National Library of Energy BETA

Sample records for waste msw source

  1. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of Feedstock and Technology | Department of Energy 1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous

  3. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: • MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis • expected process scale required for favorable economics • the availability of MSW in quantities sufficient to meet process scale requirements • the state-of-the-art of MSW gasification technology.

  4. Material and energy recovery in integrated waste management system - An Italian case study on the quality of MSW data

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M.; Saccani, C.

    2011-09-15

    This paper analyses the way numerical data on Municipal Solid Waste (MSW) quantities are recorded, processed and then reported for six of the most meaningful Italian Districts and shows the difficulties found during the comparison of these Districts, starting from the lack of homogeneity and the fragmentation of the data indispensable to make this critical analysis. These aspects are often ignored, but data certainty are the basis for serious MSW planning. In particular, the paper focuses on overall Source Separation Level (SSL) definition and on the influence that Special Waste (SW) assimilated to MSW has on it. An investigation was then necessary to identify new parameters in place of overall SSL. Moreover, these parameters are not only important for a waste management system performance measure, but are fundamental in order to design and check management plan and to identify possible actions to improve it.

  5. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect (OSTI)

    Yang Na; Zhang Hua; Chen Miao; Shao Liming; He Pinjing

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  6. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico

    SciTech Connect (OSTI)

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2009-07-15

    Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita{sup -1} day{sup -1}. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%)

  7. Emission of volatile sulfur compounds during composting of municipal solid waste (MSW)

    SciTech Connect (OSTI)

    Zhang, Hongyu; Schuchardt, Frank; Li, Guoxue; Yang, Jinbing; Yang, Qingyuan

    2013-04-15

    Highlights: ? We compare the volatile sulfur compounds (VSCs) emissions during three types of municipal solid wastes (MSWs) composting. ? The VSCs released from the kitchen waste composting was significantly higher than that from 15–80 mm fraction of MSW. ? Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. ? Addition of 20% cornstalks could significantly reduce the VSCs emissions during kitchen waste composting. - Abstract: Volatile sulfur compounds (VSCs) are the main source for malodor from composting plants. In this study, the VSCs generated from composting of 15–80 mm municipal solid waste (T0), kitchen waste (T1) and kitchen waste mixed dry cornstalks (T2) were measured in 60 L reactors with forced aeration for a period of 30 days. The VSCs detected in all treatments were hydrogen sulfide (H{sub 2}S), methyl mercaptan (MM), dimethyl sulfide (DMS), carbon bisulfide (CS{sub 2}) and dimethyl disulfide (DMDS). Over 90% of the VSCs emissions occurred during the first 15 days, and reached their peak values at days 4–7. The emission profiles of five VSCs species were significantly correlated with internal materials temperature and outlet O{sub 2} concentration (p < 0.05). Total emissions of the VSCs were 216.1, 379.3 and 126.0 mg kg{sup ?1} (dry matter) for T0, T1 and T2, respectively. Among the five VSCs, H{sub 2}S was the most abundant compound with 39.0–43.0% of total VSCs released. Composting of kitchen waste from separate collection posed a negative influence on the VSC and leachate production because of its high moisture content. An addition of dry cornstalks at a mixing ratio of 4:1 (wet weight) could significantly reduce the VSCs emissions and avoid leachate. Compared to pure kitchen waste, VSCs were reduced 66.8%.

  8. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect (OSTI)

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  9. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-economic Evaluation of the Production of Mixed Alcohols | Department of Energy 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S.

  10. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    SciTech Connect (OSTI)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jürgen; Sirini, Piero

    2013-04-15

    Highlights: ? Natural weathering on BA from MSW and wood waste incineration was evaluated. ? Type of mineral phases, pH and volume stability were considered. ? Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.

  11. Data summary of municipal solid waste management alternatives. Volume 6, Appendix D, Pyrolysis and gasification of MSW

    SciTech Connect (OSTI)

    1992-10-01

    This Appendix summarizes information available in the open literature describing the technology and operating experierice of pyrolysis technology as applied to the management of municipal solid waste (MSW). The literature search, which emphasized the time frame of greatest activity in MSW pyrolysis (i.e., the mid-1960s to the mid-1980s), focused on the scale of application, material feedstock, technical limitations and economic considerations. Smaller scale facilities, either laboratory/research scale (< I TPD) or process development/pilot scale plants (1-20 TPD) for municipal waste and related materials (agricultural, forest residues, industrial wastes, etc.), are mentioned in the literature (275, 495). However, such data are sparse, dated, and often have limited applicability to MSW in general, and for design scale-up in particular. Therefore, greatest emphasis was placed on identifying demonstration scale (20--150 TPD) will commercial seals (> 150 TPD) studies which could be expected to provide economic, environmental, and energy data that can be scaled with possibly less risk. While the promise of pyrolysis of MSW lies in its ability to transform municipal waste into gaseous and liquid chemicals and fuel products, the major limitation is the unproven technical and economic feasibility of a large scale facility.

  12. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics

    SciTech Connect (OSTI)

    Gug, JeongIn Cacciola, David Sobkowicz, Margaret J.

    2015-01-15

    Highlights: • Briquetting was used to produce solid fuels from municipal solid waste and recycled plastics. • Optimal drying, processing temperature and pressure were found to produce stable briquettes. • Addition of waste plastics yielded heating values comparable with typical coal feedstocks. • This processing method improves utilization of paper and plastic diverted from landfills. - Abstract: Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

  13. Municipal solid waste source-separated collection in China: A comparative analysis

    SciTech Connect (OSTI)

    Tai Jun; Zhang Weiqian; Che Yue; Feng Di

    2011-08-15

    A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

  14. A methodology for optimal MSW management, with an application in the waste transportation of Attica Region, Greece

    SciTech Connect (OSTI)

    Economopoulou, M.A.; Economopoulou, A.A.; Economopoulos, A.P.

    2013-11-15

    Highlights: • A two-step (strategic and detailed optimal planning) methodology is used for solving complex MSW management problems. • A software package is outlined, which can be used for generating detailed optimal plans. • Sensitivity analysis compares alternative scenarios that address objections and/or wishes of local communities. • A case study shows the application of the above procedure in practice and demonstrates the results and benefits obtained. - Abstract: The paper describes a software system capable of formulating alternative optimal Municipal Solid Wastes (MSWs) management plans, each of which meets a set of constraints that may reflect selected objections and/or wishes of local communities. The objective function to be minimized in each plan is the sum of the annualized capital investment and annual operating cost of all transportation, treatment and final disposal operations involved, taking into consideration the possible income from the sale of products and any other financial incentives or disincentives that may exist. For each plan formulated, the system generates several reports that define the plan, analyze its cost elements and yield an indicative profile of selected types of installations, as well as data files that facilitate the geographic representation of the optimal solution in maps through the use of GIS. A number of these reports compare the technical and economic data from all scenarios considered at the study area, municipality and installation level constituting in effect sensitivity analysis. The generation of alternative plans offers local authorities the opportunity of choice and the results of the sensitivity analysis allow them to choose wisely and with consensus. The paper presents also an application of this software system in the capital Region of Attica in Greece, for the purpose of developing an optimal waste transportation system in line with its approved waste management plan. The formulated plan was able to: (a) serve 113 Municipalities and Communities that generate nearly 2 million t/y of comingled MSW with distinctly different waste collection patterns, (b) take into consideration several existing waste transfer stations (WTS) and optimize their use within the overall plan, (c) select the most appropriate sites among the potentially suitable (new and in use) ones, (d) generate the optimal profile of each WTS proposed, and (e) perform sensitivity analysis so as to define the impact of selected sets of constraints (limitations in the availability of sites and in the capacity of their installations) on the design and cost of the ensuing optimal waste transfer system. The results show that optimal planning offers significant economic savings to municipalities, while reducing at the same time the present levels of traffic, fuel consumptions and air emissions in the congested Athens basin.

  15. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

    2009-05-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

  16. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  17. Comparison between MSW ash and RDF ash from incineration process

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Comparison between MSW ash and RDF ash from incineration process Citation Details In-Document Search Title: Comparison between MSW ash and RDF ash from incineration process Resource recovery plants with waste sorting process prior to incineration have not been successfully developed in many developing countries. The reuse potential of incineration ash in light of toxicity and compressive strength remains unclear due to the inhomogeneous composition and higher

  18. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  19. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect (OSTI)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ? We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ? The model is robust at multiple time scales with the anticipated accuracy. ? At month-scale, the SARIMA model shows good representation for monthly MSW generation. ? At medium-term time scale, grey relational analysis could yield the MSW generation. ? At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 – 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 – 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term.

  20. Waste Isolation Pilot Plant (WIPP) Source Term Attribution Analysis |

    Office of Environmental Management (EM)

    Department of Energy (WIPP) Source Term Attribution Analysis Waste Isolation Pilot Plant (WIPP) Source Term Attribution Analysis This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in

  1. Nature and Waste Management P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Waste Management P Ltd Jump to: navigation, search Name: Nature and Waste Management (P) Ltd. Place: Kolkata, West Bengal, India Zip: 700027 Product: Kolkatta-based MSW composting...

  2. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  3. Hanford tank residual waste – contaminant source terms and release models

    SciTech Connect (OSTI)

    Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

    2011-08-23

    Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (<1.5 wt%) in other tanks (C-202 and C-203). Gibbsite is a common mineral in tanks with high Al concentrations, while non-crystalline U-Na-C-O-P±H phases are common in the U-rich residual wastes from tanks C-202 and C-203. Iron oxides/hydroxides have been identified in all residual waste samples studied to date. Contaminant release from the residual wastes was studied by conducting batch leach tests using distilled deionized water, a Ca(OH)2-saturated solution, or a CaCO3-saturated water. Uranium release concentrations are highly dependent on waste and leachant compositions with dissolved U concentrations one or two orders of magnitude higher in the tests with high U residual wastes, and also higher when leached with the CaCO3-saturated solution than with the Ca(OH)2-saturated solution. Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

  4. Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes

    SciTech Connect (OSTI)

    Font Vivanco, David; Puig Ventosa, Ignasi; Gabarrell Durany, Xavier

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

  5. BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN

    SciTech Connect (OSTI)

    T.L. Lotz

    1997-02-15

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercial spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.

  6. Oxygen-enriched coincineration of MSW and sewage sludge: Final report

    SciTech Connect (OSTI)

    1994-01-01

    Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

  7. Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  8. The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland

    SciTech Connect (OSTI)

    Horttanainen, M. Teirasvuo, N.; Kapustina, V.; Hupponen, M.; Luoranen, M.

    2013-12-15

    Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

  9. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    SciTech Connect (OSTI)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-03-15

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  10. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study

    SciTech Connect (OSTI)

    De Feo, Giovanni; De Gisi, Sabino; Williams, Ian D.

    2013-04-15

    Highlights: ? Effects of closing MSW facilities on perception of odour and pollution studied. ? Residents’ perception of odour nuisance considerably diminished post closure. ? Odour perception showed an association with distance from MSW facilities. ? Media coverage increased knowledge about MSW facilities and how they operate. ? Economic compensation possibly affected residents’ views and concerns. - Abstract: If residents’ perceptions, concerns and attitudes towards waste management facilities are either not well understood or underestimated, people can produce strong opposition that may include protest demonstrations and violent conflicts such as those experienced in the Campania Region of Italy. The aim of this study was to verify the effects of the closure of solid waste treatment and disposal facilities (two landfills and one RDF production plant) on public perception of odour and environmental pollution. The study took place in four villages in Southern Italy. Identical questionnaires were administered to residents during 2003 and after the closure of the facilities occurred in 2008. The residents’ perception of odour nuisance considerably diminished between 2003 and 2009 for the nearest villages, with odour perception showing an association with distance from the facilities. Post closure, residents had difficulty in identifying the type of smell due to the decrease in odour level. During both surveys, older residents reported most concern about the potentially adverse health impacts of long-term exposure to odours from MSW facilities. However, although awareness of MSW facilities and concern about potentially adverse health impacts varied according to the characteristics of residents in 2003, substantial media coverage produced an equalisation effect and increased knowledge about the type of facilities and how they operated. It is possible that residents of the village nearest to the facilities reported lower awareness of and concern about odour and environmental pollution because the municipality received economic compensation for their presence.

  11. Comparison between MSW ash and RDF ash from incineration process

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Comparison between MSW ash and RDF ash from incineration process Citation Details In-Document Search Title: Comparison between MSW ash and RDF ash from incineration process Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and

  12. Batteries called primary source of lead, cadmium in municipal waste

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The US Environmental Protection Agency reports that lead-acid batteries, such as those used in automobiles, and rechargeable nickel-cadmium batteries used in consumer electronics equipment, are the primary sources of lead and cadmium in municipal trash and garbage. A report prepared for EPA analyzed existing data from 1970 to 1986 and made projections to the year 2000. Lead-acid batteries continue to constitute a major source of lead in garbage even though 80 percent of them are now recycled. As a result, EPA is calling for additional recycling of batteries. This study is an important step in implementing EPA's strategy for helping states and cities achieve the national goal of recycling and reducing 25 percent of all municipal garbage by 1992. The findings on batteries are the result of a study conducted for EPA because of concern over the levels of lead and cadmium found n ash (residue) from municipal waste incinerators. Lead and cadmium are two metals of particular concern in the solid waste stream. The metals can contaminate soil and groundwater when landfilled. They also may be found in some incinerator emissions.

  13. Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy

    Reports and Publications (EIA)

    2007-01-01

    This report summarizes the methodology used to split the heat content of municipal solid waste (MSW) into its biogenic and non-biogenic shares.

  14. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  15. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies

    SciTech Connect (OSTI)

    Rada, E.C.; Ragazzi, M.; Fedrizzi, P.

    2013-04-15

    Highlights: ? As an appropriate solution for MSW management in developed and transient countries. ? As an option to increase the efficiency of MSW selective collection. ? As an opportunity to integrate MSW management needs and services inventories. ? As a tool to develop Urban Mining actions. - Abstract: Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector.

  16. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    However, biomass is not always available in sufficient quantity at a price compatible with ... of Feedstock and Technology Design Case Summary: Production of Mixed Alcohols from ...

  17. A multi-objective programming model for assessment the GHG emissions in MSW management

    SciTech Connect (OSTI)

    Mavrotas, George; Skoulaxinou, Sotiria; Gakis, Nikos; Katsouros, Vassilis; Georgopoulou, Elena

    2013-09-15

    Highlights: • The multi-objective multi-period optimization model. • The solution approach for the generation of the Pareto front with mathematical programming. • The very detailed description of the model (decision variables, parameters, equations). • The use of IPCC 2006 guidelines for landfill emissions (first order decay model) in the mathematical programming formulation. - Abstract: In this study a multi-objective mathematical programming model is developed for taking into account GHG emissions for Municipal Solid Waste (MSW) management. Mathematical programming models are often used for structure, design and operational optimization of various systems (energy, supply chain, processes, etc.). The last twenty years they are used all the more often in Municipal Solid Waste (MSW) management in order to provide optimal solutions with the cost objective being the usual driver of the optimization. In our work we consider the GHG emissions as an additional criterion, aiming at a multi-objective approach. The Pareto front (Cost vs. GHG emissions) of the system is generated using an appropriate multi-objective method. This information is essential to the decision maker because he can explore the trade-offs in the Pareto curve and select his most preferred among the Pareto optimal solutions. In the present work a detailed multi-objective, multi-period mathematical programming model is developed in order to describe the waste management problem. Apart from the bi-objective approach, the major innovations of the model are (1) the detailed modeling considering 34 materials and 42 technologies, (2) the detailed calculation of the energy content of the various streams based on the detailed material balances, and (3) the incorporation of the IPCC guidelines for the CH{sub 4} generated in the landfills (first order decay model). The equations of the model are described in full detail. Finally, the whole approach is illustrated with a case study referring to the application of the model in a Greek region.

  18. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  19. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  20. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    SciTech Connect (OSTI)

    1992-10-01

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  1. DOE Releases Request for Information/Sources Sought for Savannah River Site Liquid Waste Services

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cincinnati -- The U.S. Department of Energy (DOE) today issued a Request for Information (RFI) / Sources Sought for Liquid Waste services at the Savannah River Site (SRS). The current Liquid Waste services contract at SRS is held by Savannah River Remediation, LLC and expires on June 30, 2017.

  2. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    SciTech Connect (OSTI)

    Rentizelas, Athanasios A. Tolis, Athanasios I. Tatsiopoulos, Ilias P.

    2014-01-15

    Highlights: • Combined energy conversion of MSW and agricultural residue biomass is examined. • The model optimizes the financial yield of the investment. • Several system specifications are optimally defined by the optimization model. • The application to a case study in Greece shows positive financial yield. • The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

  3. Geotechnical properties of municipal solid waste at different phases of biodegradation

    SciTech Connect (OSTI)

    Reddy, Krishna R.; Hettiarachchi, Hiroshan; Gangathulasi, Janardhanan; Bogner, Jean E.

    2011-11-15

    Highlights: > Degraded synthetic municipal solid waste (MSW) anaerobically in controlled bench-scale reactors. > Performed laboratory tests to determine geotechnical properties of MSW at different phases of degradation. > Hydraulic conductivity decreased by two orders of magnitude due to degradation. > Compression ratio reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. > Friction angle reduced, but cohesion increased with degradation. - Abstract: This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16-40 kPa for degraded MSW and the friction angle decreased from 35{sup o} for fresh MSW to 28{sup o} for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1{sup o} to 9{sup o}, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1{sup o} to 11{sup o}, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.

  4. A legislator`s guide to municipal solid waste management

    SciTech Connect (OSTI)

    Starkey, D.; Hill, K.

    1996-08-01

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  5. Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach

    SciTech Connect (OSTI)

    Fellner, Johann

    2010-11-15

    The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flows in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r{sup 2} of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K{sub s} = 300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K{sub s} = 0.1 m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain.

  6. Determination of biogas generation potential as a renewable energy source from supermarket wastes

    SciTech Connect (OSTI)

    Alkanok, Gizem; Demirel, Burak Onay, Turgut T.

    2014-01-15

    Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.

  7. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  8. Waste collection in developing countries - Tackling occupational safety and health hazards at their source

    SciTech Connect (OSTI)

    Bleck, Daniela; Wettberg, Wieland

    2012-11-15

    Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

  9. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect (OSTI)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  10. Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography

    SciTech Connect (OSTI)

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  11. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    SciTech Connect (OSTI)

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  12. Anaerobic digestion as a waste disposal option for American Samoa

    SciTech Connect (OSTI)

    Rivard, C

    1993-01-01

    Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

  13. Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

    1996-12-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

  14. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    SciTech Connect (OSTI)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-04-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory.

  15. Source team evaluation for radioactive low-level waste disposal performance assessment

    SciTech Connect (OSTI)

    Cowgill, M.G.; Sullivan, T.M.

