Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

2

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

Broader source: Energy.gov [DOE]

Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

3

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

Columbia University

4

Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!  

E-Print Network [OSTI]

! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

5

Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico  

Science Journals Connector (OSTI)

Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the citys urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592kgcapita?1day?1. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%).

Guadalupe Gmez; Montserrat Meneses; Lourdes Ballinas; Francesc Castells

2009-01-01T23:59:59.000Z

6

Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico  

SciTech Connect (OSTI)

Management of municipal solid waste (MSW) has become a significant environmental problem, especially in fast-growing cities. The amount of waste generated increases each year and this makes it difficult to create solutions which due to the increase in waste generation year after year and having to identify a solution that will have minimum impact on the environment. To determine the most sustainable waste management strategy for Chihuahua, it is first necessary to identify the nature and composition of the city's urban waste. The MSW composition varied considerably depending on many factors, the time of year is one of them. Therefore, as part of our attempt to implement an integral waste management system in the city of Chihuahua, we conducted a study of the characteristics of MSW composition for the different seasons. This paper analyzes and compares the findings of the study of the characterization and the generation of solid waste from households at three different socio-economic levels in the city over three periods (April and August, 2006 and January, 2007). The average weight of waste generated in Chihuahua, taking into account all three seasons, was 0.592 kg capita{sup -1} day{sup -1}. Our results show that the lowest income groups generated the least amount of waste. We also found that less waste was generated during the winter season. The breakdown for the composition of the waste shows that organic waste accounts for the largest proportion (45%), followed by paper (17%) and others (16%)

Gomez, Guadalupe [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, 31310 (Mexico); Meneses, Montserrat [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Ballinas, Lourdes [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, 31310 (Mexico); Castells, Francesc [Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 43007 Tarragona (Spain)], E-mail: francesc.castells@urv.cat

2009-07-15T23:59:59.000Z

7

2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW), INCLUDING NON-RECYCLED PLASTICS (NRP),  

E-Print Network [OSTI]

-to-energy (WTE) plants, 0.27 million tons (0.7%) were used as alternative fuel in cement production, and 32 Earth Engineering Center (EEC) Report to the American Chemistry Council (ACC) which was based on U.S. 2008 data and quantified the energy and economic value of municipal solid wastes (MSW) and non

Columbia University

8

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

SciTech Connect (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

9

An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan  

E-Print Network [OSTI]

summarized in the paper. Finally, we present the regulatory system including Air Pollution Control Act . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495 4. Air pollution control regulations on MSW-to-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 4.1. MSW incinerator air pollutants emission standards

Columbia University

10

Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics  

Science Journals Connector (OSTI)

Abstract Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

JeongIn Gug; David Cacciola; Margaret J. Sobkowicz

2014-01-01T23:59:59.000Z

11

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network [OSTI]

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock July 2009 For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among of technologies can be used to create energy from MSW: · Landfill Gas Capture -- Waste in landfills naturally

Columbia University

12

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network [OSTI]

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

13

Fuel-Slurry Integrated Gasifier/Gas Turbine (FSIG/GT) Alternative for Power Generation Applied to Municipal Solid Waste (MSW)  

Science Journals Connector (OSTI)

The gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. ... The proper disposal and use of Municipal Solid Wastes (MSW) for power generation remains among the most pressing problems of medium to large cities. ... Bubble sizes and raising velocities through the gasifier bed (Configuration A). ...

Marcio L. de Souza-Santos; Kevin B. Ceribeli

2013-11-22T23:59:59.000Z

14

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

Broader source: Energy.gov [DOE]

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

15

Performance of a municipal solid waste (MSW) incinerator predicted with a computational fluid dynamics (CFD) code  

SciTech Connect (OSTI)

The purpose of this paper is to investigate by the means of numerical simulation the performance of the MSW incinerator with of Vercelli (Italy). FLUENT, a finite-volumes commercial code for Fluid Dynamics has been used to predict the 3-D reacting flows (gaseous phase) within the incinerator geometry, in order to estimate if the three conditions settled by the Italian law (P.D. 915 / 82) are respected: (a) Flue gas temperature at the input of the secondary combustion chamber must exceed 950 C. (b) Oxygen concentration in the same section must exceed 6 %. (c) Residence time for the flue gas in the secondary combustion chamber must exceed 2 seconds. The model of the incinerator has been created using the software pre-processing facilities (wall, input, outlet and live cells), together with the set-up of boundary conditions. There are also imposed the combustion constants (stoichiometry, heat of combustion, air excess). The solving procedure transforms at the level of each live cell the partial derivative equations in algebraic equations, computing the velocities field, the temperatures, gases concentration, etc. These predicted values were compared with the design properties, and the conclusion was that the conditions (a), (b), (c), are respected in normal operation. The powerful graphic interface helps the user to visualize the magnitude of the computed parameters. These results may be successfully used for the design and operation improvements for MSW incinerators. This fact will substantially increase the efficiency, reduce pollutant emissions and optimize the plant overall performance.

Anglesio, P.; Negreanu, G.P.

1998-07-01T23:59:59.000Z

16

Impact of Municipal Solid Waste (MSW) Quality on the Behavior of Alkali Metals and Trace Elements during Combustion: A Thermodynamic Equilibrium Analysis  

Science Journals Connector (OSTI)

Light, thermal- and bacterial-resistant, and inexpensive leathers, especially in the footwear industry, are obtained by the Cr tanning method. ... The selected waste items are representing the major combustible fractions found in MSW, i.e. paper, plastic, textile, and biogenic materials (both food and biomass), but also the other waste fraction (a mixed and poorly defined fraction). ... Pedersen et al.(6) studies six different waste fractions separately under different operational conditions in a full-scale incinerator: NaCl (road salt), household batteries, automotive shredder waste (rubber and plastics), Cu?Cr?As (CCA)-impregnated wood, PVC, and shoes (leather mainly). ...

Michae?l Becidan; Lars Srum; Daniel Lindberg

2010-05-21T23:59:59.000Z

17

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

18

MSW Biogenic | OpenEI  

Open Energy Info (EERE)

MSW Biogenic MSW Biogenic Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

19

Small boiler uses waste coal  

SciTech Connect (OSTI)

Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

Virr, M.J. [Spinheat Ltd. (United States)

2009-07-15T23:59:59.000Z

20

Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,  

E-Print Network [OSTI]

-gas emissions, water pollution, air pollution and noise/visual impact (of recycling/waste disposal facilities including construction/demolition, mining, quarrying, manufacturing and municipal waste. Much of the focus

Columbia University

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill  

Science Journals Connector (OSTI)

Abstract The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 20072012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream?s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 20072010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 20102012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F for determining water toxicity should be considered. Microtox showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program.

A. Melnyk; K. Kukli?ska; L. Wolska; J. Namie?nik

2014-01-01T23:59:59.000Z

22

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1  

E-Print Network [OSTI]

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1 ,P.G., R.S., Timothy D, Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential, particularly aluminum production wastes, may react exothermically with liquid within a landfill and cause

23

Office of Environmental Management Taps Small Business for Waste Isolation  

Broader source: Energy.gov (indexed) [DOE]

Environmental Management Taps Small Business for Waste Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract August 29, 2012 - 4:54pm Addthis A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization This week, Celeritex, LLC landed a contract worth up to $17.8 million with the Office of Environmental Management, having demonstrated through a competetive process that this small business is up to the task of securing and isolating defense-generated Transuranic waste.

24

Clean liquid fuels from MSW  

SciTech Connect (OSTI)

The need for a cost effective and cleaner method of Municipal Solid Waste (MSW) disposal hardly needs emphasizing. With funding through the US EPA and US DOE-METC, EnerTech demonstrated its SlurryCarb{trademark} process for producing homogeneous, pumpable fuels from Refuse Derived Fuel (RDF) with continuous pilot plant facilities, and characterized flue gas and ash emissions from combustion of the carbonized RDF slurry fuel. Pilot scale slurry carbonization experiments with RDF produced a homogeneous pumpable slurry fuel with a Higher Heating Value up to approximately 6,600 Btu/lb at 51.7 wt% total solids. The viscosity of this carbonized RDF slurry fuel was approximately 500 cP {at} 100 Hz decreasing, and ambient temperature. Also, pilot scale slurry carbonization experiments extracted up to approximately 94% of the feed RDF chlorine content as chloride salts. Atmospheric combustion of the carbonized RDF slurry fuel produced a carbon burnout exceeding 99.9%, with excess air as low as 15%. CO emissions averaged below 16 ppm (corrected to 7% O{sub 2}), while HCl and SO{sub 2} emissions were below 17 and 40 ppm, respectively, without acid gas scrubbing. NO{sub x} emissions depended on combustion temperature and averaged between 82--211 ppm, without selective noncatalytic or catalytic reduction. In addition, mercury emissions were measured at 0.003 mg/dscm. Combustion ash was non-hazardous, with low leaching characteristics, based on a TCLP analysis.

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States)

1996-12-31T23:59:59.000Z

25

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator  

Science Journals Connector (OSTI)

The cumulative landfill gas (LFG) production and its rate ... simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential ... . Considering the behavior of the p...

Rasool Bux Mahar; Abdul Razaque Sahito

2014-04-01T23:59:59.000Z

26

DOE Seeks Small Businesses for Waste Tracking Contract | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Small Businesses for Waste Tracking Contract Seeks Small Businesses for Waste Tracking Contract DOE Seeks Small Businesses for Waste Tracking Contract July 25, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Proposal (RFP) seeking Small Business Administration certified (8(a)) small business firms to provide DOE Transportation Tracking and Communications (TRANSCOM) Technical Support Services. A Requirements Contract will be awarded as a result of this RFP. The contract period of performance will be one year with four one-year option periods. The DOE TRANSCOM system continuously monitors and tracks active shipments of defense related spent nuclear fuel, radioactive/non-radioactive, hazardous, and transuranic (TRU) waste to and from DOE facilities. The

27

SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin  

E-Print Network [OSTI]

1 SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin Advisor: Prof. Nickolas J. Themelis for large Waste-to-Energy (WTE) facilities is combustion on a moving grate of "as-received" municipal solid, in particular, the Energos technology. The Energos technology was developed in Norway, in order to provide

28

A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China  

SciTech Connect (OSTI)

Highlights: ? We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ? The model is robust at multiple time scales with the anticipated accuracy. ? At month-scale, the SARIMA model shows good representation for monthly MSW generation. ? At medium-term time scale, grey relational analysis could yield the MSW generation. ? At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term.

