management in Beijing City  

Science Conference Proceedings (OSTI)

This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

Li Zhenshan [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5, Yi Heyuan Road, Haidian District, Beijing 100871 (China); Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China)], E-mail: lizhenshan@pku.edu.cn; Yang Lei [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5, Yi Heyuan Road, Haidian District, Beijing 100871 (China); Qu XiaoYan [Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Sui Yumei [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5, Yi Heyuan Road, Haidian District, Beijing 100871 (China)

2009-09-15T23:59:59.000Z

80

Crystal Structures of RMI1 and RMI2, Two OB-Fold Regulatory Subunits of the BLM Complex  

Science Conference Proceedings (OSTI)

Mutations in BLM, a RecQ-like helicase, are linked to the autosomal recessive cancer-prone disorder Bloom's syndrome. BLM associates with topoisomerase (Topo) III{alpha}, RMI1, and RMI2 to form the BLM complex that is essential for genome stability. The RMI1-RMI2 heterodimer stimulates the dissolution of double Holliday junction into non-crossover recombinants mediated by BLM-Topo III{alpha} and is essential for stabilizing the BLM complex. However, the molecular basis of these functions of RMI1 and RMI2 remains unclear. Here we report the crystal structures of multiple domains of RMI1-RMI2, providing direct confirmation of the existence of three oligonucleotide/oligosaccharide binding (OB)-folds in RMI1-RMI2. Our structural and biochemical analyses revealed an unexpected insertion motif in RMI1N-OB, which is important for stimulating the dHJ dissolution. We also revealed the structural basis of the interaction between RMI1C-OB and RMI2-OB and demonstrated the functional importance of the RMI1-RMI2 interaction in genome stability maintenance.

Wang, Feng; Yang, Yuting; Singh, Thiyam Ramsing; Busygina, Valeria; Guo, Rong; Wan, Ke; Wang, Weidong; Sung, Patrick; Meetei, Amom Ruhikanta; Lei, Ming (Yale-MED); (NIH); (Michigan-Med); (UCIN-MED)

2010-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives November 14, 2013 - 12:00pm Addthis Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. The crushed salt is used as a supplement in cattle feed. Since the salt from WIPP has been mined from the middle of a large salt formation, its quality is high, according to Magnum Minerals.

82

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives November 14, 2013 - 12:00pm Addthis Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Approximately 1.8 million tons of salt have been mined out of the underground at WIPP. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. Proceeds from the WIPP salt allowed hundreds of southeast New Mexico students to learn about resource conservation. The crushed salt is used as a supplement in cattle feed. Since the salt from WIPP has been mined from the middle of a large salt formation, its quality is high, according to Magnum Minerals.

83

Annual report of waste generation and pollution prevention progress 1998  

SciTech Connect

This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

NONE

1999-09-01T23:59:59.000Z

84

ZERO WASTE.  

E-Print Network (OSTI)

??The aim of the thesis was to develop a clear vision on better waste management system. The thesis introduced the sustainable waste management along with… (more)

Upadhyaya, Luv

2013-01-01T23:59:59.000Z

85

Remote handling equipment at the hanford waste treatment plant  

Science Conference Proceedings (OSTI)

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on this slewer is mounted 180 degrees opposite each other. Another system utilizes a single one-ton slewing jib hoist that can extend and retract as well as rotate 270 degrees around the mast. Yet, another system utilizes an under-hung monorail trolley with one-ton hoist capacity mounted to the bottom of the bridge girder. The main, slewer and monorail hoists each have power-rotating hooks for installing and removing equipment in the hot cell. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN, (United States); Roach, J.D. [Bechtel National, Inc., Richland, WA (United States)

2007-07-01T23:59:59.000Z

86

Waste Heat Recovery in Cement Plants By Fluidized Beds  

E-Print Network (OSTI)

Not too many years ago energy costs and efficiencies were virtually ignored by corporate decision makers. The prevailing attitude was 'my business is manufacturing and my capital is best spent improving and expanding my manufacturing capacity.' With energy now contributing a significant fraction of the overall product cost in many industries, there is general recognition that control of fuel and electric costs is just as important to remaining competitive as is improving manufacturing methods. This is particularly true in the cement industry. Cement manufacture consists of mining and grinding rocks, melting them to form clinkers, then grinding those clinkers to a powder. Through recovery of waste heat and inclusion of technology such as flash calciners, the industry has reduced the fuel requirement per ton of cement from about 7 million Btu per ton in old plants to less than 3 million Btu per ton in the most modern plants.

Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

1984-01-01T23:59:59.000Z

87

Environmental Restoration and Waste Management: Strategic plan  

Science Conference Proceedings (OSTI)

The Brookhaven National Laboratory (BNL) site is currently divided into five major areas, Operable Units (OUs), and several Areas of Concern (AOCs), which are the focus of investigation and clean-up. The primary environmental concern is groundwater contamination and a major emphasis of the restoration activities is focused on this medium. Each year, BNL generates 60 tons of hazardous waste and 7,000 to 8,000 cubic feet of radioactive waste that result from research activities. These wastes are collected at a central location, packaged and shipped off site for disposal. The operations for Hazardous and Radioactive Waste Management are conducted in compliance with EPA and DOE regulations. BNL has continued to actively pursue means by which these wastes may be minimized. Activities in both the remediation and waste management arenas are intimately connected with the future vision of BNL. The long-range goal for remediation in conjunction with vigorous monitoring of BNL`s activities is to restore the site and maintain strong environmental controls. The goals of the waste minimization program include activities to find environmentally safe alternatives to materials currently in use. By careful planning, BNL will minimize the amount of all waste, including sanitary, that is generated on site.

Not Available

1994-09-01T23:59:59.000Z

88

Estimating Waste Inventory and Waste Tank Characterization |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

89

Methods and results for stress analyses on 14-ton, thin-wall depleted UF{sub 6} cylinders  

Science Conference Proceedings (OSTI)

Uranium enrichment operations at the three US gaseous diffusion plants produce depleted uranium hexafluoride (DUF{sub 6}) as a residential product. At the present time, the inventory of DUF{sub 6} in this country is more than half a million tons. The inventory of DUF{sub 6} is contained in metal storage cylinders, most of which are located at the gaseous diffusion plants. The principal objective of the project is to ensure the integrity of the cylinders to prevent causing an environmental hazard by releasing the contents of the cylinders into the atmosphere. Another objective is to maintain the cylinders in such a manner that the DUF{sub 6} may eventually be converted to a less hazardous material for final disposition. An important task in the DUF{sub 6} cylinders management project is determining how much corrosion of the walls can be tolerated before the cylinders are in danger of being damaged during routine handling and shipping operations. Another task is determining how to handle cylinders that have already been damaged in a manner that will minimize the chance that a breach will occur or that the size of an existing breach will be significantly increased. A number of finite element stress analysis (FESA) calculations have been done to analyze the stresses for three conditions: (1) while the cylinder is being lifted, (2) when a cylinder is resting on two cylinders under it in the customary two-tier stacking array, and (3) when a cylinder is resting on tis chocks on the ground. Various documents describe some of the results and discuss some of the methods whereby they have been obtained. The objective of the present report is to document as many of the FESA cases done at Oak Ridge for 14-ton thin-wall cylinders as possible, giving results and a description of the calculations in some detail.

Kirkpatrick, J.R.; Chung, C.K.; Frazier, J.L.; Kelley, D.K.

1996-10-01T23:59:59.000Z

90

Boehmite Actual Waste Dissolutions Studies  

SciTech Connect

The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

2008-07-15T23:59:59.000Z

91

The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium  

E-Print Network (OSTI)

This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

Kenna, Timothy C

2002-01-01T23:59:59.000Z

92

Encapsulation of hazardous wastes into agglomerates  

SciTech Connect

The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

Guloy, A.

1992-01-28T23:59:59.000Z

93

Idaho Workers Complete Last of Transuranic Waste Transfers Funded by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Last of Transuranic Waste Transfers Funded Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from the Recovery Act, the final shipment of the containers from the Materials and Fuels Complex recently arrived at the Idaho Nuclear Technology and Engineering Center (INTEC). Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act More Documents & Publications EIS-0203-SA-03: Supplement Analysis

94

Hazardous waste research and development in the Pacific Basin  

SciTech Connect

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

95

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM  

E-Print Network (OSTI)

Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

Belogay, Eugene A.

96

Hazardous Waste  

Science Conference Proceedings (OSTI)

Table 6   General refractory disposal options...D landfill (b) Characterized hazardous waste by TCLP

97

Comments of the Integrated Waste Services Association Florida PSC Renewable Portfolio Standard Workshop  

E-Print Network (OSTI)

The following comments are submitted by the Integrated Waste Services Association (IWSA). IWSA is the national trade association representing the nation’s waste-to-energy industry and municipalities. Waste-to-energy facilities produce clean, renewable energy through the combustion of municipal solid waste in specially designed power plants equipped with the most modern pollution control equipment to clean emissions. Trash volume is reduced by 90 % and the remaining residue is safely reused or disposed in landfills. There are 87 waste-to-energy plants operating in 25 states managing about 13 percent of America’s trash, or about 95,000 tons each day. Waste-toenergy generates about 2,700 megawatts of electricity to meet the power needs of nearly 2.3 million homes while serving the trash disposal needs of more than 36 million people. In Florida, 11 WTE plants process over 18,000 tons per day of municipal solid waste, and 514 megawatts of electricity. Waste to Energy benefits in relation to Greenhouse Gases: In response to recent discussions regarding greenhouse gases at the workshop, IWSA would like to point out that a number of studies have shown that waste-to-energy is better than “carbon neutral.” Use of waste-to-energy avoids emissions from fossil fuel-fired electric generation, fugitive methane emissions from decomposing trash in landfills and avoidance of emissions from production of new

unknown authors

2007-01-01T23:59:59.000Z

98

Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units  

SciTech Connect

This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

None

1994-05-01T23:59:59.000Z

99

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

Russell, Lynn

100

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

Firtel, Richard A.

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?  

SciTech Connect

China's 11th Five-Year Plan (FYP) sets an ambitious target for energy-efficiency improvement: energy intensity of the country's gross domestic product (GDP) should be reduced by 20% from 2005 to 2010 (NDRC, 2006). This is the first time that a quantitative and binding target has been set for energy efficiency, and signals a major shift in China's strategic thinking about its long-term economic and energy development. The 20% energy intensity target also translates into an annual reduction of over 1.5 billion tons of CO2 by 2010, making the Chinese effort one of most significant carbon mitigation effort in the world today. While it is still too early to tell whether China will achieve this target, this paper attempts to understand the trend in energy intensity in China and to explore a variety of options toward meeting the 20% target using a detailed end-use energy model.

Zhou, Nan; Lin, Jiang; Zhou, Nan; Levine, Mark; Fridley, David

2007-07-01T23:59:59.000Z

102

Chemical reactions of UF{sub 6} with water on ingress to damaged model 48X 10 ton cylinder  

Science Conference Proceedings (OSTI)

Chemistry studies of the effects of water flooding in Model 48X 10-ton UF{sub 6} storage cylinders, as a result of impact fractures, were conducted to support the Safety Analysis Report for Packaging (SARP) review of the Paducah Tiger Overpack for transportation of those cylinders. The objectives of the study were to determine the maximum amount of water that could be admitted to the interior of such a damaged cylinder, the resulting geometries and chemical compositions from reactions of water with the UF{sub 6} contents of the cylinder, and the end-state water moderated and reflected configurations for input to nuclear criticality safety analyses. The case identified for analysis was the flooding of the inside of a cylinder, submerged horizontally in 3 ft of water. The flooding was driven by an initial pressure drop of 13 psig, through an assumed fracture (1/32 in. wide {times} 1/2 in. deep {times} 18 in. long) in the barrel of the cylinder. During the initial addition of water, transient back pressures occur from the effects of the heats of reaction and solution at the water/UF{sub 6} interface, with some chugging as more water is added to alternately coot the reaction surface and then heat it again as the added water reacts with more UF{sub 6}.

Rothman, A.B.

1996-02-01T23:59:59.000Z

103

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

104

UMC Construction Waste (4493)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

pad. Examples of material are as follows: wrenches, other hand tools, file cabinets, electric motors, batteries, pipe benders, jacks, saws, generators, one 18 ton crane. UMC...

105

By Thomas S. Jones Manganese (Mn) is essential to iron and silicomanganese increased about 7%. consisted of, in tons, natural battery-grade ore,  

E-Print Network (OSTI)

about 7%. consisted of, in tons, natural battery-grade ore, steel production by virtue of its sulfur aluminum alloys and is used in oxide form in dry cell batteries. The overall level and nature of manganese consumption in batteries was denoted by the expansion on schedule of domestic capacity for production

Torgersen, Christian

106

Review of corrosion in 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders  

Science Conference Proceedings (OSTI)

A literature review was conducted to determine the type, extent and severity of corrosion found in the 10- and 14-ton mild steel depleted UF{sub 6} storage cylinders. Also discussed in this review is corrosion found in the valves and plugs used in the cylinders. Corrosion of the cylinders is a gradual process which occurs slowly over time. Understanding corrosion of the cylinders is an important concern for long term storage of the UF{sub 6} in the cylinder yards, as well as the final disposition of the depleted UF{sub 6} tails inventory in the future. The following conclusions are made from the literature review: (1) The general external corrosion rate of the cylinders is about 1 to 2 mils per year (1 mil = 0.001{double_prime}). The highest general external corrosion rate was over 5 mpy on the 48G type cylinders. (2) General internal corrosion from the depleted UF{sub 6} is negligible under normal storage conditions. Crevice corrosion can occur at the cylinder/saddle interface from the retention of water in this area. Crevice corrosion can occur at the cylinder/skirt interface on the older skirted cylinders due to the lack of water drainage in this area. Crevice corrosion can occur on cylinders that have been in ground contact. Crevice corrosion and galvanic corrosion can occur where the stainless steel I.D. nameplates are attached to the cylinder. The packing nuts on the bronze one-inch valves used in the cylinders are susceptible to stress corrosion cracking (SCC). Mechanical damage from routine handling can lead to a breach in a cylinder with subsequent accelerated corrosion of the mild steel due to attack from HF and other UF{sub 6} hydrolysis by-products.

Lykins, M.L.

1995-08-01T23:59:59.000Z

107

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM SSAB Chairs Meeting Christine M. Gelles Deputy Assistant Secretary for Waste Management Office of Environmental Management 5 November 2013 Educational Session #1 - Discussion on DOE's National Recycling Policy www.energy.gov/EM 2 * Nickel Background/Status/Path Forward SSAB Discussion Outline www.energy.gov/EM 3 Background: Volumetrically Contaminated Nickel Recycling * The Secretarial policy restrictions are in place: - January 12, 2000, Moratorium prohibits unrestricted release of volumetrically-contaminated metal into commerce - July 13, 2000, Suspension prohibits unrestricted release of all scrap metals from DOE radiological areas into commerce * Total Estimated Contaminated Nickel Inventory = 30,300 tons - Oak Ridge (ETTP) stored barrier shreds 5,600 tons

108

Waste= Capital.  

E-Print Network (OSTI)

??The evolution of manufacturing practices over the last century has led to the creation of excess waste during the production process, depleting resources and overwhelming… (more)

Stidham, Steve P.

2011-01-01T23:59:59.000Z

109

Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994  

Science Conference Proceedings (OSTI)

U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

NONE

1995-09-01T23:59:59.000Z

110

Municipal solid waste management in Lahore City District, Pakistan  

SciTech Connect

This study deals with generation, composition, collection, transportation, and disposal, as well as the present cost of the waste management on the basis of 60% collection of the total waste and the cost of proposed improved system of management on the basis of 100% waste collection using the IWM-2 LCI model. A GIS map of Data Ganj Bakhsh Town (DGBT) of Lahore City District showing communal storage facilities is also provided. DGBT has a population of 1,624,169 living in 232,024 dwellings. The total waste generated per year is 500,000 tons, or 0.84/kg/cap/day. Presently 60% of the MSW is collected and disposed in open dumps, while 40% is not collected and lies along roadsides, streets railway lines, depressions, vacant plots, drains, storm drains and open sewers. In DGBT, 129 containers of 5-m{sup 3} capacity, 120 containers of 10-m{sup 3} capacity and 380 skips of 2.5-m{sup 3} capacity are placed for waste collection. The overall collection and disposal cost of the MSW of DGBT is $3,177,900/yr, which is $10.29/ton. Modeling was conducted using the IWM-2 model for improved collection and disposal on the basis of 100% service, compared to the current 60% service. The modelled cost is $8.3/per ton, which is 20% less than the present cost, but the overall cost of 100% collection and disposal increases to $4,155,737/yr.

Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore (Pakistan)], E-mail: aadila_batool@yahoo.com; Muhammad Nawaz Ch [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

2009-06-15T23:59:59.000Z

111

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

SciTech Connect

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

112

Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasability of a Billion-Ton Annual Supply  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA) are both strongly committed to expanding the role of biomass as an energy source. In particular, they support biomass fuels and products as a way to reduce the need for oil and gas imports; to support the growth of agriculture, forestry, and rural economies; and to foster major new domestic industries--biorefineries--making a variety of fuels, chemicals, and other products. As part of this effort, the Biomass R&D Technical Advisory Committee, a panel established by the Congress to guide the future direction of federally funded biomass R&D, envisioned a 30 percent replacement of the current U.S. petroleum consumption with biofuels by 2030. Biomass--all plant and plant-derived materials including animal manure, not just starch, sugar, oil crops already used for food and energy--has great potential to provide renewable energy for America's future. Biomass recently surpassed hydropower as the largest domestic source of renewable energy and currently provides over 3 percent of the total energy consumption in the United States. In addition to the many benefits common to renewable energy, biomass is particularly attractive because it is the only current renewable source of liquid transportation fuel. This, of course, makes it invaluable in reducing oil imports--one of our most pressing energy needs. A key question, however, is how large a role could biomass play in responding to the nation's energy demands. Assuming that economic and financial policies and advances in conversion technologies make biomass fuels and products more economically viable, could the biorefinery industry be large enough to have a significant impact on energy supply and oil imports? Any and all contributions are certainly needed, but would the biomass potential be sufficiently large to justify the necessary capital replacements in the fuels and automobile sectors? The purpose of this report is to determine whether the land resources of the United States are capable of producing a sustainable supply of biomass sufficient to displace 30 percent or more of the country's present petroleum consumption--the goal set by the Advisory Committee in their vision for biomass technologies. Accomplishing this goal would require approximately 1 billion dry tons of biomass feedstock per year.

Perlack, R.D.

2005-12-15T23:59:59.000Z

113

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

114

Municipal solid-waste management in Istanbul  

SciTech Connect

Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

Kanat, Gurdal, E-mail: gkanat@gmail.co [Yildiz Teknik Universitesi Cevre Muh Bolumu, 34220 Davutpasa-Esenler, Istanbul (Turkey)

2010-08-15T23:59:59.000Z

115

Hydrogen production from municipal solid waste  

DOE Green Energy (OSTI)

We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

Wallman, P.H.; Richardson, J.H.; Thorsness, C.B. [and others

1996-06-28T23:59:59.000Z

116

EVALUATION OF ULTIMATE DISPOSAL METHODS FOR LIQUID AND SOLID RADIOACTIVE WASTES. PART II. CONVERSION TO SOLID BY POT CALCINATION  

SciTech Connect

The costs of pot calcination of Purex and Thorex wastes were calculated. The wastes were assumed produced by a plant processing 1500 ton/year of U converter fuel at a burnup of 10,000 Mwd/ton and 270 ton/year of Th converter fuel at 20,000 Mwd/ton. Costs were calculated for processing Purex waste in acidic and reacidified forms and for processing Thorex wastes in acidic and reacidified forms and with constituents added for producing an acidic Thorex glass. Calcination vessel designs were right circular cylinders similar to those used in engineering development studies. Costs were calculated for processing in 6-, 12-, and 24-in.-dia vessels with a fixed length of 10 ft. Vessel costs used, based on estimates from private industry, were calculated for wastes decayed 120 days and 1, 3, 10, and 30 years after reactor discharge prior to calcination. Aging had negligible effect on costs, except as it permitted larger diameter vessels to be used, because vessel and operating costs were much larger than capital costs in all cases. The lowest cost was 0.87 x 10/sup -2/ mill/kwh/sub e/ for processing acidic Purex and Thorex wastes in 24-in.-dia vessels, and the highest was 5.0 x 10/sup -2/ mill/kwh/sub e/ for processing reacidified Purex and Thorex wastes in 6-in.-dia vessels. About 7 years of interim liquid storage would be required before acidic Purex wastes could be processed in 24-in.-dia vessels. (auth)

Perona, J.J.; Bradshaw, R.L.; Roberts, J.T.; Blomeke, J.O.

1961-10-16T23:59:59.000Z

117

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network (OSTI)

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL #12;#12;PNNL-SA-69994 Waste Disposal Workshops: Anthrax- Contaminated Waste AM Lesperance JF Upton SL

118

DOE Hydrogen and Fuel Cells Program Record 11002: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: January 5, 2011 02 Date: January 5, 2011 Title: Number of Cars Equivalent to 100 Metric Tons of Avoided Greenhouse Gases per Year Originator: Andrea Chew & Tien Nguyen Approved by: Sunita Satyapal Date: January 25, 2011 A conventional mid-size gasoline car emits 0.45 kg of greenhouse gases (GHG) per mile. 1 One hundred (100) metric tons (t) of GHG per year are equivalent to emissions from 17 conventional gasoline cars. Item: The GHG emissions cited above are from an analysis record prepared by the Department of Energy's Fuel Cell Technologies and Vehicle Technologies Programs on life-cycle emissions of greenhouse gases and petroleum use for several light-duty vehicles. 1 For cars that are between 1 and 5 years old, the average mileage is approximately 13,000,

119

Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology  

Science Conference Proceedings (OSTI)

In this study on the basis of lab data and available resources in Bangladesh, feasibility study has been carried out for pyrolysis process converting solid tire wastes into pyrolysis oils, solid char and gases. The process considered for detailed analysis was fixed-bed fire-tube heating pyrolysis reactor system. The comparative techno-economic assessment was carried out in US$ for three different sizes plants: medium commercial scale (144 tons/day), small commercial scale (36 tons/day), pilot scale (3.6 tons/day). The assessment showed that medium commercial scale plant was economically feasible, with the lowest unit production cost than small commercial and pilot scale plants for the production of crude pyrolysis oil that could be used as boiler fuel oil and for the production of upgraded liquid-products.

Islam, M.R., E-mail: mrislam1985@yahoo.com [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Joardder, M.U.H.; Hasan, S.M. [Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Takai, K.; Haniu, H. [Department of Mechanical Engineering, National University Corporation Kitami Institute of Technology, 165 Koen-cho, Kitami City, Hokkaido 090-8507 (Japan)

2011-09-15T23:59:59.000Z

120

Investigations on catalyzed steam gasification of biomass: feasibility study of methanol production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory (PNL). The goal of this additional work was to determine the feasibility of a smaller scale plant one tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 100 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $34,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are, respectively, $1.20, $1.23, $1.30, and $1.44 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $1.60, $1.63, $1.70, and $1.84 per gallon for the corresponding wood costs. The costs calculated by the utility financing method include a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency of the plant is 52.0%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

122

Investigations on catalyzed steam gasification of biomass. Appendix B: feasibility study of methanol production via catalytic gasification of 2000 tons of wood per day  

SciTech Connect

A study has been made of the economic feasibility of producing fuel grade methanol from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL), operated by Battelle. PNL obtained this information from laboratory and process development unit testing. The plant is designed to process 2000 tons per day of dry wood to methanol. Plant production is 997 tons per day of methanol with a HHV of 9784 Btu per pound. All process and support facilities necessary to convert wood to methanol are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $120,830,000 - September 1980 basis. Methanol production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood costs include delivery to the plant. For utility financing, the methanol production costs are respectively $.45, $.48, $.55, and $.69 per gallon for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $.59, $.62, $.69, and $.83 per gallon for the corresponding wood costs. Both calculation methods include a return on equity capital in the costs. The thermal efficiency of the plant is 52.9%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

123

Scenario of solid waste reuse in Khulna city of Bangladesh  

SciTech Connect

The reuse and recycling of waste materials are now sincerely considered to be an integral part of solid waste management in many parts of the world. In this context, a vast number of options ranging from small scale decentralized to larger scale centralized plants have been adopted. This study aimed at investigating the waste reuse schemes in Khulna city located in the southern part of Bangladesh and ranked third largest city in the country. The shops for reusable material (SRM) were mostly situated around railway, waterway, and truck station markets which provided easy transportation to further locations. For the reuses of waste materials and products, a chain system was found to collect reusable wastes under a total number of 310 identified SRM with 859 persons directly or indirectly involved in the scheme. This was a decentralized waste management system with self sufficient (autonomous) management. According to mass balance, about 38.52 tons d{sup -1} solid wastes were reused in Khulna city area, accounting for 7.65% of the total generated wastes. This study revealed that apparently a silent, systematic, smooth, and clean reuse chain has been established in Khulna city area under private initiatives, whose sustainability was confirmed over the years in the country without any official or formal funds. However, proper adjustment between the higher and lower chain in the materials flow path, as well as personal hygiene training for the workers, would further improve the achievements of the established reuse scheme.

Bari, Quazi H., E-mail: qhbari@yahoo.com [Department of Civil Engineering, Khulna University of Engineering and Technology, Khulna 9203 (Bangladesh); Mahbub Hassan, K. [Department of Civil Engineering, Khulna University of Engineering and Technology, Khulna 9203 (Bangladesh); Haque, R. [Project Builders Ltd., Dhaka 1000 (Bangladesh)

2012-12-15T23:59:59.000Z

124

Potential dispositioning flowsheets for ICPP SNF and wastes  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

Olson, A.L. [ed.; Anderson, P.A.; Bendixsen, C.L. [and others

1995-11-01T23:59:59.000Z

125

Life cycle assessment of solid waste management options for Eskisehir, Turkey  

SciTech Connect

Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.

Banar, Mufide [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)], E-mail: mbanar@anadolu.edu.tr; Cokaygil, Zerrin; Ozkan, Aysun [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)

2009-01-15T23:59:59.000Z

126

Consumption patterns and household hazardous solid waste generation in an urban settlement in Mexico  

SciTech Connect

Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442 ton/day of domestic waste are produced, including 7.1 ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

Delgado Otoniel, Buenrostro [Instituto De Investigaciones Agricolas y Forestales, Universidad Michoacana De San Nicolas De Hidalgo, Av. San Juanito Itzicuaro S/N, Col. San Juanito Itzicuaro, C.P. 58330, Morelia-Aeropuerto, Michoacan (Mexico)], E-mail: otonielb@zeus.umich.mx; Liliana, Marquez-Benavides; Gaona Francelia, Pinette [Instituto De Investigaciones Agricolas y Forestales, Universidad Michoacana De San Nicolas De Hidalgo, Av. San Juanito Itzicuaro S/N, Col. San Juanito Itzicuaro, C.P. 58330, Morelia-Aeropuerto, Michoacan (Mexico)

2008-07-01T23:59:59.000Z

127

AN INNOVATIVE INTEGRATED APPROACH TO MINIMIZING GYPSUM AND PYRITE WASTES BY CONVERSION TO MARKETABLE PRODUCTS  

Science Conference Proceedings (OSTI)

The objective of this research program is to develop a novel integrated process to eliminate millions of tons of gypsum and pyrite wastes generated annually by the U.S. energy industries and reduce the emission of millions of tons of greenhouse gas carbon dioxide. This was accomplished by converting gypsum and pyrite wastes to marketable products such as lime, direct reduced iron (DRI), and sulfur products and obviating the need to calcine millions of tons of limestone for use in utility scrubbers. Specific objectives included: (1) Develop a novel, integrated process for utilizing two major wastes generated by mining and energy industries to produce lime for recycling and other marketable products. (2) Study individual chemical reactions involved in pyrite decomposition, DRI production, and Muller-Kuhne process for lime regeneration to determine optimum process variables such as temperature, time, and reactant composition. (3) Investigate techniques for effective concentration of pyrite from tailing waste and methods for effective separation of DRI from calcium sulfide.

Daniel Tao

2000-06-27T23:59:59.000Z

128

The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan  

Science Conference Proceedings (OSTI)

The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

2009-01-15T23:59:59.000Z

129

Advanced Electrochemical Waste Forms  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

130

A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF sub 6  

Science Conference Proceedings (OSTI)

Moderation control for maintaining nuclear criticality safety in 2-1/2-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a safetime,'' for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations. 2 refs., 5 figs., 1 tab.

Newvahner, R.L. (Portsmouth Gaseous Diffusion Plant, OH (United States)); Pryor, W.A. (PAI Corp., Oak Ridge, TN (United States))

1991-08-16T23:59:59.000Z

131

Investigations on catalyzed steam gasification of biomass: feasibility study of methane production via catalytic gasification of 200 tons of wood per day  

DOE Green Energy (OSTI)

This report is a result of an additional study made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The report has as its basis the original 2000 tons of wood per day study generated from process development unit testing performed by the Pacific Northwest Laboratory. The goal of this additional work was to determine the feasibility of a smaller scale plant one-tenth the size of the original or 200 tons of dry wood feed per day. Plant production based on this wood feed is 2.16 MM Scfd of SNG with a HHV of 956 Btu per Scf. All process and support facilities necessary to convert wood to SNG are included in this study. The plant location is Newport, Oregon. The capital cost for the plant is $26,680,000 - September 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. These wood prices represent the cost of unchipped wood delivered to the plant site. For utility financing, the gas production costs are, respectively, $14.34, $14.83, $15.86, and $17.84 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton. For private investor financing, the corresponding product costs are $18.76, $19.26, $20.28, and $22.31 per MM Btu for the corresponding wood costs. The costs calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for char is 57.4%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

132

Authorized Limits for the Release of a 25 Ton Locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly Facility, Nevada Test Site, Nevada  

SciTech Connect

This document contains process knowledge and radiological data and analysis to support approval for release of the 25-ton locomotive, Serial Number 21547, at the Area 25 Engine Maintenance, Assembly, and Disassembly (EMAD) Facility, located on the Nevada Test Site (NTS). The 25-ton locomotive is a small, one-of-a-kind locomotive used to move railcars in support of the Nuclear Engine for Rocket Vehicle Application project. This locomotive was identified as having significant historical value by the Nevada State Railroad Museum in Boulder City, Nevada, where it will be used as a display piece. A substantial effort to characterize the radiological conditions of the locomotive was undertaken by the NTS Management and Operations Contractor, National Security Technologies, LLC (NSTec). During this characterization process, seven small areas on the locomotive had contamination levels that exceeded the NTS release criteria (limits consistent with U.S. Department of Energy [DOE] Order DOE O 5400.5, “Radiation Protection of the Public and the Environment”). The decision was made to perform radiological decontamination of these known accessible impacted areas to further the release process. On February 9, 2010, NSTec personnel completed decontamination of these seven areas to within the NTS release criteria. Although all accessible areas of the locomotive had been successfully decontaminated to within NTS release criteria, it was plausible that inaccessible areas of the locomotive (i.e., those areas on the locomotive where it was not possible to perform radiological surveys) could potentially have contamination above unrestricted release limits. To access the majority of these inaccessible areas, the locomotive would have to be disassembled. A complete disassembly for a full radiological survey could have permanently destroyed parts and would have ruined the historical value of the locomotive. Complete disassembly would also add an unreasonable financial burden for the contractor. A decision was reached between the NTS regulator and NSTec, opting for alternative authorized limits from DOE Headquarters. In doing so, NSTec personnel performed a dose model using the DOE-approved modeling code RESRAD-BUILD v3.5 to evaluate scenarios. The parameters used in the dose model were conservative. NSTec’s Radiological Engineering Calculation, REC-2010-001, “Public Dose Estimate from the EMAD 25 Ton Locomotive,” concluded that the four scenarios evaluated were below the 25-millirem per year limit, the “likely” dose scenarios met the “few millirem in a year” criteria, and that the EMAD 25-ton locomotive met the radiological requirements to be released with residual radioactivity to the public.

Jeremy Gwin and Douglas Frenette

2010-04-08T23:59:59.000Z

133

SOLERAS - Solar Cooling Engineering Field Tests Project: Arizona State University. Prototype carrier 10 ton air-cooled solar absorption chiller. Final evaluation report  

DOE Green Energy (OSTI)

A prototype air-cooled 10 ton solar absorption chiller was disassembled and inspected after having been field-tested for three consecutive cooling seasons. Included in the inspection were some flow visualization experiments which revealed some problems in the absorber header design. The objectives of this evaluation project were to determine possible causes for the frequent crystallization and generally below-design performance of the chiller during the testing period. The major conclusions reached were that a combination of leaks and of poor (50%) flow distribution in the absorber could account for most of the chiller's poor performance.

Not Available

1982-01-01T23:59:59.000Z

134

Quantitative assessment of medical waste generation in the capital city of Bangladesh  

Science Conference Proceedings (OSTI)

There is a concern that mismanagement of medical waste in developing countries may be a significant risk factor for disease transmission. Quantitative estimation of medical waste generation is needed to estimate the potential risk and as a basis for any waste management plan. Dhaka City, the capital of Bangladesh, is an example of a major city in a developing country where there has been no rigorous estimation of medical waste generation based upon a thorough scientific study. These estimates were obtained by stringent weighing of waste in a carefully chosen, representative, sample of HCEs, including non-residential diagnostic centres. This study used a statistically designed sampling of waste generation in a broad range of Health Care Establishments (HCEs) to indicate that the amount of waste produced in Dhaka can be estimated to be 37 {+-} 5 ton per day. The proportion of this waste that would be classified as hazardous waste by World Health Organisation (WHO) guidelines was found to be approximately 21%. The amount of waste, and the proportion of hazardous waste, was found to vary significantly with the size and type of HCE.

Patwary, Masum A. [School of Science and Technology, University of Teesside, Middlesbrough, TS1 3BA (United Kingdom)], E-mail: M.patwary@tees.ac.uk; O'Hare, William Thomas [School of Science and Technology, University of Teesside, Middlesbrough, TS1 3BA (United Kingdom)], E-mail: w.t.ohare@tees.ac.uk; Street, Graham [School of Science and Technology, University of Teesside, Middlesbrough, TS1 3BA (United Kingdom)], E-mail: grahamandlinda@talktalk.net; Maudood Elahi, K. [Stamford University Bangladesh, Dhaka 1209 (Bangladesh)], E-mail: elahikm@yahoo.com; Hossain, Syed Shahadat [Institute of Statistical Research and Training (ISRT), University of Dhaka, Dhaka 1000 (Bangladesh)], E-mail: shahadat@isrt.ac.bd; Sarker, Mosharraf H. [School of Science and Technology, University of Teesside, Middlesbrough, TS1 3BA (United Kingdom)], E-mail: m.sarker@tees.ac.uk

2009-08-15T23:59:59.000Z

135

Understanding Cement Waste Forms  

Science Conference Proceedings (OSTI)

Oct 29, 2009 ... Ongoing nuclear operations, decontamination and decommissioning, salt waste disposal, and closure of liquid waste tanks result in ...