    1993-01-01

    Information compiled on the low-level radioactive waste disposed at the three currently operating commercial disposal sites during the period 1987--1989 have been reviewed and processed in order to determine the total activity distribution in terms of waste stream, waste classification and waste form. The review identified deficiencies in the information currently being recorded on shipping manifests and the development of a uniform manifest is recommended (the NRC is currently developing a rule to establish a uniform manifest). The data from waste disposed during 1989 at one of the sites (Richland, WA) were more detailed than the data available during other years and at other sites, and thus were amenable to a more in-depth treatment. This included determination of the distribution of activity for each radionuclide by waste form, and thus enabled these data to be evaluated in terms of the specific needs for improved modeling of releases from waste packages. From the results, preliminary lists have been prepared of the isotopes which might be the most significant from the aspect of the development of a source term model.

  16. Comparison of emissions from landfills, municipal waste combustors, and fossil fuel-fired utilities

    SciTech Connect (OSTI)

    1996-11-01

    Landfilling is the most popular disposal method for managing municipal solid waste (MSW). However, air emissions from MSW landfills have generally been unregulated until recently. Instead, EPA has focused on emissions from municipal waste combustors (MWCs), even though they only manage 15% of MSW generated in the United States. In the past, little data have been available comparing landfill and MWC air emissions. Such information is provided by this paper. It also compares emissions from waste-to-energy MWCs and fossil fuel-fired utilities with equivalent electrical generation capacity. 1 refs., 6 tabs.

  17. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    1992-10-01

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  18. Waste-to-Energy Evaluation: U.S. Virgin Islands

    SciTech Connect (OSTI)

    Davis, J.; Hasse, S.; Warren, A.

    2011-08-01

    This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

  19. Data summary of municipal solid waste management alternatives. Volume 1, Report text

    SciTech Connect (OSTI)

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste`s origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  20. Slowing the waste behemoth: Source reduction is overshadowed by recycling's success

    SciTech Connect (OSTI)

    Fishbein, B.; Saphire, D.

    1992-08-01

    The article describes the benefits from source reduction as the major and most cost effective way to solve the garbage issue that is overwhelming the United States. Recycling has emerged as the solution to the garbage crisis, however there is a growing recognition that it is not a panacea. Although source reduction is recognized as the best answer, there is a big information gap. Industry has been exploring opportunities for source reduction initiatives that will improve operating efficiency, cut costs and reduce the amount of waste. Several examples of source reduction in the business and industrial sector are cited, including substituting reusable blankets for shipping furniture rather than using cardboard containers; promotion of double-sided copying to reduce paper usage; and refilling beer bottles. Others, such as public composting programs and government source reduction programs that work are discussed.

  1. Assessment and comparison of waste management costs for nuclear and fossil energy sources

    SciTech Connect (OSTI)

    Long, F.G.; Zaccai, H.; Ward, R.D.; McNicholas, P.; Albers, R.W.

    1993-12-31

    This paper presents the key results of an assessment of waste management costs undertaken by a group of international experts on behalf of the IAEA, Vienna. The objective of this work is to provide an assessment and comparison of the impact of waste management on the cost of electricity production from nuclear and other energy sources. The study focuses on the cost of managing wastes arising from the production of electricity from a PWR, with and without reprocessing, a coal-fueled conventional steam cycle, and a gas-fueled combined cycle; using data available in the open literature. This study has only assessed the impact of those waste management costs which are typically internalized by an electric utility and passed on as part of the price charged to customers. The data utilized in the study is typically in range form, reflecting worldwide experience with such factors as technology, regulatory requirements and economic parameters. To the extent that estimates can be identified in the literature the study has attempted to include costs associated with waste management from all stages of the fuel cycles. This paper also includes a discussion of future developments which may influence the results of this work including the effect of technology advances and changes in regulatory requirements.

  2. Thermo-gasification of steam classified municipal solid waste

    SciTech Connect (OSTI)

    Eley, M.H.; Sebghati, J.M.

    1996-12-31

    Municipal solid waste (MSW) has been processed using a procedure called steam classification. This material has been examined for use as a combustion fuel, feedstock for composting, and cellulytic enzyme hydrolysis. An initial study has been conducted using a prototype plasma arc pyrolysis system to transform the steam classified MSW into a pyrolysis gas and vitrified material. With 136 kg (300 lbs) of the steam classified MSW pyrolysized at a feed rate of 22.7 kg/hour (50 lbs/hour), samples of the gas and grasslike material were captured for analysis. A presentation of the emission data and details on the system used will be presented.

  3. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city

    SciTech Connect (OSTI)

    Hefa Cheng; Yanguo Zhang; Aihong Meng; Qinghai Li

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (about 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m{sup 3} landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy. 34 refs., 1 fig., 4 tabs.

  4. Data summary of municipal solid waste management alternatives. Volume I: report text

    SciTech Connect (OSTI)

    1992-10-01

    This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

  5. Discussion of ``The anaerobic digestion of organic waste``

    SciTech Connect (OSTI)

    1996-12-31

    With respect to economics, the presenter indicated that anaerobic digestion of municipal solid waste (MSW) may not be economical based on the value of the energy produced. This will most likely be the case, partly because of the low energy prices in this country. These facilities would have to rely on tipping fees paid for receiving and processing the waste. As stated earlier, the high solids process will help improve the economics. While there are said to be 20 plants operating in Europe on MSW, there seems to be none in the US, and that is the condition this paper addresses. It was hoped that by exploring the benefits of co-digestion and stimulation, and showing how digestible certain components of MSW can be, more operators of existing anaerobic facilities would consider expanding their operations to include at least some elements of MSW.

  6. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  7. Modeling and comparative assessment of municipal solid waste gasification for energy production

    SciTech Connect (OSTI)

    Arafat, Hassan A. Jijakli, Kenan

    2013-08-15

    Highlights: • Study developed a methodology for the evaluation of gasification for MSW treatment. • Study was conducted comparatively for USA, UAE, and Thailand. • Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. • The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

  8. Material and energy recovery in integrated waste management systems: Project overview and main results

    SciTech Connect (OSTI)

    Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Saccani, Cesare

    2011-09-15

    Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.

  9. Waste heat recovery from the European Spallation Source cryogenic helium plants - implications for system design

    SciTech Connect (OSTI)

    Jurns, John M.; Bäck, Harald; Gierow, Martin

    2014-01-29

    The European Spallation Source (ESS) neutron spallation project currently being designed will be built outside of Lund, Sweden. The ESS design includes three helium cryoplants, providing cryogenic cooling for the proton accelerator superconducting cavities, the target neutron source, and for the ESS instrument suite. In total, the cryoplants consume approximately 7 MW of electrical power, and will produce approximately 36 kW of refrigeration at temperatures ranging from 2-16 K. Most of the power consumed by the cryoplants ends up as waste heat, which must be rejected. One hallmark of the ESS design is the goal to recycle waste heat from ESS to the city of Lund district heating system. The design of the cooling system must optimize the delivery of waste heat from ESS to the district heating system and also assure the efficient operation of ESS systems. This report outlines the cooling scheme for the ESS cryoplants, and examines the effect of the cooling system design on cryoplant design, availability and operation.

  10. The impact of NRC guidance on concentration averaging on low level waste sealed source disposal - 11424

    SciTech Connect (OSTI)

    Whitworth, Julia; Stewart, Bill; Cuthbertson, Abigail

    2011-01-20

    As part of its ongoing efforts to revise the Nuclear Regulatory Commission's (NRC) current position on blending to be risk-informed and performance based and its current review of the low-level waste classification codified in 10 CFR 61.55, the Nuclear Regulatory Commission (NRC) has stated that it may review the 1995 'Branch Technical Position on Concentration Averaging and Encapsulation' (BTP), which is still commonly used today. Such a review will have timely advantages, given the lack of commercial disposal availability within the United States for radioactive sealed sources that are in wide beneficial use across the country. The current application of the BTP guidance has resulted in an effective cap on commercial disposal for sources larger than 1.1 TBq (30 Ci). This paper will analyze how the BTP has been implemented with respect to sealed sources, what the implications have been for commercial disposal availability, and whether alternative packaging configurations could be considered for disposal.

  11. RADIOACTIVE WASTE MANAGEMENT IN THE USSR: A REVIEW OF UNCLASSIFIED SOURCES, 1963-1990

    SciTech Connect (OSTI)

    Bradley, D. J.; Schneider, K. J.

    1990-03-01

    The Soviet Union operates a vast and growing radioactive waste management system. Detailed information on this system is rare and a general overall picture only emerges after a review of a great deal of literature. Poor waste management practices and slow implementation of environmental restoration activities have caused a great deal of national concern. The release of information on the cause and extent of an accident involving high-level waste at the Kyshtym production reactor site in 1957, as well as other contamination at the site, serve to highlight past Soviet waste management practices. As a result, the area of waste management is now receiving greater emphasis, and more public disclosures. Little is known about Soviet waste management practices related to uranium mining, conversion, and fuel fabrication processes. However, releases of radioactive material to the environment from uranium mining and milling operations, such as from mill tailings piles, are causing public concern. Official Soviet policy calls for a closed fuel cycle, with reprocessing of power reactor fuel that has been cooled for five years. For power reactors, only VVER-440 reactor fuel has been reprocessed in any significant amount, and a decision on the disposition of RBMK reactor fuel has been postponed indefinitely. Soviet reprocessing efforts are falling behind schedule; thus longer storage times for spent fuel will be required, primarily at multiple reactor stations. Information on reprocessing in the Soviet Union has been severely limited until 1989, when two reprocessing sites were acknowledged by the Soviets. A 400-metric ton (MT) per year reprocessing facility, located at Kyshtym, has been operational since 1949 for reprocessing production reactor fuel. This facility is reported to have been reprocessing VVER-440 and naval reactor fuel since 1978, with about 2000 MT of VVER-440 fuel being reprocessed by July 1989. A second facility, located near Krasnoyarsk and having a 1500 MT per year capacity as the first of several modules, was about 30% completed by July 1989. The completion of this plant was subsequently "indefinitely postponed." The initial reprocessing scheme at the Kyshtym site used sodium uranyl acetate precipitation from fuel dissolved in nitric acid solutions. The basic method~ ology now appears to be based on the conventional PUREX process. Dry reprocessing on a pilot or laboratory scale has been under way in Dimitrovgrad since 1984, and a larger unit is now being built, according to the French CEA. Perhaps significantly, much research is being done on partitioning high-level waste into element fractions. The Soviets appear to have the technology to remove radioactive noble gases released during reprocessing operations; however, there are no indications of its implementation. Millions of curies of liquid low- and intermediate-level wastes have been disposed of by well injection into underground areas where they were supposedly contained by watertight rock strata. Some gaseous wastes were also disposed of by well injection. This practice is not referred to in recent literature and thus may not be widely used today. Rather, it appears that these waste streams are now first treated to reduce volume, and then solidified using bitumen or concrete. These solidified liquid wastes from Soviet nuclear power reactor operations, along with solid wastes, are disposed of in shallow-land burial sites located at most large power reactor stations. In addition, 35 shallow-land burial sites have been alluded to by the Soviets for disposal of industrial, medical, and research low-level wastes as well as ionization sources. Research on tritium-bearing and other gaseous wastes is mentioned, as well as a waste minimization program aimed at reducing the volume of waste streams by 30%. The Soviets have announced that their high-level waste management plan is to 1) store liquid wastes for 3-5 years; 2) incorporate the waste into glass (at a final glass volume of 100-150 liters/MT of fuel reprocessed); 3) set it aside in air-cooled storage

  12. Distinguishing Between Site Waste, Natural, and Other Sources of Contamination at Uranium and Thorium Contaminated Sites - 12274

    SciTech Connect (OSTI)

    Hays, David C. [United States Army Corps of Engineers, Kansas City, Missouri, 64106 (United States)

    2012-07-01

    Uranium and thorium processing and milling sites generate wastes (source, byproduct, or technically enhanced naturally occurring material), that contain contaminants that are similar to naturally occurring radioactive material deposits and other industry wastes. This can lead to mis-identification of other materials as Site wastes. A review of methods used by the US Army Corps of Engineers and the Environmental Protection Agency to distinguish Site wastes from potential other sources, enhanced materials, and natural deposits, at three different thorium mills was conducted. Real case examples demonstrate the importance of understanding the methods of distinguishing wastes. Distinguishing between Site wastes and enhanced Background material can be facilitated by establishing and applying a formal process. Significant project cost avoidance may be realized by distinguishing Site wastes from enhanced NORM. Collection of information on other potential sources of radioactive material and physical information related to the potential for other radioactive material sources should be gathered and reported in the Historical Site Assessment. At a minimum, locations of other such information should be recorded. Site decision makers should approach each Site area with the expectation that non site related radioactive material may be present and have a process in place to distinguish from Site and non Site related materials. (authors)

  13. Reducing Waste and Harvesting Energy This Halloween | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to

  14. Comparison between MSW ash and RDF ash from incineration process...

    Office of Scientific and Technical Information (OSTI)

    Solid Waste Processing Div.; Environmental Protection Agency, Research Triangle Park, NC (United States). Air Pollution Technology Branch Country of Publication: United States ...

  15. Assessment of factors affecting boiler tube lifetime in waste-fired generators: New opportunities for research and technology development

    SciTech Connect (OSTI)

    Wright, I.; Krause, H.H.

    1996-07-01

    The disposal of municipal solid waste (MSW) is a major problem in numerous communities in the United States. In this country, approximately 195.7 million tons of MSW were produced in 1990 of which 17 percent was recovered for recycling or composting, 16 percent was combusted, and about 67 percent was disposed of in landfills. This paper discusses the combustion of refuse derived fuels and municipal wastes. The corrosion of the alloys used in boilers is described.

  16. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    SciTech Connect (OSTI)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

  17. An overview of municipal solid waste management in China

    SciTech Connect (OSTI)

    Chen Xudong; Geng Yong; Fujita, Tsuyoshi

    2010-04-15

    Municipal solid waste management (MSWM) in China warrants particular attention as China has become the largest MSW generator in the world and the total amount of MSW it produces continues to increase. In recent years, central and local governments have made great efforts to improve MSWM in China. New regulations and policies have been issued, urban infrastructure has been improved, and commercialization and international cooperation have been encouraged. Considering these developments, an overview is necessary to analyze the current state as well as new opportunities and challenges regarding MSWM in China. This paper shows that since the late 1990s, the amount of MSW collected has been largely decoupled from economic growth and incineration has become an increasingly widespread treatment method for MSW. We identify and discuss four major challenges and barriers related to China's MSWM, and propose an integrated management framework to improve the overall eco-efficiency of MSWM.

  18. Municipal solid waste effective stress analysis

    SciTech Connect (OSTI)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-12-15

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  19. Municipal solid-waste management in Istanbul

    SciTech Connect (OSTI)

    Kanat, Gurdal

    2010-08-15

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  20. Radiological Characterization Technical Report on Californium-252 Sealed Source Transuranic Debris Waste for the Off-Site Source Recovery Project at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Feldman, Alexander

    2014-04-24

    This document describes the development and approach for the radiological characterization of Cf-252 sealed sources for shipment to the Waste Isolation Pilot Plant. The report combines information on the nuclear material content of each individual source (mass or activity and date of manufacture) with information and data on the radionuclide distributions within the originating nuclear material. This approach allows for complete and accurate characterization of the waste container without the need to take additional measurements. The radionuclide uncertainties, developed from acceptable knowledge (AK) information regarding the source material, are applied to the summed activities in the drum. The AK information used in the characterization of Cf-252 sealed sources has been qualified by the peer review process, which has been reviewed and accepted by the Environmental Protection Agency.

  1. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  2. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  3. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  4. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996

    SciTech Connect (OSTI)

    1996-07-01

    The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

  5. Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H

    SciTech Connect (OSTI)

    Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.

    1995-04-01

    This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

  6. Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment

    SciTech Connect (OSTI)

    Hicks, D.S.

    1996-03-01

    This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

  7. Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixed Alcohols from Municipal Solid Waste via Gasification March 2010 Adapted from reports prepared by: C Valkenburg Y Zhu CW Walton BL Thompson MA Gerber SB Jones DJ Stevens of the Pacifc Northwest National Laboratory A two volume report "Municipal Solid Waste (MSW) to Liquid Fuels, Volume 1: Availability of Feedstock and Technology" & "Municipal Solid Waste (MSW) to Liquid Fuels, Volume 2: A Techno-economic Evalua- tion of the Production of Mixed Alcohols" is available

  8. The use of commercial and industrial waste in energy recovery systems - A UK preliminary study

    SciTech Connect (OSTI)

    Lupa, Christopher J.; Ricketts, Lois J.; Sweetman, Andy; Herbert, Ben M.J.

    2011-08-15

    Highlights: > Commercial and industrial waste samples collected. > Samples analysed for calorific value, moisture, ash and elemental composition. > Values similar to those of municipal solid waste and refuse derived fuel. > Sampled waste could be used in current energy recovery systems with minimal retrofitting. > Sampled waste could account 6.5% towards the UK's 2020 renewable electricity target if all qualifying waste is used. - Abstract: With 2020 energy targets set out by the EU fast approaching, the UK is trying to source a higher proportion of its energy from renewable resources. Coupled with this, a growing population and increasing trends in consumer demand have resulted in national waste loads increasing. A possible solution to both issues is energy-from-waste (EfW) technologies. Many studies have focused on municipal solid waste (MSW) as a potential feedstock, but appear to overlook the potential benefits of commercial and industrial waste (C and IW). In this study, samples of C and IW were collected from three North West waste management companies and Lancaster University campus. The samples were tested for their gross and net calorific value, moisture content, ash content, volatile matter, and also elemental composition to determine their suitability in EfW systems. Intra-sample analysis showed there to be little variation between samples with the exception two samples, from waste management site 3, which showed extensive variation with regards to net calorific value, ash content, and elemental analysis. Comparisons with known fuel types revealed similarities between the sampled C and IW, MSW, and refuse derived fuel (RDF) thereby justifying its potential for use in EfW systems. Mean net calorific value (NCV) was calculated as 9.47 MJ/kg and concentrations of sulphur, nitrogen, and chlorine were found to be below 2%. Potential electrical output was calculated using the NCV of the sampled C and IW coupled with four differing energy generation technologies. Using a conventional incinerator with steam cycle, total electrical output was calculated as 24.9 GWh, based on a plant operating at 100,000 tpa. This value rose to 27.0 GWh when using an integrated gasification combined cycle. A final aspect of this study was to deduce the potential total national electrical output if all suitable C and IW were to be used in EfW systems. Using incineration coupled with a steam turbine, this was determined to be 6 TWh, 1.9% of the national demand thereby contributing 6.5% towards the UK's 2020 renewable electricity target.

  9. Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation

    SciTech Connect (OSTI)

    Gedam, Vidyadhar V.; Regupathi, Iyyaswami

    2012-03-15

    In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation highly depends on the process parameters, like microwave power, microwave absorbers, and time of irradiation. The thoroughness of pyrolysis and product recovery were studied by changing the abovesaid variables. Pyrolysis of MSW occurs in the power rating range of 450-850 W-outside this power rating range, pyrolysis is not possible. Experiments were carried out using various microwave absorbers (i.e., graphite, charcoal, and iron) to enhance the pyrolysis even at lower power rating. The results show that the pyrolysis of MSW was possible even at low power ratings. The major composition of the pyrolysis gaseous product were analyzed with GC-MS which includes CO{sub 2}, CO, CH{sub 4}, etc.