Xu, Lilai, E-mail: llxu@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Gao, Peiqing, E-mail: peiqing15@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China); Cui, Shenghui, E-mail: shcui@iue.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021 (China); Xiamen Key Lab of Urban Metabolism, Xiamen 361021 (China); Liu, Chun, E-mail: xmhwlc@yahoo.com.cn [Xiamen City Appearance and Environmental Sanitation Management Office, 51 Hexiangxi Road, Xiamen 361004 (China)

2013-06-15T23:59:59.000Z

29

The renewable energy contribution from waste across Europe.  

E-Print Network [OSTI]

Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Digestion Source separated biomass fraction or Sorted bio-fraction of MSW AD Biogas -> Electr. & Heat 100

30

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic...

31

E-Print Network 3.0 - aluminium dross waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Copyright 2008 by ASME Proceedings of NAWTEC16 16th Annual North American Waste... analysis of the mass streams and the properties of residual Municipal Solid Waste (MSW)....

32

DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico  

Broader source: Energy.gov (indexed) [DOE]

Two Small Businesses to Truck Transuranic Waste to New Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions, LLC, to provide trucking services to transport transuranic (TRU) waste, from DOE and other defense-related TRU waste generator sites to the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The contracts are firmfixed-price with cost-reimbursable expenses over five years. CAST Specialty Transportation, Inc. of Henderson, Colorado, will begin

33

Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation  

Science Journals Connector (OSTI)

In the present study, we discuss the application of microwave-irradiated pyrolysis of municipal solid waste (MSW) for total recovery of useful gases and energy. The MSW pyrolysis under microwave irradiation hi...

Vidyadhar V. Gedam; Iyyaswami Regupathi

2012-03-01T23:59:59.000Z

34

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2012-01-01T23:59:59.000Z

35

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2013-01-01T23:59:59.000Z

36

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle Development of an Efficient, Cost- Effective System to Recover Medium- Grade...

37

Haraldrud Municipal Solid Waste Combustion Plant in Oslo.  

E-Print Network [OSTI]

??This thesis has studied Haraldrud MSW combustion process. Haraldrud is a realcombustion plant burning waste for citizens of Oslo. A thoroughly description ofthe combustion process (more)

Gudim, Simen Johan

2011-01-01T23:59:59.000Z

38

Office of Environmental Management Taps Small Business for Waste...  

Energy Savers [EERE]

team. As Celeritex, the joint venture will be providing support services for the Mobile Loading Unit, loading Transuranic waste containers into packaging that's been approved...

39

DOE to Address Small Businesses Barriers in Government Contracting at Waste  

Broader source: Energy.gov (indexed) [DOE]

to Address Small Businesses Barriers in Government Contracting to Address Small Businesses Barriers in Government Contracting at Waste Management Conference DOE to Address Small Businesses Barriers in Government Contracting at Waste Management Conference January 31, 2013 - 12:00pm Addthis David Sheeley David Sheeley Editor/Writer PHOENIX - EM and the DOE Office of Small and Disadvantaged Business Utilization (OSDBU) are working to address barriers that hinder small businesses from competing for prime contracts for work in the Cold War cleanup program. To that end, OSDBU and EM are co-hosting a discussion led by a panel of diverse experts from DOE headquarters and leaders from small business companies. The panel dialogue will focus on input received from small businesses. The panel will meet at 3:15 p.m. on Feb. 26 during the Waste Management

40

DOE to Address Small Businesses Barriers in Government Contracting at Waste  

Broader source: Energy.gov (indexed) [DOE]

DOE to Address Small Businesses Barriers in Government Contracting DOE to Address Small Businesses Barriers in Government Contracting at Waste Management Conference DOE to Address Small Businesses Barriers in Government Contracting at Waste Management Conference January 31, 2013 - 12:00pm Addthis David Sheeley David Sheeley Editor/Writer PHOENIX - EM and the DOE Office of Small and Disadvantaged Business Utilization (OSDBU) are working to address barriers that hinder small businesses from competing for prime contracts for work in the Cold War cleanup program. To that end, OSDBU and EM are co-hosting a discussion led by a panel of diverse experts from DOE headquarters and leaders from small business companies. The panel dialogue will focus on input received from small businesses. The panel will meet at 3:15 p.m. on Feb. 26 during the Waste Management

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Department Invests $10 Million to Cut Energy Waste in Small  

Broader source: Energy.gov (indexed) [DOE]

$10 Million to Cut Energy Waste in Small $10 Million to Cut Energy Waste in Small Commercial Buildings Energy Department Invests $10 Million to Cut Energy Waste in Small Commercial Buildings July 17, 2013 - 12:00pm Addthis Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution and reduce energy bills for U.S. businesses, the Energy Department today announced an award of $10 million for six projects to help small commercial buildings save money by saving energy. These small commercial buildings are less than 50,000 square feet in size and include schools, churches, strip malls, restaurants, and grocery stores. The six projects are aimed at developing user-friendly tools and resources that can be easily deployed at any small building. The Energy

42

Energy Department Invests $10 Million to Cut Energy Waste in Small  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Invests $10 Million to Cut Energy Waste in Small Energy Department Invests $10 Million to Cut Energy Waste in Small Commercial Buildings Energy Department Invests $10 Million to Cut Energy Waste in Small Commercial Buildings July 17, 2013 - 12:00pm Addthis Building on President Obama's Climate Action Plan, which calls for steady, responsible steps to reduce carbon pollution and reduce energy bills for U.S. businesses, the Energy Department today announced an award of $10 million for six projects to help small commercial buildings save money by saving energy. These small commercial buildings are less than 50,000 square feet in size and include schools, churches, strip malls, restaurants, and grocery stores. The six projects are aimed at developing user-friendly tools and resources that can be easily deployed at any small building. The Energy

43

THERMAL TREATMENT REVIEW . WTE I THERMAL TREATMENT Since the beginning of this century, global waste-to-energy capacity  

E-Print Network [OSTI]

of new waste-to gasification process at an industrial scale The Waste-To-Energy Research and Technology waste-to-energy capacity has increased steadily at the rate of about four million tonnes of MSW per year solid waste (MSW). Three dominant ,technologies _ those developed by The only true A global perspective

Columbia University

44

Oxygen-enriched coincineration of MSW and sewage sludge: Final report  

SciTech Connect (OSTI)

Federal regulations banning ocean dumping of sewage sludge coupled with stricter regulations on the disposal of sewage sludge in landfills have forced municipalities, especially those in the northeast United States, to consider alternate methods for disposal of this solid waste. Coincineration of municipal solid waste (MSW) and sludge has proven to be economically attractive for both Europe and Japan, but has not yet proven to be a viable sludge disposal technology in the United States because of a history of operational problems in existing facilities. The most prevalent problem in coincinerating MSW and a dewatered sewage sludge (15 to 25% solids) is incomplete sludge combustion. Incomplete sludge combustion is primarily a function of sludge particle size, occurring when the surface of the sludge particle dries and hardens, while the inner mass is unaffected. This phenomenon is commonly referred to in the industry as the {open_quotes}hamburger effect.{close_quotes} In an effort to promote technology development in this area, Air Products and Chemicals, Inc. teamed with the US Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL) to evaluate a new process being developed for the disposal of a dewatered sewage sludge, {open_quotes}Oxygen-Enriched Coincineration of MSW and Sewage Sludge.{close_quotes} This report provides a comprehensive summary of the pilot demonstration test program for oxygen-enriched coincineration of MSW and sewage sludge. This report describes the pilot test facility, instrumentation, and methods of data collection and data analyses; describes how the tests were executed; and discusses the test results. Recommendations for the future development of this technology in the current marketplace are also provided.

none,

1994-01-01T23:59:59.000Z

45

Project plans for transuranic waste at small quantity sites in the Department of Energy comples-10522  

SciTech Connect (OSTI)

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), has been tasked to write Project Plans for all of the Small Quantity Sites (SQS) with defense related Transuranic (TRU) waste in the Department of Energy (DOE) complex. Transuranic Work-Off Plans were precursors to the Project Plans. LANL-CO prepared a Work-Off Plan for each small quantity site. The Work-Off Plan that identified issues, drivers, schedules, and inventory. Eight sites have been chosen to deinventory their legacy TRU waste; Bettis Atomic Power Laboratory, General Electric-Vallecitos Nuclear Center, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory-Area 300, Nevada Test Site, Nuclear Radiation Development, Sandia National Laboratory, and the Separations Process Research Unit. Each plan was written for contact and/or remote handled waste if present at the site. These project plans will assist the small quantity sites to ship legacy TRU waste offsite and de-inventory the site of legacy TRU waste. The DOE is working very diligently to reduce the nuclear foot print in the United States. Each of the eight SQSs will be de-inventoried of legacy TRU waste during a campaign that ends September 2011. The small quantity sites have a fraction of the waste that large quantity sites possess. During this campaign, the small quantity sites will package all of the legacy TRU waste and ship to Idaho or directly to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The sites will then be removed from the Transuranic Waste Inventory if they are de-inventoried of all waste. Each Project Plan includes the respective site inventory report, schedules, resources, drivers and any issues. These project plans have been written by the difficult waste team and will be approved by each site. Team members have been assigned to each site to write site specific project plans. Once the project plans have been written, the difficult team members will visit the sites to ensure nothing has been overlooked and to verify the inventory. After each site has approved their project plan, the site will begin writing procedures and packaging/repackaging their waste. In some cases the sites have already begun the process. The waste will be shipped after all of the waste has been characterized and approved.