136

Waste Minimization Contents  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Waste Minimization Contents ...

137

Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations  

Science Conference Proceedings (OSTI)

GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

Thompson, L. E.

2002-02-27T23:59:59.000Z

138

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

139

Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

2012-11-15T23:59:59.000Z

140

Deep radio images of the HEGRA and Whipple TeV sources in the Cygnus OB2 region  

E-Print Network (OSTI)

Context. The modern generation of Cherenkov telescopes has revealed a new population of gamma-ray sources in the Galaxy. Some of them have been identified with previously known X-ray binary systems while other remain without clear counterparts a lower energies. Our initial goal here was reporting on extensive radio observations of the first extended and yet unidentified source, namely TeV J2032+4130. This object was originally detected by the HEGRA telescope in the direction of the Cygnus OB2 region and its nature has been a matter of debate during the latest years. Aims. We aim to pursue our radio exploration of the TeV J2032+4130 position that we initiated in a previous paper but taking now into account the latest results from new Whipple and MILAGRO TeV telescopes. Methods. Our investigation is mostly based on interferometric radio observations with the Giant Metre Wave Radio Telescope (GMRT) close to Pune (India) and the Very Large Array (VLA) in New Mexico (USA). We also conducted near infrared observati...

Marti, Josep; Ishwara Chandra C H; Bosch-Ramon, Valenti

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Allocating Municipal Solid Waste to Renewable and Non-renewable Energy  

U.S. Energy Information Administration (EIA)

Plastic. MillionBtus to total. Heat Content. Btus. Total Btus/Total Tons. ... Containers & Packaging. Material Group (million tons)a (million Btu per ton) b. Heat ...

142

WASTE TO WATTS Waste is a Resource!  

E-Print Network (OSTI)

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany BREFs and their BATs Next Generation of Waste Fired Power Plants: Getting the most out of your trash Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

Columbia University

143

Developing a master plan for hospital solid waste management: A case study  

SciTech Connect

Disposal of about 1750 tons of solid wastes per day is the result of a rapid population growth in the province of Khuzestan in the south west of Iran. Most of these wastes, especially hospital solid wastes which have contributed to the pollution of the environment in the study area, are not properly managed considering environmental standards and regulations. In this paper, the framework of a master plan for managing hospital solid wastes is proposed considering different criteria which are usually used for evaluating the pollution of hospital solid waste loads. The effectiveness of the management schemes is also evaluated. In order to rank the hospitals and determine the share of each hospital in the total hospital solid waste pollution load, a multiple criteria decision making technique, namely analytical hierarchy process (AHP), is used. A set of projects are proposed for solid waste pollution control and reduction in the proposed framework. It is partially applied for hospital solid waste management in the province of Khuzestan, Iran. The results have shown that the hospitals located near the capital city of the province, Ahvaz, produce more than 43% of the total hospital solid waste pollution load of the province. The results have also shown the importance of improving management techniques rather than building new facilities. The proposed methodology is used to formulate a master plan for hospital solid waste management.

Karamouz, Mohammad [School of Civil Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)], E-mail: karamouz@ut.ac.ir; Zahraie, Banafsheh [School of Civil Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)], E-mail: bzahraie@ut.ac.ir; Kerachian, Reza [School of Civil Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)], E-mail: kerachian@ut.ac.ir; Jaafarzadeh, Nemat [Faculty of Health Science, University of Ahvaz, Ahvaz (Iran, Islamic Republic of)], E-mail: n_jaafarzadeh@yahoo.com; Mahjouri, Najmeh [School of Environmental Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)], E-mail: mahjouri@ut.ac.ir

2007-07-01T23:59:59.000Z

144

USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?  

SciTech Connect

The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

Magoulas, V.

2013-06-03T23:59:59.000Z

145

Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996  

Science Conference Proceedings (OSTI)

From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal, IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.

NONE

1996-03-01T23:59:59.000Z

146

Medical School Biomedical Waste  

E-Print Network (OSTI)

Medical School Biomedical Waste Labware, gloves, pipets, pipet tips Stock cultures, bacterial with or without needles, razor blades, scalpel blades) Key: Pathological waste BL1 & BL2 waste (low risk ­ LR) BL2 waste (moderate risk - MR)/BL3 waste Blood Blood Autoclave Needle box Metal Cart Must either bleach

Cooley, Lynn

147

Waste Sorting Activity Introduction  

E-Print Network (OSTI)

Waste Sorting Activity Introduction: This waste sorting game was originally designed to be one have completed the waste sorting activity quickly, no team was able to complete the waste sorting task who were unfamiliar with Dalhousie's waste management system. Goals: The primary goal of the activity

Beaumont, Christopher

148

University of Waste Procedures  

E-Print Network (OSTI)

University of Maryland Hazardous And Regulated Waste Procedures Manual Revised July 2001 #12;Review II. HAZARDOUS WASTE MANAGEMENT III. BIOLOGICAL, PATHOLOGICAL AND MEDICAL WASTE (BPMW) MANAGEMENT IV. LOW-LEVEL RADIOACTIVE WASTE (LLRW) MANAGEMENT V. EMERGENCY PROCEDURES VI. WASTE MINIMIZATION VII

Rubloff, Gary W.

149

Investigations on catalyzed steam gasification of biomass. Appendix A. Feasibility study of methane production via catalytic gasification of 2000 tons of wood per day  

DOE Green Energy (OSTI)

A study has been made of the economic feasibility of producing substitute natural gas (SNG) from wood via catalytic gasification with steam. The plant design in this study was developed from information on gasifier operation supplied by the Pacific Northwest Laboratory (PNL). The plant is designed to process 2000 tons per day of dry wood to SNG. Plant production is 21.6 MM scfd of SNG with a HHV of 956 Btu per scf. All process and support facilities necessary to convert wood to SNG are included. The plant location is Newport, Oregon. The capital cost for the plant is $95,115,000 - September, 1980 basis. Gas production costs which allow for return on capital have been calculated for various wood prices for both utility and private investor financing. For utility financing, the gas production costs are respectively $5.09, $5.56, $6.50, and $8.34 per MM Btu for wood costs of $5, $10, $20, and $40 per dry ton delivered to the plant at a moisture content of 49.50 wt %. For private investor financing, the corresponding product costs are $6.62, $7.11, $8.10, and $10.06 per MM Btu. The cost calculated by the utility financing method includes a return on equity of 15% and an interest rate of 10% on the debt. The private investor financing method, which is 100% equity financing, incorporates a discounted cash flow (DCF) return on equity of 12%. The thermal efficiency without taking an energy credit for by-product char is 58.3%.

Mudge, L.K.; Weber, S.L.; Mitchell, D.H.; Sealock, L.J. Jr.; Robertus, R.J.

1981-01-01T23:59:59.000Z

150

CONSTRAINTS ON THE MAGELLANIC CLOUDS' INTERACTION FROM THE DISTRIBUTION OF OB STARS AND THE KINEMATICS OF GIANTS  

SciTech Connect

Young, OB-type candidates are identified in a {approx}7900 deg{sup 2} region encompassing the Large and Small Magellanic Clouds (LMC/SMC) periphery, the Bridge, part of the Magellanic Stream (MS), and Leading Arm (LA). Selection is based on UV, optical, and IR photometry from existing large-area surveys and proper motions from the Southern Proper Motion 4 (SPM4) catalog. The spatial distribution of these young star candidates shows (1) a well-populated SMC wing which continues westward with two branches partially surrounding the SMC, (2) a rather narrow path from the SMC wing eastward toward the LMC which is offset by 1 Degree-Sign -2 Degree-Sign from the high-density H I ridge in the Bridge, (3) a well-populated periphery of the LMC dominated by clumps of stars at the ends of the LMC bar, and (4) a few scattered candidates in the MS and two overdensities in the LA regions above and below the Galactic plane. Additionally, a proper-motion analysis is made of a radial-velocity-selected sample of red giants and supergiants in the LMC, previously shown to be a kinematically and chemically distinct subgroup, most likely captured from the SMC. SPM4 proper motions of these stars also indicate they are distinct from the LMC population. The observational results presented here, combined with the known orbits of the Clouds and other aspects of the LMC morphology, suggest an off-center, moderate to highly inclined collision between the SMC and the LMC's disk that took place between 100 and 200 Myr ago.

Casetti-Dinescu, Dana I.; Girard, Terrence M.; Van Altena, William F. [Astronomy Department, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Vieira, Katherine, E-mail: dana.casetti@yale.edu, E-mail: terry.girard@yale.edu, E-mail: william.vanaltena@yale.edu, E-mail: kvieira@cida.ve [Centro de Investigaciones de Astronomia, Apartado Postal 264, Merida 5101-A (Venezuela, Bolivarian Republic of)

2012-07-10T23:59:59.000Z

151

Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective  

SciTech Connect

Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

Bernstad, A., E-mail: Anna.bernstad@chemeng.lth.se [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden); Cour Jansen, J. la [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden)

2012-05-15T23:59:59.000Z

152

Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 29, 2011 August 29, 2011 IDAHO FALLS, Idaho - American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste - each weighing up to 15 tons - to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from the Recovery Act, the final shipment of the containers from the Materials and Fuels Com- plex recently arrived at the Idaho Nuclear Technology and Engineering Center (INTEC). Each of the containers moved to INTEC is shielded and specially designed and fabricated for highly radioactive waste. Once at INTEC, the containers are cut open, emptied, and repackaged. After the waste is removed and put in casks, it is shipped to the Waste Isolation Pilot

153

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act workers remediated and reseeded a densely contaminated 140- acre portion of that area after disposing of more than 370,000 tons of contaminated soil. Recovery Act workers employed by DOE contractor CH2M HILL Plateau Remediation Company have remediated 61 waste sites,

154

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

155

Waste Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management Facility ISO 14001 Registered A wide range of wastes are generated during the normal course of business at BNL. These waste streams are common to many businesses...

156

Conversion of cellulosic and waste polymer material to gasoline  

DOE Green Energy (OSTI)

The present status and future plans for a project to convert cellulosic (biomass) and waste synthetic polymer materials to quality liquid fuels is presented. A thermal gasification approach is utilized followed by catalytic liquid fuels synthesis steps. Potential products include a medium quality substitute for natural gas or liquid fuel equivalents of diesel fuel, kerosene or high octane gasoline. The process appears very flexible with regard to ability to handle different sources of feedstock. Results to date indicate quality products can be produced. Product yields need to be improved with the main thrust centered on improvement of pyrolysis gas composition. This will be a major effort in the new contract period. Other items to be addressed are study of alternate economic feedstocks, waste stream characterization, and liquid fuels synthesis and tailoring with particular attention on the effects of alternate feedstocks. A description of a proposed 10 ton/day pilot plant is presented with flow sheet, material balance and cost estimates.

Kuester, J.L.

1979-03-28T23:59:59.000Z

157

Waste Logic Decommissioning Waste Manager 2.0 Users Manual  

Science Conference Proceedings (OSTI)

The Decommissioning Waste Manager, part of EPRI's Waste Logic series of computer programs, analyzes decommissioning waste cost and volume reduction strategies with the intent of quantifying the existing waste management program for any given waste generator.

2001-10-29T23:59:59.000Z

158

Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit  

Science Conference Proceedings (OSTI)

During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

2007-01-01T23:59:59.000Z

159

Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?  

SciTech Connect

The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

Paul, Johannes G., E-mail: jp.aht.p3@gmail.com [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Arce-Jaque, Joan [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Ravena, Neil; Villamor, Salome P. [General Service Office, City Government, Iloilo City (Philippines)

2012-11-15T23:59:59.000Z

160

Solid Waste (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industrial Waste Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

9) Page 2 of 7 Industrial Waste Generation Work with Engineered Nanomaterials Power Consumption Historical Contamination (groundwater, soil) Hazardous Waste Generation Atmospheric...

162

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste- ...

163

International Trade with Waste.  

E-Print Network (OSTI)

?? In this thesis, trade with waste between developed countries and the third world will be presented to analyze whether waste?trading can create a possible… (more)

Willén, Jenny

2008-01-01T23:59:59.000Z

164

classroom_obs.rtf  

NLE Websites -- All DOE Office Websites (Extended Search)

Observation Protocol Observation Protocol PRE OBSERVATION DATA Teacher ___________________ Date __________________ School ___________________ Grade/Level _____________ Observer __________________ Program ______________ (Fill this out prior to observing classes.) Class period or time of class: Topic or topics: Placement of class or lesson within the unit of study: Placement of class or lesson within the NCISE teaching model (1-Invite; 2-Explore, Discover, Create; 3-Explanations and Solutions; 4-Take Action): Purpose (objectives): Intended outcomes: Materials Used (teacher-made, manufactured, district or department-developed; characterization of materials): How students will be assessed (for this lesson): CLASSROOM ACTIVITIES Teacher: Date: (Fill this out as you are observing classes.)

165

Saving Tons at the Register  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown, and Max H. Sherman Conference Name Proceedings of the 1998 ACEEE Summer Study on Energy Effciency in Buildings, Pacific Grove, CA Volume 1 Pagination 367-383 Publisher...

166

Methodology for quantification of waste generated in Spanish railway construction works  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Two equations for C and D waste estimation in railway construction works are developed. Black-Right-Pointing-Pointer Mixed C and D waste is the most generated category during railway construction works. Black-Right-Pointing-Pointer Tunnel construction is essential to quantify the waste generated during the works. Black-Right-Pointing-Pointer There is a relationship between C and D waste generated and railway functional units. Black-Right-Pointing-Pointer The methodology proposed can be used to obtain new constants for other areas. - Abstract: In the last years, the European Union (EU) has been focused on the reduction of construction and demolition (C and D) waste. Specifically, in 2006, Spain generated roughly 47 million tons of C and D waste, of which only 13.6% was recycled. This situation has lead to the drawing up of many regulations on C and D waste during the past years forcing EU countries to include new measures for waste prevention and recycling. Among these measures, the mandatory obligation to quantify the C and D waste expected to be originated during a construction project is mandated. However, limited data is available on civil engineering projects. Therefore, the aim of this research study is to improve C and D waste management in railway projects, by developing a model for C and D waste quantification. For this purpose, we develop two equations which estimate in advance the amount, both in weight and volume, of the C and D waste likely to be generated in railway construction projects, including the category of C and D waste generated for the entire project.

Guzman Baez, Ana de [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Villoria Saez, Paola; Rio Merino, Mercedes del [Departamento de Construcciones Arquitectonicas y su Control, Escuela Universitaria de Arquitectura Tecnica, Universidad Politecnica de Madrid, Avda. Juan de Herrera 6, 28040 Madrid (Spain); Garcia Navarro, Justo, E-mail: justo.gnavarro@upm.es [Departamento de Construccion y Vias Rurales, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

2012-05-15T23:59:59.000Z

167

Waste analysis plan for central waste complex  

SciTech Connect

This waste analysis plan (WAP) has been prepared for the Central Waste Complex which is located in the 200 West Area of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, and obtain and analyze representative samples of waste managed at this unit.

Weston, N.L.

1996-09-20T23:59:59.000Z

168

X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)  

Science Conference Proceedings (OSTI)

X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P{sub A} = 21 days) and B (O8 III+o9 v, P{sub B} = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT {approx_equal} 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of {approx_equal}0.2 x 10{sup 22} cm{sup -2}. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of {approx_equal}7 x 10{sup -13} erg s{sup -1} cm{sup -2}, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.

Parkin, E. R.; Naze, Y.; Rauw, G. [Institut d'Astrophysique et de Geophysique, Universite de Liege, 17, Allee du 6 Aout, B5c, B-4000 Sart Tilman (Belgium); Broos, P. S.; Townsley, L. K. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Pittard, J. M. [School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Moffat, A. F. J. [Departement de Physique, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, QC H3C 3J7 (Canada); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam (Germany); Waldron, W. L., E-mail: parkin@mso.anu.edu.au [Eureka Scientific Inc., 2452 Delmer Street, Oakland, CA 94602 (United States)

2011-05-01T23:59:59.000Z

169

Production process for glass sand from the quartz waste from the beneficiation of kingiseppsk phosphorites  

SciTech Connect

This paper presents a process developed for the production of molding sand from the quartz waste which makes it possible to simplify the system for obtaining glass sand. According to this system, the main operation in the removal of most of the residual phosphate shell and alkaline earth metal oxides from the quartz waste is foam separation, using the residual concentration of reagents in the pulp (tallow and kerosene). After the subsequent washing and hydraulic classification, the sands meet the requirements set for molding sands grade Ob2K. The characteristics of the original flotation tailings and molding sand are presented. The mineralogical analysis of the molding sand showed that the iron-containing impurities are grains of glauconite, films of iron oxide on the surface of the grains, grains of ferrous-dolomite cement, and iron from the apparatus.

Ershov, V.I.; Lezhnev, Y.P.; Novofastovskaya, E.M.; Rants, G.F.; Shalamova, V.G.; Sinyakova, E.I.; Sokolova, E.I.