  10. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  11. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect (OSTI)

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  12. Radioactive waste management in the USSR: A review of unclassified sources. Volume 2

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  13. Radioactive waste management in the USSR: A review of unclassified sources

    SciTech Connect (OSTI)

    Bradley, D.J.

    1991-03-01

    The Soviet Union does not currently have an overall radioactive waste management program or national laws that define objectives, procedures, and standards, although such a law is being developed, according to the Soviets. Occupational health and safety does not appear to receive major attention as it does in Western nations. In addition, construction practices that would be considered marginal in Western facilities show up in Soviet nuclear power and waste management operations. The issues involved with radioactive waste management and environmental restoration are being investigated at several large Soviet institutes; however, there is little apparent interdisciplinary integration between them, or interaction with the USSR Academy of Sciences. It is expected that a consensus on technical solutions will be achieved, but it may be slow in coming, especially for final disposal of high-level radioactive wastes and environmental restoration of contaminated areas. Meanwhile, many treatment, solidification, and disposal options for radioactive waste management are being investigated by the Soviets.

  14. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

  15. Process and technological aspects of municipal solid waste gasification. A review

    SciTech Connect (OSTI)

    Arena, Umberto

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

  16. Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994

    SciTech Connect (OSTI)

    1995-09-01

    U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  17. Optimal planning for the sustainable utilization of municipal solid waste

    SciTech Connect (OSTI)

    Santibańez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  18. The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case

    SciTech Connect (OSTI)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-15

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

  19. Development of a tool dedicated to the evaluation of hydrogen term source for technological Wastes: assumptions, physical models, and validation

    SciTech Connect (OSTI)

    Lamouroux, C.

    2013-07-01

    In radioactive waste packages hydrogen is generated, in one hand, from the radiolysis of wastes (mainly organic materials) and, in the other hand, from the radiolysis of water content in the cement matrix. In order to assess hydrogen generation 2 tools based on operational models have been developed. One is dedicated to the determination of the hydrogen source term issues from the radiolysis of the wastes: the STORAGE tool (Simulation Tool Of Emission Radiolysis Gas), the other deals with the hydrogen source term gas, produced by radiolysis of the cement matrices (the Damar tool). The approach used by the STORAGE tool for assessing the production rate of radiolysis gases is divided into five steps: 1) Specification of the data packages, in particular, inventories and radiological materials defined for a package medium; 2) Determination of radiochemical yields for the different constituents and the laws of behavior associated, this determination of radiochemical yields is made from the PRELOG database in which radiochemical yields in different irradiation conditions have been compiled; 3) Definition of hypothesis concerning the composition and the distribution of contamination inside the package to allow assessment of the power absorbed by the constituents; 4) Sum-up of all the contributions; And finally, 5) validation calculations by comparison with a reduced sampling of packages. Comparisons with measured values confirm the conservative character of the methodology and give confidence in the safety margins for safety analysis report.

  20. Measuring bulky waste arisings in Hong Kong

    SciTech Connect (OSTI)

    Chung Shanshan; Lau, Ka-yan Winifred; Zhang Chan

    2010-05-15

    All too often, waste authorities either assume that they know enough about their bulky waste stream or that it is too insignificant to deserve attention. In this paper, we use Hong Kong as an example to illustrate that official bulky waste figures can actually be very different from the reality and therefore important waste management decisions made based on such statistics may be wrong too. This study is also the first attempt in Hong Kong to outline the composition of bulky waste. It was found that about 342 tonnes/day of wood waste were omitted by official statistics owing to incomplete records on actual bulky waste flow. This is more than enough to provide all the feedstock needed for one regular-sized wood waste recycling facility in Hong Kong. In addition, the proportion of bulky waste in the municipal solid waste (MSW) streams in Hong Kong should be about 6.1% instead of the officially stated 1.43%. Admittedly, there are limitations with this study. Yet, present findings are suggestive of significant MSW data distortion in Hong Kong.

  1. Examining the effectiveness of municipal solid waste management systems: An integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan

    SciTech Connect (OSTI)

    Weng, Yu-Chi; Fujiwara, Takeshi

    2011-06-15

    In order to develop a sound material-cycle society, cost-effective municipal solid waste (MSW) management systems are required for the municipalities in the context of the integrated accounting system for MSW management. Firstly, this paper attempts to establish an integrated cost-benefit analysis (CBA) framework for evaluating the effectiveness of MSW management systems. In this paper, detailed cost/benefit items due to waste problems are particularly clarified. The stakeholders of MSW management systems, including the decision-makers of the municipalities and the citizens, are expected to reconsider the waste problems in depth and thus take wise actions with the aid of the proposed CBA framework. Secondly, focusing on the financial cost, this study develops a generalized methodology to evaluate the financial cost-effectiveness of MSW management systems, simultaneously considering the treatment technological levels and policy effects. The impacts of the influencing factors on the annual total and average financial MSW operation and maintenance (O and M) costs are analyzed in the Taiwanese case study with a demonstrative short-term future projection of the financial costs under scenario analysis. The established methodology would contribute to the evaluation of the current policy measures and to the modification of the policy design for the municipalities.

  2. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect (OSTI)

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  3. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    SciTech Connect (OSTI)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  4. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    SciTech Connect (OSTI)

    Chanakya, H.N. Sharma, Isha; Ramachandra, T.V.

    2009-04-15

    The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

  5. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  6. Sustainable recycling of municipal solid waste in developing countries

    SciTech Connect (OSTI)

    Troschinetz, Alexis M. Mihelcic, James R.

    2009-02-15

    This research focuses on recycling in developing countries as one form of sustainable municipal solid waste management (MSWM). Twenty-three case studies provided municipal solid waste (MSW) generation and recovery rates and composition for compilation and assessment. The average MSW generation rate was 0.77 kg/person/day, with recovery rates from 5-40%. The waste streams of 19 of these case studies consisted of 0-70% recyclables and 17-80% organics. Qualitative analysis of all 23 case studies identified barriers or incentives to recycling, which resulted in the development of factors influencing recycling of MSW in developing countries. The factors are government policy, government finances, waste characterization, waste collection and segregation, household education, household economics, MSWM (municipal solid waste management) administration, MSWM personnel education, MSWM plan, local recycled-material market, technological and human resources, and land availability. Necessary and beneficial relationships drawn among these factors revealed the collaborative nature of sustainable MSWM. The functionality of the factor relationships greatly influenced the success of sustainable MSWM. A correlation existed between stakeholder involvement and the three dimensions of sustainability: environment, society, and economy. The only factors driven by all three dimensions (waste collection and segregation, MSWM plan, and local recycled-material market) were those requiring the greatest collaboration with other factors.

  7. Life-cycle assessment of municipal solid waste management alternatives with consideration of uncertainty: SIWMS development and application

    SciTech Connect (OSTI)

    El Hanandeh, Ali; El-Zein, Abbas

    2010-05-15

    This paper describes the development and application of the Stochastic Integrated Waste Management Simulator (SIWMS) model. SIWMS provides a detailed view of the environmental impacts and associated costs of municipal solid waste (MSW) management alternatives under conditions of uncertainty. The model follows a life-cycle inventory approach extended with compensatory systems to provide more equitable bases for comparing different alternatives. Economic performance is measured by the net present value. The model is verified against four publicly available models under deterministic conditions and then used to study the impact of uncertainty on Sydney's MSW management 'best practices'. Uncertainty has a significant effect on all impact categories. The greatest effect is observed in the global warming category where a reversal of impact direction is predicted. The reliability of the system is most sensitive to uncertainties in the waste processing and disposal. The results highlight the importance of incorporating uncertainty at all stages to better understand the behaviour of the MSW system.

  8. An application of the theory of planned behaviour to study the influencing factors of participation in source separation of food waste

    SciTech Connect (OSTI)

    Karim Ghani, Wan Azlina Wan Ab.; Rusli, Iffah Farizan; Biak, Dayang Radiah Awang; Idris, Azni

    2013-05-15

    Highlights: ? Theory of planned behaviour (TPB) has been conducted to identify the influencing factors for participation in source separation of food waste using self administered questionnaires. ? The findings suggested several implications for the development and implementation of waste separation at home programme. ? The analysis indicates that the attitude towards waste separation is determined as the main predictors where this in turn could be a significant predictor of the repondent’s actual food waste separation behaviour. ? To date, none of similar have been reported elsewhere and this finding will be beneficial to local Authorities as indicator in designing campaigns to promote the use of waste separation programmes to reinforce the positive attitudes. - Abstract: Tremendous increases in biodegradable (food waste) generation significantly impact the local authorities, who are responsible to manage, treat and dispose of this waste. The process of separation of food waste at its generation source is identified as effective means in reducing the amount food waste sent to landfill and can be reused as feedstock to downstream treatment processes namely composting or anaerobic digestion. However, these efforts will only succeed with positive attitudes and highly participations rate by the public towards the scheme. Thus, the social survey (using questionnaires) to analyse public’s view and influencing factors towards participation in source separation of food waste in households based on the theory of planned behaviour technique (TPB) was performed in June and July 2011 among selected staff in Universiti Putra Malaysia, Serdang, Selangor. The survey demonstrates that the public has positive intention in participating provided the opportunities, facilities and knowledge on waste separation at source are adequately prepared by the respective local authorities. Furthermore, good moral values and situational factors such as storage convenience and collection times are also encouraged public’s involvement and consequently, the participations rate. The findings from this study may provide useful indicator to the waste management authorities in Malaysia in identifying mechanisms for future development and implementation of food waste source separation activities in household programmes and communication campaign which advocate the use of these programmes.

  9. RD & D priorities for energy production and resource conservation from municipal solid waste

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

  10. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei; Huppes, Gjalt; Voet, Ester van der

    2011-06-15

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  11. Production of energy and high-value chemicals from municipal solid waste

    SciTech Connect (OSTI)

    Colucci-Raeos, J.A.; Saliceti-Piazza, L.; Herncndez, A.

    1996-12-31

    Landfills have been used for decades in Puerto Rico as the only alternative for the disposal of municipal solid waste (MSW). In the present, 7,300 metric tons (8,000 tons) of MSW are generated on a daily basis, of which about 43% are generated in the San Juan Metropolitan Area. Garbage dumps in the Metropolitan Area have an estimated useful life of two years from now. Furthermore, Puerto Rico`s average daily per capita generation exceeds that of US and is almost as twice as that of Europe. A novel alternative for the disposal of MSW needs to be implemented. The University of Puerto Rico (Department of Chemical Engineering), in a collaborative effort with the Sandia National Laboratory, the National Renewable Energy Laboratory, Puerto Rico`s Energy Affairs Administration, and the Institute of Chemical Engineers of Puerto Rico, have conceptualized a research program that would address the utilization of MSW and other agricultural residues for the generation of energy and/or high-value chemical products. The concept, {open_quotes}biorefinery{close_quotes} would consist of the collection of MSW and other agricultural wastes, separation of materials for recycling (glass, ceramics, metals), and use of gasification and/or hydrolysis of the screened material to produce energy and/or chemicals (such as alcohols and oxyaromatics).

  12. SOURCE?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEEDplatform@ee.doe.gov. WHAT IS 0PEN SOURCE? Open source means that the base software code is publically available so that anyone has the ability to access and contribute to the code OPEN SOURCE BENEFITS * Platform is flexible and adaptable * Developers can create proprietary platform add- ons while still maintaining an inter-operable system * A national brand and standard is created * Local jurisdiction officials can have input on the direction and maintanence of the core code * The code base

  13. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    SciTech Connect (OSTI)

    Shepherd, P.

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

  14. Overview of the energy from a waste facility at Occidental Chemical

    SciTech Connect (OSTI)

    Blasius, G.F.

    1985-01-01

    The startup and operational problems and solutions concerned with processing and burning MSW to produce steam and electricity at Occidental's Niagara Falls chemical complex are reviewed. The facility was designed to burn 2000 tons per day of municipal waste, and produce 600,000number/HR steam and 37 mw of electricity.

  15. Energy from waste

    SciTech Connect (OSTI)

    Klass, D.L.; Sen, C.T.

    1987-07-01

    Each day, U.S. cities must dispose of more than 450,000 tons of municipal solid waste (MSW). (See box for definitions of this and other terms.) Historically, it has been reported that 95% of this MSW has been buried in garbage dumps and landfills, but this method is becoming unacceptable as space becomes scarcer and much more costly. According to an estimate by Combustion Engineering Co., a quarter of U.S. cities will run out of landfill space in the next five years, and 80% of them over the next decade. The vast majority of these cities have yet to identify new landfill sites. Meanwhile, the cost of landfilling in some urban areas has risen from nearly /sup ll/ton in 1970 to /50/ton or more and is projected to go even higher. Collection and transportation charges add even more to the cost of disposal. The recent news story of a garbage-laden barge from Long Island sailing national and international waterways in desperate search of a disposal site is a dramatic example of this problem.

  16. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant...

  17. Composting: Dirty riches. [Composting organic wastes from the municiple solid waste stream

    SciTech Connect (OSTI)

    Sachs, A.

    1993-08-01

    Up to three-quarters of municiple solid waste (MSW) is organic, readily biodegradable material, such as food, leaves, and paper. If this waste were allowed to root properly, the solid waste crisis would be less serious. However, rotting isn't easy in a tightly packed mountain of garbage at a typical landfill. The last few years have at least established composing as a rising green industry, especially in the most populous regions of the developed world. However, the variety of composting programs is too inefficient to divert any more than a tiny fraction of the compostable waste stream away from landfills and incinerators. This article discusses the problems of mixed municiple solid wastes and composting organic wastes, and possible solutions.

  18. Determining the Impact of MSW as a Feedstock Blending Agent Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE BioEnergy Technologies Office (BETO) Project Peer Review Date: March 23 th , 2015 Technology Review Area: Feedstock- Conversion Interface Determining the Impact of MSW as a Feedstock Blending Agent (WBS 2.2.1.103- 105) Principal Investigators: Seema Singh (SNL), Vicki Thompson (INL), Todd Pray (ABPDU) Organizations: Sandia National Lab, Idaho National Lab, Advanced Biofuels Process Demonstration Unit 2 | Bioenergy Technologies Office Goal Statement * Goal and outcome: Identify the optimal

  19. Lessons Learned from Characterization, Performance Assessment, and EPA Regulatory Review of the 1996 Actinide Source Term for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Larson, K.W.; Moore, R.C.; Nowak, E.J.; Papenguth, H.W.; Jow, H.

    1999-03-22

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of transuranic waste from defense activities. In 1996, the DOE submitted the Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the US Environmental Protection Agency (EPA). The CCA included a probabilistic performance assessment (PA) conducted by Sandia National Laboratories to establish compliance with the quantitative release limits defined in 40 CFR 191.13. An experimental program to collect data relevant to the actinide source term began around 1989, which eventually supported the 1996 CCA PA actinide source term model. The actinide source term provided an estimate of mobile dissolved and colloidal Pu, Am, U, Th, and Np concentrations in their stable oxidation states, and accounted for effects of uncertainty in the chemistry of brines in waste disposal areas. The experimental program and the actinide source term included in the CCA PA underwent EPA review lasting more than 1 year. Experiments were initially conducted to develop data relevant to the wide range of potential future conditions in waste disposal areas. Interim, preliminary performance assessments and actinide source term models provided insight allowing refinement of experiments and models. Expert peer review provided additional feedback and confidence in the evolving experimental program. By 1995, the chemical database and PA predictions of WIPP performance were considered reliable enough to support the decision to add an MgO backfill to waste rooms to control chemical conditions and reduce uncertainty in actinide concentrations, especially for Pu and Am. Important lessons learned through the characterization, PA modeling, and regulatory review of the actinide source term are (1) experimental characterization and PA should evolve together, with neither activity completely dominating the other, (2) the understanding of physical processes required to develop conceptual models is greater than can be represented in PA models, (3) experimentalists should be directly involved in model and parameter abstraction and simplification for PA, and (4) external expert review should be incorporated early in a project to increase confidence long before regulatory reviews begin.

  20. Synergistic Utilization of Coal Fines and Municipal Solid Waste in Coal-Fired Boilers. Phase I Final Report

    SciTech Connect (OSTI)

    V. Zamansky; P. Maly; M. Klosky

    1998-06-12

    A feasibility study was performed on a novel concept: to synergistically utilize a blend of waste coal fines with so-called E-fuel for cofiring and reburning in utility and industrial boilers. The E-fuel is produced from MSW by the patented EnerTech's slurry carbonization process. The slurry carbonization technology economically converts MSW to a uniform, low-ash, low-sulfur, and essentially chlorine-free fuel with energy content of about 14,800 Btu/lb.

  1. Municipal solid waste management in Africa: Strategies and livelihoods in Yaounde, Cameroon

    SciTech Connect (OSTI)

    Parrot, Laurent Sotamenou, Joel; Dia, Bernadette Kamgnia

    2009-02-15

    This paper provides an overview of the state of municipal solid waste (MSW) management in the capital of Cameroon, Yaounde, and suggests some possible solutions for its improvement. The institutional, financial, and physical aspects of MSW management, as well as the livelihoods of the population, were analyzed. Our study revealed that distances and lack of infrastructure have a major impact on waste collection. Garbage bins are systematically mentioned as the primary infrastructure needed by the population in all quarters, whether it be a high or low standard community. The construction of transfer stations and the installation of garbage bins are suggested as a solution to reduce distances between households and garbage bins, thus improving waste collection vehicle accessibility. Transfer stations and garbage bins would enable the official waste collection company to expand its range of services and significantly improve waste collection rates. Several transfer stations have already been set up by non-governmental organizations (NGOs) and community-based organizations (CBOs), but they require technical, institutional and funding support. Research is needed on the quality and safety of community-made compost, as well as on soil fertility in urban and peri-urban areas. Most of the stakeholders, municipalities, the official waste collection company and households acknowledge the need for better monitoring and regulation of MSW management. The urban community of Yaounde also needs to maintain its support of MSW management and promote the sustainability of NGOs and CBOs operating in underserved areas not yet covered by adequate infrastructures. A major opportunity for implementation of such waste policy is the heavily indebted poor countries (HIPC) program dedicated to urban planning and good governance.

  2. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste

    SciTech Connect (OSTI)

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G.

    2013-10-15

    Highlights: ? The isotopic signature of ?{sup 13}C-DIC of leachates is linked to the reactivity of MSW. ? Isotopic signatures of leachates depend on aerobic/anaerobic conditions in landfills. ? In situ aeration of landfills can be monitored by isotope analysis in leachate. ? The isotopic analysis of leachates can be used for assessing the stability of MSW. ? ?{sup 13}C-DIC of leachates helps to define the duration of landfill aftercare. - Abstract: Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of ?{sup 13}C, ?{sup 2}H and ?{sup 18}O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the ?{sup 13}C-value of the dissolved inorganic carbon (?{sup 13}C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of ?{sup 13}C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a ?{sup 13}C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in ?{sup 13}C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a ?{sup 13}C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.