Mctaggart, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [DOE

2009-01-01T23:59:59.000Z

46

Recycling for small island tourism developments: Food waste composting at Sandals Emerald Bay, Exuma, Bahamas  

Science Journals Connector (OSTI)

Abstract The ability for small islands to meet sustainability goals is exacerbated by the costs of transporting goods on, and then, wastes off the islands. At small scales, recycling can be prohibitive and complicated by labor costs; the need to profitably recycle and manage solid waste output from tourism is complicated by scale and available technologies. A multi-year study documents the amount of solid waste generated on Great Exuma (Exuma), The Commonwealth of The Bahamas since 2010 with one year of benchmarking, then limited recycling of food waste generation by an all-inclusive resort, Sandals Emerald Bay (SEB). For the island of Exuma, the rapid increase in the rate of accumulation of solid waste associated with a large destination resort has led to an increase in pests such as rats and flies, along with an increased occurrence of fires associated with unburied solid waste. Solid waste has accumulated faster than the island solid waste management can absorb. SEB kitchen and hotel operations contributes an estimated 36% of all solid waste generated on the island, about 1752t11 The Commonwealth of The Bahamas uses US units of weight and volume, thus Exuma solid waste records are maintained in pounds and tons, but SI units (e.g. tonnes, liters) are given in this paper. Pounds and tons are also used in outreach material. out of a total of 4841t generated on the island in 2013 (exclusive of vegetation waste). Based on 4 weeks of benchmarking, 48.5% of all the waste coming out of the SEB resort is compostable, organic waste, but waste composition varies widely over time. Exuma Waste Management (EWM) and Recycle Exuma (RE), both privately-held Bahamian businesses, worked for one year (20122013) with SEB resort to implement a benchmarking and pilot recycling project to meet Earth Check green resort certification requirements. This paper outlines the costs and resources required for food waste recycling and some barriers to implementing more effective solid waste management for the tourism industry on small islands.

Kathleen Sullivan Sealey; Jarrell Smith

2014-01-01T23:59:59.000Z

47

DOE Selects 8(a) Small Business to Provide Waste Tracking Services |  

Broader source: Energy.gov (indexed) [DOE]

Selects 8(a) Small Business to Provide Waste Tracking Services Selects 8(a) Small Business to Provide Waste Tracking Services DOE Selects 8(a) Small Business to Provide Waste Tracking Services November 14, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 Bill.Taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today awarded a competitive small business set-aside contract to Ma-Chis Lower Creek Indian Tribe Enterprises Inc. (Ma-Chis) of Kinston, Alabama to provide DOE Transportation Tracking and Communications (TRANSCOM) Technical Support Services. This Requirements Contract has a value of up to $7.9 million, with a one-year performance period and four-one year extension options. Competition for this work was limited to Small Business Administration (SBA) 8(a) Business Development Firms. The DOE TRANSCOM system continuously monitors and tracks active shipments

48

An overview of the sustainability of solid waste management at military installations  

E-Print Network [OSTI]

Arc Gasification. Sustainability of Solid Waste Management.and gasification technologies for energy efficient and environmentally sound MSW disposal." Wastewaste to energy (Provence 2008). Plasma Arc Gasification

Borglin, S.

2010-01-01T23:59:59.000Z

49

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network [OSTI]

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

50

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

51

'Incineration: A burning issue or a load of rubbish? Examining public attitudes to municipal solid waste incineration.  

E-Print Network [OSTI]

??The author set out to investigate public attitudes to municipal solid waste (MSW) incineration. The area chosen for the study was Carlow town, a regional (more)

Dillon, Rachel

2006-01-01T23:59:59.000Z

52

DOE Awards Small Business Contract for Los Alamos National Laboratory Waste  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Los Alamos National Laboratory Waste Handling Services DOE Awards Small Business Contract for Los Alamos National Laboratory Waste Handling Services September 28, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a contract to Terranear PMC of Irving, TX, a small-disadvantaged business under the Small Business Administration's 8(a) Program for waste handling services at the Los Alamos National Laboratory in Los Alamos, New Mexico. The contract has a one-year performance period with a $2 million approximate value. The contract will be an Indefinite Delivery/Indefinite Quantity (ID/IQ) contract, under which firm-fixed-price task orders will be issued for specific services.

53

Wet welding qualification trials at 35 MSW  

SciTech Connect (OSTI)

Wet welding is gaining increased attention and attraction for application on marine buildings and offshore structures all over the world because of its versatility, flexibility and mobility in combination with low investment costs. In a common research and development project between PETROBRAS/CENPES, Rio de Janeiro, Brazil and GKSS Research Centre, Geesthacht, Germany wet welding qualification trials have been performed in different water depths up to 35 msw. The tests have been performed with newly developed electrodes in two different wet welding procedures. The experiments have been carried out on SS- as well as on 5F-specimens acc. ANSI/AWS D 3.6-89. Results will be presented in respect to the performance of the two welding procedures especially with regard to the avoidance of hydrogen induced cold cracking and high hardness values.

Dos Santos, V.R.; Teixeira, C.J. [Petrobras/CENPES, Rio de Janeiro (Brazil); Szelagowski, P.J.F. [GKSS Research Center, Geesthacht (Germany)

1993-12-31T23:59:59.000Z

54

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

55

Mobile loading transuranic waste at small quantity sites in the Department of Energy complex-10523  

SciTech Connect (OSTI)

Los Alamos National Laboratory, Carlsbad Office (LANL-CO), operates mobile loading operations for all of the large and small quantity transuranic (TRU) waste sites in the Department of Energy (DOE) complex. The mobile loading team performs loading and unloading evolutions for both contact handled (CH) and remote handled (RH) waste. For small quantity sites, many of which have yet to remove their TRU waste, the mobile loading team will load shipments that will ship to Idaho National Laboratory, a centralization site, or ship directly to the Waste Isolation Pilot Plant (WIPP). For example, Argonne National Laboratory and General Electric Vallecitos Nuclear Center have certified programs for RH waste so they will ship their RH waste directly to WIPP. Many of the other sites will ship their waste to Idaho for characterization and certification. The Mobile Loading Units (MLU) contain all of the necessary equipment needed to load CH and RH waste into the appropriate shipping vessels. Sites are required to provide additional equipment, such as cranes, fork trucks, and office space. The sites are also required to provide personnel to assist in the shipping operations. Each site requires a site visit from the mobile loading team to ensure that all of the necessary site equipment, site requirements and space for shipping can be provided. The mobile loading team works diligently with site representatives to ensure that all safety and regulatory requirements are met. Once the waste is ready and shipping needs are met, the mobile loading team can be scheduled to ship the waste. The CH MLU is designed to support TRUPACT-II and HalfPACT loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for TRUPACT-II and HalfPACT loading and shipment certification. The RH MLU is designed to support removable lid canister (RLC) and RH-72B cask loading activities wherever needed within the DOE complex. The team that performs the mobile loading operation has obtained national certification under DOE for RLC and RH-72B Cask loading and shipment certification. To date, the mobile loading team has successfully made 2,131 CH and RH TRU waste shipments. The mobile loading team continues to provide each site with safe and compliant loading ofTRU waste.

Carter, Mitch [Los Alamos National Laboratory; Howard, Bryan [Los Alamos National Laboratory; Weyerman, Wade [Los Alamos National Laboratory; Mctaggart, Jerri [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

56

Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference  

E-Print Network [OSTI]

require pre-processing of the MSW, combust the resulting syngas to generate steam, and produce a vitrified used globally for energy recovery from municipal solid wastes is combustion of "as received" MSW combustion of solid wastes. In China, there have been some mass-burn new plants and also over forty

Columbia University

57

Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA  

E-Print Network [OSTI]

WASTE (MSW) GASIFICATION UNDER VARIOUS PRESSURES AND CO2 CONCENTRATION ATMOSPHERES Eilhann Kwon, Kelly J, New York, NY 10027 ABSTRACT The Municipal Solid Waste (MSW) gasification process is a promisingProceedings of the 17th Annual North American Waste-to-Energy Conference NAWTEC17 May 18-20, 2009

Columbia University

58

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

59

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

60

A legislator`s guide to municipal solid waste management  

SciTech Connect (OSTI)

The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

Starkey, D.; Hill, K.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

62

High Level Waste System Impacts from Small Column Ion Exchange Implementation  

SciTech Connect (OSTI)

The objective of this task is to identify potential waste streams that could be treated with the Small Column Ion Exchange (SCIX) and perform an initial assessment of the impact of doing so on the High-Level Waste (HLW) system. Design of the SCIX system has been performed as a backup technology for decontamination of High-Level Waste (HLW) at the Savannah River Site (SRS). The SCIX consists of three modules which can be placed in risers inside underground HLW storage tanks. The pump and filter module and the ion exchange module are used to filter and decontaminate the aqueous tank wastes for disposition in Saltstone. The ion exchange module contains Crystalline Silicotitanate (CST in its engineered granular form is referred to as IONSIV{reg_sign} IE-911), and is selective for removal of cesium ions. After the IE-911 is loaded with Cs-137, it is removed and the column is refilled with a fresh batch. The grinder module is used to size-reduce the cesium-loaded IE-911 to make it compatible with the sludge vitrification system in the Defense Waste Processing Facility (DWPF). If installed at the SRS, this SCIX would need to operate within the current constraints of the larger HLW storage, retrieval, treatment, and disposal system. Although the equipment has been physically designed to comply with system requirements, there is also a need to identify which waste streams could be treated, how it could be implemented in the tank farms, and when this system could be incorporated into the HLW flowsheet and planning. This document summarizes a preliminary examination of the tentative HLW retrieval plans, facility schedules, decontamination factor targets, and vitrified waste form compatibility, with recommendations for a more detailed study later. The examination was based upon four batches of salt solution from the currently planned disposition pathway to treatment in the SCIX. Because of differences in capabilities between the SRS baseline and SCIX, these four batches were combined into three batches for a total of about 3.2 million gallons of liquid waste. The chemical and radiological composition of these batches was estimated from the SpaceMan Plus{trademark} model using the same data set and assumptions as the baseline plans.

McCabe, D. J.; Hamm, L. L.; Aleman, S. E.; Peeler, D. K.; Herman, C. C.; Edwards, T. B.

2005-08-18T23:59:59.000Z

63

Adequacy of a Small Quantity Site RH-TRU Waste Program in Meeting Proposed WIPP Characterization Objectives  

SciTech Connect (OSTI)

The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste prior to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.

Biedscheid, J.; Stahl, S.; Devarakonda, M.; Peters, K.; Eide, J.

2002-02-26T23:59:59.000Z

64

andradionuclide mixed wastes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steam -> Electr. & Heat Av 50 Range 47-80 Landfill Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Biomass Energy Plants...