1985-12-01T23:59:59.000Z

170

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

171

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

Science Conference Proceedings (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

172

An environmental assessment of recovering methane from municipal solid waste by anaerobic digestion  

Science Conference Proceedings (OSTI)

The development of an experimental process which produces synthetic natural gas (SNG) or biogas by anaerobic digestion of municipal solid waste (MSW) is evaluated. This technology, if implemented, would be utilized in lieu of incineration or directly landfilling waste. An environmental assessment describing the principal impacts associated with operating the MSW anaerobic digestion process is presented. Variations in process configurations provide for SNG or electricity production and digester residue incineration, composting, or landfilling. Four process configuration are compared to the conventional solid waste disposal alternative of mass burn incineration and landfilling. Emissions are characterized, effluents quantified, and landfill areas predicted. The quantity of SNG and electricity recovered, and aluminum and ferrous metals recycled is predicted along with the emissions and effluents avoided by recovering energy and recycling metals. Air emissions are the primary on-site concern with the anaerobic digestion process. However, when compared to mass burn incineration, the projected particulate emissions for the anaerobic digestion process range from 2.9 {times} 10{sup {minus}6} to 2.6 {times} {sup 10{minus}5} pounds per ton of waste vs. 3.3 {times} 10{sup {minus}5} pounds per ton for mass burn. SO{sub 2}, NO{sub x}, and PCCD emissions have a similar relationship.

O'Leary, P.R.

1989-01-01T23:59:59.000Z

173

Infectious waste feed system  

DOE Patents (OSTI)

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

174

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

175

Nuclear waste solidification  

DOE Patents (OSTI)

High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

Bjorklund, William J. (Richland, WA)

1977-01-01T23:59:59.000Z

176

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

177

Business Plan : Residential Solid Waste Collection.  

E-Print Network (OSTI)

??Residential solid waste means all the solid wastes produced in household level, which includes bio-waste, metal, mixed wastes, organic and inorganic waste. The inability of… (more)

Mazengo, Dorice

2013-01-01T23:59:59.000Z

178

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

179

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

180

Waste Management Quality Assurance Plan  

E-Print Network (OSTI)

Raya James Johnson Rad/Mixed Waste** Steve Bakhtiar – Leadhazardous, radioactive, and mixed waste at the Hazardoustraining. Radioactive and mixed waste generators must take

Waste Management Group

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Waste Minimization Plan Prepared by  

E-Print Network (OSTI)

Waste Minimization Plan Prepared by: Environmental Health and Safety Department Revised February 2012 #12;Waste Minimization Plan Table of Contents Policy Statement........................................................... 3 Centralized Waste Management Program

182

Hazardous Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

183

Data summary of municipal solid waste management alternatives  

Science Conference Proceedings (OSTI)

This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

Not Available

1992-10-01T23:59:59.000Z

184

NATURE OF RADIOACTIVE WASTES  

SciTech Connect

The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)

Culler, F.L. Jr.

1959-01-26T23:59:59.000Z

185

SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1  

Science Conference Proceedings (OSTI)

Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH2). The peptide harboring the FLNH2 can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared to wild type (wt), the so2097 gene deletion (?SO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ?SO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with Kd of approximate 50 ?M. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.

Qian, Yufeng; Shi, Liang; Tien, Ming

2011-09-30T23:59:59.000Z

186

Solid health care waste management status at health care centers in the West Bank - Palestinian Territory  

SciTech Connect

Health care waste is considered a major public health hazard. The objective of this study was to assess health care waste management (HCWM) practices currently employed at health care centers (HCCs) in the West Bank - Palestinian Territory. Survey data on solid health care waste (SHCW) were analyzed for generated quantities, collection, separation, treatment, transportation, and final disposal. Estimated 4720.7 m{sup 3} (288.1 tons) of SHCW are generated monthly by the HCCs in the West Bank. This study concluded that: (i) current HCWM practices do not meet HCWM standards recommended by the World Health Organization (WHO) or adapted by developed countries, and (ii) immediate attention should be directed towards improvement of HCWM facilities and development of effective legislation. To improve the HCWM in the West Bank, a national policy should be implemented, comprising a comprehensive plan of action and providing environmentally sound and reliable technological measures.

Al-Khatib, Issam A. [Institute of Environmental and Water Studies, Birzeit University, P.O. Box 14, Birzeit, Ramallah, West Bank (Palestinian Territory, Occupied)], E-mail: ikhatib@birzeit.edu; Sato, Chikashi [Department of Civil and Environmental Engineering, Idaho State University, Pocatello, Idaho (United States)

2009-08-15T23:59:59.000Z

187

Toxic Characteristic Leaching Procedure (TCLP) Testing of Waste Glass and K-3 Refractory  

Science Conference Proceedings (OSTI)

The U. S. Environmental Protection Agency (EPA) issued revised Resource Conservation and Recovery Act (RCRA) Phase IV Land Disposal Restrictions (LDR's) on May 26 1998. The new regulation requires that any waste characteristically hazardous for the metals As, Ba, Cd, Cr, Pb, Hg, Se, and Ag will have to be treated to meet the LDR Universal Treatment Standards (UTS) for each metal prior to land disposal. Since EPA regulations continue to become more stringent, here-to-fore unpublished TCLP data generated during testing of simulated High Level Waste (HLW) glass, including the Evnironmental Assessment glass and K-3 melter refractory, will be reviewed. The refractory TCLP data compilation includes K-3 refractory in contact with DWPF simulated glass in a pilot scale melter and K-3 refractory in contact with actual mixed waste glass in a 5 ton a day GTS Duratek melter.

Jantzen, C.M.

1999-04-23T23:59:59.000Z

188

Chemistry of application of calcination/dissolution to the Hanford tank waste inventory  

SciTech Connect

Approximately 330,000 metric tons of sodium-rich radioactive waste originating from separation of plutonium from irradiated uranium fuel are stored in underground tanks at the Hanford Site in Washington State. Fractionation of the waste into low-level waste (LLW) and high-level waste (HLW) streams is envisioned via partial water dissolution and limited radionuclide extraction operations. Under optimum conditions, LLW would contain most of the chemical bulk while HLW would contain virtually all of the transuranic and fission product activity. Calcination at around 850 C, followed by water dissolution, has been proposed as an alternative initial treatment of Hanford Site waste to improve waste dissolution and the envisioned LLW/HLW split. Results of literature and laboratory studies are reported on the application of calcination/dissolution (C/D) to the fractionation of the Hanford Site tank waste inventory. Both simulated and genuine Hanford Site waste materials were used in the lab tests. To evaluation confirmed that C/D processing reduced the amount of several components from the waste. The C/D dissolutions of aluminum and chromium allow redistribution of these waste components from the HLW to the LLW fraction. Comparisons of simple water-washing with C/D processing of genuine Hanford Site waste are also reported based on material (radionuclide and chemical) distributions to solution and solid residue phases. The lab results show that C/D processing yielded superior dissolution of aluminum and chromium sludges compared to simple water dissolution. 57 refs., 26 figs., 18 tabs.

Delegard, C.H.; Elcan, T.D.; Hey, B.E.

1994-05-01T23:59:59.000Z

189

Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update  

SciTech Connect

The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

1994-09-01T23:59:59.000Z

190

Evaluation program effectiveness of household hazardous waste collection: The Seattle-King County experience  

SciTech Connect

The Seattle-King County Hazardous Waste Management Plan provides the framework for an intensive effort to keep Household Hazardous and Small Quantity Generator (SQG) wastes from entering the normal'' municipal waste streams. The Plan sets ambitious goals for diverting thousands of tons of hazardous wastes from being thrown, poured or dumped in the municipal waste stream. During the first five years, over $30 millon will be spent for a variety of HHW and SQG programs. The Plan incorporates a wide range of elements, including education, collection, and compliance components. Many of the hazardous waste education and collection programs have been developed in response to the Plan, so their effectiveness is still undetermined. A key component of the Plan is program evaluation. This report provides descriptions of two evaluation methods used to establish baselines for assessing the effectiveness of the Hazardous Waste Management Plan's programs. Focusing on the Plan's household hazardous waste programs, the findings of the baseline evaluations are discussed and conclusions are made. A general population survey, conducted through telephone interviews, was designed to assess changes in knowledge, attitudes, and behaviors of area residents. Characterization of the solid waste stream was used to identify the hazardous constituents contributed to municipal solid waste by households. Monitoring changes in the amount of hazardous materials present in the waste stream was used to indicate whether or not Program strategies are influencing disposal behaviors. Comparing the data gathered by these two evaluation methods provided a unique opportunity to cross-check the findings and validate that change, if any, has occurred. From the comparisons, the report draws a number of conclusions.

1991-10-01T23:59:59.000Z

191

Development of Cementitious Waste Forms for Nuclear Waste ...  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance. Presentation Title, Development of Cementitious Waste Forms for Nuclear Waste Immobilization.

192

How to deal with laboratory waste Radioactive waste  

E-Print Network (OSTI)

How to deal with laboratory waste Radioactive waste: Any laboratory waste, whether chemical or biological, containing radioactive material, should be disposed as radioactive waste. Radioactive waste should be removed from the laboratory to the departmental waste area, soon after finishing the experiment

Maoz, Shahar

193

Water Quality Hydrology of Lands Receiving Farm Animal Wastes  

E-Print Network (OSTI)

A significant pollution potential from cattle manure has developed as a result of the cattle feeding industry progressing to large, high density feeding operations. Two major potential sources of pollution from beef feedlots is storm runoff and solid waste (manure). The objectives of this research were to determine the characteristics of storm runoff from a beef feedlot, to determine the nitrogen transformations and ammonia volatilization from soils receiving large manure applications, to determine the chemical quality of surface runoff and groundwater from plots receiving large manure applications, to evaluate techniques of deep plowing large amounts of manure into the soil, and to determine the crop quality and yields on field plots receiving large manure application rates. Feedlot runoff was found to carry large amounts of chemical elements. The concentrations of chemical elements did not vary with size and intensity of rainstorm as much as by differences in topography of the watersheds. More ammonia was volatilized from limed soil columns than unlimed but an unexplained decrease in total nitrogen of 10 to 20 percent occurred in the unlimed and limed soil columns, respectively. A 30-in. moldboard plowing 30 to 36-in. deep can safely turn under up to 900 tons/acre of manure and not create a major surface water pollution problem. An increase of chemical elements in the groundwater occurred during the first year and then were reduced to initial values during the second year. No N03 pollution of groundwater occurred. Crops can be effectively grown on land receiving up to 900 tons/acre of manure. Peak yields will not be obtained the first year after plowing the 900 tons under, but yields will increase the second and third years.

Reddell, R. D.; Wise, G. G.; Peters, R. E.; Lyerly, P. J.

1973-06-01T23:59:59.000Z

194

THE BOLOCAM GALACTIC PLANE SURVEY. III. CHARACTERIZING PHYSICAL PROPERTIES OF MASSIVE STAR-FORMING REGIONS IN THE GEMINI OB1 MOLECULAR CLOUD  

SciTech Connect

We present the 1.1 mm Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted NH{sub 3} observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures, and line widths. We detect 34 distinct BGPS sources above 5{sigma} = 0.37 Jy beam{sup -1} with corresponding 5{sigma} detections in the NH{sub 3}(1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc and a mean gas kinetic temperature of 20 K for the sample of 34 BGPS sources with detections in the NH{sub 3}(1,1) line. The observed NH{sub 3} line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120'' aperture of 230 {+-} 180 M{sub sun}. We find a total mass of 8400 M{sub sun} for all BGPS sources in the Gemini OB1 molecular cloud, representing 6.5% of the cloud mass. By comparing the millimeter isothermal mass to the virial mass calculated from the NH{sub 3} line widths within a radius equal to the millimeter source size, we find a mean virial parameter (M{sub vir}/M {sub iso}) of 1.0 {+-} 0.9 for the sample. We find mean values for the distributions of column densities of 1.0 x 10{sup 22} cm{sup -2} for H{sub 2}, and 3.0 x 10{sup 14} cm{sup -2} for NH{sub 3}, giving a mean NH{sub 3} abundance of 3.0 x 10{sup -8} relative to H{sub 2}. We find volume-averaged densities on the order of 10{sup 3}-10{sup 4} cm{sup -3}. The sizes and densities suggest that in the Gem OB1 region the BGPS is detecting the clumps from which stellar clusters form, rather than smaller, higher density cores where single stars or small multiple systems form.

Dunham, Miranda K.; Evans, Neal J.; Harvey, Paul; Merello, Manuel [Department of Astronomy, The University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Rosolowsky, Erik [University of British Columbia, Okanagan, 3333 University Way, Kelowna BC V1V 1V7 (Canada); Cyganowski, Claudia J. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Aguirre, James [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Stringfellow, Guy S. [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Bradley, Eric Todd [Department of Physics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2385 (United States); Dowell, Darren [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91104 (United States); Drosback, Meredith [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Schlingman, Wayne; Shirley, Yancy L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Walawender, Josh [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Williams, Jonathan P., E-mail: nordhaus@astro.as.utexas.ed [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

2010-07-10T23:59:59.000Z

195

Transuranic (TRU) Waste  

Energy.gov (U.S. Department of Energy (DOE))

Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

196

Hanford Waste Vitrification Plant  

SciTech Connect

The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs.

Larson, D.E.; Allen, C.R. (Pacific Northwest Lab., Richland, WA (United States)); Kruger, O.L.; Weber, E.T. (Westinghouse Hanford Co., Richland, WA (United States))

1991-10-01T23:59:59.000Z

197

Transuranic Waste Screener  

The TRU waste screener (TRU-WS) is a multifunctional system for the rapid screening of transuranic material for criticality safety or screening for TRU content in open trays or waste containers.

198

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy (DOE) is closing the circle on the generation, management, and disposal of transuranic waste. But the WIPP story is not just about radioactive waste. It is...

199

Immobilization of Nuclear Wastes  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Glassy and Glass Composite Nuclear Wasteforms: Michael Ojovan1; Bill Lee2; ... wastes which should be solidified for safe storage and disposal. ... has been vitrifying the Department of Energy's High Level Waste (HLW) at ...

200

Pet Waste Management  

E-Print Network (OSTI)

About 1 million pounds of dog waste is deposited daily in North Texas alone. That's why proper disposal of pet waste can make a big difference in the environment. 5 photos, 2 pages

Mechell, Justin; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The wild wild waste: e-waste  

Science Conference Proceedings (OSTI)

E-Waste is a popular, informal name for discarded electronic products such as computers, VCRs, cameras, which have reached the end of their "useful life". Discarded electronic products contain a stew of toxic metals and chemicals such as lead, mercury, ... Keywords: donate, e-waste, ecology, efficiency, environment, green computing, hazardous material, re-use, recycle, reduce, thin-client, upgrade, virtualization

Scott E. Hanselman; Mahmoud Pegah

2007-10-01T23:59:59.000Z

202

Waste canister for storage of nuclear wastes  

DOE Patents (OSTI)

A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.

Duffy, James B. (Fullerton, CA)

1977-01-01T23:59:59.000Z

203

Mixed Waste Treatment Study  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented nuclear utility industry experience in the on-site treatment of mixed waste. This report reviews all available exclusions/exceptions to EPA permitting requirements for environmentally responsible on-site management of mixed waste. Included is a description of emerging mixed waste treatment technologies along with a detailed evaluation of off-site treatment/disposal facilities.

1996-01-31T23:59:59.000Z

204

Recycle Plastic Waste Recommended Action  

E-Print Network (OSTI)

AR No. 5 Recycle Plastic Waste Recommended Action Separate scrap plastic bag waste from solid waste stream and recycle. This can be accomplished by either arranging for no-cost pick-up of loose waste or by selling baled waste material. Assessment Recommendation Summary Recommended Waste Cost Implementation

Tullos, Desiree

205

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore  

E-Print Network (OSTI)

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected plants · 8% (non-incinerable waste) and incineration ash goes to the offshore Semakau Landfill · To reach

Columbia University

206

Reducing waste, Photoby stcvcchan  

E-Print Network (OSTI)

I ' I I t Reducing waste, Photoby stcvcchan AMs President Mike Lee (left to right), Point Grey M U recycling given high priority on campus By GAVIN WILSON UBC is taking stepsto reduce waste and encourageGellatly,Vice-President,Administration and Finance,to develop and recommend university policies on waste recycling. Another task force has submitted

Farrell, Anthony P.

207

Hazardous Waste Management Training  

E-Print Network (OSTI)

Hazardous Waste Management Training Persons (including faculty, staff and students) working be thoroughly familiar with waste handling and emergency procedures ap- plicable to their job responsibilities before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

208

Waste disposal package  

DOE Patents (OSTI)

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

209

Waste acceptance criteria for closure generated waste  

Science Conference Proceedings (OSTI)

The PORTS Facility has been operating since 1954. The PORTS Facility is used to enrich uranium for nuclear navy applications and commercial nuclear reactors. The PORTS process uses molecular diffusion techniques to separate the U-235 isotope from the U-238 isotope. The PORTS Facility consists of a complex cascade of compressors and converters through which gaseous uranium hexafluoride feed is processed. The feed contains approximately 0.7 percent U-235 by weight while products contain from 4 to 97 percent U-235 by weight, depending on the final application. In general, the majority of the closure wastes generated at PORTS consists of personal protective equipment (PPE), rags, soils, decontamination solutions, and construction related debris. These hazardous wastes will be predominately characterized on the basis of process knowledge. PORTS assumes its conservative waste characterizations that are based on process knowledge are correct unless and until further investigation and/or analysis proves the constituents are not present or are present at concentrations below characteristic regulatory thresholds. Waste Acceptance Criteria for wastes generated by the closure of active and inactive RCRA facilities at PORTS has been developed. The criteria presented in this document govern the activities that are performed during the closure and subsequent generation of waste and relocation from the closure locations to the storage unit. These criteria are intended to ensure the proper handling, classification, processing, and storage of wastes in order to prevent hazardous waste release that may pose a threat to human health or the environment. Any wastes currently stored at each of the facilities that are to be closed will be transferred to the X-326 or X-7725 Storage Units. The waste transfers will be accomplished in accordance with the Container Transfer Plan.