  3. Assessing the credibility of the calorific value of municipal solid waste

    SciTech Connect (OSTI)

    Churney, K.L.; Domalski, E.S.; Ledford, A.E.; Colbert, J.C.; Bruce, S.S.; Buckley, T.J.; Paule, R.C.; Reilly, M.L.

    1984-02-01

    A study has been made at the National Bureau of Standards to establish the limits of reliability of the calorific value of municipal solid waste (MSW) determined by the bomb calorimetric procedure currently used in commercial test laboratories. This procedure involves using gram-size samples derived from MSW that has been processed down to a particle size of 2 mm or less. Critics of the procedure argue that gram-size samples are too small to be representative of such a large quantity of so heterogeneous a material, and that processing MSW may also alter its composition. To test the bomb calorimetric procedure, a 2.5 kg capacity combustion flow calorimeter was designed and constructed for the determination of the enthalpies of combustion of kilogram-size samples of MSW in flowing oxygen near atmospheric pressure. Calorimetric data on processed MSW were obtained using both the kilogram-size flow and a gram-size bomb calorimeter. Intercomparison of results shows that the calorific value (on a dry basis) of gram-size test samples agrees, within the uncertainty of our experiments, with the corresponding values for their kilogram-size parent samples provided that the sample division technique used to obtain the gram-size samples is that described in this work. The average difference of the parent minus gram-size sample values (on a dry basis) is -0.1% with an imprecision (95% confidence interval) of +-1.1% of the mean calorific value. The effects of processing on sample composition were determined by intercomparison of flow calorimetric results on kilogram-size samples of processed and minimally processed MSW (150 mm or less particle size) that are nominally identical. The average difference of the unprocessed minus processed values (on a dry basis) is -0.5% with an imprecision (95% confidence interval) of +-2.9% of the mean calorific value. 7 references, 4 figures, 10 tables.

  4. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    SciTech Connect (OSTI)

    Hobart, D.E.; Bruton, C.J.; Millero, F.J.; Chou, I.M.; Trauth, K.M.; Anderson, D.R.

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer`s equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs.

  5. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  6. Co-firing coal and municipal solid waste

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  7. Pretreatment options for waste-to-energy facilities

    SciTech Connect (OSTI)

    Diaz, L.F.; Savage, G.M.

    1996-12-31

    This paper describes various options available for processing MSW before the material is introduced to waste-to-energy facilities. Specifically, the paper reviews the type of equipment currently available for the recovery of resources from the waste stream. In addition, the paper discusses other matters which in many cases are ignored but are extremely important for the design of the processes. Some of these matters include the use of reliable waste characterization data during conceptual design and definition of the properties and specifications of the recovered materials and/or energy forms (e.g., RDF). Finally, the paper discusses other factors that have a critical impact on the facility such as potential environmental consequences of pretreatment of the waste prior to its combustion in waste-to-energy facilities.

  8. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  9. Containment at the Source during Waste Volume Reduction of Large Radioactive Components Using Oxylance High-Temperature Cutting Equipment - 13595

    SciTech Connect (OSTI)

    Keeney, G. Neil

    2013-07-01

    As a waste-volume reduction and management technique, highly contaminated Control Element Drive Mechanism (CEDM) housings were severed from the Reactor Pressure Vessel Head (RPVH) inside the San Onofre Unit 2 primary containment utilizing Oxylance high-temperature cutting equipment and techniques. Presented are relevant data concerning: - Radiological profiles of the RPVH and individual CEDMs; - Design overviews of the engineering controls and the specialized confinement housings; - Utilization of specialized shielding; - Observations of apparent metallurgical-contamination coalescence phenomena at high temperatures resulting in positive control over loose-surface contamination conditions; - General results of radiological and industrial hygiene air sampling and monitoring; - Collective dose and personnel contamination event statistics; - Lessons learned. (author)

  10. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    SciTech Connect (OSTI)

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.

  11. Integrated solid waste management of Sevierville, Tennessee

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  12. Possible global environmental impacts of solid waste practices

    SciTech Connect (OSTI)

    Davis, M.M.; Holter, G.M.; DeForest, T.J.; Stapp, D.C.; Dibari, J.C.

    1994-09-01

    Pollutants resulting from the management of solid waste have been shown to affect the air, land, oceans, and waterways. In addition, solid wastes have other, more indirect impacts such as reduction in feedstocks of natural resources, because useful materials are disposed of rather than recycled. The objective of this study is to evaluate solid waste management practices that have negative implications on the global environment and develop recommendations for reducing such impacts. Recommendations identifying needed changes are identified that will reduce global impacts of solid waste practices in the future. The scope of this study includes the range of non-hazardous solid wastes produced within our society, including municipal solid waste (MSW) and industrial solid waste (ISW), as well as industry-specific wastes from activities such as construction, demolition, and landclearing. Most solid waste management decisions continue to be made and implemented at very local levels, predominantly with a short-term focus to respond to relatively immediate pressures of landfill shortages, funding problems, political considerations, and the like. In this rush to address immediate local problems, little consideration is being given to potential impacts, either short- or long-term, at the national or global level resulting from solid waste management practices. More and more, the cumulative impacts from local decisions concerning solid waste management are beginning to manifest themselves in broader, longer-term impacts than are being addressed by the decision-makers or, at the very least, are presenting a greater and greater potential for such impacts.

  13. Behavior of an MBT waste in monotonic triaxial shear tests

    SciTech Connect (OSTI)

    Bhandari, Athma Ram Powrie, William

    2013-04-15

    Highlights: ? We studied the stress–strain–strength characteristics of an MBT waste. ? Rate of mobilization of strength with strain depends on initial density. ? Image analysis technique was used to determine whole-specimen displacement fields. ? Initial mode of deformation of a loose specimen is one-dimensional compression. ? Reinforcing elements enhance the resistance to lateral and volumetric deformation. - Abstract: Legislation in some parts of the world now requires municipal solid waste (MSW) to be processed prior to landfilling to reduce its biodegradability and hence its polluting potential through leachate and fugitive emission of greenhouse gases. This pre-processing may be achieved through what is generically termed mechanical–biological-treatment (MBT). One of the major concerns relating to MBT wastes is that the strength of the material may be less than for raw MSW, owing to the removal of sheet, stick and string-like reinforcing elements during processing. Also, the gradual increase in mobilized strength over strains of 30% or so commonly associated with unprocessed municipal solid waste may not occur with treated wastes. This paper describes a series of triaxial tests carried out to investigate the stress–strain–strength characteristics of an MBT waste, using a novel digital image analysis technique for the determination of detailed displacement fields over the whole specimen. New insights gained into the mechanical behavior of MBT waste include the effect of density on the stress–strain response, the initial 1-D compression of lightly consolidated specimens, and the likely reinforcing effect of small sheet like particles remaining in the waste.

  14. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  15. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  16. Data summary of municipal solid waste management alternatives. Executive summary

    SciTech Connect (OSTI)

    1992-08-01

    This study was initiated to compile publicly available data on the five major options commonly used for municipal solid waste MSW management today: Landfilling, mass burning for energy recovery, production and combustion of refuse-derived fuel (RDF), and composting. The report also provides some data on energy, environmental releases, and economics for the following less commonly used options: Anaerobic digestion, coining of RDF with coal, gasification/pyrolysis. Because no commercial anaerobic digestion and gasification/pyrolysis facilities have operated in the United States, the data for these options are based on pilot plant results.

  17. Two-phase anaerobic digestion within a solid waste/wastewater integrated management system

    SciTech Connect (OSTI)

    De Gioannis, G.; Diaz, L.F.; Muntoni, A. Pisanu, A.

    2008-07-01

    A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

  18. Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants

    SciTech Connect (OSTI)

    Reichelt, J.; Pfrang-Stotz, G.; Bergfeldt, B.; Seifert, H.; Knapp, P.

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Composition of deposits depends on the temperature profile and boiler geometry. Black-Right-Pointing-Pointer The mineralogy of deposits defines critical and uncritical zones in the boiler. Black-Right-Pointing-Pointer Critical zones in boilers can be characterised by a classification systems. Black-Right-Pointing-Pointer Specific measures to enhance energy efficiency can be defined. - Abstract: Mineralogical and chemical investigations of deposits from superheaters and economisers from a MSWI plant in Mannheim, Germany, lead to a classification system which provides information about the most critical parameters leading to fouling and corrosion. With the help of this classification system parameters like the geometry of boilers and the waste input can be changed in order to prolong run times between revisions and enhance energy efficiency of MSWI plants.

  19. Evaluating a model of anaerobic digestion of organic wastes through system identification

    SciTech Connect (OSTI)

    Anex, R.P.; Kiely, G.

    1999-07-01

    Anaerobic digestion of the organic fraction of municipal solid waste (MSW), on its own or co-digested with primary sewage sludge (PSS), produces high quality biogas, suitable as renewable energy. Parameter estimation and evaluation of a two-stage mathematical model of the anaerobic co-digestion of the organic fraction of MSW and PSS are described. Measured data are from a bench scale laboratory experiment using a continuously stirred tank reactor and operated at 36 C for 115 days. The two-stage model simulates acidogenesis and methanogenesis, including ammonia inhibition. Model parameters are estimated using an output error, Levenberg-Marquardt (LM) algorithm. Sensitivity of the estimated parameter values and the model outputs to non-estimated model parameters and measurement errors are evaluated. The estimated mathematical model successfully predicts the performance of the anaerobic reactor. Sensitivity results provide guidance for improving the model structure and experimental procedures.

  20. They`re up! They`re down! They`re waste-to-energy plants

    SciTech Connect (OSTI)

    Varrasi, J.

    1996-03-01

    Burning garbage - either just to get rid of it, or to recover its latent energy as heat or electricity - has never been a sweet-sounding or -smelling idea. Long before the first boiler and turbine/generator were integrated with a trash incinerator - turning it into a waste-to-energy (WTE) plant - public concern about the air pollution produced by burning municipal solid waste (MSW) began placing an upper bound on the growth of the WTE industry, as it continues to do today. This paper describes some statistics, benefits and problems related to WTE plants.

  1. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  2. Contaminant Sources are Known

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contaminant Sources are Known Contaminant Sources are Known Historical contaminant sources from liquid discharges and solid waste management units are known. August 1, 2013 Contaminant source map LANL contaminant source map RELATED IMAGES http://farm4.staticflickr.com/3789/9631743884_4caeb970f9_t.jpg Enlarge

  3. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash

    SciTech Connect (OSTI)

    Kubo?ová, L.

    2013-11-15

    Highlights: • MSW fly ash was thermally and hydrometallurgically treated to remove heavy metals. • More than 90% of easy volatile heavy metals (Cd and Pb) were removed thermally. • More than 90% of Cd, Cr, Cu an Zn were removed by alkaline – acid leaching. • The best results were obtained for the solution of 3 M NaOH and 2 M H{sub 2}SO{sub 4}. - Abstract: Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050 °C and in a muffle oven at temperatures from 500 to 1200 °C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.

  4. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  5. A comparison of municipal solid waste management in Berlin and Singapore

    SciTech Connect (OSTI)

    Zhang Dongqing; Keat, Tan Soon; Gersberg, Richard M.

    2010-05-15

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.

  6. SLFP: A stochastic linear fractional programming approach for sustainable waste management

    SciTech Connect (OSTI)

    Zhu, H.; Huang, G.H.

    2011-12-15

    Highlights: > A new fractional programming (SLFP) method is developed for waste management. > SLFP can solve ratio optimization problems associated with random inputs. > A case study of waste flow allocation demonstrates its applicability. > SLFP helps compare objectives of two aspects and reflect system efficiency. > This study supports in-depth analysis of tradeoffs among multiple system criteria. - Abstract: A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk.

  7. Bridging legal and economic perspectives on interstate municipal solid waste disposal in the US

    SciTech Connect (OSTI)

    Longo, Christine; Wagner, Jeffrey

    2011-01-15

    Research highlights: {yields} Legal and economic opinions of free interstate trade of MSW in the US are reviewed. {yields} Economic theory of landfill space as the article of commerce can align opinions. {yields} Waste management policies implied by this economic theory are compared/contrasted. - Abstract: Managing municipal solid waste (MSW) within and across regions is a complex public policy problem. One challenge regards conceptualizing precisely what commodity is to be managed across space and time. The US Supreme Court view is that waste disposal is the article of commerce per se. Some justices, however, have argued that while waste disposal is the article of commerce, its interstate flow could be impeded by states on the grounds that they have the authority to regulate natural resource quality within their boundaries. The argument in this paper is that adopting the economic theory view of the article of commerce as landfill space brings the majority and dissenting US Supreme Court views-and the resulting sides of the public policy dispute-into closer alignment. We discuss waste management policy tools that emerge from this closer alignment that are more likely to both withstand judicial scrutiny and achieve economic efficiency.

  8. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect (OSTI)

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  9. ABB`s investigations into air toxic emissions from fossil fuel and MSW combustion

    SciTech Connect (OSTI)

    Wesnor, J.D.

    1994-12-31

    Since passage of the Clean Air Act, Asea Brown Boveri (ABB) has been actively developing a knowledge base on the Title 3 hazardous air pollutants, more commonly called air toxics. As ABB is a multinational company, US operating companies are able to call upon work performed by European counterparts, who have faced similar legislation several years ago. In addition to the design experience and database acquired in Europe, ABB Inc. has been pursuing several other avenues to expand its air toxics knowledge. ABB Combustion Engineering (ABB CE) is presently studying the formation of organic pollutants within the combustion furnace and partitioning of trace metals among the furnace outlet streams. ABB Environmental Systems (ABBES) has reviewed available and near-term control technologies and methods. Also, both ABB CE and ABBES have conducted source sampling and analysis at commercial installations for hazardous air pollutants to determine the emission rates and removal performance of various types of equipment. Several different plants hosted these activities, allowing for variation in fuel type and composition, boiler configuration, and air pollution control equipment. This paper discusses the results of these investigations.

  10. Circulating fluidized-bed boiler makes inroads for waste recycling

    SciTech Connect (OSTI)

    1995-09-01

    Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

  11. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  12. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect (OSTI)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  13. Improving medical waste disposal

    SciTech Connect (OSTI)

    O'Connor, L.

    1994-05-01

    This article describes the use of electron-beam irradiation, steam detoxification, and microwave disinfection systems rather than incineration to rid the waste stream of medical scraps. The topics of the article include biological waste stream sources and amounts, pyrolysis and oxidation, exhaust gas cleanup, superheated steam sterilization and detoxification.

  14. Integrated solid waste management of Palm Beach County, Florida

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the Palm Beach County, Florida integrated municipal solid waste management system (IMSWMS), the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWMS.

  15. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  16. Discussion of ``Comparison of air emissions from waste management facilities``

    SciTech Connect (OSTI)

    1996-12-31

    The analysis of emissions from landfills is questioned. Why are the emissions estimated compared on a peak-year rather that on a life-cycle basis? The authors reply that unlike most traditional air pollutant sources, the annual emissions of landfill gas vary markedly, depending on the pace of MSW decomposition over the years. The peak-year emission rate projected over the landfill`s lifetime is what is compared to regulatory emission thresholds to determine whether Title V permitting, etc. applies.

  17. Microbial diversity and dynamics during methane production from municipal solid waste

    SciTech Connect (OSTI)

    Bareither, Christopher A.; Wolfe, Georgia L.; McMahon, Katherine D.; Benson, Craig H.

    2013-10-15

    Highlights: ? Similar bacterial communities developed following different start-up operation. ? Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ? Created correlations between methanogens, methane yield, and available substrate. ? Predominant bacteria identified with syntrophic polysaccharide degraders. ? Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.

  18. Waste remediation

    DOE Patents [OSTI]

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  19. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill

    SciTech Connect (OSTI)

    Yu, L.; Batlle, F.

    2011-12-15

    Highlights: > A quasi-three-dimensional slope stability analysis method was proposed. > The proposed method is a good engineering tool for 3D slope stability analysis. > Factor of safety from 3D analysis is higher than from 2D analysis. > 3D analysis results are more sensitive to cohesion than 2D analysis. - Abstract: Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The 'equivalent' three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also investigated in this paper. These sensitivity analyses serve as the guidelines of construction practices and operating procedures for the MSW landfill under study.

  20. Evolution of heavy metals in municipal solid waste during bio-drying and implications of their subsequent transfer during combustion

    SciTech Connect (OSTI)

    Zhang Dongqing; Zhang Hua; Wu Changlin; Shao Liming; He Pinjing

    2011-08-15

    Bio-drying has been applied to improve the heating value of municipal solid waste (MSW) prior to combustion. In the present study, evolution of heavy metals in MSW during bio-drying and subsequent combustion was studied using one aerobic and two combined hydrolytic-aerobic scenarios. Heavy metals were concentrated during bio-drying and transformed between different metal fractions, namely the exchangeable, carbonate-bound, iron- and manganese-oxides-bound, organic-matter-bound and residual fractions. The amounts of heavy metals per kg of bio-dried MSW transferred into combustion flue gas increased with bio-drying time, primarily due to metals enrichment from organics degradation. Because of their volatility, the partitioning ratios of As and Hg in flue gas remained stable so that bio-drying and heavy metal speciation had little effect on their transfer and partitioning during combustion. In contrast, the partitioning ratios of Pb, Zn and Cu tended to increase after bio-drying, which likely enhanced their release potential during combustion.

  1. Fuzzy multicriteria disposal method and site selection for municipal solid waste

    SciTech Connect (OSTI)

    Ekmekcioglu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-08-15

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.

  2. An environmentally sustainable decision model for urban solid waste management

    SciTech Connect (OSTI)

    Costi, P.; Minciardi, R.; Robba, M.; Rovatti, M.; Sacile, R

    2004-07-01

    The aim of this work is to present the structure and the application of a decision support system (DSS) designed to help decision makers of a municipality in the development of incineration, disposal, treatment and recycling integrated programs. Specifically, within a MSW management system, several treatment plants and facilities can generally be found: separators, plants for production of refuse derived fuel (RDF), incinerators with energy recovery, plants for treatment of organic material, and sanitary landfills. The main goal of the DSS is to plan the MSW management, defining the refuse flows that have to be sent to recycling or to different treatment or disposal plants, and suggesting the optimal number, the kinds, and the localization of the plants that have to be active. The DSS is based on a decision model that requires the solution of a constrained non-linear optimization problem, where some decision variables are binary and other ones are continuous. The objective function takes into account all possible economic costs, whereas constraints arise from technical, normative, and environmental issues. Specifically, pollution and impacts, induced by the overall solid waste management system, are considered through the formalization of constraints on incineration emissions and on negative effects produced by disposal or other particular treatments.

  3. A study of tritium in municipal solid waste leachate and gas

    SciTech Connect (OSTI)

    Mutch Jr, R. D.; Mahony, J. D.