65

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

SciTech Connect (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

66

Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

67

Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography  

SciTech Connect (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

68

Resource recovery potential from secondary components of segregated municipal solid wastes  

E-Print Network [OSTI]

(MSW) such as fruit and vegetable wastes (FVW), leaf litter, paddy straw, cane bagasse, cane trash for decentralized biogas plants to be operated in the vicinity. We characterized the fermen- tation potential of six of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using

Columbia University

69

PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge Batches 8, 16, and 17, regardless of the addition of SCIX or SWPF streams. This indicates that the blending strategy for these sludge batches should be reevaluated by Savannah River Remediation (SRR). (2) In general, candidate frits were available to accommodate CST additions to either Tank 40 or Tank 51. A larger number of candidate frits were typically available for the sludge batches when CST is added to Tank 51 rather than Tank 40, meaning that more compositional flexibility would be available for frit selection and DWPF operation. Note however that for SB8 and SB17, no candidate frits were available to accommodate CST going to Tank 40 with and without SWPF streams. The addition of SWPF streams generally improves the number of candidate frits available for processing of a given sludge batch. (3) The change in production rate from 40 Sludge Receipt and Adjustment Tank (SRAT) batches per year (i.e., the current production rate) to 75 SRAT batches per year, without SWPF streams included, had varied results in terms of the number of candidate frits available for processing of a given sludge batch. Therefore, this variable is not of much concern in terms of incorporating the SCIX streams. Note that the evaluation at 75 SRAT batches per year (approximately equivalent to 325 canisters per year) is more conservative in terms of the impact of SCIX streams as compared to a production rate of 400 canisters per year. Overall, the outcome of this paper study shows no major issues with the ability to identify an acceptable glass processing window when CST from the SCIX process is transferred to either Tank 40 or Tank 51. The assumptions used and the model limitations identified in this report must be addressed through further experimental studies, which are currently being performed. As changes occur to the planned additions of MST and CST, or to the sludge batch preparation strategy, additional evaluations will be performed to determine the potential impacts. As stated above, the issues with Sludge Batches 8, 16, and 17 should be further evaluated by SRR. A

Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

2010-06-29T23:59:59.000Z

70

The Waste Prevention War-- Small Arms Fire Now, but the Heavy Artillery is Coming (and the Search is on for Magic Bullets)  

E-Print Network [OSTI]

The Waste Prevention War Small Arms Fire Now, but the Heavy Artillery is Coming (and the Search Is on for Magic Bullets) Dan Steinmeyer Monsanto Company 51. louis, Missouri 'Wa.te Prevention' is unambiguous, as con trasted with 'waste... minimization' or 'waste elimination'. It means preventing the produc tion of waste. It isn't easy to do. Typically it requires major modification to the process: * to minimize byproduct formation to recover product and byproducts * to recycle wastes...

Steinmeyer, D.

71

Revaluing waste in New York City : planning for small-scale compost  

E-Print Network [OSTI]

One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a proven strategy for organic waste management, which ...

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

72

E-Print Network 3.0 - activity waste vitrification Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conference May 1-3, 2006, Tampa, Florida USA Summary: -98. Izumikawa C., 1996, "Metal recovery from fly ash generated from vitrification process for MSW ash," Waste... 14th...

73

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network [OSTI]

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

74

Modeling and comparative assessment of municipal solid waste gasification for energy production  

SciTech Connect (OSTI)

Highlights: Study developed a methodology for the evaluation of gasification for MSW treatment. Study was conducted comparatively for USA, UAE, and Thailand. Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan

2013-08-15T23:59:59.000Z

75

Economics of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

A study was undertaken to investigate the technical and economic feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), tire derived fuel (TDF), sewage sludge and industrial de-inking sludge. Conceptual designs of three power plants rated at 250 MWe, 150 MWe and 4 MWe were developed. The 4 MWe facility was chosen to represent a distributed power source for a remote location and designated to co-fire coal with MSW, TDF and sewage sludge while producing electricity for a small town. Heat and material balances were completed for each plant and costs determined including capital costs, operating costs and cost of electricity. With the PFBCs operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Since PFBCs have not been tested co-firing wastes, other critical performance factors were addressed and recommendations were provided for resolving potential technical issues. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center; DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-12-31T23:59:59.000Z

76

Practical guidelines for small-volume additions of uninhibited water to waste storage tanks  

SciTech Connect (OSTI)

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

1994-12-01T23:59:59.000Z

77

Practical guidelines for small volume additions of uninhibited water to waste storage tanks  

SciTech Connect (OSTI)

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-11-01T23:59:59.000Z

78

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

79

Municipal solid waste effective stress analysis  

SciTech Connect (OSTI)

The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

2009-12-15T23:59:59.000Z

80

Emissions from Small-Scale Burns of Simulated Deployed U.S. Military Waste  

Science Journals Connector (OSTI)

Piles of simulated military waste were constructed, burned, and emissions sampled at the U.S. Environmental Protection Agency (EPA) Open Burn Testing Facility (OBTF), Research Triangle Park, NC. ... The lack of sufficient and safe off-base waste treatment methods in the deployed environment, combined with limited numbers of waste management devices such as incinerators, have forced continued reliance on open burning in burn pits as an expedient method of volume reduction and treatment for solid waste during the conflicts in Afghanistan and Iraq. ... (4) In response, the U.S. Department of Defense (DOD) has published guidance regulating burn pit operations, including limiting their use and prohibiting the burning of recyclable plastics. ...

Brian D. Woodall; Dirk P. Yamamoto; Brian K. Gullett; Abderrahmane Touati

2012-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network [OSTI]

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

82

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

83

Process modeling of hydrogen production from municipal solid waste  

SciTech Connect (OSTI)

The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

Thorsness, C.B.

1995-01-01T23:59:59.000Z

84

DOE Awards Small Business Contract for Support to the Waste Isolation Pilot Plant  

Broader source: Energy.gov [DOE]

Cincinnati - The Department of Energy (DOE) today awarded a task order to Southwestern Public Service Company, of Amarillo, TX to supply on a daily basis the required quantity of electric energy required for the customers operation at the Waste Isolation Pilot Plant (WIPP) facilities pursuant to the terms of the areawide contract.

85

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 45 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Juc Maciel; Jos Fernando Thom Juc

2011-01-01T23:59:59.000Z

86

Conversion of municipal solid waste to hydrogen  

SciTech Connect (OSTI)

LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

1995-04-01T23:59:59.000Z

87

Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes  

Science Journals Connector (OSTI)

Abstract In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities.

Gabriela Ionescu; Elena Cristina Rada; Marco Ragazzi; Cosmin M?rculescu; Adrian Badea; Tiberiu Apostol

2013-01-01T23:59:59.000Z

88

The composition, heating value and renewable share of the energy content of mixed municipal solid waste in Finland  

Science Journals Connector (OSTI)

Abstract For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (5060%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.

M. Horttanainen; N. Teirasvuo; V. Kapustina; M. Hupponen; M. Luoranen

2013-01-01T23:59:59.000Z

89

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to energy as a very important "trick" that can have a positive environmental impact. Usually, these seasonal items including hay, pumpkins, candy, and leaves, are thrown away and sent to landfills. From there, the MSW decomposes and eventually turns into methane-a harmful

90

Application of Geographical Information System (GIS) in optimisation of waste collection for Alandur Municipality in South Chennai, India  

Science Journals Connector (OSTI)

The population outburst in urban areas had resulted in a substantial increase in the generation of Municipal Solid Waste (MSW) and challenged with waste management. Issam et al. (2007) pointed out that most of the cities which is burning the waste in open dumps lacks in proper health and safety requirements. Alandur which is under Alandur Municipal Corporation (AMC) generate nearly 80 MT MSW every day. Due to improper institutional mechanism for collection and conveyance of waste, an engineered design for storage, collection and conveyance using GIS incorporating route optimisation had been discussed in this paper.

T.E. Kanchanabhan; Srinivasan Selvaraj; V. Lenin Kalyana Sundaram; J. Abbas Mohaideen

2011-01-01T23:59:59.000Z

91

The potential of GHG emission savings for programmatic CDM by municipal solid waste composting in the Western Province - Sri Lanka  

Science Journals Connector (OSTI)

The Western Province (WP) of Sri Lanka, as the most populated province in the country is burdened with a high level of municipal solid waste generation. Out of the 48 administrative local authorities within the WP, only 16 local authorities are practicing municipal solid waste composting. All other local authorities are practicing the most common method of MSW disposal; open dumping. The study was aimed at finding the potential of green house gas emission savings by municipal solid waste composting according to Programmatic Clean Development Mechanism in 32 local authorities of the WP which are not currently practicing MSW composting in order to quantify the certified emission reduction. The daily collection rate of municipal solid waste in the entire WP is around 2,000 tons per day. Biodegradable portion dominates the bulk of municipal solid waste in WP as about 76.30%. There is potential of claiming 231 certified emission reductions annually with regard to MSW composting within the WP.

V.K.D.H. Kariyakarawana; N.J.G.J. Bandara; S. Leelarathne

2014-01-01T23:59:59.000Z

92

Bay County, Florida waste-to-energy facility air emission tests  

SciTech Connect (OSTI)

The Bay County Resource Management Center is located 10 miles Northeast of Panama City, Florida. Panama City is a resort community approximately 100 miles east of Pensacola, Florida, on the northwest coast of Florida's panhandle. The average population of this area is approximately 115,000. The average quantity of municipal solid (MSW) waste generated in Bay County during most of the year is 300 tons per day. However, during the summer months when the population increases to more than 150,000 the community must handle in excess of 350 tons of MSW per day. The County decided to design the facility to ultimately burn 510 tons of MSW to allow additional waste to be processed as the population and quantity of waste increases. Until other sources of MSW are procured, the facility is supplementing the 350 tpd of MSW with about 160 tpd of wood waste.The facility began initial start-up, equipment check-out, and instrument calibration in February 1987. Plant shakedown and systems operational checks were made from February through May. This paper discusses emission testing which was conducted from late April through early June. The emission compliance tests were completed on June 4-5, 1987. The facility acceptance test and emission compliance test were completed five months ahead of the original project schedule.