Not Available

1992-05-01T23:59:59.000Z

210

Waste Disposal Matrix Type of Chemical University-related Waste Personal Waste  

E-Print Network (OSTI)

Waste Disposal Matrix Type of Chemical University-related Waste Personal Waste Batteries, used or unwanted including lithium, alkaline, lead ­ acid or lithium aluminum hydride Chemical Waste Check Disposal of Toxics website for disposal options or Take to Bookstore Biological Waste Biological Waste Residential

Zaferatos, Nicholas C.

211

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

212

Municipal waste processing apparatus  

DOE Patents (OSTI)

This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

Mayberry, J.L.

1988-04-13T23:59:59.000Z

213

Assessment of municipal solid waste for energy production in the western United States  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

Goodman, B.J.; Texeira, R.H.

1990-08-01T23:59:59.000Z

214

Gunite and associated tanks remediation project recycling and waste minimization effort  

SciTech Connect

The Department of Energy`s Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars.

Van Hoesen, S.D.; Saunders, A.D.

1998-05-01T23:59:59.000Z

215

COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLY WASTE VOLUME AND WEIGHT ESTIMATION FOR 63,000 MTU  

Science Conference Proceedings (OSTI)

The purpose of this calculation is to create a high-level estimation of the weights and volume of the commercial spent nuclear fuel (SNF) assemblies, at the time of repository receipt, that will comprise 63,000 metric tons of uranium (MTU) waste. The results of this calculation are for informational purposes only and are not intended to be used as input to design documents. This calculation was prepared in accordance with procedure AP-3.12Q REV 00 ICN 0, Calculations.

B.A. Colton

1999-07-22T23:59:59.000Z

216

ASSEMBLAGES ON WASTE ROCK  

E-Print Network (OSTI)

Abstract: Natural regeneration on waste rock was investigated at the old Wangaloa coal mine, south-east Otago. A 450-m long waste rock stack had been created 40–50 years ago, and has had little anthropogenic intervention since. The stack is made up of a gradient of three main waste rock types, defined as ‘silt-rich’, ‘mixed’, and ‘quartz-rich’, which reflect different proportions of loess siltstone and quartz gravel conglomerate. Plant species assemblages were quantified in four 5-m 2 quadrats in each waste rock type. Invertebrates were heat extracted from substrate cores (7 cm diameter; depth 5 cm) collected from quadrats over an eight-week period in spring 2003. Ordination analysis showed statistically distinct plant and invertebrate assemblages had arisen on each waste rock type. Revegetation patterns were dominated by native, woody individuals on all waste rock types, particularly manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides). Plant cover on ‘silt-rich ’ waste rock was four-fold that on ‘quartz-rich ’ waste rock. Total numbers of invertebrates were highest on ‘quartz-rich’ waste rock, but richness greatest on ‘silt-rich ’ waste rock. Collembola dominated the fauna but their numbers were proportionally greatest in poorly vegetated areas. Further work is required to explain the absence of plants and invertebrates from local areas of waste rock. ___________________________________________________________________________________________________________________________________

C. G. Rufaut; S. Hammit; D. Craw; S. G. Clearwater

2006-01-01T23:59:59.000Z

217

Mixed waste: Proceedings  

SciTech Connect

This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

1993-12-31T23:59:59.000Z

218

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15T23:59:59.000Z

219

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

DOE Green Energy (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

220

The Current and Future Marketplace for Waste-To-Energy Cogeneration Facilities in the United States  

E-Print Network (OSTI)

The emerging waste-to-energy marketplace within the United States is one with considerable opportunity and risk. The solid waste management crisis is resulting in record construction levels for waste-to-energy facilities due to the fact that few viable alternatives exist for waste disposal. However, opposition to the construction of such plants and cost overruns on new and existing facilities is having an impact on the market. While approximately 135 plants were operating at the end of 1987, it is believed that 425 plants and projects will be in existence by the end of 1996. Representing a total capacity of 260,000 tons per day, by 1996 over 36% of all municipal solid waste generated in the United States will be incinerated by waste-to-energy facilities. A considerable challenge faces all suppliers of products and services to the marketplace. Increasing opposition and escalating costs for such plants will place greater emphasis upon proper planning, design flexibility, and pollution control. Like any emerging industry, this business will evolve from its current unpredictable levels to a more mature and stable market opportunity for suppliers of products and services.

Jacobs, S.

1988-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Tank Waste and Waste Processing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

222

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

223

Waste Confidence Discussion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion More Documents & Publications Status Update: Extended Storage...

224

TSA waste stream and final waste form composition  

SciTech Connect

A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ``average`` transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ``average`` transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties.

Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

1993-01-01T23:59:59.000Z

225

Integrated Waste Services Association National Solid Wastes Management Association  

E-Print Network (OSTI)

Can Help Meet Our Energy Needs October 5, 2006 - WASHINGTON, DC--A broad coalition of government-244-4700 Evan Von Leer, SWANA 240-494-2252 John Varrasi, ASME 212-591-8158 Don't Waste Waste! Waste-Based Energy and utilization of energy produced from waste, or waste-based energy (WBE). The United States Conference of Mayors

Columbia University

226

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network (OSTI)

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

227

WIPP Waste Information System Waste Container Data Report  

E-Print Network (OSTI)

WIPP Waste Information System Waste Container Data Report 06/06/2008 07:50 2.6 % LASB00411 % % Report Date Run by Report Site Id Container Number Waste Stream Data Status Code PEARCYM Version RP0360 Selection Criteria - Total Pages PRD02Instance 5 #12;Waste Isolation Pilot Plant Waste Container Data Report

228

8-Waste treatment and disposal A. Responsibility for waste management  

E-Print Network (OSTI)

8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

229

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network (OSTI)

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid scintillation vials must be collected separately. 5. Any "mixed waste" must be cleared with the RSO and labeled

230

WIPP Waste Information System Waste Container Data Report  

E-Print Network (OSTI)

WIPP Waste Information System Waste Container Data Report 06/06/2008 07:49 2.6 % LAS817174 % % Report Date Run by Report Site Id Container Number Waste Stream Data Status Code PEARCYM Version RP0360 Selection Criteria - Total Pages PRD02Instance 5 #12;Waste Isolation Pilot Plant Waste Container Data Report

231

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet Waste Management Nuclear...

232

NDAA Section 3116 Waste Determinations with Related Disposal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NDAA Section 3116 Waste Determinations with Related Disposal Performance Assessments Waste Management Nuclear Materials & Waste Tank Waste and Waste Processing Waste...

233

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

234

SRS - Programs - Waste Solidification  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

235

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

236

Guidelines for mixed waste minimization  

SciTech Connect

Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

Owens, C.

1992-02-01T23:59:59.000Z

237

Operational Waste Volume Projection  

SciTech Connect

Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

STRODE, J.N.

2000-08-28T23:59:59.000Z

238

Norcal Waste Systems, Inc.  

SciTech Connect

Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

Not Available

2002-12-01T23:59:59.000Z

239

CLAB Transuranic Waste Spreadsheets  

Science Conference Proceedings (OSTI)

The Building 772-F Far-Field Transuranic (TRU) Waste Counting System is used to measure the radionuclide content of waste packages produced at the Central Laboratory Facilities (CLAB). Data from the instrument are entered into one of two Excel spreadsheets. The waste stream associated with the waste package determines which spreadsheet is actually used. The spreadsheets calculate the necessary information required for completion of the Transuranic Waste Characterization Form (OSR 29-90) and the Radioactive Solid Waste Burial Ground Record (OSR 7-375 or OSR 7-375A). In addition, the spreadsheets calculate the associated Low Level Waste (LLW) stream information that potentially could be useful if the waste container is ever downgraded from TRU to LLW. The spreadsheets also have the capability to sum activities from source material added to a waste container after assay. A validation data set for each spreadsheet along with the appropriate results are also presented in this report for spreadsheet verification prior to each use.

Leyba, J.D.

2000-08-11T23:59:59.000Z

240

Waste Confidence Discussion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long-Term Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence Rule based on the EIS and Decision, if applicable 2 Overview of Draft Report Background and assumptions report is first step in process. Basic topics in the report are:

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solid Waste Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

242

Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management's Yucca Mountain Project and the Office of Nuclear Energy's Advanced Fuel Cycle Initiative (AFCI) and Global Nuclear Energy Partnership (GNEP) programs. Efforts...

243

Vitrification of waste  

DOE Patents (OSTI)

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

244

The Power of Waste.  

E-Print Network (OSTI)

?? Abstract It is estimated that up to 2 percent of the population in Third World countries survives on waste in one way or another.… (more)

Frykman, Carina

2006-01-01T23:59:59.000Z

245

Making waste public.  

E-Print Network (OSTI)

??This thesis questions the boundaries that define waste as a public or private dilemma, investigating these boundaries as productive sites for the imagination of social… (more)

Gambetta, Curt

2009-01-01T23:59:59.000Z

246

Vitrification of waste  

DOE Patents (OSTI)

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

247

Make love not waste.  

E-Print Network (OSTI)

?? The purpose of this thesis was to investigate a waste management project and its public awareness components, in the Korca region, Albania. We wanted… (more)

Carlsson Engström, Christina

2008-01-01T23:59:59.000Z

248

Making Waste Public.  

E-Print Network (OSTI)

??This thesis questions the boundaries that define waste as a public or private dilemma, investigating these boundaries as productive sites for the imagination of social… (more)

Gambetta, Curt

2009-01-01T23:59:59.000Z

249

WEB RESOURCE: Radioactive Waste  

Science Conference Proceedings (OSTI)

May 8, 2007 ... This resource offers a a very broad explanation of how the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Material ...

250

Integrated waste management.  

E-Print Network (OSTI)

??Integrated waste management is considered from a systems’ approach, with a particular emphasis on advancing sustainability. The focus of the thesis is to examine the… (more)

Seadon, Jeffrey Keith

2010-01-01T23:59:59.000Z

251

Waste Clean Up 5  

Science Conference Proceedings (OSTI)

... deployment and clean-up activities of robot arms into a nuclear contaminated pit at the opening of waste storage tank C-106 at Hanford, Washington ...

2011-08-30T23:59:59.000Z

252

Secondary Waste Cast Stone Waste Form Qualification Testing Plan  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

Westsik, Joseph H.; Serne, R. Jeffrey

2012-09-26T23:59:59.000Z

253

Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators  

E-Print Network (OSTI)

Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

2009-01-01T23:59:59.000Z

254

Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...  

National Nuclear Security Administration (NNSA)

dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of scientific study, public input, and...

255

Virginia Waste Management Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

256

Solid Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

257

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

258

U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 Media Contact: Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 i For immediate release Magnum Minerals to Buy WIPP Salt CARLSBAD, N.M., December 21, 2009- The U.S. Department of Energy's (DOE) Carlsbad Field Office (CBFO) has worked out an agreement to sell 300,000 tons of run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) to Magnum Minerals LLC of Hereford, Texas. As part of the agreement, the Carlsbad Soil and Water Conservation District (CSWCD) will sign and administer the contract with Magnum Minerals, allowing proceeds to remain in southeast New Mexico. In 2008, DOE management and operating contractor, Washington TRU Solutions, issued

259

The utilization of flue gas desulfurization waste by-products in construction brick  

E-Print Network (OSTI)

Millions of tons of waste by-products from Texas coal burning plants are produced each year. Two common byproducts are the fuel ashes and calcium sulfate (gypsum). Fuel ashes result from the burning of coal. Gypsum is a byproduct of the air purification system, called Flue Gas Desulfurization (FGD). Abatement of these waste products is a growing concern, not only for the industry, but the environment as well. It is possible to produce a gypsum brick unit that can meet the engineering properties required by the Americans Society of Testing Materials (ASTM) standards by using these by-products. This can be accomplished at a cost less than the least expensive common fired clay brick that is used in construction operations. The gypsum brick can be manufactured using established methods that are currently in operation.

Berryman, Charles Wayne

1992-01-01T23:59:59.000Z

260

Co-conversion of coal/waste plastic mixtures under various pyrolysis and liquefaction conditions  

Science Conference Proceedings (OSTI)

For strategic and economic reasons the conversion of coal to liquid fuels has been a constant goal of the coal science community. Although the economics of coal liquefaction are primarily governed by the price of crude oil, other factors such as the need for large quantities of hydrogen gas, play an important role. If methods could be found that reduce the amount of hydrogen gas required for liquefaction, considerable benefits would be realized. To explore this possibility the use of waste plastics as materials capable of upgrading coal into liquid fuel products has been investigated. The use of waste plastics for this purpose could become possible because over 30 million tons of synthetic polymer material is produced in the United States every year. In this study, several pyrolysis and liquefaction experiment were performed on an Illinois No. 6 coal and coal/plastic blends.

Palmer, S.R.; Hippo, E.J.; Tandon, D.; Blankenship, M. [Southern Illinois Univ., Carbondale, IL (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Growth and elemental composition of sorghum sudangrass grown on flyash/organic waste-amended soils  

Science Conference Proceedings (OSTI)

A greenhouse study was conducted to evaluate the potential benefitsof using fly ash/organic waste mixtures amended to soils for growth andcomposition of mineral elements by `sorgrass` (Sorghum vulgaris var.sudanense Hitchc.) a shorghum-sudangrass hybrid plant. This experimentwas conducted using a 1:1 ratio of fly ash to either sewage sludge,poultry manure, or dairy manure at six application rates. Our threeorganic wastes when mixed with fly ash at varied rates of applicationresulted in elevated concentrations of NO{sub 3}, P, K, Ca, Mg, Mn, Fe, B,Cu and Zn in both soil and plants. The data of this study indicated thatthe availability of elements to plants varied according to the organicsource mixed with fly ash and the rate of application. The elements Band Zn were observed to be significantly greater in plant tissuesexposed to fly ash/poultry manure or fly ash/dairy manure mixtures.Soils amended with fly ash/sewage sludge or poultry manure generallyimproved plant growth and enhanced yield when applied at rates of 25tons/acre, and decreased thereafter. However, soils amended with flyash/dairy manure improved plant growth and enhanced yield when appliedat rates upto 50 tons/acre and decreased thereafter. The decreases inyield beyond these application rates were probably due to theaccumulation of high levels of B and Zn which are phytotoxic and/orelevated levels of inorganic dissolved salts. 22 refs., 4 tabs.

Sajwan, K.S. [Savannah State College, GA (United States); Ornes, W.H.; Youngblood, T.V. [Univ. of South Carolina, Aiken, SC (United States)

1996-08-01T23:59:59.000Z

262

SRS - Programs - Solid Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

manner possible. SRS's waste is categorized as transuranic, low-level, hazardous, mixed, high-level or sanitary waste. SWM is responsible for managing all of these...

263

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

264

Animal Waste Technology Fund (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

265

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

266

Municipal Waste Combustion (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste" means all materials and substances discarded from residential...

267

Hazardous Waste Management (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

268

Solid waste management of Jakarta.  

E-Print Network (OSTI)

?? Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the… (more)

Trisyanti, Dini

2004-01-01T23:59:59.000Z

269

Treatment of Waste Soils / Solids  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Waste Soils / Solids ...

270

Mixed Waste Management Guidelines  

Science Conference Proceedings (OSTI)

The management of mixed waste presents serious challenges to nuclear utilities. Regulatory and practical predicaments make compliance with the letter of all applicable regulations extremely difficult. Utility experts developed these guidelines to identify opportunities for improving work practices and regulatory compliance while minimizing any potential adverse impacts of mixed waste management.

1994-12-31T23:59:59.000Z

271

Mixed Waste Characterization Guidelines  

Science Conference Proceedings (OSTI)

This report presents an overview of the process of characterizing potential mixed waste streams from nuclear power plants. Utility experts developed these guidelines to help guide utility personnel through the characterization process and provide a mechanism for properly documenting the characterization of individual waste streams.