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPA MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)

  4. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    SciTech Connect (OSTI)

    Daniel, Jeff; Lawrence, Dave; Case, Glenn; Fergusson Jones, Andrea

    2013-07-01

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingled LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining increased certainty. Many of these lessons may be applicable to other projects. (authors)

  5. Waste minimization assessment procedure

    SciTech Connect (OSTI)

    Kellythorne, L.L. )

    1993-01-01

    Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

  6. Municipal solid waste management: A bibliography of U.S. Department of Energy contractor reports through 1995

    SciTech Connect (OSTI)

    1997-09-01

    This bibliography is an updated version of Municipal Solid Waste Management: A Bibliography of US Department of Energy Contractor Reports Through 1994 (NREL/TP-430-7886). The original bibliography, entitled Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, was published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes--an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update.

  7. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  8. Renewable Natural Gas - Producer Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capital Partner with Commercial Technology Providers Anaerobic digester Food Waste Animal Waste Sludge Gasification Municipal Solid Waste (MSW)...

  9. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  10. Waste audit study: Automotive paint shops

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This report presents the results of a waste-audit study of automotive paint shops. The study focuses on the types and quantities of wastes generated, treatment and disposal alternatives, and the potential for reducing the amount and/or toxicity of waste generated. The analysis of solvent waste minimization focused primarily on in-plant modifications (e.g., source reduction) to reduce the generation of solvent waste. Strict inventory control is the most-readily implementable approach. While in-house recycling is viable, it is usually only cost-effective for larger firms. Specific recommendations for waste reduction were made.

  11. Colorado 2012 Nonpoint Source Management Plan | Open Energy Informatio...

    Open Energy Info (EERE)

    agricultural lands or metals-laden sediments from mine waste or tailings. This diffuse nature distinguishes nonpoint source pollution from point source pollution, which in contrast...

  12. Pulsed Ionization Source for Ion Mobility Spectrometers - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diffusion-limited resolution. In addition, the radioactive ion sources used in many IMSs present potential safety and hazardous waste disposal issues. Other ionization sources...

  13. Protection #1: Remove the Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remove the Source Protection #1: Remove the Source The 3 Protections = Defense in Depth August 1, 2013 Waste being removed from MDA-B inside a metal building Excavation of waste from MDA-B thumbnail of Removing the source means excavating contaminants, sorting these by waste type, and transporting to a disposal area in which contaminants are contained. RELATED IMAGES http://farm8.staticflickr.com/7388/9571274521_679fe1e34a_t.jpg Enlarge http://farm4.staticflickr.com/3726/9571272211_6873a571

  14. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  15. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  16. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  17. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilae, Kai; Hupa, Mikko

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  18. Estimating Waste Inventory and Waste Tank Characterization

    Broader source: Energy.gov [DOE]

    Summary Notes from 28 May 2008 Generic Technical Issue Discussion on Estimating Waste Inventory and Waste Tank Characterization

  19. Methodology for modeling the devolatilization of refuse-derived fuel from thermogravimetric analysis of municipal solid waste components

    SciTech Connect (OSTI)

    Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.

    1994-09-01

    A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for the as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.

  20. DOE/NV Radioactive Waste Acceptance Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Proper Characterization and Disposal of Sealed Radioactive Sources Revision 2, October 1997 Revised by: DOE/NV Radioactive Waste Acceptance Program and The NTSWAC Working Group EXECUTIVE SUMMARY The "Position Paper on the Proper Characterization and Disposal of Sealed Radioactive Sources" was originally developed by the NVO-325 Work Group, Sealed Source Waste Characterization Subgroup. The NVO-325 Workgroup, now called the NTSWAC Working Group, is comprised of representatives

  1. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at...

  2. Waste Hoist

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

  3. The reduction of packaging waste

    SciTech Connect (OSTI)

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  4. Microsoft Word - MSW Part I

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... It is expected that some minimal size reduction and sorting will need to be performed to ... In either case, some minimal processing is usually needed to remove very large objects ...

  5. Life cycle assessment of urban waste management: Energy performances and environmental impacts. The case of Rome, Italy

    SciTech Connect (OSTI)

    Cherubini, Francesco Bargigli, Silvia; Ulgiati, Sergio

    2008-12-15

    Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.

  6. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of ... (JHCM) technology Factors affecting waste loadings Waste loading requirements ...

  7. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dangerous Waste Permit Suzanne Dahl and Jeff Lyon Nuclear Waste Program April 17, 2012 Tank-Related Units Why have permits? * To regulate dangerous waste treatment, storage, and...

  8. Hazardous waste minimization. Part 3. Waste minimization in the paint and allied products industry

    SciTech Connect (OSTI)

    Lorton, G.A.

    1988-04-01

    This paper looks at waste minimization practices available to the paint and coatings industry. The paper begins with an introduction to the industry and a description of the products. The steps involved in the manufacture of paints and coatings are then described. The paper then identifies the wastes generated. Source reduction and recycling techniques are the predominant means of minimizing waste in this industry. Equipment cleaning wastes are the largest category of wastes, and the paper concentrates on equipment and techniques available to reduce or eliminate these wastes. Techniques are described to reduce the other wastes from manufacturing operations. The paper concludes with a discussion of changing industry product trends and the effect that these trends will have on the generation of waste.

  9. Waste Heat Recapture from Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

  10. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect (OSTI)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup ?1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup ?1} of MSWM.

  11. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system

    SciTech Connect (OSTI)

    Punkkinen, Henna; Merta, Elina; Teerioja, Nea; Moliis, Katja; Kuvaja, Eveliina

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We compare the environmental sustainability of two MSW collection systems. Black-Right-Pointing-Pointer We evaluate pneumatic and door-to-door collection systems. Black-Right-Pointing-Pointer The greenhouse gas emissions of pneumatic collection are around three times higher. Black-Right-Pointing-Pointer System components are decisive but assumptions on electricity use are also important. Black-Right-Pointing-Pointer Pneumatic collection could provide other benefits over door-to-door system. - Abstract: Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO{sub 2} and NO{sub x}. The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive.

  12. LLNL Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Not Available

    1990-02-14

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  13. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  14. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  15. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  16. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  17. Emissions from US waste collection vehicles

    SciTech Connect (OSTI)

    Maimoun, Mousa A.; Reinhart, Debra R.; Gammoh, Fatina T.; McCauley Bush, Pamela

    2013-05-15

    Highlights: ? Life-cycle emissions for alternative fuel technologies. ? Fuel consumption of alternative fuels for waste collection vehicles. ? Actual driving cycle of waste collection vehicles. ? Diesel-fueled waste collection vehicle emissions. - Abstract: This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6–10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving.

  18. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  19. Advanced Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Source - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  20. Greenhouse Gas Source Attribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Source Attribution - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  1. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    SciTech Connect (OSTI)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Complexity in local waste management calls for more in depth efficiency analysis. Black-Right-Pointing-Pointer Shared-input Data Envelopment Analysis can provide solution. Black-Right-Pointing-Pointer Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted 'shared-input' version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  2. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  3. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  4. EM's Defense Waste Processing Facility Achieves Waste Cleanup...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Waste Processing Facility Achieves Waste Cleanup Milestone EM's Defense Waste Processing Facility Achieves Waste Cleanup Milestone January 14, 2016 - 12:10pm Addthis The...

  5. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Disposal Facility Operating Unit #11 Aerial view of IDF looking south. Note semi-truck trailer for scale. There are risks to groundwater in the future from secondary waste, according to modeling. Secondary waste would have to be significantly mitigated before it could be disposed at IDF. Where did the waste come from? No waste is stored here yet. IDF will receive vitrified waste when the Waste Treatment Plant starts operating. It may also receive secondary waste resulting from

  6. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

    SciTech Connect (OSTI)

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.

  7. Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions

    SciTech Connect (OSTI)

    Morrin, Shane; Lettieri, Paola; Chapman, Chris; Mazzei, Luca

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.

  8. Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear

    Office of Scientific and Technical Information (OSTI)

    Waste Glass Batch (Journal Article) | SciTech Connect Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear Waste Glass Batch Citation Details In-Document Search Title: Effect of Alumina Source on the Rate of Melting Demonstrated with Nuclear Waste Glass Batch The melting behaviors of three glass batches formulated to vitrify high-level waste were compared. These batches, otherwise identical, differed in the alumina source: one was prepared with corundum (Al2O3), another

  9. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect (OSTI)

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  10. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  11. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  12. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  13. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  14. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative ... Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, ...

  15. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and ...

  16. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  17. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  18. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  19. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organics from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats...

  20. Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    into renewable energy, thereby enabling a national network of distributed power and biofuel production sites. Image courtesy of Iona Capital Waste-to-Energy Cycle Waste...

  1. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  2. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister

  3. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    SciTech Connect (OSTI)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-05-09

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  4. Characteristics of potential repository wastes. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This document, and its associated appendices and microcomputer (PC) data bases, constitutes the reference OCRWM data base of physical and radiological characteristics data of radioactive wastes. This Characteristics Data Base (CDB) system includes data on spent nuclear fuel and high-level waste (HLW), which clearly require geologic disposal, and other wastes which may require long-term isolation, such as sealed radioisotope sources. The data base system was developed for OCRWM by the CDB Project at Oak Ridge National Laboratory. Various principal or official sources of these data provided primary information to the CDB Project which then used the ORIGEN2 computer code to calculate radiological properties. The data have been qualified by an OCRWM-sponsored peer review as suitable for quality-affecting work meeting the requirements of OCRWM`s Quality Assurance Program. The wastes characterized in this report include: light-water reactor (LWR) spent fuel and immobilized HLW.

  5. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect (OSTI)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ? PAHs generation and distribution features of medical waste incineration are studied. ? More PAHs were found in fly ash than that in bottom ash. ? The highest proportion of PAHs consisted of the seven most carcinogenic ones. ? Increase of free oxygen molecule and burning temperature promote PAHs degradation. ? There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  6. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  8. Solid waste disposal economics. (Latest citations from the NTISs Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    The bibliography contains citations concerning economic aspects of solid waste disposal. Topics include feasibility studies of specific waste-to-energy programs, materials recovery and recycling, and the use of fuel gases from landfills. Waste materials sources include industrial and municipal wastes, dredged materials, and waste derived from agricultural and mining operations. Considerable attention is given to Superfund records of decision at specific sites. (Contains 250 citations and includes a subject term index and title list.)

  9. Solid waste disposal economics. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning economic aspects of solid waste disposal. Topics include feasibility studies of specific waste-to-energy programs, materials recovery and recycling, and the use of fuel gases from landfills. Waste materials sources include industrial and municipal wastes, dredged materials, and waste derived from agricultural and mining operations. Considerable attention is given to Superfund records of decision at specific sites. (Contains 250 citations and includes a subject term index and title list.)

  10. Microsoft PowerPoint - Tribal Leader Forum Waste to Energy Introduction

    Office of Environmental Management (EM)

    Leader Forum: Waste-to-Energy Introduction July 24, 2014 Randy Hunsberger Waste-to-energy Introduction Feedstocks Recycling Conversion Products and Pathways Major Equipment WTE Economics and Opportunities Presentation Outline National Renewable Energy Laboratory Innovation for Our Energy Future Waste-to-Energy Introduction The issues, for much of the world: * Waste disposal is a major expense * High energy prices * Limited landfill space The opportunity * Waste as an alternative fuel source

  11. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  12. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  13. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  14. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  16. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  17. Infectious waste feed system

    DOE Patents [OSTI]

    Coulthard, E. James

    1994-01-01

    An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

  18. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect (OSTI)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.

  19. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  20. Management of Disused Radioactive Sealed Sources in Egypt - 13512

    SciTech Connect (OSTI)

    Mohamed, Y.T.; Hasan, M.A.; Lasheen, Y.F.

    2013-07-01

    The future safe development of nuclear energy and progressive increasing use of sealed sources in medicine, research, industry and other fields in Egypt depends on the safe and secure management of disused radioactive sealed sources. In the past years have determined the necessity to formulate and apply the integrated management program for radioactive sealed sources to assure harmless and ecological rational management of disused sealed sources in Egypt. The waste management system in Egypt comprises operational and regulatory capabilities. Both of these activities are performed under legislations. The Hot Laboratories and Waste Management Center HLWMC, is considered as a centralized radioactive waste management facility in Egypt by law 7/2010. (authors)

  1. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  2. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping . E-mail: zzhong@seu.edu.cn; Jin Baosheng; Huang Yaji; Zhou Hongcang; Lan Jixiang

    2006-07-01

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  3. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  4. Transuranic contaminated waste form characterization and data base

    SciTech Connect (OSTI)

    McArthur, W.C.; Kniazewycz, B.G.

    1980-07-01

    This report outlines the sources, quantities, characteristics and treatment of transuranic wastes in the United States. This document serves as part of the data base necessary to complete preparation and initiate implementation of transuranic wastes, waste forms, waste container and packaging standards and criteria suitable for inclusion in the present NRC waste management program. No attempt is made to evaluate or analyze the suitability of one technology over another. Indeed, by the nature of this report, there is little critical evaluation or analysis of technologies because such analysis is only appropriate when evaluating a particular application or transuranic waste streams. Due to fiscal restriction, the data base is developed from a myriad of technical sources and does not necessarily contain operating experience and the current status of all technologies. Such an effort was beyond the scope of this report.

  5. Municipal solid waste management in Malaysia: Practices and challenges

    SciTech Connect (OSTI)

    Manaf, Latifah Abd Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-15

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  6. Municipal solid waste management: Identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities

    SciTech Connect (OSTI)

    Gamberini, R. Del Buono, D.; Lolli, F.; Rimini, B.

    2013-11-15

    Highlights: • Collection and analysis of real life data in the field of Municipal Solid Waste (MSW) generation and costs for management. • Study of 92 virtuous Italian communities. • Elaboration of trends of engineering indexes useful during design and evaluation of MSWM systems. - Abstract: The definition and utilisation of engineering indexes in the field of Municipal Solid Waste Management (MSWM) is an issue of interest for technicians and scientists, which is widely discussed in literature. Specifically, the availability of consolidated engineering indexes is useful when new waste collection services are designed, along with when their performance is evaluated after a warm-up period. However, most published works in the field of MSWM complete their study with an analysis of isolated case studies. Conversely, decision makers require tools for information collection and exchange in order to trace the trends of these engineering indexes in large experiments. In this paper, common engineering indexes are presented and their values analysed in virtuous Italian communities, with the aim of contributing to the creation of a useful database whose data could be used during experiments, by indicating examples of MSWM demand profiles and the costs required to manage them.

  7. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect (OSTI)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  8. Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Light Source Data and Analysis Framework at NERSC Jack Deslippe, Shane Canon, Eli Dart, Abdelilah Essiari, Alexander Hexemer, Dula Parkinson, Simon Patton, Craig Tull + Many More The ALS Data Needs September 21, 2010 - NIST (MD) Light source data volumes are growing many times faster than Moore's law. â—Ź Light source luminosity â—Ź Detector resolution & rep-rates â—Ź Sample automation BES user facilities serve 10,000 scientists and engineers every year. Mostly composed of many small

  9. Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Center’s Cask Processing Enclosure. Workers process and repackage waste at the Transuranic Waste Processing Center's Cask Processing Enclosure. Transuranic waste, or TRU, is one of several types of waste handled by Oak Ridge's EM program. This waste contains manmade elements heavier than uranium, hence the name "trans" or "beyond" uranium. Transuranic waste material

  10. Ion source

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  11. Waste Heat Management Options for Improving Industrial Process Heating

    Broader source: Energy.gov (indexed) [DOE]

    Systems | Department of Energy presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. PDF icon Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) More Documents & Publications Energy Systems Reduce Radiation Losses from Heating Equipment Seven Ways to Optimize Your Process Heat System

  12. Requirements for shipment of DOE radioactive mixed waste

    SciTech Connect (OSTI)

    Gablin, K.; No, Hyo; Herman, J.

    1993-08-01

    There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage.

  13. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  14. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  15. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  16. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  17. Sources Sought Announcement

    National Nuclear Security Administration (NNSA)

    will include waste acceptance services to be performed at the NNSS and at waste generator sites across the DOE Complex. The Statements of Capabilities will assist the...

  18. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy HLW Waste Vitrification Facility PDF icon Summary - WTP HLW Waste Vitrification Facility More Documents & Publications Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 Waste Treatment and Immobilation Plant Pretreatment Facility

  19. Hanford Tank Waste Residuals

    Office of Environmental Management (EM)

    Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - 27 million ...

  20. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  1. Transuranic (TRU) Waste

    Broader source: Energy.gov [DOE]

    Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste with half-lives greater than 20 years, except for (A)...

  2. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment and Immobilization Plant (vit plant) Operating Unit 10 Aerial view of construction, July 2011 Where will the waste go? LAW canisters will go to shallow disposal at...

  3. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep...

  4. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  5. Tank Waste Strategy Update

    Office of Environmental Management (EM)

    Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design

  6. Waste Confidence Discussion

    Office of Environmental Management (EM)

    Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence

  7. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  8. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H. (Columbus, OH)

    1982-01-01

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  9. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  10. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and Disposition Framework This page intentionally left blank. ii Hanford Tank Waste Retrieval, Treatment, and Disposition Framework CONTENTS 1. Introduction ............................................................................................................................................. 1 Immobilizing Radioactive Tank

  11. Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3.

  12. Oak Ridge National Laboratory Waste Management Plan. Revision 1

    SciTech Connect (OSTI)

    Forgy, Jr., J. R.

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  13. Doing the impossible: Recycling nuclear waste

    ScienceCinema (OSTI)

    None

    2013-04-19

    A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power?the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html

  14. High-level radioactive wastes. Supplement 1

    SciTech Connect (OSTI)

    McLaren, L.H.

    1984-09-01

    This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

  15. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect (OSTI)

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  16. Electrical efficiency in modern waste to energy plants -- The advanced solutions adopted in a new Italian plant (Milan)

    SciTech Connect (OSTI)

    Lucchini, F.M.; Pezzella, B.

    1998-07-01

    The paper has the goal to give a general overview of the current approach for the design of modern Waste to Energy (WtE) plants. The thermal treatment of solid waste is an environmentally sound method to get rid of the garbage produced by everyone and to recover energy simultaneously. A typical waste to energy plant is divided in four segments: incineration/boiler, air pollution control, residues treatment and power generation. Still in the 80's a WtE plant was simply consisting of a these four segments without any particular effort in putting them together into a coordinated plant; therefore the results were very poor in term of overall plant performances even if the single segments were properly designed. This paper shows how this approach is changing and how the synergism between the segments allows to reach interesting performances in term of electric efficiency, always keeping in mind that power must be considered a by-product of the incinerator. Therefore all these efforts have to be done without affecting the burning capacity of the station. The new Milan WtE plant is taken as example throughout the paper. The first section of the paper tries to consider the Municipal Solid Waste as standard fuel; then focal point becomes the electrical efficiency of the plant. In the fourth section the flue gas cleaning system is approached, pointing out the gas quality at stack. Then in the fifth and sixth paragraphs all most important and innovative technical solutions of the Milan plant are shown with some details on water/steam cycle, giving also some availability results. Chapter seven shows some interesting key-figures, related to the combustion of 1,000 kg of MSW at 11 MJ/kg, with also some economical evaluations in term of investment cost per ton of waste per day.