Beachler, D.S.; Pompelia, D.M.; Weldon, J. (Westinghouse Electric Corp., Pittsburgh, PA (USA))

1988-01-01T23:59:59.000Z

93

Mercury emissions from municipal solid waste combustors  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

Not Available

1993-05-01T23:59:59.000Z

94

Municipal solid waste characteristics and management in Allahabad, India  

E-Print Network [OSTI]

by political, legal, socio-cultural, environmental and economic factors, as well as available resources on a suitable management plan (Shimura et al., 2001). More than 90% of MSW in India is directly disposedMunicipal solid waste characteristics and management in Allahabad, India Mufeed Sharholy a , Kafeel

Columbia University

95

Neutrino-electron scattering and the choice between different MSW solutions of the solar neutrino problem  

SciTech Connect (OSTI)

We consider the scattering of solar neutrinos by electrons as a means for distinguishing between MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, we find that some correlation between the value R and the appropriate solution. 9 refs., 3 figs.

Rosen, S.P.; Gelb, J.M.

1987-01-01T23:59:59.000Z

96

The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case  

SciTech Connect (OSTI)

The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

Park, Sangwon; Choi, Jun-Ho [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Park, Jinwon, E-mail: jwpark@yonsei.ac.kr [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)

2011-08-15T23:59:59.000Z

97

Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions  

SciTech Connect (OSTI)

Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.

Hyukjin Oh; Kalyan Annamalai; John M. Sweeten [Texas A& amp; M University, College Station, TX (United States). Department of Mechanical Engineering

2008-04-15T23:59:59.000Z

98

A direct steam heat option for hydrothermal treatment of municipal solid waste  

SciTech Connect (OSTI)

A conceptual process for producing a gasifiable slurry from raw municipal solid waste (MSW) using direct steam heating is outlined. The process is based on the hydrothermal decomposition of the organic matter in the MSW, which requires the MSW to be heated to 300-350{degrees}C in the presence of water. A process model is developed and it is shown, based on preliminary estimates of the hydrothermal reaction stoichiometry, that a process using multiple pressure vessels, which allows recovery of waste heat, results in a process capable of producing a product slurry having a 40 wt % solids content with no waste water emissions. Results for a variety of process options and process parameters are presented. It is shown that the addition of auxiliary feedstock to the gasifier, along with the MSW derived slurry, results in more efficient gasification. It is estimated that 2.6 kmol/s of hydrogen can be produced from 30 kg/s (2600 tonne/day) of MSW and 16 kg/s of heavy oil. Without the additional feedstock, heavy oil in this case, only 0.49 kmol/s of hydrogen would be produced.

Thorsness, C.B.

1995-04-12T23:59:59.000Z

99

Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options  

SciTech Connect (OSTI)

Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

Funk, K.; Milford, J.; Simpkins, T.

2013-02-01T23:59:59.000Z

100

Hydrogen production by gasification of municipal solid waste  

SciTech Connect (OSTI)

As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

Rogers, R. III

1994-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Evolution of WTE utilization - a global look. Asian perspective - waste incineration and it`s value in Japan  

SciTech Connect (OSTI)

Incineration carries significant weight in waste disposal in general. Seventy-five percent of the total quantity of municipal solid waste is incinerated. In the year 1994, there were a total of 1,854 incineration plants in Japan. Waste heat from MSW incineration is utilized for power generation at most large-scale incineration plants. In 1994, a total of 3,376 industrial waste incineration plants existed in Japan. They have been contributing much toward waste volume reduction, improvement of the quality of landfill materials through conversion of organic substances into inorganic substances which are more beneficial for landfill purposes, and conservation of resources by energy recovery. But air pollution by exhaust substances - especially dioxin - from incineration plants pose a problem. This may place a big hurdle before future incineration plant projects. Small batch-type incineration furnaces are slowly dying out. Some municipalities will jointly construct a large incineration plant among themselves while others will consider introducing RDF producing plant, which is getting popular. More efforts will be made to melt and solify the incineration residue, reduce the environmental load imposed by pollutants in the exhaust gas from now on.

Tanaka, Masaru [National Institute of Public Health, Tokyo (Japan)

1997-12-01T23:59:59.000Z

102

Nuclear wastes: Small disposals  

Science Journals Connector (OSTI)

... Much to the relief of many east coast hospitals, universities and medical schools, the Nuclear Regulatory Commission (NRC) is proposing that liquid scintillation media used for detecting low levels ... for detecting low levels of radioactivity in biological samples need no longer be buried in nuclear ...

David Dickson

1980-10-16T23:59:59.000Z

103

Emissions inventories for MSW landfills under Title V  

SciTech Connect (OSTI)

In the past, many states were either not concerned with, or unaware that, municipal solid waste landfills (MSWLFs) were potential sources of regulated air pollutants. This philosophy is rapidly changing, in part due to US EPA policy documents concerning (and defining) fugitive and non-fugitive emissions from MSWLFs, the attention given to the newly released New Source Performance Standards and a recent lawsuit that gained national notoriety involving landfill air emissions and air permitting applicability issues. Most states now recognize that MSWLFs are sources of regulated air pollutants and are subject to permitting requirements (and pollutant emission fees) as other industries; i.e., state-level minor- and major-source operating permit programs, and the 1990 Clean Air Act Amendments Title V Operating Permits Program (Title V).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Peyser, T.R. [SCS Engineers, Birmingham, AL (United States); Hamilton, S.M. [SCS Engineers, Tampa, FL (United States)

1996-05-01T23:59:59.000Z

104

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect (OSTI)

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

105

Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China  

SciTech Connect (OSTI)

The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

2011-06-15T23:59:59.000Z

106

Waste Heat-to-Power in Small Scale Industry Using Scroll Expander for Organic Rankine Bottoming Cycle  

Broader source: Energy.gov [DOE]

The project objective is to develop the scroll expander for Organic Rankine cycle (ORC) systems to be used in medium-grade waste heat recovery applications, and to validate and quantify the benefits of the prototype system.

107

Building waste management core indicators through Spatial Material Flow Analysis: Net recovery and transport intensity indexes  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Sustainability and proximity principles have a key role in waste management. Black-Right-Pointing-Pointer Core indicators are needed in order to quantify and evaluate them. Black-Right-Pointing-Pointer A systematic, step-by-step approach is developed in this study for their development. Black-Right-Pointing-Pointer Transport may play a significant role in terms of environmental and economic costs. Black-Right-Pointing-Pointer Policy action is required in order to advance in the consecution of these principles. - Abstract: In this paper, the material and spatial characterization of the flows within a municipal solid waste (MSW) management system are combined through a Network-Based Spatial Material Flow Analysis. Using this information, two core indicators are developed for the bio-waste fraction, the Net Recovery Index (NRI) and the Transport Intensity Index (TII), which are aimed at assessing progress towards policy-related sustainable MSW management strategies and objectives. The NRI approaches the capacity of a MSW management system for converting waste into resources through a systematic metabolic approach, whereas the TII addresses efficiency in terms of the transport requirements to manage a specific waste flow throughout the entire MSW management life cycle. Therefore, both indicators could be useful in assessing key MSW management policy strategies, such as the consecution of higher recycling levels (sustainability principle) or the minimization of transport by locating treatment facilities closer to generation sources (proximity principle). To apply this methodological approach, the bio-waste management system of the region of Catalonia (Spain) has been chosen as a case study. Results show the adequacy of both indicators for identifying those points within the system with higher capacity to compromise its environmental, economic and social performance and therefore establishing clear targets for policy prioritization. Moreover, this methodological approach permits scenario building, which could be useful in assessing the outcomes of hypothetical scenarios, thus proving its adequacy for strategic planning.

Font Vivanco, David, E-mail: font@cml.leidenuniv.nl [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden (Netherlands); Puig Ventosa, Ignasi [ENT Environment and Management, Carrer Sant Joan 39, First Floor, 08800 Vilanova i la Geltru, Barcelona (Spain); Gabarrell Durany, Xavier [Institut de Ciencia i Tecnologia Ambientals (ICTA), Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Barcelona (Spain)

2012-12-15T23:59:59.000Z

108

Aqueous alteration of municipal solid waste ash  

SciTech Connect (OSTI)

Municipal solid waste (MSW) ash is composed largely of amorphous oxides and approximately 20% minerals including halite, magnetite, hematite, quartz, gypsum, calcite, and rutile. It is also enriched in toxic trace metals by up to three orders of magnitude over average soil. The thermodynamic stabilities and rates of dissolution of the minerals and glasses in MSW ash will determine whether the ash is an environmental problem. The authors have used batch reactors at 20, 40, and 60 C over time periods up to 60 days to simulate longer reaction times for ash under cooler landfill conditions. Soluble salts are most quickly dissolved, giving solutions dominated by Ca[sup 2+], Na[sup +], K[sup +], SO[sub 2][sup 2[minus

Kirby, C.S.; Rimstidt, J.D. (Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States))

1992-01-01T23:59:59.000Z

109

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,7792,074kJkg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290gkg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

110

Multiple regression analysis for the estimation of energy content of municipal solid waste  

Science Journals Connector (OSTI)

A regression equation is proposed to predict the Higher Heating Value (HHV) of Municipal Solid Waste (MSW) from the waste data of 86 cities of 35 countries. A mathematical model is developed, by using Statistical Package for Social Sciences (SPSS-10.0), to correlate the energy content of waste with the variables derived from its physical composition. Performance of the proposed multiple regression model is superior to available models. For validation, the proposed model is applied to the waste data of Jaipur City (India), nine cities of EEC countries and also to the MSW of USA. Energy content values obtained by proposed regression model and Modified Dulong's Equation (MDE) are closer to the measured mean energy content values for EEC countries compared to the values obtained by Khan's method. Objective of the paper is to propose a simple model, which can replace the lengthy MDE and which has universal applicability for the predication of HHVs.