1995-12-31T23:59:59.000Z

272

Nuclear waste solutions  

DOE Patents (OSTI)

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

273

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

274

Heterogeneous waste processing  

DOE Patents (OSTI)

A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

275

Data summary of municipal solid waste management alternatives. Volume 1, Report text  

Science Conference Proceedings (OSTI)

This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

Not Available

1992-10-01T23:59:59.000Z

276

Evaluation of AFBC co-firing of coal and hospital wastes  

Science Conference Proceedings (OSTI)

The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

Not Available

1991-02-01T23:59:59.000Z

277

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

DOE Green Energy (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

278

The Bolocam Galactic Plane Survey -- III. Characterizing Physical Properties of Massive Star-Forming Regions in the Gemini OB1 Molecular Cloud  

E-Print Network (OSTI)

We present the 1.1 millimeter Bolocam Galactic Plane Survey (BGPS) observations of the Gemini OB1 molecular cloud complex, and targeted ammonia observations of the BGPS sources. When paired with molecular spectroscopy of a dense gas tracer, millimeter observations yield physical properties such as masses, radii, mean densities, kinetic temperatures and line widths. We detect 34 distinct BGPS sources above 5-sigma=0.37 Jy/beam with corresponding 5-sigma detections in the ammonia (1,1) transition. Eight of the objects show water maser emission (20%). We find a mean millimeter source FWHM of 1.12 pc, and a mean kinetic temperature of 20 K for the sample of 34 BGPS sources. The observed ammonia line widths are dominated by non-thermal motions, typically found to be a few times the thermal sound speed expected for the derived kinetic temperature. We calculate the mass for each source from the millimeter flux assuming the sources are isothermal and find a mean isothermal mass within a 120" aperture of 230 +/- 180 s...

Dunham, Miranda K; Evans, Neal J; Cyganowski, Claudia J; Aguirre, James; Bally, John; Battersby, Cara; Bradley, Eric Todd; Dowell, Darren; Drosback, Meredith; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Merello, Manuel; Schlingman, Wayne; Shirley, Yancy L; Stringfellow, Guy S; Walawender, Josh; Williams, Jonathan P

2010-01-01T23:59:59.000Z

279

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

280

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HLW Glass Waste Loadings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

282

Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

1993-09-01T23:59:59.000Z

283

Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research  

Science Conference Proceedings (OSTI)

The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

Bickford, D.F.

1993-12-31T23:59:59.000Z

284

Ostwald Ripening and Its Effect on PuO2 Particle Size in Hanford Tank Waste  

Science Conference Proceedings (OSTI)

Between 1944 and 1989, the Hanford Site produced 60 percent (54.5 metric tons) of the United States weapons plutonium and produced an additional 12.9 metric tons of fuels-grade plutonium. High activity wastes, including plutonium lost from the separations processes used to isolate the plutonium, were discharged to underground storage tanks during these operations. Plutonium in the Hanford tank farms is estimated to be {approx}700 kg but may be up to {approx}1000 kg. Despite these apparent large quantities, the average plutonium concentration in the {approx}200 million liter tank waste volume is only about 0.003 grams per liter ({approx}0.0002 wt%). The plutonium is largely associated with low solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g., iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO{sub 2} {center_dot} xH{sub 2}O, could undergo sufficient crystal growth through Ostwald ripening in the alkaline tank waste to potentially be separable from neutron absorbing constituents by settling or sedimentation. It was found that plutonium that entered the alkaline tank waste by precipitation through neutralization from acid solution is initially present as 2- to 3-nm (0.002- to 0.003-{mu}m) scale PuO{sub 2} {center_dot} xH{sub 2}O crystallite particles and grows from that point at exceedingly slow rates, posing no risk to physical segregation. These conclusions are reached by both general considerations of Ostwald ripening and specific observations of the behaviors of PuO{sub 2} and PuO{sub 2} {center_dot} xH{sub 2}O upon aging in alkaline solution.

Delegard, Calvin H.

2011-09-29T23:59:59.000Z

285

AVLIS production plant waste management plan  

Science Conference Proceedings (OSTI)

Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

Not Available

1984-11-15T23:59:59.000Z

286

Waste Management & Research290 Waste Manage Res 2002: 20: 290301  

E-Print Network (OSTI)

Waste Management & Research290 Waste Manage Res 2002: 20: 290­301 Printed in UK ­ all rights reserved Copyright © ISWA 2002 Waste Management & Research ISSN 0734­242X Introduction Chromated copper of sorting technologies for CCA treated wood waste Monika Blassino Helena Solo-Gabriele University of Miami

Florida, University of

287

L/O/G/OL/O/G/O Waste Waste  

E-Print Network (OSTI)

L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu Top management should participate in regular "Ground Zero" walks CQI CQI RCA #12; waste/ value waste/ value · Eliminate · Re-arrange · Re-structure · Simplify · Combine · IT #12

Laksanacharoen, Sathaporn

288

WASTE SEPARATION-DOES IT INFLUENCE MUNICIPAL WASTE COMBUSTOR EMISSIONS?  

E-Print Network (OSTI)

WASTE SEPARATION- DOES IT INFLUENCE MUNICIPAL WASTE COMBUSTOR EMISSIONS? A. John Chandler A a commendable job in proving that trace emissions from a modem waste to energy plant have little to do with the trace compounds in individual components of municipal solid waste. Ogden, the leader in designing

Columbia University

289

Waste Management & Research172 Waste Manage Res 2003: 21: 172177  

E-Print Network (OSTI)

Waste Management & Research172 Waste Manage Res 2003: 21: 172­177 Printed in UK ­ all rights reserved Copyright © ISWA 2003 Waste Management & Research ISSN 0734­242X In many market segments of PVC in Germany increased by 9%, the fastest growth rate of all plastics. The waste stream in Germany

Columbia University

290

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN  

E-Print Network (OSTI)

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN THE GREEN ECONOMY Submission to the Ministry of the Environment Regarding the Minister's Report on the Waste Diversion Act 2002 Review Submitted by: Submitted to of the Environment 10 Rambert Crescent Integrated Environmental Policy Division Toronto, Ontario M6S 1E6 Waste

Columbia University

291

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

292

TRU Waste Sampling Program: Volume I. Waste characterization  

DOE Green Energy (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

293

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

294

L/O/G/OL/O/G/O Waste Waste  

E-Print Network (OSTI)

L/O/G/OL/O/G/O #12;· Waste Waste · Value () · · Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one · · · · · · · · · · · · · · · · · · 5 WHY · · · RCA · · · 5 WHY · · #12; waste/ value waste/ value

Laksanacharoen, Sathaporn

295

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

296

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

297

Method for calcining radioactive wastes  

DOE Patents (OSTI)

This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

Bjorklund, William J. (Richland, WA); McElroy, Jack L. (Richland, WA); Mendel, John E. (Kennewick, WA)

1979-01-01T23:59:59.000Z

298

Methane generation from waste materials  

DOE Patents (OSTI)

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

299

Copenhagen Waste Management and Incineration  

E-Print Network (OSTI)

Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen 24 20092 Presentation · General introduction to Copenhagen Waste Management System · National incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste

Columbia University

300

Waste to Energy Time Activities  

E-Print Network (OSTI)

SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

Columbia University

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Contained recovery of oily waste  

DOE Patents (OSTI)

A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

1989-01-01T23:59:59.000Z

302

Urban Wood Waste Resource Assessment  

DOE Green Energy (OSTI)

This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

Wiltsee, G.

1998-11-20T23:59:59.000Z

303

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

304

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

305

ORNL radioactive waste operations  

SciTech Connect

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

1982-01-01T23:59:59.000Z

306

Handford Waste Division  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Hanford Waste Diversion SAN Teleconference June 21, 2012 Tom Ferns, DOE-RL 2 Hanford Site Mission The Hanford Site is engaged in one of the largest and most complex environmental...

307

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

request for further delays After the EPA certified that the WIPP met the standards for disposal of transuranic waste in May 1998, then-New Mexico Attorney General Tom Udall...

308

Vitrification of waste  

DOE Patents (OSTI)

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300{degrees}C to 800{degrees}C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100{degrees}C to 1400{degrees}C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1992-12-31T23:59:59.000Z

309

Treatment of organic waste  

DOE Patents (OSTI)

An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

Grantham, LeRoy F. (Calabasas, CA)

1979-01-01T23:59:59.000Z

310

Citrus Waste Biomass Program  

DOE Green Energy (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

311

Medical and Biohazardous Waste Generator's Guide (Revision 2)  

E-Print Network (OSTI)

Biohazardous Waste Training Medical/Biohazardous WasteInspections 7. Forms and Supplies Medical Waste AccumulationLog Ordering Medical Waste Supplies 8. Solid Medical Waste

Waste Management Group

2006-01-01T23:59:59.000Z

312

Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

Albert, R.

1992-06-30T23:59:59.000Z

313

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

314

THE USE OF VAPOR EXTRACTION SYSTEM AND ITS SUBSEQUENT REDUCTION OF WORKER EXPOSURE TO CARBON TETRACHLORIDE DURING RETRIEVAL OF HANFORDS LEGACY WASTE  

SciTech Connect

The Hanford Site is a decommissioned nuclear productions complex located in south eastern Washington and is operated by the Department of Energy (DOE). From 1955 to 1973, carbon tetrachloride (CCl{sub 4}), used in mixtures with other organic compounds, was used to recover plutonium from aqueous streams at Z Plant located on the Hanford Site. The aqueous and organic liquid waste that remained at the end of this process was discharged to soil columns in waste cribs located near Z Plant. Included in this waste slurry along with CCl{sub 4} were tributyl phosphate, dibutyl butyl phosphate, and lard oil. (Truex et al., 2001). In the mid 1980's, CCl{sub 4} was found in the unconfined aquifer below the 200 West Area and subsequent ground water monitoring indicated that the plume was widespread and that the concentrations were increasing. It has been estimated that approximately 750,000 kg (826.7 tons) of CCl{sub 4} was discharged to the soil from 1955 to 1973. (Truex et al., 2001). With initial concentration readings of approximately 30,000 parts per million by volume (ppmv) in one well field alone, soil vapor extraction began in 1992 in an effort to remove the CCl{sub 4} from the soil. (Rohay, 1999). Since 1992, approximately 78,607.6 kg (86.65 tons) of CCl{sub 4} have been extracted from the soil through the process of soil vapor extraction and 9,409.8 kg (10.37 tons) have been removed from the groundwater. (EPA, 2006). The success of this environmental cleanup process benefited not only the environment but also workers who were later involved in the retrieval of solid waste from trenches that were in or near the CCl{sub 4} plume. Solid waste was buried in trenches near Z Plant from 1967 to 1990. The solid waste, some of which was chemically and/or radioactively contaminated, was buried in trenches in steel or fiber drums, fiberboard boxes, fiberglass-reinforced plywood boxes, and steel, concrete, or wooden boxes. Much of this waste was buried with the intention of retrieving it later for permanent disposal and storage. Removal of this solid waste would disturb the soil that was potentially contaminated with CC4 and thereby pose a risk to workers involved in the retrieval effort. However, with the success of the VES, worker exposure did not occur.

PITTS DA

2008-03-18T23:59:59.000Z

315

Transporting & Shipping Hazardous Materials at LBNL: Waste -...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste: Hazardous, Biohazardous, Medical or Radioactive Do not transport or ship hazardous material wastes off-site. Only Waste Management, Radiation Protection or approved...

316

Nonhazardous Solid Waste Management Regulations & Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Nonhazardous Solid Waste Management Regulations & Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

317

Hazardous Waste Management (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

treatment and storage of such waste. It also mentions the availability of tax credits for waste facilities. Energy recovery from the destruction of a hazardous waste may be...

318

Annual Transuranic Waste Inventory Report - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

contain both combustible and noncombustible waste items. Combustible waste may include wood, plastics, paper, and rags. Noncombustible waste items may include metals, glass,...

319

Bioenergy development from agricultural waste on Northern ...  

Science Conference Proceedings (OSTI)

... Summary This project will convert agricultural waste, including food waste, rice straw, and other organic farm waste to bioethanol through bacterial ...

2011-08-02T23:59:59.000Z

320

Site Programs & Cooperative Agreements: Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of...

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

322

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

323

Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan  

SciTech Connect

The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

Randklev, E.H.

1993-06-01T23:59:59.000Z

324

Certification plan transuranic waste: Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of transuranic (TRU) waste handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). The plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Quality Assurance Implementing Management Plan (QAIMP) for the HWBF; and a list of the current and planned implementing procedures used in waste certification.

1992-06-01T23:59:59.000Z

325

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

326

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network (OSTI)

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you. Are your waste containers properly labeled? us Waste label as soon t Do you accumulate waste in a safe

Wilcock, William

327

Modeling of Boehmite Leaching from Actual Hanford High-Level Waste Samples  

SciTech Connect

The Department of Energy plans to vitrify approximately 60,000 metric tons of high level waste sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of high level waste requiring treatment, a goal has been set to remove about 90 percent of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum in the form of gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic, but boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. In this work, the dissolution kinetics of aluminum species during caustic leaching of actual Hanford high level waste samples is examined. The experimental results are used to develop a shrinking core model that provides a basis for prediction of dissolution dynamics from known process temperature and hydroxide concentration. This model is further developed to include the effects of particle size polydispersity, which is found to strongly influence the rate of dissolution.

Peterson, Reid A.; Lumetta, Gregg J.; Rapko, Brian M.; Poloski, Adam P.

2007-06-27T23:59:59.000Z

328

Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993  

Science Conference Proceedings (OSTI)

US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

Shepherd, P.

1994-07-01T23:59:59.000Z

329

The largest radioactive waste glassification  

NLE Websites -- All DOE Office Websites (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

330

LANL reaches waste shipment milestone  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL reaches waste shipment milestone LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total.

331

Mixed waste characterization reference document  

SciTech Connect

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

1997-09-01T23:59:59.000Z

332

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15T23:59:59.000Z

333

Waste form product characteristics  

SciTech Connect

The Department of Energy has operated nuclear facilities at the Idaho National Engineering Laboratory (INEL) to support national interests for several decades. Since 1953, it has supported the development of technologies for the storage and reprocessing of spent nuclear fuels (SNF) and the resultant wastes. However, the 1992 decision to discontinue reprocessing of SNF has left nearly 768 MT of SNF in storage at the INEL with unspecified plans for future dispositioning. Past reprocessing of these fuels for uranium and other resource recovery has resulted in the production of 3800 M{sup 3} calcine and a total inventory of 7600 M{sup 3} of radioactive liquids (1900 M{sup 3} destined for immediate calcination and the remaining sodium-bearing waste requiring further treatment before calcination). These issues, along with increased environmental compliance within DOE and its contractors, mandate operation of current and future facilities in an environmentally responsible manner. This will require satisfactory resolution of spent fuel and waste disposal issues resulting from the past activities. A national policy which identifies requirements for the disposal of SNF and high level wastes (HLW) has been established by the Nuclear Waste Policy Act (NWPA) Sec.8,(b) para(3)) [1982]. The materials have to be conditioned or treated, then packaged for disposal while meeting US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) regulations. The spent fuel and HLW located at the INEL will have to be put into a form and package that meets these regulatory criteria. The emphasis of Idaho Chemical Processing Plant (ICPP) future operations has shifted toward investigating, testing, and selecting technologies to prepare current and future spent fuels and waste for final disposal. This preparation for disposal may include mechanical, physical and/or chemical processes, and may differ for each of the various fuels and wastes.

Taylor, L.L.; Shikashio, R.

1995-01-01T23:59:59.000Z

334

Lh/&o-ob I)  

Office of Legacy Management (LM)

under consideration; and six institutions recently iden- Asy .0-q tified during a search of Hanford records. ,.11.6-O I:,. 2. g The attached was prepared to Qocument the...

335

Inconsistent pathways of household waste  

Science Conference Proceedings (OSTI)

The aim of this study was to provide policy-makers and waste management planners with information about how recycling programs affect the quantities of specific materials recycled and disposed of. Two questions were addressed: which factors influence household waste generation and pathways? and how reliable are official waste data? Household waste flows were studied in 35 Swedish municipalities, and a wide variation in the amount of waste per capita was observed. When evaluating the effect of different waste collection policies, it was found to be important to identify site-specific factors influencing waste generation. Eleven municipal variables were investigated in an attempt to explain the variation. The amount of household waste per resident was higher in populous municipalities and when net commuting was positive. Property-close collection of dry recyclables led to increased delivery of sorted metal, plastic and paper packaging. No difference was seen in the amount of separated recyclables per capita when weight-based billing for the collection of residual waste was applied, but the amount of residual waste was lower. Sixteen sources of error in official waste statistics were identified and the results of the study emphasize the importance of reliable waste generation and composition data to underpin waste management policies.

Dahlen, Lisa [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden)], E-mail: lisa.dahlen@ltu.se; Aberg, Helena [Department of Food, Health and Environment, University of Gothenburg, P.O. Box 12204, SE, 402 42 Gothenburg (Sweden); Lagerkvist, Anders [Division of Waste Science and Technology, Lulea University of Technology, SE, 971 87 Lulea (Sweden); Berg, Per E.O. [HB Anttilator, Stagnellsgatan 3, SE, 652 23, Karlstad (Sweden)

2009-06-15T23:59:59.000Z

336

DOE Waste Treatability Group Guidance  

Science Conference Proceedings (OSTI)

This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

Kirkpatrick, T.D.

1995-01-01T23:59:59.000Z

337

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

338

Transuranic Waste Tabletop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transuranic (TRU) Waste Transuranic (TRU) Waste (Hazard Class 7 Radioactive) Moderator's Version of Tabletop Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-07D.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools planning tools planning tools T T T T Tr r r r ransur ansur ansur ansur ansuranic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) Waste aste aste aste aste (Hazar (Hazar (Hazar (Hazar (Hazard Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radioactiv activ activ activ active) e) e) e) e) Moder Moder Moder Moder Moderat at at at ator' or' or' or' or's V s V s V s V s Version of T ersion of T ersion of T ersion of T ersion of Tablet ablet ablet ablet abletop

339

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

340

Weigh your waste: a sustainable way to reduce waste  

Science Conference Proceedings (OSTI)

An increased concern for the environment has brought about an arena to develop and experiment with new devices to support sustainable design. The 'Weigh Your Waste' (WYW) device will allow the user to monitor their waste charges and provide a platform ... Keywords: bin tax, pay by weight, proenvironmental behavior, recycling, rubbish, sustainable design, trash, waste

Alex A. Gartland; Paulina Piasek

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Swedish nuclear waste efforts  

SciTech Connect

After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981.