  17. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: • 110 French incinerators are compared with LCA based on plant-specific data. • Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. • E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. • Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  18. SHIELDING ANALYSIS FOR PORTABLE GAUGING COMBINATION SOURCES

    SciTech Connect (OSTI)

    J. TOMPKINS; L. LEONARD; ET AL

    2000-08-01

    Radioisotopic decay has been used as a source of photons and neutrons for industrial gauging operations since the late 1950s. Early portable moisture/density gauging equipment used Americium (Am)-241/Beryllium (Be)/Cesium (Cs)-137 combination sources to supply the required nuclear energy for gauging. Combination sources typically contained 0.040 Ci of Am-241 and 0.010 Ci of CS-137 in the same source capsule. Most of these sources were manufactured approximately 30 years ago. Collection, transportation, and storage of these sources once removed from their original device represent a shielding problem with distinct gamma and neutron components. The Off-Site Source Recovery (OSR) Project is planning to use a multi-function drum (MFD) for the collection, shipping, and storage of AmBe sources, as well as the eventual waste package for disposal. The MFD is an approved TRU waste container design for DOE TRU waste known as the 12 inch Pipe Component Overpack. As the name indicates, this drum is based on a 12 inch ID stainless steel weldment approximately 25 inch in internal length. The existing drum design allows for addition of shielding within the pipe component up to the 110 kg maximum pay load weight. The 12 inch pipe component is packaged inside a 55-gallon drum, with the balance of the interior space filled with fiberboard dunnage. This packaging geometry is similar to the design of a DOT 6M, Type B shipping container.

  19. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  20. RH TRU Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote-Handled Transuranic Waste Program After seven years and more than 5,000 safe shipments of contact-handled (CH) transuranic (TRU) waste, the Waste Isolation Pilot Plant is now also receiving remote-handled (RH) TRU waste. In October 2006, the New Mexico Environment Department (NMED) approved the U.S. Department of Energy's plans for disposal of RH-TRU waste at WIPP. The Environmental Protection Agency (EPA) gave its approval in 2004. Located in the remote desert of southeastern New Mexico,

  1. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  2. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  3. Waste Heat Management Options: Industrial Process Heating Systems

    Broader source: Energy.gov (indexed) [DOE]

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  4. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  5. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect (OSTI)

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  6. Review Of Rheology Models For Hanford Waste Blending

    SciTech Connect (OSTI)

    Koopman, D. C.; Stone, M.

    2013-09-26

    The area of rheological property prediction was identified as a technology need in the Hanford Tank Waste - waste feed acceptance initiative area during a series of technical meetings among the national laboratories, Department of Energy-Office of River Protection, and Hanford site contractors. Meacham et al. delivered a technical report in June 2012, RPP-RPT-51652 ''One System Evaluation of Waste Transferred to the Waste Treatment Plant'' that included estimating of single shell tank waste Bingham plastic rheological model constants along with a discussion of the issues inherent in predicting the rheological properties of blended wastes. This report was selected as the basis for moving forward during the technical meetings. The report does not provide an equation for predicting rheological properties of blended waste slurries. The attached technical report gives an independent review of the provided Hanford rheological data, Hanford rheological models for single tank wastes, and Hanford rheology after blending provided in the Meacham report. The attached report also compares Hanford to SRS waste rheology and discusses some SRS rheological model equations for single tank wastes, as well as discussing SRS experience with the blending of waste sludges with aqueous material, other waste sludges, and frit slurries. Some observations of note: Savannah River Site (SRS) waste samples from slurried tanks typically have yield stress >1 Pa at 10 wt.% undissolved solids (UDS), while core samples largely have little or no yield stress at 10 wt.% UDS. This could be due to how the waste has been processed, stored, retrieved, and sampled or simply in the differences in the speciation of the wastes. The equations described in Meacham's report are not recommended for extrapolation to wt.% UDS beyond the available data for several reasons; weak technical basis, insufficient data, and large data scatter. When limited data are available, for example two to three points, the equations are not necessarily satisfactory (justified) for interpolations, due to the number of unknown variables equal the number of known data points, resulting in a coefficient of determination of one. SRS has had some success predicting the rheology of waste blends for similar waste types using rheological properties of the individual wastes and empirical blending viscosity equations. Both the Kendall-Monroe and Olney-Carlson equations were used. High accuracy was not obtained, but predictions were reasonable compared to measured flow curves. Blending SRS processed waste with frit slurry (much larger particles and the source of SRS glass formers) is a different sort of problem than that of two similar slurries of precipitated waste particles. A different approach to rheology prediction has had some success describing the incorporation of large frit particles into waste than the one used for blending two wastes. In this case, the Guth-Simha equation was used. If Hanford waste is found to have significant particles in the >100 ?m diameter range, then it might be necessary to handle those particles differently from broadly distributed waste particles that are primarily <30 ?m in diameter. The following are recommendations for the Hanford tank farms: Investigate the impact of large-scale mixing operations on yield stress for one or more Hanford tanks to see if Hanford waste rheological properties change to become more like SRS waste during both tank retrieval and tank qualification operations; Determine rheological properties of mobilized waste slurries by direct measurement rather than by prediction; Collect and characterize samples during the waste feed qualification process for each campaign; o From single source tanks that feed the qualification tanks; o Blends from the qualification tanks; Predictive rheological models must be used with caution, due to the lack of data to support such models and the utilization of the results that come from these models in making process decisions (e.g. the lack of actual operation experience). As experience is ga

  7. Conversion of Waste CO2 and Shale Gas to High-Value Chemicals | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Conversion of Waste CO2 and Shale Gas to High-Value Chemicals Conversion of Waste CO2 and Shale Gas to High-Value Chemicals The project aims to develop, build, operate, and validate a laboratory-scale continuous process that converts waste CO2 from industrial sources from shale gas into commodity chemical intermediates. PDF icon Factsheet More Documents & Publications CX-010693: Categorical Exclusion Determination AMO PEER REVIEW, MAY 28-29, 2015 Waste Treatment and

  8. Science, society, and America`s nuclear waste: Unit 3, The Nuclear Waste Policy Act. Teacher guide

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system.

  9. Waste Package Design Methodology Report

    SciTech Connect (OSTI)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  10. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  11. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - December 2014 Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

  12. Operating limit evaluation for disposal of uranium enrichment plant wastes

    SciTech Connect (OSTI)

    Lee, D.W.; Kocher, D.C.; Wang, J.C.

    1996-02-01

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

  13. Unreviewed Safety Question Determination - Processing Waste in the Waste

    Office of Environmental Management (EM)

    Characterization Glovebox | Department of Energy Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed

  14. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  15. Greater-than-Class C low-level radioactive waste characterization. Appendix E-4: Packaging factors for greater-than-Class C low-level radioactive waste

    SciTech Connect (OSTI)

    Quinn, G.; Grant, P.; Winberg, M.; Williams, K.

    1994-09-01

    This report estimates packaging factors for several waste types that are potential greater-than-Class C (GTCC) low-level radioactive waste (LLW). The packaging factor is defined as the volume of a GTCC LLW disposal container divided by the as-generated or ``unpackaged`` volume of the waste loaded into the disposal container. Packaging factors reflect any processes that reduce or increase an original unpackaged volume of GTCC LLW, the volume inside a waste container not occupied by the waste, and the volume of the waste container itself. Three values are developed that represent (a) the base case or most likely value for a packaging factor, (b) a high case packaging factor that corresponds to the largest anticipated disposal volume of waste, and (c) a low case packaging factor for the smallest volume expected. GTCC LLW is placed in three categories for evaluation in this report: activated metals, sealed sources, and all other waste.

  16. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  17. Waste from grocery stores

    SciTech Connect (OSTI)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collection process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.

  18. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt

  19. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest

  20. Waste to Energy

    Broader source: Energy.gov (indexed) [DOE]

    to Energy BIA Providers Conference Anchorage, Alaska December 1, 2015 What is waste-to-energy (W2E)? * Types of waste ... * Kinds of energy ... * Key attributes ... * Key considerations ... ANC landfill gas-to-energy project * 5.6 MWe * ARL to JBER * Online Aug 2012 * Run by Doyon Utilities Alaska Department of Environmental Conservation Solid Waste Program The Good... The Bad... & The Ugly Rural landfills Small Septage Lagoon Large Lined Lagoon Large Honeybucket Lagoon Honeybuckets at

  1. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  2. Section 24: Waste Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (g) The Department shall demonstrate in any compliance application that the total inventory of waste emplaced in the disposal system complies with the limitations on...

  3. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  4. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  5. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  6. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Home Page About WIPP Contact Us Search Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume...

  7. Integrated Waste Treatment Facility Fact Sheet | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet The Integrated Waste Treatment...

  8. Waste Package Component Design Methodology Report

    SciTech Connect (OSTI)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.

  9. Section 08: Approval Process for Waste Shipment From Waste Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR 194.8) United States Department of Energy Waste Isolation Pilot Plant Carlsbad...

  10. Increasing Sugar Yields with IL-final-sm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a feedstock agnostic ionic liquid pretreatment process that: Agriculture Waste Woody Biomass Mixed Feedstocks Municipal Solid Waste (MSW) Biofuels Program Contact: Blake...

  11. Management of Disused Sealed Sources in Hungary - 13077

    SciTech Connect (OSTI)

    Kapitany, Sandor

    2013-07-01

    Since 1976 the spent and disused radioactive sources arisen in Hungary are stored in a central storage facility called Radioactive Waste Treatment and Disposal Facility operated by Public Limited Company for Radioactive Waste Management. The Facility is responsible for the record keeping, the waste acceptance procedure, the shipment and the storage or disposal (whether a certain source meets the waste acceptance criteria for disposal or not) of sources. Based on the more than 35 year old operation of the facility many experiences have been gathered regarding the technology for long-term storage of sources, the attitude of the users of sources, the evolution of the legislation and the national record keeping system. Recently a new legislation for the security of radioactive materials (including sources) was introduced, first in Central-Europe. It requires special security arrangements from the facility for transport and for storage. Due to the ongoing retrieval of radioactive waste formerly disposed of, partly containing sealed sources, there is a new challenge in the physical inventory control of historical waste. The paper would show the effect of the changes in the legislation system of record keeping or security on the users' attitude for discard of sources and on the management of the sources in the facility. The facility has a unique storage technology (shallow boreholes) in the narrow region. The sealed sources are placed into vertical pipes sunk into the surface. In the beginning, each of the sources were dropped into the pipe directly, recently they are placed in a metal tube first ensuring the retrieval. The lessons learned will be presented. There were several issues to introduce the new security arrangements (partly financially supported by US DOE) for storage and for transportation of sealed sources. These issues are addressed. In the past part of the sealed sources were disposed together with solid radioactive waste packaged in plastic bags. A waste retrieval campaign was fulfilled in 2008 to retrieve the sealed sources. The paper demonstrates the conditions of sealed sources after twenty-year disposal period. As a summary, the paper will share the main experiences of a 35-year old facility, managing radioactive sealed sources in Central Europe. (authors)

  12. Environmental and Waste Management (WMO) Legacy TRU Waste Pause |

    Office of Environmental Management (EM)

    Department of Energy Environmental and Waste Management (WMO) Legacy TRU Waste Pause Environmental and Waste Management (WMO) Legacy TRU Waste Pause This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014,

  13. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  14. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  15. Waste Treatment and Immobilation Plant HLW Waste Vitrification...

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August ...

  16. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  17. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  18. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  19. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  20. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect (OSTI)

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  1. Radionuclide inventory for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report updates the information previously submitted in the draft report DOE/WIPP 88-005, Radionuclide Source Term for the WIPP, dated 1987 (reference 1). The information in this report provides the projected radionuclide inventory at the WIPP based on the projected waste receipts through the year 2013. The information is based on the 1991 TRU Program Data submittals for the Integrated Data Base (DOE/RW-0006, Rev. 7) from each of the DOE sites generating or storing TRU waste for shipment to the WIPP. The data is based on existing characterization data on the waste in interim storage, waste estimates based on projected programs during the 1991 through 2013 time period, projected treatment processes required to meet WIPP Waste Acceptance Criteria (WAC), and a projection of the waste that will be declared low level waste when it is assayed as part of the certification program for waste shipments to WIPP. This data will serve as a standard reference for WIPP programs requiring radionuclide data, including safety programs, performance assessment, and regulatory compliance. These projections will continue to be periodically updated as the waste data estimates are refined by the generator sites as they participate in the annual update of the Integrated Data Base (IDB).

  2. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  3. Vitrification of NORM wastes

    SciTech Connect (OSTI)

    Chapman, C.

    1994-05-01

    Vitrification of wastes is a relatively new application of none of man`s oldest manufacturing processes. During the past 25 years it has been developed and accepted internationally for immobilizing the most highly radioactive wastes from spent nuclear fuel. By the year 2005, there will be nine operating high-level radioactive vitrification plants. Many of the technical ``lessons learned`` from this international program can be applied to much less hazardous materials such as naturally occurring radioactive material (NORM). With the deployment of low capital and operating cost systems, vitrification should become a broadly applied process for treating a large variety of wastes. In many situations, the wastes can be transformed into marketable products. This paper will present a general description of waste vitrification, summarize some of its key advantages, provide some test data for a small sample of one NORM, and suggest how this process may be applied to NORM.

  4. Enhanced Tank Waste Strategy Update

    Office of Environmental Management (EM)

    in the EM complex Radioactive tank waste stabilization, treatment, and disposal ... Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and ...

  5. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste customers can enter data directly into the Solid Waste Information Tracking System SWITS database in lieu of completing a Container Data Sheet.) A Contents...

  6. Environmental waste disposal contracts awarded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste...

  7. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  8. Waste Stream Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and...

  9. Overview of mixed waste issues

    SciTech Connect (OSTI)

    Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.

    1986-01-01

    Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC.

  10. Regulatory Control of Sealed Sources in Germany including Regulations Regarding Spent and Disused Sources - 13176

    SciTech Connect (OSTI)

    Dollan, Ralph; Haeusler, Uwe; Czarwinski, Renate

    2013-07-01

    Effective regulatory control is essential to ensure the safe and secure use of radioactive material and the appropriate management of radioactive waste. To ensure a sustainable control of high radioactive sources, the European Commission published the Council Directive 2003/122/EURATOM on the control of high-activity sealed radioactive sources and orphan sources, which had to be transferred into national legislation by all member states of the European Union. Major requirement of the Directive is a system to ensure traceability of high-activity sealed sources from 'cradle to grave' as well as the provision to take back disused sources by the supplier or manufacturer. With the Act on high-activity sealed radioactive sources Germany implemented the requirements of the Directive 2003/122/EURATOM and established a national registry of high-activity sealed sources in 2006. Currently, about 27.000 high-activity sealed sources are recorded in this national registry. (authors)

  11. The anaerobic digestion of organic solid wastes

    SciTech Connect (OSTI)

    Hartung, H.A.

    1996-09-01

    Anaerobic digestion offers many advantages in the processing of organic solid wastes, using a closed system to convert the waste to combustible gas and a stabilized organic residue.Odors are contained while digestion removes their source and gas is collected for energy recovery as heat or electricity. The stabilized residue is less than the starting waste by the mass of gas produced, and it can be disposed of by land application, land filling, incineration or composting. The stimulation of digesters and the phenomenon of co-digestion are two ways the performance of anaerobic digesters can be enhanced. Data from farm digesters and municipal wastewater treatment plants illustrate the present venue of the process; laboratory studies of the anaerobic digestion of a variety of solid wastes show that the process can be applied to these materials as well. About two thirds of municipal solid waste is shown to be amenable to anaerobic digestion in a substrate from an active municipal sewage plant digester.

  12. An overview of the sustainability of solid waste management at military installations

    SciTech Connect (OSTI)

    Borglin, S.; Shore, J.; Worden, H.; Jain, R.

    2009-08-15

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presented indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.

  13. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  14. Spent Sealed Sources Management in Switzerland - 12011

    SciTech Connect (OSTI)

    Beer, H.F.

    2012-07-01

    Information is provided about the international recommendations for the safe management of disused and spent sealed radioactive sources wherein the return to the supplier or manufacturer is encouraged for large radioactive sources. The legal situation in Switzerland is described mentioning the demand of minimization of radioactive waste as well as the situation with respect to the interim storage facility at the Paul Scherrer Institute (PSI). Based on this information and on the market situation with a shortage of some medical radionuclides the management of spent sealed sources is provided. The sources are sorted according to their activity in relation to the nuclide-specific A2-value and either recycled as in the case of high active sources or conditioned as in the case for sources with lower activity. The results are presented as comparison between recycled and conditioned activity for three selected nuclides, i.e. Cs-137, Co-60 and Am-241. (author)

  15. Microwave energy for post-calcination treatment of high-level nuclear wastes

    SciTech Connect (OSTI)

    Gombert, D.; Priebe, S.J.; Berreth, J.R.

    1980-01-01

    High-level radioactive wastes generated from nuclear fuel reprocessing require treatment for effective long-term storage. Heating by microwave energy is explored in processing of two possible waste forms: (1) drying of a pelleted form of calcined waste; and (2) vitrification of calcined waste. It is shown that residence times for these processes can be greatly reduced when using microwave energy rather than conventional heating sources, without affecting product properties. Compounds in the waste and in the glass frit additives couple very well with the 2.45 GHz microwave field so that no special microwave absorbers are necessary.

  16. Laboratory increases shipments of waste to WIPP repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab increases shipments to WIPP repository Laboratory increases shipments of waste to WIPP repository The campaign will eliminate LANL's existing backlog of approximately 1,500 drums of legacy transuranic waste awaiting shipment to WIPP. February 11, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  17. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  18. Radiation source

    DOE Patents [OSTI]

    Thode, Lester E. (Los Alamos, NM)

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.

  19. D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE

    Office of Environmental Management (EM)

    2 10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)).

  20. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant.