G.D. Agrawal; A.P.S. Rathore; A.B. Gupta

2007-01-01T23:59:59.000Z

111

Data summary of municipal solid waste management alternatives  

SciTech Connect (OSTI)

This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

Not Available

1992-10-01T23:59:59.000Z

112

Occurrence of Zinc and Lead in Aerosols and Deposits in the Fluidized-Bed Combustion of Recovered Waste Wood. Part 1: Samples from Boilers  

Science Journals Connector (OSTI)

1.1 Recovered Waste Wood (RWW) as a Fuel ... In recent years, concerns about the environment, depletion of fossil fuel resources, and economic considerations have increased interest in the use of biomass and waste-derived fuels for power production. ... Lundholm et al. found K2ZnCl4 as one of the main components of the aerosol particles in grate combustion of municipal solid waste (MSW). ...

Sonja Enestam; Christoffer Boman; Jere Niemi; Dan Bostrm; Rainer Backman; Kari Mkel; Mikko Hupa

2011-03-07T23:59:59.000Z

113

Advanced combustion zone retrofitting Lidkoeping BFB establishes a state-of-the-art design for waste firing  

SciTech Connect (OSTI)

The oil crisis in 1973 gave an impetus to the development of the fluidized bed combustion technology for power and heat generation with local, often low quality, fuels. Kvaerner delivered the first Bubbling Fluidized Bed (BFB) for Municipal Solid Waste (MSW) firing in 1979 and the first waste fired Circulating Fluidized Bed (CFB) in 1984. Since this introduction Kvaerner has delivered 13 fluidized beds based on MSW out of a total of over 60 BFB and CFB delivers (in the range 5--165 MW{sub ht}). The ever more stringent demands on emissions performance, efficiency and availability have induced a continuous series of design enhancements culminating in the state-of-the-art BFB boilers at Lidkoeping BFB (in operation since 1985 on shredded MSW) was induced by new emission standards and need for increased output. The modified design was based on learning experience from Kvaerner Waste To Energy (WTE) BFB installations and an extensive R and D program. The design has fulfilled all expectations and established a third generation design for MSW fueled BFB-boilers. The green field installation at BCH Energy will commence operation in 1995. Design features include the Advanced Combustion Zone with an air swept fuel inlet spout, an asymmetrical overfire air (OFA) system installed in a double arch arrangement and directional bottom air nozzles. Also included are an integrated ash classifier, an improved back pass surface arrangement and a SNCR-system based on NH{sub 3}.

Tellgren, E.; Hagman, U.; Victoren, A.

1995-12-31T23:59:59.000Z

114

Electronic Waste Transformation  

Science Journals Connector (OSTI)

Electronic Waste Transformation ... Instead, entrepreneurial individuals and small businesses recover valuable metals such as copper from obsolete equipment through activities such as burning. ...

CHERYL HOGUE

2012-04-01T23:59:59.000Z

115

The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review  

Science Journals Connector (OSTI)

The novel concepts Enhanced Waste Management (EWM) and Enhanced Landfill Mining (ELFM) intend to place landfilling of waste in a sustainable context. The state of the technology is an important factor in determining the most suitable moment to valorize either as materials (Waste-to-Product, WtP) or as energy (Waste-to-Energy, WtE) certain landfill waste streams. The present paper reviews thermochemical technologies (incineration, gasification, pyrolysis, plasma technologies, combinations) for energetic valorization of calorific waste streams, with focus on municipal solid waste (MSW), possibly processed into refuse derived fuel (RDF). The potential and suitability of these thermochemical technologies for ELFM applications are discussed. From this review it is clear that process and waste have to be closely matched, and that some thermochemical processes succeed in recovering both materials and energy from waste. Plasma gasification/vitrification is a viable candidate for combined energy and material valorization, its technical feasibility for MSW/RDF applications (including excavated waste) has been proven on installations ranging from pilot to full scale. The continued advances that are being made in process control and process efficiency are expected to improve the commercial viability of these advanced thermochemical conversion technologies in the near future.

A. Bosmans; I. Vanderreydt; D. Geysen; L. Helsen

2013-01-01T23:59:59.000Z

116

DOE to Address Small Businesses Barriers in Government Contracting...  

Broader source: Energy.gov (indexed) [DOE]

to Address Small Businesses Barriers in Government Contracting at Waste Management Conference DOE to Address Small Businesses Barriers in Government Contracting at Waste Management...

117

Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content  

Science Journals Connector (OSTI)

Abstract The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization.

Barbara Scaglia; Silvia Salati; Alessandra Di Gregorio; Alberto Carrera; Fulvia Tambone; Fabrizio Adani

2013-01-01T23:59:59.000Z

118

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

119

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the intensive reactor phase, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called final storage quality, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

120

Integrated solid waste management of Minneapolis, Minnesota  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107)  

SciTech Connect (OSTI)

The current BNFL Inc. flowsheet for the pretreatment of the Hanford high-level tank wastes includes the use of Superlig{reg_sign} materials for removing {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium-selective Superlig 632and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, Utah. This report describes the testing of the Superlig 644 ion exchange material in a small dual-column system. The bed volume of the lead column was 18.6 mL (L/D = 7), and the bed volume of the lag column was 15.9 mL (L/D = 6) during the loading phase. The sample processed was approximately 1.6 L of diluted waste ([Na{sup +}] = 4.84 M) from Tank 241-AN-107 (Envelope C). This sample had been previously treated for removal of Sr/transuranic (TRU) values and clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration. A summary of performance measures for both columns is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 20 for the lead column is much lower than the estimated 150 obtained by the Savannah River Technology Center during Phase 1A testing. Equilibrium data obtained with batch contacts using the AN-107 Cs IX feed predicts a Cs {lambda} of 183. A Cs {lambda} for the lag column could not be determined due to insufficient breakthrough, but it appeared to work well and removed nearly all of the cesium not removed by the lead column. The low value for the lead column indicates that it did not perform as expected. This may have been due to air or gas in the bed that caused fluid channeling or blinding of the resin. The maximum decontamination factor (DF) for {sup 137}Cs listed in Table S1 is based on {sup 137}Cs concentration in the first samples collected from each column and the {sup 137}Cs concentration in the feed. The composite DF for {sup 137}Cs was 1,760, which provided an effluent with a {sup 137}Cs concentration of 8.7E-02 Ci/m{sup 3}. The {sup 137}Cs concentration is below the basis of design limit and is 7.2% of the contract limit for {sup 137}Cs.

DE Kurath; DL Blanchard; JR Bontha

2000-06-28T23:59:59.000Z

122

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

123

LMA MSW solution of the solar neutrino problem and first KamLAND results  

E-Print Network [OSTI]

The first KamLAND results are in a very good agreement with the predictions made on the basis of the solar neutrino data and the LMA realization of the MSW mechanism. We perform a combined analysis of the KamLAND (rate, spectrum) and the solar neutrino data with a free boron neutrino flux f_B. The best fit values of neutrino parameters are Delta m^2 = 7.3e-5 eV^2, tg^2 theta = 0.41 and f_B = 1.05 with the 1 sigma intervals: Delta m^2 = (6.2 - 8.4)e-5 eV^2, tg^2 theta = 0.33 - 0.54. We find the 3 sigma upper bounds: Delta m^2 4e-5 eV^2. At 99% C.L. the KamLAND spectral result splits the LMA region into two parts with the preferred one at Delta m^2 solar neutrino and KamLAND results are considered.

P. C. de Holanda; A. Yu. Smirnov

2002-12-23T23:59:59.000Z

124

Combined Municipal Solid Waste and biomass system optimization for district energy applications  

SciTech Connect (OSTI)

Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

2014-01-15T23:59:59.000Z

125

Integrated solid waste management of Seattle, Washington  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

NONE

1995-11-01T23:59:59.000Z

126

Advanced thermal processing alternatives for solid waste management  

SciTech Connect (OSTI)

The 1990`s have seen a resurgence of interest in the development of new thermal processing alternatives for municipal solid waste (MSW). Sparked by increasingly stringent environmental regulations, much of this creative energy has been applied to technologies for the gasification of MSW: converting the solid, hard to handle material into a clean, medium to high-Btu fuel gas. Other developers have focussed on full combustion technology but with a {open_quotes}twist{close_quotes} that lowers emissions or reduces cost. A comprehensive study of these new technologies was recently completed under the sponsorship of the National Renewable Energy Laboratory of the U.S. Department of Energy. The study characterized the state-of-the-art among emerging MSW thermal processing technologies that have reached the point of `incipient commercialization.` More than 45 technologies now under development were screened to develop a short list of seven processes that have passed through the idea stage, laboratory and benchscale testing, and have been prototyped at an MSW feed rate of at least several tons per hour. In-depth review of these seven included inspections of operating pilot or prototype units and a detailed analysis of technical, environmental and economic feasibility issues. No attempt was made to select `the best` technology since best can only be defined in the context of the constraints, aspirations and circumstances of a specific, local situation. The basic flowsheet, heat and material balances and available environmental data were summarized to help the reader grasp the underlying technical concepts and their embodiment in hardware. Remaining development needs, as seen by the study team are presented. Economic analysis shows the general balance of capital and operating costs.

Niessen, W.R. [Camp Dresser & McKee Inc., Cambridge, MA (United States)

1997-12-01T23:59:59.000Z

127

Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies  

SciTech Connect (OSTI)

This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

none,

1992-10-01T23:59:59.000Z

128

Waste-to-energy in the United States: Socioeconomic factors and the decision-making process  

SciTech Connect (OSTI)

Municipal solid waste (MSW) combustion with energy recovery, commonly called waste-to-energy (WTE), was adopted by many US communities during the 1980s to manage their growing quantities of MSW. Although less than one percent of all US MSW was burned to retrieve its heat energy in 1970, WTE grew to account for 16 percent of MSW in 1990, and many experts forecasted that WTE would be used to manage as much as half of all garbage by the turn of the century. However, the growth of WTE has been reduced in recent years by project cancellations. This study takes an in-depth look at the socioeconomic factors that have played a role in the decisions of communities that have considered WTE as a component of their solid waste management strategies. More specifically, a three-pronged approach is adopted to investigate (1) the relationships between a municipality`s decision to consider and accept/reject WTE and key socioeconomic parameters, (2) the potential impacts of recent changes in financial markets on the viability of WTE, and (3) the WTE decision-making process and the socioeconomic parameters that are most important in the municipality`s decision. The first two objectives are met by the collection and analysis of aggregate data on all US WTE initiatives during the 1982 to 1990 time frame. The latter objective is met by way of four in-depth case studies -- two directed at communities that have accepted WTE and two that have cancelled WTE projects.