Rydberg, J.

1981-09-01T23:59:59.000Z

342

Comprehensive Municipal Solid Waste Management, Resource Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation...

343

Transuranic Waste Transportation Working Group Agenda | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda More Documents & Publications...

344

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and ...

345

Radioactive waste systems and radioactive effluents  

SciTech Connect

Radioactive waste systems for handling gaseous, liquid, and solid wastes generated at light and pressurized water reactors are described. (TFD)

Row, T.H.

1973-01-01T23:59:59.000Z

346

Waste Disposal (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Disposal (Illinois) Waste Disposal (Illinois) Eligibility Commercial Construction Industrial Utility Program Information Illinois Program Type Environmental Regulations This...

347

Solid Waste Management Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

348

Waste Management Assistance Act (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

349

The reduction of packaging waste  

Science Conference Proceedings (OSTI)

Nationwide, packaging waste comprises approximately one third of the waste being sent to our solid waste landfills. These wastes range from product and shipping containers made from plastic, glass, wood, and corrugated cardboard to packaging fillers and wraps made from a variety of plastic materials such as shrink wrap and polystyrene peanuts. The amount of packaging waste generated is becoming an important issue for manufacturers, retailers, and consumers. Elimination of packaging not only conserves precious landfill space, it also reduces consumption of raw materials and energy, all of which result in important economic and environmental benefits. At the US Department of Energy-Richland Field Office's (DOE-RL) Hanford Site as well as other DOE sites the generation of packaging waste has added importance. By reducing the amount of packaging waste, DOE also reduces the costs and liabilities associated with waste handling, treatment, storage, and disposal.

Raney, E.A.; McCollom, M.; Hogan, J.

1993-04-01T23:59:59.000Z

350

The reduction of packaging waste  

Science Conference Proceedings (OSTI)

Nationwide, packaging waste comprises approximately one third of the waste being sent to our solid waste landfills. These wastes range from product and shipping containers made from plastic, glass, wood, and corrugated cardboard to packaging fillers and wraps made from a variety of plastic materials such as shrink wrap and polystyrene peanuts. The amount of packaging waste generated is becoming an important issue for manufacturers, retailers, and consumers. Elimination of packaging not only conserves precious landfill space, it also reduces consumption of raw materials and energy, all of which result in important economic and environmental benefits. At the US Department of Energy-Richland Field Office`s (DOE-RL) Hanford Site as well as other DOE sites the generation of packaging waste has added importance. By reducing the amount of packaging waste, DOE also reduces the costs and liabilities associated with waste handling, treatment, storage, and disposal.

Raney, E.A.; McCollom, M.; Hogan, J.

1993-04-01T23:59:59.000Z

351

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

352

Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

353

Explosive Waste Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

354

Ferrocyanide waste simulant characterization  

Science Conference Proceedings (OSTI)

Ferrocyanide waste simulants were prepared and characterized to help assess safety concerns associated with the ferrocyanide sludges stored in underground single-shell waste tanks at the Hanford Site. Simulants were prepared to represent the variety of ferrocyanide sludges stored in the storage tanks. Physical properties, chemical compositions, and thermodynamic properties of the simulants were determined. The simulants, as produced, were shown to not sustain propagating reactions when subjected to a strong ignition source. Additional testing and evaluations are recommended to assess safety concerns associated with postulated ferrocyanide sludge dry-out and exposure to external ignition sources.

Jeppson, D.W.; Wong, J.J.

1993-01-01T23:59:59.000Z

355

SOLID WASTE MANAGEMENT PLAN  

E-Print Network (OSTI)

ACKNOWLEDGMENTS The Chelan County Public Works Department would like to thank the following organizations and individuals for their assistance in the development of this plan: ? Chelan County’s Solid Waste Council members, past and present, and the municipalities they represent. ? Chelan County’s Solid Waste Advisory Committee members, past and present, and the agencies and businesses they represented. ? the Chelan–Douglas Health District staff. ? Washington Department of Ecology staff. Chelan County residents and businesses also contributed to this document through comments provided during public meetings and through various other channels. The Board of County Commissioners and the Public Works Department gratefully acknowledge this input by the

unknown authors

2007-01-01T23:59:59.000Z

356

Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990  

Science Conference Proceedings (OSTI)

The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

Not Available

1991-02-01T23:59:59.000Z

357

The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case  

Science Conference Proceedings (OSTI)

The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

Park, Sangwon; Choi, Jun-Ho [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jinwon, E-mail: jwpark@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

2011-08-15T23:59:59.000Z

358

Process for treating fission waste  

DOE Patents (OSTI)

A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

Rohrmann, Charles A. (Kennewick, WA); Wick, Oswald J. (Richland, WA)

1983-01-01T23:59:59.000Z

359

WASTE DISPOSAL SECTION CORNELL UNIVERSITY  

E-Print Network (OSTI)

2/07 WASTE DISPOSAL SECTION CORNELL UNIVERSITY PROCEDURE for DISPOSAL of RADIOACTIVE MATERIALS This procedure has been developed to ensure the safety of those individuals who handle radioactive waste identified hazardous waste, or other unusual issues require special consideration. Contact the Department

Manning, Sturt

360

Hazardous Waste Management Keith Williams  

E-Print Network (OSTI)

Hazardous Waste Management Keith Williams DES ­ Environmental Affairs Extension 53163 #12,100 Locally · 1998 Univ of Va $33,990 · 1998 Univ. of MD $0 !!!!! #12;Hazardous Waste Disposal Procedures Hazardous (Chemical) Waste Management in University of Maryland Laboratories o All laboratories and work

Appelbaum, Ian

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network (OSTI)

Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can liners. This waste stream must be boxed to protect custodial staff. It goes directly to the landfill lined cardboard box. Tape seams with heavy duty tape to contain waste. Limit weight to 20 lbs. Or

Sheridan, Jennifer

362

Waste Pickup Form User's Guide  

E-Print Network (OSTI)

Waste Pickup Form User's Guide Updated: 3/13/12 #12;Introduction: Welcome to the Cal State University Fullerton Online Waste Pickup Form User's Guide. In this guide you will learn what you can use phosphorus-32) 3. To request a pickup of universal waste including light bulbs, aerosol cans, batteries

de Lijser, Peter

363

Waste incineration and the community -  

E-Print Network (OSTI)

Waste incineration and the community - The Amsterdam experience The successful community relations strategy followed by the operator of Amsterdam's waste-to- energy plant has convinced the public and other stakeholders of the benefits of incineration for treating the city's waste Thomas McCarthy Article by Thomas Mc

Columbia University

364

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network (OSTI)

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Kelly, Scott David

365

Pioneering Nuclear Waste Disposal  

NLE Websites -- All DOE Office Websites (Extended Search)

PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOECAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of...

366

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

367

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

368

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network (OSTI)

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

369

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

370

Accumulated waste characterization work plan  

Science Conference Proceedings (OSTI)

The Portsmouth Gaseous Diffusion Plant (PORTS) as part of the uranium enrichment complex produces enriched uranium for power generation and defense purposes. Since the beginning of diffusion plant operations in 1953, a variety of waste materials and excess equipment has been generated through both normal operations and as part of major system upgrade programs. However, as a result of the closure of former onsite radioactive management facilities and limited onsite and offsite disposal facilities for mixed (hazardous and radioactive) wastes, PORTS has accumulated large quantities of waste awaiting final disposition. These accumulated wastes were estimated in the Accumulated Waste Plan (AWP) to consist of some 21,700 containers of the radioactive, RCRA hazardous, PCB, mixed and asbestos wastes in various storage areas and process buildings with PORTS. In order to proper manage these wastes onsite and prepare for them for ultimate treatment or disposal, a detailed understanding of the waste contents and characteristics must be developed. The strategy for managing and disposing of these wastes was outlined in the AWP. The purpose of this Accumulated Waste Characterization Work Plan (AWCWP) is to provide a detailed plan for characterizing waste containers from the existing PORTS inventory. The AWCWP documents the process and analytical information currently available and describes statistically-based sampling and analyses required to support proper regulatory classification.

Not Available

1992-01-01T23:59:59.000Z

371

Waste Isolation Pilot Plant - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

372

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

373

Environmental waste disposal contracts awarded  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

374

Waste minimization handbook, Volume 1  

Science Conference Proceedings (OSTI)

This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

Boing, L.E.; Coffey, M.J.

1995-12-01T23:59:59.000Z

375

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

376

Waste Logic(TM): Decommissioning Waste Manager, Version 2.1 and Solid Waste Manager, Version 2.1  

Science Conference Proceedings (OSTI)

Waste Logic(TM) Decommissioning Waste Manager, Version 2.1: Rising program costs and a more competitive business environment have made solid waste management a major cost concern. Effective management of solid waste can reduce long range operating costs for a large nuclear plant by millions of dollars. To assist waste managers in maximizing potential cost savings, EPRI developed the Waste Logic Decommissioning Waste Manager(TM) computer code. It provides a comprehensive methodology for capturing and quan...

2003-03-03T23:59:59.000Z

377

A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS-CENTAURUS OB ASSOCIATION  

SciTech Connect

We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus-Lupus (UCL), and Lower Centaurus-Crux (LCC) subgroups of Scorpius-Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types {approx}F4 and {approx}F2, respectively. An analysis of the A-type stars shows US reaching the main sequence at about spectral type {approx}A3. (3) The median ages for the pre-main-sequence members of UCL and LCC are 16 Myr and 17 Myr, respectively, in agreement with previous studies, however we find that (4) Upper Sco is much older than previously thought. The luminosities of the F-type stars in US are typically a factor of {approx}2.5 less luminous than predicted for a 5 Myr old population for four sets of evolutionary tracks. We re-examine the evolutionary state and isochronal ages for the B-, A-, and G-type Upper Sco members, as well as the evolved M supergiant Antares, and estimate a revised mean age for Upper Sco of 11 {+-} 1 {+-} 2 Myr (statistical, systematic). Using radial velocities and Hipparcos parallaxes we calculate a lower limit on the kinematic expansion age for Upper Sco of >10.5 Myr (99% confidence). However, the data are statistically consistent with no expansion. We reevaluate the inferred masses for the known substellar companions in Upper Sco using the revised age and find that the inferred masses are typically {approx}20%-70% higher than the original estimates which had assumed a much younger age; specifically, we estimate the mass of 1RXS J1609-2105b to be 14{sup +2}{sub -3} M{sub Jup}, suggesting that it is a brown dwarf rather than a planet. Finally, we find the fraction of F-type stars exhibiting H{alpha} emission and/or a K-band excess consistent with accretion to be 0/17 (<19%; 95% CL) in US at {approx}11 Myr, while UCL has 1/41 (2{sup +5}{sub -1}%; 68% CL) accretors and LCC has 1/50 (2{sup +4}{sub -1}%; 68% CL) accretors at {approx}16 Myr and {approx}17 Myr, respectively.

Pecaut, Mark J.; Mamajek, Eric E.; Bubar, Eric J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

2012-02-20T23:59:59.000Z

378

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1  

Science Conference Proceedings (OSTI)

This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

NONE

1995-02-01T23:59:59.000Z

379

Treatment of halogen-containing waste and other waste materials  

DOE Patents (OSTI)

A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1997-03-18T23:59:59.000Z

380

Treatment of halogen-containing waste and other waste materials  

DOE Patents (OSTI)

A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

RECOVERY OF MERCURY FROM CONTAMINATED LIQUID WASTES  

SciTech Connect

Mercury was widely used in U.S. Department of Energy (DOE) weapons facilities, resulting in a broad range of mercury-contaminated wastes and wastewaters. Some of the mercury contamination has escaped to the local environment, particularly at the Y-12 Plant in Oak Ridge, Tennessee, where approximately 330 metric tons of mercury were discharged to the environment between 1953 and 1963 (TN & Associates, 1998). Effective removal of mercury contamination from water is a complex and difficult problem. In particular, mercury treatment of natural waters is difficult because of the low regulatory standards. For example, the Environmental Protection Agency has established a national ambient water quality standard of 12 parts-per-trillion (ppt), whereas the standard is 1.8 ppt in the Great Lakes Region. In addition, mercury in the environment is typically present in several different forms, but sorption processes are rarely effective with more than one or two of these forms. To meet the low regulatory discharge limits, an effective sorption process must be able to address all forms of mercury present in the water. One approach is to apply different sorbents in series depending on the mercury speciation and the regulatory discharge limits. ADA Technologies, Inc. has developed four new sorbents to address the variety of mercury species present in industrial discharges and natural waters. Three of these sorbents have been field tested on contaminated creek water at the Y-12 Plant. Two of these sorbents have been successfully demonstrated very high removal efficiencies for soluble mercury species, reducing mercury concentrations at the outlet of a pilot-scale system to less than 12 ppt for as long as six months. The other sorbent tested at the Y-12 Plant targeted colloidal mercury not removed by standard sorption or filtration processes. At the Y-12 Plant, colloidal mercury appears to be associated with iron, so a sorbent that removes mercury-iron complexes in the presence of a magnetic field was evaluated. Field results indicated good removal of this mercury fraction from the Y-12 waters. In addition, this sorbent is easily regenerated by simply removing the magnetic field and flushing the columns with water. The fourth sorbent is still undergoing laboratory development, but results to date indicate exceptionally high mercury sorption capacity. The sorbent is capable of removing all forms of mercury typically present in natural and industrial waters, including Hg{sup 2+}, elemental mercury, methyl mercury, and colloidal mercury. The process possesses very fast kinetics, which allows for higher flow rates and smaller treatment units. These sorbent technologies, used in tandem or individually depending on the treatment needs, can provide DOE sites with a cost-effective method for reducing mercury concentrations to very low levels mandated by the regulatory community. In addition, the technologies do not generate significant amounts of secondary wastes for disposal. Furthermore, the need for improved water treatment technologies is not unique to the DOE. The new, stringent requirements on mercury concentrations impact other government agencies as well as the private sector. Some of the private-sector industries needing improved methods for removing mercury from water include mining, chloralkali production, chemical processing, and medical waste treatment. The next logical step is to deploy one or more of these sorbents at a contaminated DOE site or at a commercial facility needing improved mercury treatment technologies. A full-scale deployment is planned in fiscal year 2000.

Robin M. Stewart

1999-09-29T23:59:59.000Z

382

Process for Converting Waste Glass Fiber into Value Added Products, Final Report  

Science Conference Proceedings (OSTI)

Nature of the Event: Technology demonstration. The project successfully met all of its technical objectives. Albacem has signed an exclusive licensing agreement with Vitro Minerals Inc., a specialty minerals company, to commercialize the Albacem technology (website: www.vitrominerals.com). Location: The basic research for the project was conducted in Peoria, Illinois, and Atlanta, Georgia, with third-party laboratory verification carried out in Ontario, Canada. Pilot-scale trials (multi-ton) were conducted at a facility in South Carolina. Full-scale manufacturing facilities have been designed and are scheduled for construction by Vitro Minerals during 2006 at a location in the Georgia, North Carolina, and South Carolina tri-state area. The Technology: This technology consists of a process to eliminate solid wastes generated at glass fiber manufacturing facilities by converting them to value-added materials (VCAS Pozzolans) suitable for use in cement and concrete applications. This technology will help divert up to 250,000 tpy of discarded glass fiber manufacturing wastes into beneficial use applications in the concrete construction industry. This technology can also be used for processing glass fiber waste materials reclaimed from monofills at manufacturing facilities. The addition of take-back materials and reclamation from landfills can help supply over 500,000 tpy of glass fiber waste for processing into value added products. In the Albacem process, waste glass fiber is ground to a fine powder that effectively functions as a reactive pozzolanic admixture for use in portland ce¬ment-based building materials and products, such as concrete, mortars, terrazzo, tile, and grouts. Because the waste fiber from the glass manufacturing industry is vitreous, clean, and low in iron and alkalis, the resulting pozzolan is white in color and highly consistent in chemical composition. This white pozzolan, termed VCAS Pozzolan (for Vitreous Calcium-Alumino-Silicate). is especially suited for white concrete applications where it imparts desirable benefits such as increased long-term strength and improved long-term durability of concrete products. Two U.S. patents entitled have been issued to Albacem covering the technology. Third-party validation testing has confirmed that the pozzolanic product is an excellent, high performance material that conforms to a ASTM standards and improves the strength and durability of concrete. Currently, there are no known significant competing technologies to process glass fiber manufacturing by-products and con¬vert them into value-added products. Most glass fiber-forming and fabrication wastes continue to be disposed in landfills at significant costs and with associated negative environmental impact. It is estimated that in a typical glass fiber manufactur¬ing facility, 10-20% by weight of the processed glass material is sent for dis¬posal to a landfill. Today, supplementary ce¬menting materials or mineral admixtures are key to achieving strong and durable concrete. Recovered materials such as coal fly ash, ground granulated blast furnace slag and silica fume are widely accepted and used in concrete all over the world, espe¬cially in the construction of “high performance” structures such as massive dams, bridges, subway tunnels, etc. These min¬eral admixtures are not suitable for white concrete and light-colored architectural concrete applications. Converting waste glass fibers into a high performance white pozzolan would allow white concrete producers to gain from the same durability benefits currently realized by gray concrete producers. Description of the Benefit: Albacem’s technology will enable the glass fiber industry to eliminate nearly 100% of its glass fiber produc¬tion waste streams by converting them into viable value-added products. With this technology, the glass industry can prevent the landfilling of about 250,000 tons of waste glass fiber annually. Glass manufacturers will realize improved production efficiency by reducing process costs through the elimination of solid was

Hemmings, Raymond T.