  1. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We don't expect any risk from this site. The permit ensures operation and closure of this facility do not harm humans or the environment. Liquid Effluent Retention Facility Effluent Treatment Facility Operating Unit #3 What happens to the waste it receives? LERF has three lined basins with a capacity of 88.5 million liters. ETF removes or destroys dangerous waste in liquid waste. It uses treatments such as filters, reverse osmosis, pH adjustment, and ultraviolet light. Water is treated, then

  2. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  3. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  4. Neutron multiplication error in TRU waste measurements

    SciTech Connect (OSTI)

    Veilleux, John [Los Alamos National Laboratory; Stanfield, Sean B [CCP; Wachter, Joe [CCP; Ceo, Bob [CCP

    2009-01-01

    Total Measurement Uncertainty (TMU) in neutron assays of transuranic waste (TRU) are comprised of several components including counting statistics, matrix and source distribution, calibration inaccuracy, background effects, and neutron multiplication error. While a minor component for low plutonium masses, neutron multiplication error is often the major contributor to the TMU for items containing more than 140 g of weapons grade plutonium. Neutron multiplication arises when neutrons from spontaneous fission and other nuclear events induce fissions in other fissile isotopes in the waste, thereby multiplying the overall coincidence neutron response in passive neutron measurements. Since passive neutron counters cannot differentiate between spontaneous and induced fission neutrons, multiplication can lead to positive bias in the measurements. Although neutron multiplication can only result in a positive bias, it has, for the purpose of mathematical simplicity, generally been treated as an error that can lead to either a positive or negative result in the TMU. While the factors that contribute to neutron multiplication include the total mass of fissile nuclides, the presence of moderating material in the matrix, the concentration and geometry of the fissile sources, and other factors; measurement uncertainty is generally determined as a function of the fissile mass in most TMU software calculations because this is the only quantity determined by the passive neutron measurement. Neutron multiplication error has a particularly pernicious consequence for TRU waste analysis because the measured Fissile Gram Equivalent (FGE) plus twice the TMU error must be less than 200 for TRU waste packaged in 55-gal drums and less than 325 for boxed waste. For this reason, large errors due to neutron multiplication can lead to increased rejections of TRU waste containers. This report will attempt to better define the error term due to neutron multiplication and arrive at values that are more realistic and accurate. To do so, measurements of standards and waste drums were performed with High Efficiency Neutron Counters (HENC) located at Los Alamos National Laboratory (LANL). The data were analyzed for multiplication effects and new estimates of the multiplication error were computed. A concluding section will present alternatives for reducing the number of rejections of TRU waste containers due to neutron multiplication error.

  5. Methane sources and emissions in Italy

    SciTech Connect (OSTI)

    Guidotti, G.R.; Castagnola, A.M.

    1994-12-31

    Methane emissions in Italy were assessed in the framework of the measures taken to follow out the commitments undertaken at the 1992 U.N. Conference for Environment and Development. Methane emissions of anthropic origin were estimated to be in the range of 1.6 to 2.3 million ton of methane per year. Some of these methane sources (natural gas production, transmission and distribution; rice paddies; managed livestock enteric fermentation and waste; solid waste landfills) are given here particular care as they mainly contribute to the total methane emission budget.

  6. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs.

  7. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  8. Method for calcining radioactive wastes

    DOE Patents [OSTI]

    Bjorklund, William J.; McElroy, Jack L.; Mendel, John E.

    1979-01-01

    This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

  9. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  10. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  11. Women of Waste Management

    Broader source: Energy.gov [DOE]

    PHOENIX - For the seventh year at the Waste Management Conference, EM contractor Fluor hosted a discussion on the expanding role of women in environmental management this month in a panel session attended by more than 250 people.

  12. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  13. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provided by the U.S. Environmental Protection Agency. The Karst and Related Issues at the Waste Isolation Pilot Plant - A paper addressing the issue of karst at WIPP by Dr. Lokesh...

  14. UMC Construction Waste (4493)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collect all Construction waste identified in 2006 and excess through plant sales, recycle through plant scrap metal recycle program, dispose in Y-12 on-site landfill, or ship to...

  15. Hanford Dangerous Waste Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Double-Shell Tank System 204-AR Waste Unloading Facility Operating Unit 12 241-AP Tank Farm construction. See black pickup trucks for scale. The DSTs have limited capacity and are...

  16. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T.

    2013-07-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  17. Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia

    SciTech Connect (OSTI)

    Afroz, Rafia; Masud, Muhammad Mehedi

    2011-04-15

    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.

  18. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  19. INEL test plan for evaluating waste assay systems

    SciTech Connect (OSTI)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  20. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  1. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  2. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste

  3. Friendly Skies Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friendly Skies Waste Management AGOS keeps watch above the NNSS. Hyde Park goes undefeated en route to Middle School title. Nevada attends waste management symposium in Arizona. See page 8. See page 4. See page 6. RSL Goes Behind-the- Scenes During the 57th Presidential Inauguration An estimated one million people flooded the nation's capital on Jan. 21, 2013, to witness the 57th Presidential Inauguration and the historic second inauguration of Barack Obama. The event was designated as a

  4. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  5. Defense Waste Management Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Management Programs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  6. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP...

    Office of Environmental Management (EM)

    Quality Control Inspector (QCI) Pre-Exam Quiz U.S. Department of Energy Building Energy Data Exchange Specification Alignment: Achieving Management & Operational Excellence...

  7. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  8. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  9. Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Waste Disposal Trucks transport debris from Oak Ridge’s cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. Trucks transport debris from Oak Ridge's cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility. The low-level radiological and hazardous wastes generated from Oak Ridge's cleanup projects are disposed in the Environmental Management Waste Management Facility (EMWMF). The

  10. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  11. Characterization of past and present solid waste streams from 231-Z

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Berkwitz, D.E.; Vejvoda, E.J.; Duncan, D.R.

    1993-06-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 8% of the TRU waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium Metallurgy Laboratory (231-Z) Facility. The purpose of this report is to characterize the radioactive solid wastes generated by 231-Z using process knowledge, existing records and oral history interviews. Since 1944 research and development programs utilizing plutonium have been conducted at 231-Z in the fields of physical metallurgy, property determination, alloy development, and process development. The following are sources of solid waste generation at the 231-Z Facility: (1) General Weapons Development Program, (2) process waste from gloveboxes, (3) numerous classified research and development programs, (4) advanced decontamination and decommissioning technologies, including sectioning, vibratory finishing, electropolishing, solution process, and small bench-scale work, (5) general laboratory procedures, (6) foundry area, (7) housekeeping activities, and (8) four cleanout campaigns. All solid wastes originating at 231-Z were packaged for onsite-offsite storage or disposal. Waste packaging and reporting requirements have undergone significant changes throughout the history of 231-Z. Current and historical procedures are provided in Section 4.0. Information on the radioactive wastes generated at 231-Z can be found in a number of documents and databases, most importantly the Solid Waste Information and Tracking System database and Solid Waste Burial Records. Facility personnel also provide excellent information about past waste generation and the procedures used to handle that waste. Section 5.0 was compiled using these sources.

  12. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  13. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  14. Tank Waste Corporate Board | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Waste Management » Tank Waste and Waste Processing » Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste

  15. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  16. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  17. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  18. Waste Treatment Plant - 12508

    SciTech Connect (OSTI)

    Harp, Benton; Olds, Erik

    2012-07-01

    The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

  19. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  20. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  1. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  2. Chemical and physical characterization of western low-rank-coal waste materials

    SciTech Connect (OSTI)

    Thompson, Carol May

    1981-03-01

    Evaluations of disposal requirements for solid wastes from power stations burning low-rank western coals is the primary objective of this program. Solid wastes to be characterized include: fly ashes, sludges from wet scrubbers, solids from fluidized bed combustion (FBC) processes and solids from dry scrubbing systems. Fly ashes and sludges to be studied will be obtained primarily from systems using alkaline fly ashes as significant sources of alkalinity for sulfur dioxide removal. Fluidized bed combustion wastes will include those produced by burning North Dakota lignite and Texas lignite. Dry scrubbing wastes will include those from spray drying systems and dry injection systems. Spray dryer wastes will be from a system using sodium carbonate as the scrubbing reagent. Dry injection wastes will come from systems using nahcolite and trona as sorbents. Spray dryer wastes, dry injection wastes, and FBC wastes will be supplied by the Grand Forks Energy Technology Center. Sludges and other samples will be collected at power stations using fly ash to supply alkalinity to wet scrubbers for sulfur dioxide removal. Sludges will be subjected to commercial fixation processes. Coal, fly ashes, treated and untreated sludges, scrubber liquor, FBC wastes, and dry scrubbing wastes will be subjected to a variety of chemical and physical tests. Results of these tests will be used to evaluate disposal requirements for wastes frm the systems studied.

  3. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-07-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  4. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  5. Densified waste form and method for forming

    DOE Patents [OSTI]

    Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina

    2015-08-25

    Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.

  6. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management ...

  7. EMAB Tank Waste Subcommittee Report Presentation

    Office of Environmental Management (EM)

    EM Environmental Management Tank Waste Subcommittee (EM- -TWS) TWS) Report to the Report ... Low Assess Candidate Low- -Activity Waste Forms Activity Waste Forms Charge 3: ...

  8. Independent Activity Report, Waste Treatment and Immobilization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and...

  9. WIPP Receives 500th Waste Shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radioactive waste to WIPP for permanent underground disposal. The shipment contained 28 drums of transuranic waste, bringing the total number of waste containers disposed at WIPP...

  10. Waste Confidence Discussion | Department of Energy

    Office of Environmental Management (EM)

    Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. PDF icon Waste Confidence Discussion More Documents & Publications Status Update: Extended...

  11. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

  12. Hanford Waste Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hanford Waste Services Ltd Jump to: navigation, search Name: Hanford Waste Services Ltd. Place: Wolverhampton, United Kingdom Zip: Wv2 1HR Product: Waste to Energy facility with...

  13. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  14. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  15. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    SciTech Connect (OSTI)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  16. Meat-, fish-, and poultry-processing wastes. [Industrial wastes

    SciTech Connect (OSTI)

    Litchfield, J.H.

    1982-06-01

    A review of the literature dealing with the effectiveness of various waste processing methods for meat-, fish,-, and poultry-processing wastes is presented. Activated sludge processes, anaerobic digestion, filtration, screening, oxidation ponds, and aerobic digestion are discussed.

  17. Tank Waste and Waste Processing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval,...

  18. Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste

    Office of Environmental Management (EM)

    Characterization Glovebox Operations | Department of Energy Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation

  19. Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

    Office of Environmental Management (EM)

    6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S.

  20. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Broader source: Energy.gov (indexed) [DOE]

    Plan | Department of Energy The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant underground disposal facility. PDF

  1. Open-source extreme conditions modeling tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-source extreme conditions modeling tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  2. higher penetration of renewable energy sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    higher penetration of renewable energy sources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  3. Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight

    Broader source: Energy.gov [DOE]

    Did you know 50 percent of the energy generated annually from all sources is lost as waste heat? What scientists are doing to take advantage of this opportunity to save money and new developments in harvesting fuel through photosynthesis.

  4. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    30, 1992 President Bush signs into law the WIPP Land Withdrawal Act, designating the EPA as the WIPP's primary regulator. October 21, 1993 DOE moves radioactive waste tests planned for WIPP to national laboratories. December 9, 1993 DOE creates the Carlsbad Area Office to manage the National Transuranic Waste Program and the WIPP. T h e W a s t e I s o l a t i o n P i l o t P l a n t 12 study was to analyze long-term per- formance of the underground reposito- ry based on information obtained

  5. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PIONEERING NUCLEAR WASTE DISPOSAL U.S. Department of Energy Carlsbad Area Office February 2000 DOE/CAO-00-3124 T h e W a s t e I s o l a t i o n P i l o t P l a n t ii Table of Contents Closing the Circle on Transuranic Waste 1 The Long Road to the WIPP 3 The need for the WIPP The National Academy of Sciences Community leaders suggest Carlsbad as the site for the WIPP Construction of the WIPP The WIPP Land Withdrawal Act Certification by the EPA The National Environmental Policy Act The Resource

  6. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.; Lines, Amanda M.; Levitskaia, Tatiana G.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.

  7. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    SciTech Connect (OSTI)

    Gasbarro, Christina; Bello, Job [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States)] [EIC Laboratories, Inc., 111 Downey St., Norwood, MA, 02062 (United States); Bryan, Samuel; Lines, Amanda; Levitskaia, Tatiana [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States)

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fiber optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)

  8. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    Department of Energy The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the final report. PDF icon Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

  9. Radioactive waste management in the former USSR. Volume 3

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world`s largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  10. Solid waste drum array fire performance

    SciTech Connect (OSTI)

    Louie, R.L.; Haecker, C.F.; Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L.

    1995-09-01

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

  11. Turning nuclear waste into glass

    SciTech Connect (OSTI)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  12. Process Waste Assessment - Paint Shop

    SciTech Connect (OSTI)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  13. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  14. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  15. Polybrominated diphenyl ethers in e-waste: Level and transfer in a typical e-waste recycling site in Shanghai, Eastern China

    SciTech Connect (OSTI)

    Li, Yue; Duan, Yan-Ping, E-mail: duanyanping@tongji.edu.cn; Huang, Fan; Yang, Jing; Xiang, Nan; Meng, Xiang-Zhou; Chen, Ling

    2014-06-01

    Highlights: • PBDEs were detected in the majority of e-waste. • PBDEs were found in TVs made in China after 1990. • The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS. • The inappropriate recycling and disposal of e-waste is an important source of PBDEs. - Abstract: Very few data for polybrominated diphenyl ethers (PBDEs) were available in the electronic waste (e-waste) as one of the most PBDEs emission source. This study reported concentrations of PBDEs in e-waste including printer, rice cooker, computer monitor, TV, electric iron and water dispenser, as well as dust from e-waste, e-waste dismantling workshop and surface soil from inside and outside of an e-waste recycling plant in Shanghai, Eastern China. The results showed that PBDEs were detected in the majority of e-waste, and the concentrations of ?PBDEs ranged from not detected to 175 g/kg, with a mean value of 10.8 g/kg. PBDEs were found in TVs made in China after 1990. The mean concentrations of ?PBDEs in e-waste made in Korea, Japan, Singapore and China were 1.84 g/kg, 20.5 g/kg, 0.91 g/kg, 4.48 g/kg, respectively. The levels of ?PBDEs in e-waste made in Japan far exceed the threshold limit of RoHS (1.00 g/kg). BDE-209 dominated in e-waste, accounting for over 93%. The compositional patterns of PBDEs congeners resembled the profile of Saytex 102E, indicating the source of deca-BDE. Among the samples of dust and surface soil from a typical e-waste recycling site, the highest concentrations of ?{sub 18}PBDEs and BDE-209 were found in dust in e-waste, ranging from 1960 to 340,710 ng/g and from 910 to 320,400 ng/g, which were 1–2 orders of magnitude higher than other samples. It suggested that PBDEs released from e-waste via dust, and then transferred to surrounding environment.

  16. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate

  17. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  18. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Environmental Management (EM)

    Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant December ......... 2 5.1 Radioactive Waste Management Planning ......

  19. Recommendation 223: Recommendations on Additional Waste Disposal...

    Office of Environmental Management (EM)

    3: Recommendations on Additional Waste Disposal Capacity Recommendation 223: Recommendations on Additional Waste Disposal Capacity ORSSAB's recommendations encourage DOE to...

  20. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  1. Hazardous waste site characterization (on cd-rom). Data file

    SciTech Connect (OSTI)

    1996-07-01

    Site characterization is one facet of hazardous waste site investigations. Environmental scientists and engineers within and outside the regulated community are becoming overwhelmed by the increasing number of guidance manuals, directives, documents and software products relating to the characterization of hazardous waste sites. People in the private sector, academia, and government are looking for convenient, definitive sources for this information. This CD-ROM combines into a single source a collection of useful references. The CD-ROM contains over 3,200 pages of EPA`s RCRA and Superfund Directives and Manuals that may be searched by key words or printed. It also contains a compilation of EPA-developed computer programs and documents to aid environmental professionals in the characterization of hazardous waste sites.

  2. Process for treating fission waste

    DOE Patents [OSTI]

    Rohrmann, Charles A.; Wick, Oswald J.

    1983-01-01

    A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.

  3. Chapter 19 - Nuclear Waste Fund

    Energy Savers [EERE]

    Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the

  4. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs. Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs. Years of diverse research and uranium and isotope production led to numerous forms of waste in Oak Ridge. However, our EM program has worked to identify,

  5. 10 years and 20,000 sources: the offsite source recovery project

    SciTech Connect (OSTI)

    Whitworth, Julia R; Abeyta, Cristy L; Pearson, Michael W

    2009-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted sealed sources for ten years. In January 2009, GTRI announced that the project had recovered 20,000 sealed radioactive sources. This project grew out of early efforts at Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program. Sealed source recovery was initially considered a waste management activity, as evidenced by its initial organization under the Department of Energy's (DOE's) Environmental Management (EM) program. After the terrorist attacks of 2001, however, the interagency community began to recognize the threat posed by excess and unwanted radiological material, particularly those that could not be disposed at the end of their useful life. After being transferred to the National Nuclear Security Administration (NNSA) to be part of GTRI, OSRP's mission was expanded to include not only material that would be classified as Greater-than-Class-C (GTCC) when it became waste, but also any other materials that might be a 'national security consideration.' This paper discusses OSRP's history, recovery operations, expansion to accept high-activity beta-gamma-emitting sealed sources and devices and foreign-possessed sources, and more recent efforts such as cooperative projects with the Council on Radiation Control Program Directors (CRCPD) and involvement in GTRI's Search and Secure project. Current challenges and future work will also be discussed.

  6. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  7. Waste-to-Energy Workshop

    Broader source: Energy.gov [DOE]

    The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

  8. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  9. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  10. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  11. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  12. Waste Management Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Committee Waste Management Committee Waste Management Committee Waste Management Committee Mission Statement The Northern New Mexico Citizens' Advisory Board (NNMCAB) Waste Management (WM) Committee reviews policies, practices and procedures, existing and proposed to provide recommendations, advice, suggestions and opinions to the US Department of Energy (DOE), regarding the waste management operations of Los Alamos National Laboratory (LANL), including Environmental Management

  13. Improved energy recovery from municipal solid wastes in sanitary landfills by two-phase digestion of biomass

    SciTech Connect (OSTI)

    Onu, Chukwu.

    1990-01-01

    The concept under investigaton was the separation of the acidogenic and the methanogenic phases of anaerobic fermentation, converting the sanitary landfill into an acid reactor and using a separate upflow fixed-film anaerobic reactor for methanogenesis. Acidic leachate from the landfill simulator was used as the influent substrate to the anaerobic reactor. The goal of the study was to improve both methane yield and concentration through nutrient addition and two-phase digestion of MSW. Sewage sludge was utilized to provide moisture, buffering capacity, nutrients, and an adequate microbial population. Single-phase systems with other enhancement techniques were also compared to the two-phase with sludge addition. Data from this study indicated that gas produced in the anaerobic reactor had methane concentration as high as 80 Mole % at the fixed-bed reactor (FBR) hydraulic retention time (HRT) of 7 days. The system reached a cumulative methane production rate of 78.6 {ell}/kg dry waste at an estimated cumulative production rate of approximately 270 {ell}/kg/yr. This performance was better than that reported in the literature for a similar type of feed. This study has also indicated that sewage sludge addition appears to be a successful enhancement technique for methane gas production from municipal solid waste. The addition of mineral nutrients and buffer solutions appears to have influenced the development of a dominant population of methanogenic bacteria in the FBR as indicated by the COD removal efficiency of 90% and 100% conversion of all influent organic acids. In terms of the overall system performance, the two-phase system was superior to the one-phase technique currently in use for methane generation.

  14. Waste-to-energy: Benefits beyond waste disposal

    SciTech Connect (OSTI)

    Charles, M.A.; Kiser, J.V.L. )

    1995-01-01

    More than 125 waste-to-energy plants operate in North America, providing dependable waste disposal for thousands of communities. But the benefits of waste-to-energy plants go beyond getting rid of the garbage. Here's a look at some of the economic, environmental, and societal benefits that waste-to-energy projects have brought to their communities. The reasons vary considerably as to why communities have selected waste-to-energy as a part of their waste management systems. Common on the lists in many communities are a variety of benefits beyond dependable waste disposal. A look at experiences in four communities reveals environmental, economic, energy, and societal benefits that the projects provide to the communities they serve.