Curlee, T.R.; Schexnayder, S.M.; Vogt, D.P.; Wolfe, A.K.; Kelsay, M.P.; Feldman, D.L. [Oak Ridge National Lab., TN (United States)

1993-10-01T23:59:59.000Z

129

The role of waste-to-energy in integrated waste management: A life cycle assessment perspective  

SciTech Connect (OSTI)

Municipal Solid Waste (MSW) management has become a major issue in terms of environmental impacts. It has become the focus of local, state and federal regulations, which generally tend to promote the reduce/re-use/recycle/incinerate/landfill environmental hierarchy. At the same time, the Waste Industry capital requirements have increased in order of magnitude since the beginning of the 80`s. The driving forces of further capital requirements for the Waste Management Industry will be the impact of public policies set today and goals set by politicians. Therefore, it appears extremely important for the Waste Industry to correctly analyze and forecast the real environmental and financial costs of waste management practices in order to: discuss with the local, state and federal agencies on more rational grounds; forecast the right investments in new technologies (recycling networks and plants, incinerators with heat recovery, modern landfill). The aim of this paper is to provide an example of a Life Cycle Assessment (LCA) project in the waste management field that raised surprising issues on otherwise unchallenged waste management practices.

Besnainou, J. [Ecobalance, Rockville, MD (United States)

1996-12-31T23:59:59.000Z

130

Mercury emissions from municipal solid waste combustors. An assessment of the current situation in the United States and forecast of future emissions  

SciTech Connect (OSTI)

This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

none,

1993-05-01T23:59:59.000Z

131

Waste-to-Energy Evaluation: U.S. Virgin Islands  

SciTech Connect (OSTI)

This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

Davis, J.; Hasse, S.; Warren, A.

2011-08-01T23:59:59.000Z

132

Fluid-bed combustion of solid wastes  

SciTech Connect (OSTI)

For over ten years combustion Power Company has been conducting experimental programs and developing fluid bed systems for agencies of the federal government and for private industry and institutions. Many of these activities have involved systems for the combustion of solid waste materials. Discussed here will be three categories of programs, development of Municipal Solid Waste (MSW) fired fluid beds, development of wood waste fired fluid beds, and industrial installations. Research and development work on wood wastes has led to the design and construction of two large industrial fluid bed combustors. In one of these, a fluid bed is used for the generation of steam with a fuel that was previously suited only for landfill. Rocks and inerts are continuously removed from this combustor using a patented system. The second FBC is designed to use a variety of fuels as the source of energy to dry hog fuel for use in a high performance power boiler. Here the FBC burns green hog fuel, log yard debris, fly ash (char) from the boiler, and dried wood fines to produce a hot gas system for the wood dryer. A significant advantage of the fluidized bed reactor over conventional incinerators is its ability to reduce noxious gas emission and, finally, the fluidized bed is unique in its ability to efficiently consume low quality fuels. The relatively high inerts and moisture content of solid wastes pose no serious problem and require no associated additional devices for their removal.

Vander Molen, R.H.

1980-01-01T23:59:59.000Z

133

Agricultural Waste Solutions Inc AWS | Open Energy Information  

Open Energy Info (EERE)

Inc (AWS) Place: Westlake Village, California Zip: CA 91361 Product: Agricultural Waste Solutions designs small scale gasification systems. References: Agricultural Waste...

134

Weidlinger-Navarro selected for waste staging facility design...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weidlinger-Navarro selected for waste staging facility design support Small firm selected for design support of new waste staging facility Weidlinger-Navarro will support the...

135

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

136

Environmental waste disposal contracts awarded  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental contracts awarded locally Environmental contracts awarded locally Environmental waste disposal contracts awarded locally Three small businesses with offices in Northern New Mexico awarded nuclear waste clean-up contracts. April 3, 2012 Worker moves drums of transuranic (TRU) waste at a staging area A worker stages drums of transuranic waste at Los Alamos National Laboratory's Technical Area 54. the Lap ships such drums to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) in Southern New Mexico. The Lab annually averages about 120 shipments of TRU waste to WIPP. Contact Small Business Office (505) 667-4419 Email "They will be valuable partners in the Lab's ability to dispose of the waste safely and efficiently." Small businesses selected for environmental work at LANL

137

Modeling On-Grate MSW Incineration with Experimental Validation in a Batch Incinerator  

Science Journals Connector (OSTI)

This knowledge cannot be readily obtained from direct experimental studies on industrial-scale incinerators; in contrast, mathematical modeling and numerical simulation appear to be an attractive approach for quantitative insight into the mechanisms and variables of waste-bed incineration. ... This approach was successfully employed for grate(6) or rotary kiln(7) plants. ... Gasification of carbon (char or coke) by steam is a well-known process for producing syngas. ...

Abhishek Asthana; Yannick Me?nard; Philippe Sessiecq; Fabrice Patisson

2010-07-12T23:59:59.000Z

138

Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste  

Science Journals Connector (OSTI)

Abstract The aim of this work is to study the feasibility and operational performance of plasmatron (plasma torch) gasification of municipal solid waste mixed with raw wood (MSW/RW) derived from the pretreatment of Steam Mechanical Heat Treatment (SMHT), as the target material (MRM). A 10kW plasmatron reactor is used for gasification of the MRM. The production of syngas (CO and H2) is the major component, and almost 90% of the gaseous products appear in 2min of reaction time, with relatively high reaction rates. The syngas yield is between 88.59 and 91.84vol%, and the recovery mass ratio of syngas from MRM is 45.19 down to 27.18wt% with and without steam with the energy yields of 59.07111.89%. The concentrations of gaseous products from the continuous feeding of 200g/h are stable and higher than the average concentrations of the batch feeding of 10g. The residue from the plasmatron gasification with steam is between 0 and 4.52wt%, with the inorganic components converted into non-leachable vitrified lava, which is non-hazardous. The steam methane reforming reaction, hydrogasification reaction and Boudouard reaction all contribute to the increase in the syngas yield. It is proved that MSW can be completely converted into bioenergy using SMHT, followed by plasmatron gasification.

Je-Lueng Shie; Li-Xun Chen; Kae-Long Lin; Ching-Yuan Chang

2014-01-01T23:59:59.000Z

139

Circulating fluidized-bed boiler makes inroads for waste recycling  

SciTech Connect (OSTI)

Circulating fluidized-bed (CFB) boilers have ben used for years in Scandinavia to burn refuse-derived fuel (RDF). Now, Foster Wheeler Power Systems, Inc., (Clinton, N.J.) is bringing the technology to the US. Touted as the world`s largest waste-to-energy plant to use CFB technology, the Robbins (III.) Resource Recovery Facility will have the capacity to process 1,600 tons/d of municipal solid waste (MSW) when it begins operation in early 1997. The facility will have two materials-separation and RDF-processing trains, each with dual trommel screens, magnetic and eddy current separators, and shredders. About 25% of the incoming MSW will be sorted and removed for recycling, while 75% of it will be turned into fuel, with a heat value of roughly 6,170 btu/lb. Once burned in the twin CFB boilers the resulting steam will be routed through a single turbine generator to produce 50,000 mW of electric power.

NONE

1995-09-01T23:59:59.000Z

140

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus  

Science Journals Connector (OSTI)

Simulation of Syngas Production from Municipal Solid Waste Gasification in a Bubbling Fluidized Bed Using Aspen Plus ... When the reaction kinetics is not known, a rigorous reactor and multiphase equilibrium based on the minimization of the total Gibbs free energy of the product mixture (an RGibbs block) is preferred to predict the equilibrium composition of the produced syngas. ... Catalytic steam gasification of municipal solid waste (MSW) to produce hydrogen-rich gas or syngas (H2 + CO) with calcined dolomite as a catalyst in a bench-scale downstream fixed bed reactor was investigated. ...

Miaomiao Niu; Yaji Huang; Baosheng Jin; Xinye Wang

2013-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Formation of deposits on the surfaces of superheaters and economisers of MSW incinerator plants  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Composition of deposits depends on the temperature profile and boiler geometry. Black-Right-Pointing-Pointer The mineralogy of deposits defines critical and uncritical zones in the boiler. Black-Right-Pointing-Pointer Critical zones in boilers can be characterised by a classification systems. Black-Right-Pointing-Pointer Specific measures to enhance energy efficiency can be defined. - Abstract: Mineralogical and chemical investigations of deposits from superheaters and economisers from a MSWI plant in Mannheim, Germany, lead to a classification system which provides information about the most critical parameters leading to fouling and corrosion. With the help of this classification system parameters like the geometry of boilers and the waste input can be changed in order to prolong run times between revisions and enhance energy efficiency of MSWI plants.

Reichelt, J. [IBR, Obergrombacher Strasse 29, D-76646 Bruchsal (Germany); Pfrang-Stotz, G., E-mail: Gudrun.Pfrang-Stotz@kit.edu [Karlsruhe Institute of Technology (KIT), ITC, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Bergfeldt, B.; Seifert, H. [Karlsruhe Institute of Technology (KIT), ITC, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Knapp, P. [MVV O and M GmbH, Muellheizkraftwerk Mannheim, Otto-Hahn-Strasse 1, D-68169 Mannheim (Germany)

2013-01-15T23:59:59.000Z

142

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

143

Salt Waste Processing Initiatives  

Broader source: Energy.gov (indexed) [DOE]

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

144

Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

2012-04-15T23:59:59.000Z

145

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

146

Waste Isolation Pilot Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU radioactive elements. Over the next 35 years, WIPP is expected to receive approximately 175,000 cubic meters of waste from various DOE sites. Enforcement September 8, 2006 Enforcement Letter, Washington TRU Solutions - September 8, 2006

147

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

148

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect (OSTI)

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

149

Solar Neutrino Rates, Spectrum, and its Moments : an MSW Analysis in the Light of Super-Kamiokande Results  

E-Print Network [OSTI]

We re-examine MSW solutions of the solar neutrino problem in a two flavor scenario taking (a) the results on total rates and the electron energy spectrum from the 1117-day SuperKamiokande (SK) data and (b) those on total rates from the Chlorine and Gallium experiments. We find that the SMA solution gives the best fit to the total rates data from the different experiments. One new feature of our analysis is the use of the moments of the SK electron spectrum in a $\\chi^2$ analysis. The best-fit to the moments is broadly in agreement with that obtained from a direct fit to the spectrum data and prefers a $\\Delta m^2$ comparable to the SMA fit to the rates but the required mixing angle is larger. In the combined rate and spectrum analysis, apart from varying the normalization of the $^8$B flux as a free parameter and determining its best-fit value we also obtain the best-fit parameters when correlations between the rates and the spectrum data are included and the normalization of the $^8$B flux held fixed at its SSM value. We observe that the correlations between the rates and spectrum data are important and the goodness of fit worsens when these are included. In either case, the best-fit lies in the LMA region.