2005-12-31T23:59:59.000Z

383

WRAP Module 1 waste analysis plan  

Science Conference Proceedings (OSTI)

The purpose of this waste analysis plan is to document the necessary characterization, sampling, screening, analysis, and waste acceptance criteria for waste received at the WRAP Module 1. Waste expected to be received at WRAP Module 1 includes newly generated and retrieved waste. The newly generated waste will undergo verification prior to treatment, storage, or disposal. Retrieved waste from the burial grounds or above ground storage will undergo further characterization (as needed), treatment, supercompaction, and repackaging

Mayancsik, B.A.

1995-09-22T23:59:59.000Z

384

Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

Nayono, Satoto E. [Department of Civil Engineering, Yogyakarta State University, Campus UNY Karangmalang Yogyakarta 55281 (Indonesia); Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Winter, Josef, E-mail: josef.winter@iba.uka.d [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Gallert, Claudia [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany)

2010-10-15T23:59:59.000Z

385

Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. The first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.

Seigler, R.S.

1994-01-01T23:59:59.000Z

386

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

387

Tritium waste package  

DOE Patents (OSTI)

A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

1995-01-01T23:59:59.000Z

388

Tritium waste package  

DOE Patents (OSTI)

A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB adsorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

1994-12-31T23:59:59.000Z

389

Tritium waste package  

DOE Patents (OSTI)

A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

1995-11-07T23:59:59.000Z

390

Waste | OpenEI  

Open Energy Info (EERE)

Waste Waste Dataset Summary Description The Planning Database Project provides the UK Department of Energy and Climate Change (DECC) with regular data to track progress towards achieving EU targets for electricity generation from renewable energy (RE) sources. Extracts from the database are available each month. Information collected in the database includes: name, location and installed capacity of RE projects over 0.1MW; environmental designations; planning status; and construction status. Included here is the October 2010 Progress Datasheet, and an extract from December, 15, 2010 (i.e. Source UK Department of Energy and Climate Change (DECC) Date Released December 15th, 2010 (3 years ago) Date Updated Unknown Keywords biomass co-firing installed capacity

391

The First Recovery Act Funded Waste Shipment depart from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste...

392

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Waste Policy Act Signed Nuclear Waste Policy Act Signed January 07, 1983 Washington, DC Nuclear Waste Policy Act Signed President Reagan signs the Nuclear Waste...

393

Mixed Waste Recycling Exemption  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented the process for obtaining state approval to apply the Resource Conservation and Recovery Act (RCRA) recycling exemption. This report examines the regulatory basis for the recycling exemption and the strategy for designing and operating a recycling facility to meet that exemption. Specifically addressed is the process of submitting an actual recycling exemption request to an RCRA authorized state and potential roadblocks utilities m...

1998-11-30T23:59:59.000Z

394

Cooling tower waste reduction  

SciTech Connect

At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

1998-05-01T23:59:59.000Z

395

PROCESSING OF RADIOACTIVE WASTE  

DOE Patents (OSTI)

A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

Johnson, B.M. Jr.; Barton, G.B.

1961-11-14T23:59:59.000Z

396

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

397

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

398

Method for processing aqueous wastes  

DOE Patents (OSTI)

This invention is comprised of a method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1992-12-31T23:59:59.000Z

399

Method for processing aqueous wastes  

DOE Patents (OSTI)

A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

1993-12-28T23:59:59.000Z

400

Method for processing aqueous wastes  

DOE Patents (OSTI)

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

402

Melt processing of radioactive waste: A technical overview  

Science Conference Proceedings (OSTI)

Nuclear operations have resulted in the accumulation of large quantities of contaminated metallic waste which are stored at various DOE, DOD, and commercial sites under the control of DOE and the Nuclear Regulatory Commission (NRC). This waste will accumulate at an increasing rate as commercial nuclear reactors built in the 1950s reach the end of their projected lives, as existing nuclear powered ships become obsolete or unneeded, and as various weapons plants and fuel processing facilities, such as the gaseous diffusion plants, are dismantled, repaired, or modernized. For example, recent estimates of available Radioactive Scrap Metal (RSM) in the DOE Nuclear Weapons Complex have suggested that as much as 700,000 tons of contaminated 304L stainless steel exist in the gaseous diffusion plants alone. Other high-value metals available in the DOE complex include copper, nickel, and zirconium. Melt processing for the decontamination of radioactive scrap metal has been the subject of much research. A major driving force for this research has been the possibility of reapplication of RSM, which is often very high-grade material containing large quantities of strategic elements. To date, several different single and multi-step melting processes have been proposed and evaluated for use as decontamination or recycling strategies. Each process offers a unique combination of strengths and weaknesses, and ultimately, no single melt processing scheme is optimum for all applications since processes must be evaluated based on the characteristics of the input feed stream and the desired output. This paper describes various melt decontamination processes and briefly reviews their application in developmental studies, full scale technical demonstrations, and industrial operations.

Schlienger, M.E.; Buckentin, J.M.; Damkroger, B.K.

1997-04-01T23:59:59.000Z

403

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

404

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

compounds VSL Vitreous State Laboratory of the Catholic University of America WESP Wet Electrostatic Precipitator WGI Washington Group International WTP Waste Treatment and...

405

Tank waste chemistry: A new understanding of waste aging  

SciTech Connect

There is concern about the risk of uncontrolled exothermic reaction(s) in Hanford Site waste tanks containing NO{sub 3}{sup {minus}}/NO{sub 2} based salts and/or metal hydroxide sludges in combination with organics or ferrocyanides. However, gradual oxidation of the waste in the tanks to less reactive species appears to have reduced the risk. In addition, wastes sampled to date contain sufficiently large quantities of water so that propagation reactions are highly unlikely. This paper investigates various aspects of the aging of Hanford tank wastes.

Babad, H. [Westinghouse Hanford Co., Richland, WA (United States); Camaioni, D.M.; Lilga, M.A.; Samuels, W.D.; Strachan, D.M. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

406

Exploratory Study of Waste Generation and Waste Minimization in Sweden.  

E-Print Network (OSTI)

?? The current thesis presents an exploratory study on municipal solid waste generation and minimization in Sweden, with a focus on their connection to basic… (more)

Kuslyaykina, Dina

2013-01-01T23:59:59.000Z

407

Steel-Based Alloy Waste Forms for Reprocessing Wastes  

Science Conference Proceedings (OSTI)

... although the release of some radionuclides is limited by the solubilities of the ... Hot Isostatic Pressing of Chlorine-Containing Plutonium Residues and Wastes.

408

Waste/By-Product Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

WASTE/BY-PRODUCT HYDROGEN WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen Overview Overview ƒ Growing populations, rising standards of living, and increased urbanization leads to a escalating volume of waste leads to a escalating volume of waste. ƒ Huge volumes of waste are collected in dumps, creating a major environmental issue. ƒ ƒ Wastewater treatment plants generate noxious gasses that are released in Wastewater treatment plants generate noxious gasses that are released in

409

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlsbad, New Mexico 8822 Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted

410

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

411

Waste Management Process Improvement Project  

SciTech Connect

The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

Atwood, J.; Borden, G.; Rangel, G. R.

2002-02-25T23:59:59.000Z

412

Optimizing Organic Waste to Energy Operations  

Science Conference Proceedings (OSTI)

A waste-to-energy firm that recycles organic waste with energy recovery performs two environmentally beneficial functions: it diverts waste from landfills and it produces renewable energy. At the same time, the waste-to-energy firm serves and collects ... Keywords: environment, operating strategy, organic waste to energy, regulation, sustainability

Bar?? Ata; Deishin Lee; Mustafa H. Tongarlak

2012-04-01T23:59:59.000Z

413

What is Hazardous Hazardous waste is  

E-Print Network (OSTI)

What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic, reactive, cor- rosive, flammable, combustible that is unwanted, dis- carded or no longer useful. This waste may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E-Waste

de Lijser, Peter

414

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

415

Vitrification of high sulfate wastes  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) through the Mixed Waste Integrated Program (MWIP) is investigating the application of vitrification technology to mixed wastes within the DOE system This work involves identifying waste streams, laboratory testing to identify glass formulations and characterize the vitrified product, and demonstration testing with the actual waste in a pilot-scale system. Part of this program is investigating process limits for various waste components, specifically those components that typically create problems for the application of vitrification, such as sulfate, chloride, and phosphate. This work describes results from vitrification testing for a high-sulfate waste, the 183-H Solar Evaporation Basin waste at Hanford. A low melting phosphate glass formulation has been developed for a waste stream high in sodium and sulfate. At melt temperatures in the range of 1,000 C to 1,200 C, sulfate in the waste is decomposed to gaseous oxides and driven off during melting, while the remainder of the oxides stay in the melt. Decomposition of the sulfates eliminates the processing problems typically encountered in vitrification of sulfate-containing wastes, resulting in separation of the sulfate from the remainder of the waste and allowing the sulfate to be collected in the off-gas system and treated as a secondary waste stream. Both the vitreous product and intentionally devitrified samples are durable when compared to reference glasses by TCLP and DI water leach tests. Simple, short tests to evaluate the compatibility of the glasses with potential melter materials found minimal corrosion with most materials.

Merrill, R.A.; Whittington, K.F.; Peters, R.D.

1994-09-01T23:59:59.000Z

416

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1  

SciTech Connect

This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

1995-02-01T23:59:59.000Z

417

WEB RESOURCE: Nuclear Waste Disposal  

Science Conference Proceedings (OSTI)

May 10, 2007 ... The complete "Yucca Mountain Resource Book" is also available for download at this site. Citation: Nuclear Waste Disposal. 2007. Nuclear ...

418

Solid Waste Management Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

419

Chernobyl’s waste site  

Science Conference Proceedings (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

420

Next Generation Waste Glass Melters  

activities as described in EM Tank Waste R&D Plan. Melter project in support of this activity. Facets of WTP processing being investigated/enhanced include:

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Waste disposal and renewable resources.  

E-Print Network (OSTI)

?? Purpose/aim: The purpose of this dissertation is to find out the effect of waste disposal on environment and to explore the effect of renewable… (more)

Hai, Qu; PiaoYi, Sun

2013-01-01T23:59:59.000Z

422

Nuclear waste incineration technology status  

Science Conference Proceedings (OSTI)

The incinerators developed and/or used for radioactive waste combustion are discussed and suggestions are made for uses of incineration in radioactive waste management programs and for incinerators best suited for specific applications. Information on the amounts and types of radioactive wastes are included to indicate the scope of combustible wastes being generated and in existence. An analysis of recently developed radwaste incinerators is given to help those interested in choosing incinerators for specific applications. Operating information on US and foreign incinerators is also included to provide additional background information. Development needs are identified for extending incinerator applications and for establishing commercial acceptance.

Ziegler, D.L.; Lehmkuhl, G.D.; Meile, L.J.

1981-07-15T23:59:59.000Z

423

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

424

Waste Bakery on diet Sheep.  

E-Print Network (OSTI)

??This work aimed to evaluate the effects of inclusion of bakery waste (BW) in sheep diets on intake, apparent digestibility, balance of nitrogen compounds and… (more)

Almira Biazon França

2010-01-01T23:59:59.000Z

425

Treatment of mercury containing waste  

DOE Patents (OSTI)

A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

2002-01-01T23:59:59.000Z

426

FAQS Reference Guide – Waste Management  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the January 2003 edition of DOE-STD-1159-2003, Waste Management Functional Area Qualification Standard.

427

Waste Clean-up 1  

Science Conference Proceedings (OSTI)

... These figures are concepts of the Waste Retrieval System and Deployment for the Hanford, Washington tank farm, specifically focused on tank C ...

2011-09-30T23:59:59.000Z

428

Challenges of Nuclear Waste Vitrification  

Science Conference Proceedings (OSTI)

The US DOE has developed glass property-composition models to control glass compositions for HLW vitrification at Hanford Waste Treatment & Immobilization ...

429

Production of New Biomass/Waste-Containing Solid Fuels  

DOE Green Energy (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

430

DOE/EIS-0026-SA-03: Supplement Analysis for The Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant (11/08/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplement Analysis For Disposal of Certain Rocky Flats Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant PURPOSE The U.S. Department of Energy (DOE) is proposing to revise its approach for managing approximately 0.97 metric tons (MT) of plutonium-bearing materials (containing about 0.18 MT of surplus plutonium) located at the Rocky Flats Environmental Technology Site (RFETS). DOE is proposing to repackage and transport these materials for direct disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Several DOE environmental impact statements (EISs) discuss the potential impacts from different proposed alternatives for the storage and disposition of surplus plutonium and waste containing surplus plutonium. These EISs evaluated and presented the potential impacts for

431

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M. - The Waste Isolation Pilot Plant (WIPP) received its

432

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M. - The Waste Isolation Pilot Plant (WIPP) received its

433

Waste IncIneratIon and Waste PreventIon  

E-Print Network (OSTI)

disposing of waste, it also makes consider- able amounts of energy available in the form of electricity) of electricity and 17 TWh of heat, equivalent to the supply required by a major city like Berlin. This energy can . This is equivalent to the annual CO2 emissions of some 1.6 million passenger cars. This means that waste incineration

434

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

435

WIPP Documents - Hazardous Waste Facility Permit (RCRA)  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and...

436

Options for Handling Noncombustion Waste: Third Edition  

Science Conference Proceedings (OSTI)

Utilities produce a wide variety of noncombustion wastes from generating and distributing electricity as well as from associated support operations. This manual addresses the management of 23 utility noncombustion wastes and describes options for managing these wastes.

1995-07-26T23:59:59.000Z

437

Nuclear Waste Policy Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

438

Waste Minimization Plan Colorado School of Mines  

E-Print Network (OSTI)

Waste Minimization Plan Colorado School of Mines Prepared by: Environmental Health and Safety Department Revised February 2008 #12;Waste Minimization Plan Table of Contents Policy Statement Based Chemical Inventory and Database................................................4 Centralized Waste

439

Hazardous Waste Management Standards and Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

440

Municipal waste processing apparatus  

DOE Patents (OSTI)

Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

Mayberry, J.L.

1987-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste obs tons" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Municipal waste processing apparatus  

DOE Patents (OSTI)

Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

Mayberry, John L. (Idaho Falls, ID)

1988-01-01T23:59:59.000Z

442

Municipal waste processing apparatus  

DOE Patents (OSTI)

Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

Mayberry, John L. (Idaho Falls, ID)

1989-01-01T23:59:59.000Z

443

NUCLEAR WASTE CONSULTANTS, INC.  

E-Print Network (OSTI)

Attached please find the Subtask 1.2 Management, prepared by Water, Waste bibliographical information relevant on NNWSI, now comprising 356 titles. scheduled, semi-annual update report contract. Update Report: Data Inventory and and Land (WWL). The report presents the to the all documents in the WWL library Please note that this is the last for Subtask 1.2 under the current The WWL report has received a managerial review by M. Logsdon (NWC), and the report was prepared under WWL's QA procedures, consistent with the NWC QA-manual. 009-1.2-- NNWSI DATABASE- Aucust IS- 19M-2 Auou~~~~ ~ _ _ _ 5._,1_88

Technical Review Branch

1988-01-01T23:59:59.000Z

444

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

445

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31T23:59:59.000Z

446

Waste minimization plan, T plant facilities  

SciTech Connect

This document contains the waste minimization plan for the T Plant facilities, located in the 200 West Area of the Hanford Site in south central Washington State. A waste minimization plan is one part of a multi-faceted waste management program; this waste minimization plan documents the goals and techniques of the waste minimization program, identifies methods for evaluating the program and ensuring quality assurance, and establishes the current baseline waste generation volume estimates.

Kover, K.K.

1997-01-01T23:59:59.000Z

447

Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems  

SciTech Connect

The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

1996-09-01T23:59:59.000Z

448

Materials Science of Nuclear Waste Management I  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Separation of the nuclear waste stream into actinides and fission products offers new opportunities for development of ceramic waste forms.

449

Independent Oversight Review, Advanced Mixed Waste Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Advanced Mixed Waste Treatment Project - April 2013 Independent Oversight Review, Advanced Mixed Waste Treatment Project - April 2013 April 2013 Review of Radiation...

450

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

451

Treatment of Light Metal Wastes - TMS  

Science Conference Proceedings (OSTI)

... for the Treatment and Minimization of Wastes: Treatment of Light Metal Wastes ... A Decade of Gestation: S. Street, G. Brooks and H.K. Worner, Materials Eng.

452

1993 Solid Waste Reference Forecast Summary  

SciTech Connect

This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

1993-08-01T23:59:59.000Z

453

SRS seeks RCRA Hazardous Waste Permit Renewal  

NLE Websites -- All DOE Office Websites (Extended Search)

ery Act (RCRA) permit be renewed. The current permit for the Mixed Waste Storage Buildings (MWSB), Mixed Waste Man- agement Facility (MWMF), and Sanitary Landfill (SLF)...

454

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...