  15. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process heat from the tank during operation.

  16. Nonradioactive Air Emissions Notice of Construction (NOC) Application for the Central Waste Complex (CSC) for Storage of Vented Waste Containers

    SciTech Connect (OSTI)

    KAMBERG, L.D.

    2000-04-01

    This Notice of Construction (NOC) application is submitted for the storage and management of waste containers at the Central Waste Complex (CWC) stationary source. The CWC stationary source consists of multiple sources of diffuse and fugitive emissions, as described herein. This NOC is submitted in accordance with the requirements of Washington Administrative Code (WAC) 173-400-110 (criteria pollutants) and 173-460-040 (toxic air pollutants), and pursuant to guidance provided by the Washington State Department of Ecology (Ecology). Transuranic (TRU) mixed waste containers at CWC are vented to preclude the build up of hydrogen produced as a result of radionuclide decay, not as safety pressure releases. The following activities are conducted within the CWC stationary source: Storage and inspection; Transfer and staging; Packaging; Treatment; and Sampling. This NOC application is intended to cover all existing storage structures within the current CWC treatment, storage, and/or disposal (TSD) boundary, as well as any storage structures, including waste storage pads and staging areas, that might be constructed in the future within the existing CWC boundary.

  17. LANL reaches waste shipment milestone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communications Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important

  18. Overview of advanced technologies for stabilization of {sup 238}Pu-contaminated waste

    SciTech Connect (OSTI)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed {sup 238}PuO{sub 2} fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of {sup 238}Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes {sup 238}Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239{sup Pu}), makes disposal of {sup 238}Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all {sup 238}Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and recover kilogram quantities of {sup 238}PuO{sub 2} from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented.

  19. Environmental impact assessment of solid waste management in Beijing City, China

    SciTech Connect (OSTI)

    Zhao Yan; Christensen, Thomas H.; Lu Wenjing; Wu Huayong; Wang Hongtao

    2011-04-15

    The environmental impacts of municipal solid waste management in Beijing City were evaluated using a life-cycle-based model, EASEWASTE, to take into account waste generation, collection, transportation, treatment/disposal technologies, and savings obtained by energy and material recovery. The current system, mainly involving the use of landfills, has manifested significant adverse environmental impacts caused by methane emissions from landfills and many other emissions from transfer stations. A short-term future scenario, where some of the landfills (which soon will reach their capacity because of rising amount of waste in Beijing City) are substituted by incinerators with energy recovery, would not result in significant environmental improvement. This is primarily because of the low calorific value of mixed waste, and it is likely that the incinerators would require significant amounts of auxiliary fuels to support combustion of wet waste. As for the long-term future scenario, efficient source separation of food waste could result in significant environmental improvements, primarily because of increase in calorific value of remaining waste incinerated with energy recovery. Sensitivity analysis emphasized the importance of efficient source separation of food waste, as well as the electricity recovery in incinerators, in order to obtain an environmentally friendly waste management system in Beijing City.

  20. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  1. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  2. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

  3. Electrolytes for power sources

    DOE Patents [OSTI]

    Doddapaneni, N.; Ingersoll, D.

    1995-01-03

    Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

  4. Radioactive Waste Conditioning, Immobilisation, And Encapsulation Processes And Technologies: Overview And Advances (Chapter 7)

    SciTech Connect (OSTI)

    Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.

    2012-10-19

    The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of low level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.

  5. Radioactive waste management treatments: A selection for the Italian scenario

    SciTech Connect (OSTI)

    Locatelli, G. [Univ. of Lincoln, Lincoln School of Engineering, Brayford Pool - Lincoln LN6 7TS (United Kingdom); Mancini, M. [Politecnico di Milano, Dept. of Management, Economics and Industrial Engineering, Via Lambruschini 4/B, Milano (Italy); Sardini, M. [Politecnico di Milano, Dept. of Energy, Via Lambruschini 4, Milano (Italy)

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

  6. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  7. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  8. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    SciTech Connect (OSTI)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.

  9. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases December 29, 2015 Emergency Operations Center Level 1 Activation August 4, 2015 Event News Release #4 Event News Release #3 Event News Release #2 Event News Release #1 Joint Information Center Activated at WIPP Emergency Operations Center Activated at WIPP June 02, 2015 Nitrate Waste Stream Isolated at WIPP December 22, 2014 CBFO Manager Letter #14 November 04, 2014 CBFO Manager Letter #13 September 30, 2014 Department of Energy Releases WIPP Recovery Plan June 18, 2014 CBFO

  10. BioGold Fuels Corporation | Open Energy Information

    Open Energy Info (EERE)

    through joint ventures a lower-cost, higher-output system for the production of diesel fuel derived from Municipal Solid Waste ("MSW"). References: BioGold Fuels...

  11. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E.; Ziegler, Anton A.; Serino, David F.; Basnar, Paul J.

    1987-01-01

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  12. Waste Receipt Quality Assurance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receipt Quality Assurance Program About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Receipt Quality Assurance Program Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The Hanford Site has a

  13. Lab sets new record for waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New record for waste shipments Lab sets new record for waste shipments LANL completing its 132nd transuranic (TRU) waste shipment of fiscal year 2010 to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. August 20, 2010 LANL's shipment of transuranic waste leaves Los Alamos. LANL's shipment of transuranic waste leaves Los Alamos. Contact Fred deSousa Communications Office (505) 500-5672 Email "Removing this waste from Los Alamos is crucial to our plans for overall

  14. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  15. Integrated Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consent-Based Siting » Integrated Waste Management Integrated Waste Management The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's nuclear waste. The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's nuclear waste. Components of an Integrated Waste

  16. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU

  17. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare drums of contact-handled transuranic waste for loading into transportation containers A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into

  18. Flammable gas tank waste level reconciliation for 241-SX-105

    SciTech Connect (OSTI)

    Brevick, C.H.; Gaddie, L.A.

    1997-06-23

    Fluor Daniel Northwest was authorized to address flammable gas issues by reconciling the unexplained surface level increases in Tank 241-SX-105 (SX-105, typical). The trapped gas evaluation document states that Tank SX-105 exceeds the 25% of the lower flammable limit criterion, based on a surface level rise evaluation. The Waste Storage Tank Status and Leak Detection Criteria document, commonly referred to as the Welty Report is the basis for this letter report. The Welty Report is also a part of the trapped gas evaluation document criteria. The Welty Report contains various tank information, including: physical information, status, levels, and dry wells. The unexplained waste level rises were attributed to the production and retention of gas in the column of waste corresponding to the unaccounted for surface level rise. From 1973 through 1980, the Welty Report tracked Tank SX-105 transfers and reported a net cumulative change of 20.75 in. This surface level increase is from an unknown source or is unaccounted for. Duke Engineering and Services Hanford and Lockheed Martin Hanford Corporation are interested in determining the validity of unexplained surface level changes reported in the Welty Report based upon other corroborative sources of data. The purpose of this letter report is to assemble detailed surface level and waste addition data from daily tank records, logbooks, and other corroborative data that indicate surface levels, and to reconcile the cumulative unaccounted for surface level changes as shown in the Welty Report from 1973 through 1980. Tank SX-105 initially received waste from REDOX starting the second quarter of 1955. After June 1975, the tank primarily received processed waste (slurry) from the 242-S Evaporator/Crystallizer and transferred supernate waste to Tanks S-102 and SX-102. The Welty Report shows a cumulative change of 20.75 in. from June 1973 through December 1980.

  19. Plasma destruction of North Carolina`s hazardous waste based on hazardous waste generated between the years of 1989 and 1992

    SciTech Connect (OSTI)

    Williams, D.L.

    1994-12-31

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day`s average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina`s primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail.

  20. he Hanford Story Tank Waste Cleanup | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    he Hanford Story Tank Waste Cleanup he Hanford Story Tank Waste Cleanup Addthis Description The Hanford Story Tank Waste Cleanup

  1. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  2. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  3. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  4. Determining site-specific drum loading criteria for storing combustible {sup 238}Pu waste

    SciTech Connect (OSTI)

    Marshall, R.S.; Callis, E.L.; Cappis, J.H.; Espinoza, J.M.; Foltyn, E.M.; Reich, B.T.; Smith, M.C.

    1994-02-01

    Waste containing hydrogenous-combustible material contaminated with {sup 238}Pu can generate hydrogen gas at appreciable rates through alpha radiolysis. To ensure safe transportation of WIPP drums, the limit for {sup 238}Pu-combustible waste published in the WIPP TRUPACT-11 CONTENT (TRUCON) CODES is 21 milliwafts per 55 gallon drum. This corresponds to about 45 milligrams of {sup 238}PuO{sub 2} used for satellite heat source-electrical generators. The Los Alamos waste storage site adopted a {sup 238}Pu waste storage criteria based on these TRCUCON codes. However, reviews of the content in drums of combustible waste generated during heat source assembly at Los Alamos showed the amount of {sup 238}Pu is typically much greater than 45 milligrams. It is not feasible to appreciably reduce Los Alamos {sup 238}Pu waste drum loadings without significantly increasing waste volumes or introducing unsafe practices. To address this concern, a series of studies were implemented to evaluate the applicability of the TRUCON limits for storage of this specific waste. Addressed in these evaluations were determination of the hydrogen generation rate, hydrogen diffusion rates through confinement layers and vent filters, and packaging requirements specific to Los Alamos generated {sup 238}Pu contaminated combustible waste. These studies also showed that the multiple-layer packaging practices in use at Los Alamos could be relaxed without significantly increasing the risk of contamination. Based on a model developed to predict H{sub 2} concentrations in packages and drum headspace, the site specific effective hydrogen generation rate, and hydrogen-diffusion values, and revising the waste packaging practices, we were able to raise the safe loading limit for {sup 238}Pu waste drums for on site storage to the gram levels typical of currently generated {sup 238}Pu waste.

  5. Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste

    Office of Environmental Management (EM)

    Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 | Department of Energy Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the

  6. Tank waste chemistry: A new understanding of waste aging

    SciTech Connect (OSTI)

    Babad, H.; Camaioni, D.M.; Lilga, M.A.; Samuels, W.D.; Strachan, D.M.

    1993-02-01

    There is concern about the risk of uncontrolled exothermic reaction(s) in Hanford Site waste tanks containing NO{sub 3}{sup {minus}}/NO{sub 2} based salts and/or metal hydroxide sludges in combination with organics or ferrocyanides. However, gradual oxidation of the waste in the tanks to less reactive species appears to have reduced the risk. In addition, wastes sampled to date contain sufficiently large quantities of water so that propagation reactions are highly unlikely. This paper investigates various aspects of the aging of Hanford tank wastes.

  7. High Level Waste Management Division High. Level Waste System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ProdMod tracks three key waste constituents: 1) sodium, ... HLW System will operate as fast as available funding and ... Restoration and Reactors are also treated.After ...

  8. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 ...EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste ...

  9. The First Recovery Act Funded Waste Shipment depart from the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste...

  10. Statistical techniques for characterizing residual waste in single-shell and double-shell tanks

    SciTech Connect (OSTI)

    Jensen, L., Fluor Daniel Hanford

    1997-02-13

    A primary objective of the Hanford Tank Initiative (HTI) project is to develop methods to estimate the inventory of residual waste in single-shell and double-shell tanks. A second objective is to develop methods to determine the boundaries of waste that may be in the waste plume in the vadose zone. This document presents statistical sampling plans that can be used to estimate the inventory of analytes within the residual waste within a tank. Sampling plans for estimating the inventory of analytes within the waste plume in the vadose zone are also presented. Inventory estimates can be used to classify the residual waste with respect to chemical and radiological hazards. Based on these estimates, it will be possible to make decisions regarding the final disposition of the residual waste. Four sampling plans for the residual waste in a tank are presented. The first plan is based on the assumption that, based on some physical characteristic, the residual waste can be divided into disjoint strata, and waste samples obtained from randomly selected locations within each stratum. The second plan is that waste samples are obtained from randomly selected locations within the waste. The third and fourth plans are similar to the first two, except that composite samples are formed from multiple samples. Common to the four plans is that, in the laboratory, replicate analytical measurements are obtained from homogenized waste samples. The statistical sampling plans for the residual waste are similar to the statistical sampling plans developed for the tank waste characterization program. In that program, the statistical sampling plans required multiple core samples of waste, and replicate analytical measurements from homogenized core segments. A statistical analysis of the analytical data, obtained from use of the statistical sampling plans developed for the characterization program or from the HTI project, provide estimates of mean analyte concentrations and confidence intervals on the mean. In addition, the statistical analysis provides estimates of spatial and measurement variabilities. The magnitude of these sources of variability are used to determine how well the inventory of the analytes in the waste have been estimated. This document provides statistical sampling plans that can be used to estimate the inventory of the analytes in the residual waste in single-shell and double-shell tanks and in the waste plume in the vadose zone.

  11. Methane generation from animal wastes

    SciTech Connect (OSTI)

    Fulton, E.L.

    1980-06-01

    The conversion of manure to biogas via anaerobic digestion is described. The effluent resulting from the conversion retains fertilizer value and is environmentally acceptable. Discussion is presented under the headings: methane formation in the digester; the Tarleton State Poultry Waste to Methane production system; operating experience at Tarleton State; economics of biogas production from poultry waste; construction cost and biogas value; energy uses; feed and waste processing; and advantages of anaerobic digestion. (DMC)

  12. Tank Waste | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tank Waste Tank Waste December 29, 2015 Cranes remove a sluicer from tank C-102 midway through retrieval to replace it with a new piece of equipment. The sluicer is wrapped in two layers of thick plastic to prevent contamination from entering the environment or harming workers. EM's Office of River Protection Completes Waste Retrieval in Another Hanford Tank RICHLAND, Wash. - The EM Office of River Protection (ORP) and its tank operations contractor Washington River Protection Solutions

  13. Waste-to-Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Roadmapping Workshop Waste-to-Energy Presentation by Jonathan Male, Director of the Bioenergy Technologies Office, Department of Energy PDF icon male_waste_to_energy_2014.pdf More Documents & Publications Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment "Wet" Waste-to-Energy in the Bioenergy Technologies Office Waste-to-Energy Workshop Summary Report

  14. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  15. EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first

  16. Progress Update: TRU Waste Shipping

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

  17. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    salt * Paper * Plastic * Tires * Toner cartridges * Used oil and oil filters * Wood pallets * Wood waste (spools, timbers, and crating materials) In FY 2015, 170 metric tons of...

  18. Reporting Fraud, Waste, and Abuse

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-09-15

    This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

  19. Process for preparing liquid wastes

    DOE Patents [OSTI]

    Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

    1997-01-01

    A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

  20. Hydrothermal Processing of Wet Wastes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of Wet Wastes James Oyler July 2014 Slide 1 Slide 2 Q: What is possible with Waste-to-Energy (WTE)? A: Up to 25% of US Liquid Fuel Supply. 25% Sounds High-Is That Possible? * Available technology and wet wastes can start toward this goal now * 285,000 barrels of oil per day by 2025 - 3.3 million bbl/d by 2045 (17% of US demand); also produces more than 6 million MCF/d of methane - Continue growing to 25% of US demand by adding more feedstocks (chart shown later) * Using wastes solves

  1. Anaerobic treatment of food wastes

    SciTech Connect (OSTI)

    Criner, G. )

    1991-04-01

    This article describes a research project at the University of Maine in which food wastes from the University cafeteria salad bar are processed in the anaerobic facility which normally treats only animal wastes. The project has benefited the University in several ways: avoidance of waste disposal fees; increased electricity co-generated from the biogas process; and use of the residual as fertilizer. An economic analysis indicated that the estimated cost of anaerobic treatment of the salad bar wastes was $4520/yr and benefits were $4793/yr. Since the digester was already in use, this cost was not factored into the analysis. Further studies are being planned.

  2. Nuclear Waste Partnership Contract Modifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Partnership Contract DE-EM0001971 Modifications NWP Modification Index Description Modification 001 Modification 002 Modification 003 Modification 004 Modification 005...

  3. Treatment of mercury containing waste

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Melamed, Dan (Gaithersburg, MD); Patel, Bhavesh R (Elmhurst, NY); Fuhrmann, Mark (Babylon, NY)

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  4. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 17, 2012 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING April 17, 2012 Richland, WA Topics in this Meeting Summary Welcome & Introductions...

  5. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 8, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING March 8, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions...

  6. WIPP | Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high resolution video equipment, was specifically designed and built to examine all waste containers in Panel 7, Room 7 in support of the Accident Investigation Board. The boom...

  7. Tank Waste Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2013 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE April 10, 2013 Richland, WA Topics in this Meeting Summary Opening ......

  8. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

    1985-08-30

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

  9. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.

  10. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  11. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel

  12. Tank Waste Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/15 Tank Waste Committee Priorities for advice on FY17 budget Not in priority order, numbering refers to last year's related advice points, per DOE response ď‚· (#1) The Board strongly urges DOE-Headquarters (HQ) to request full funding from Congress to meet all legal requirements of the ongoing cleanup work in FY 2016 and 2017 in addition to the following specific requests. ď‚· (#2) The Board advises DOE-ORP continue to request funding to proceed to empty leaking tanks (particularly AY-102 and

  13. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What happened at WIPP in February 2014 Burned Truck Salt hauling truck after the fire Two isolated events took place at the Waste Isolation Pilot Plant (WIPP) in February. On February 5, a salt haul truck caught fire. Workers were evacuated, and the underground portion of WIPP was shut down. Six workers were treated for smoke inhalation. Nine days later, late in the evening of February 14, a second, unrelated event occurred when a continuous air monitor (CAM) alarmed during the night shift. Only

  14. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standard waste boxes and seven packs stacked in Panel 1, Room 7 of the WIPP repository. 1 P i o n e e r i n g N u c l e a r W a s t e D i s p o s a l S ome 225 million years ago, the area around Carlsbad, New Mexico was a barren salt bed more than 2,000 feet thick. Dinosaurs had not yet roamed the Earth, and the first humans were in the distant future. The area had been covered by the Permian Sea, which by this time had repeatedly evaporated, leaving behind the salt bed that would eventually be

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/3/16 WIPP Home Page About WIPP Contact Us Search The supplemental ventilation system installed in the air intake drift WIPP's new hybrid (diesel/electric) bolter in the underground mine A drill being run at WIPP's new Emergency Operations Center Emergency response vehicles stationed in the WIPP underground WIPP Update March 3, 2016 Interim Ventilation System Tie-in Completed IVS Ducts Early this week sub-contractors at the Waste Isolation Pilot Plant (WIPP) completed the "tie in" of

  16. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  17. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    SciTech Connect (OSTI)

    Haller, C.S.; Dove, T.H.

    1994-11-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

  18. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  19. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  20. Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad

    2011-10-01

    The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.