Srubabati Goswami; Debasish Majumdar; Amitava Raychaudhuri

2001-04-09T23:59:59.000Z

150

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

151

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

152

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

153

Robbins project - start-up and commercial operation at a leading-edge recycling, waste-to-energy plant  

SciTech Connect (OSTI)

On January 22, 1997, the Robbins Resource Recovery Facility began commercial operation in Robbins, Illinois, a suburb of Chicago, after a very successful start-up program. The first installation of its kind in the United States, the Robbins facility converts municipal solid waste (MSW) into refuse-derived fuel (RDF) that is fired in two circulating fluidized-bed boilers. Steam from the boilers powers a turbine generator that can produce enough electricity to service more than 50,000 homes. The Robbins facility processes a minimum of 1600 tons of MSW per day. Some 75 percent of the MSW is converted into RDF. In addition to compostable material, the balance yields reusable aluminum, ferrous materials, and glass. Even ash produced by the circulating fluidized-bed (CFB) boilers can be used to manufacture cement. The Robbins facility is operated by Foster Wheeler Illinois, Inc., a member of the Foster Wheeler Power Systems Group. The plant was engineered by Foster Wheeler USA Corporation and built by Foster Wheeler Constructors, Inc. Foster Wheeler Energy International, Inc. provided the circulating fluidized-bed boilers.

NONE

1997-12-31T23:59:59.000Z

154

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

155

Integrated solid waste management of Springfield, Massachusetts  

SciTech Connect (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

NONE

1995-11-01T23:59:59.000Z

156

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

157

* 96 total credits in A&S courses are required for the degree. ** BA/MSW students may count 6 credits from SCWK7721 and SCWK7723 toward the required 96 A&S credits  

E-Print Network [OSTI]

with Children+ OR Financial Management & Resource Development++ 3 CR SCWK8800 Basic Skills in Macro Practice 3/MSW PROGRAM Curriculum Plan Freshman Year [30 A&S credits*] Course # Semester 1 Course Semester 2 15 Behavior in the Social Environment ** 3 CR SCWK7701 Social Welfare System 3 CR SCWK7723 Diversity and Cross-Cultural

Huang, Jianyu

158

Volume reduction of hot cell plastic wastes  

SciTech Connect (OSTI)

The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

Dykes, F W; Henscheid, J P; Lewis, L C; Lundholm, C W; Nicklas, J H

1989-09-19T23:59:59.000Z

159

Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery the Municipal Solid Wastes (the Municipal Solid Wastes (MSWMSW) of Beograd) of Beograd  

E-Print Network [OSTI]

Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery fromfrom;26.2World total 1.30.255.2Developing world 0.380.550.7 EU, Japan, Canada, Australia 0.331.10.3U.S.A. Tons MSW generated, billions Tons MSW per capita Population, billion Global generation of MSW Estimated SCG

Columbia University

160

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

162

Process and technological aspects of municipal solid waste gasification. A review  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Critical assessment of the main commercially available MSW gasifiers. Black-Right-Pointing-Pointer Detailed discussion of the basic features of gasification process. Black-Right-Pointing-Pointer Description of configurations of gasification-based waste-to-energy units. Black-Right-Pointing-Pointer Environmental performance analysis, on the basis of independent sources data. - Abstract: The paper proposes a critical assessment of municipal solid waste gasification today, starting from basic aspects of the process (process types and steps, operating and performance parameters) and arriving to a comparative analysis of the reactors (fixed bed, fluidized bed, entrained bed, vertical shaft, moving grate furnace, rotary kiln, plasma reactor) as well as of the possible plant configurations (heat gasifier and power gasifier) and the environmental performances of the main commercially available gasifiers for municipal solid wastes. The analysis indicates that gasification is a technically viable option for the solid waste conversion, including residual waste from separate collection of municipal solid waste. It is able to meet existing emission limits and can have a remarkable effect on reduction of landfill disposal option.

Arena, Umberto, E-mail: umberto.arena@unina2.it [Department of Environmental Sciences, Second University of Naples, Via A. Vivaldi, 43, 81100 Caserta (Italy)

2012-04-15T23:59:59.000Z

163

The reduction of packaging waste  

SciTech Connect (OSTI)

Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

1994-04-01T23:59:59.000Z

164

Contact glow discharge electrolysis for liquid waste processing  

E-Print Network [OSTI]

for an alka- line water electrolysis at a small pin verticaldischarge electrolysis applied to waste water treatment.water treatment induced by plasma with contact glow discharge electrolysis.

Sharma, Neeraj

2014-01-01T23:59:59.000Z

165

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

166

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect (OSTI)

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

167

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

168

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

169

WASTE TO WATTS Waste is a Resource!  

E-Print Network [OSTI]

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

170

Off-design performance of integrated waste-to-energy, combined cycle plants  

Science Journals Connector (OSTI)

This paper focuses on the off-design operation of plants where a waste-to-energy (WTE) system fed with municipal solid waste (MSW) is integrated with a natural gas-fired combined cycle (CC). Integration is accomplished by sharing the steam cycle: saturated steam generated in a MSW grate combustor is exported to the heat recovery steam generator (HRSG) of the combined cycle, where it is superheated and then fed to a steam turbine serving both the CC and the WTE plant. Most likely, the WTE section and the natural gas-fired CC section are subject to different operation and maintenance schedules, so that the integrated plant operates in conditions different from those giving full power output. In this paper we discuss and give performance estimates for the two situations that delimit the range of operating conditions: (a) WTE plant at full power and gas turbine down; (b) WTE plant down and gas turbine at full power. This is done for two integrated plants having the same WTE section, i.e. grate combustors with an overall MSW combustion power of 180MWLHV, coupled with Combined Cycles based on two different heavy-duty gas turbines: a medium-size, 70MW class turbine and a large-size, 250MW class turbine. For each situation we discuss the control strategy and the actions that can help to achieve safe and reliable off-design operation. Heat and mass balances and performances at off-design conditions are estimated by accounting for the constraints imposed by the available heat transfer areas in boilers, heaters and condenser, as well as the characteristic curve of the steam turbine. When the gas turbine is down the net electric efficiency of the WTE section is very close to the one of the stand-alone WTE plant; instead, when the WTE section is down, the efficiency of the CC is much below the one of a stand alone CC. These performances appear most congenial to what is likely to be the operational strategy of these plants, i.e. paramount priority to waste treatment and CC dispatched according to the requirements of the national grid.

Stefano Consonni; Paolo Silva

2007-01-01T23:59:59.000Z

171

Engineering/design of a co-generation waste-to-energy facility  

SciTech Connect (OSTI)

Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer.

Bajaj, K.S.; Virgilio, R.J. (Foster Wheeler USA Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

172

Measurement of radioactive contaminated wastes  

SciTech Connect (OSTI)

At Los Alamos, a comprehensive program is underway for the development of sensitive, practical, nondestructive assay techniques for the quantification of low-level transuranics in bulk solid wastes. The program encompasses a broad range of techniques, including sophisticated active and passive gamma-ray spectroscopy, passive neutron detection systems, pulsed portable neutron generator interrogation systems, and electron accelerator-based techniques. The techniques can be used with either low-level or high-level beta-gamma wastes in either low-density or high-density matrices. The techniques are quite sensitive (< 10 nCi/g detection) and, in many cases, isotopic specific. Waste packages range in size from small cardboard boxes to large metal or wooden crates. Considerable effort is being expended on waste matrix identification to improve assay accuracy.

Caldwell, J.T.; Close, D.A.; Crane, T.W.

1983-01-01T23:59:59.000Z

173

Small Game -- Cooking Care.  

E-Print Network [OSTI]

Game - Cooking Care Mary K. Sweeten* The Hunt Hunting small game animals in Texas is a popular recreational activity. Careful handling and preparation help you use game and avoid unnecessary waste of wild game resources if you do hunt. Squirrels.... Count Y2 cup of vegetable or fruit as one serving, or a portion ordinarily served such as one medium apple, banana, orange or potato, half a medium grapefruit or cantaloupe or the juice of one lemon. Some good sources of vitamin Care oranges...

Sweeten, Mary K.

1981-01-01T23:59:59.000Z

174

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

175

Summary of Waste Calcination at INTEC  

SciTech Connect (OSTI)

Fluidized-bed calcination at the Idaho Nuclear Technologies and Engineering Center (INTEC, formally called the Idaho Chemical Processing Plant) has been used to solidify acidic metal nitrate fuel reprocessing and incidental wastes wastes since 1961. A summary of waste calcination in full-scale and pilot plant calciners has been compiled for future reference. It contains feed compositions and operating conditions for all the processing campaigns for the original Waste Calcining Facility (WCF), the New Waste Calcining Facility (NWCF) started up in 1982, and numerous small scale pilot plant tests for various feed types. This summary provides a historical record of calcination at INTEC, and will be useful for evaluating calcinability of future wastes.

O'Brien, Barry Henry; Newby, Bill Joe

2000-10-01T23:59:59.000Z

176

COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO  

E-Print Network [OSTI]

1 COST-BENEFIT ANALYSIS OF A WASTE TO ENERGY PLANT FOR MONTEVIDEO; AND WASTE TO ENERGY IN SMALL OF COLUMBIA UNIVERSITY #12;2 EXECUTIVE SUMMARY This thesis consists of two parts. The first is a cost of implementation. Part 1: Cost-Benefit Analysis of a WTE Plant for Montevideo In May-September 2011, the Earth

177

Radioactive Waste Incineration: Status Report  

SciTech Connect (OSTI)

Incineration is generally accepted as a method of reducing the volume of radioactive waste. In some cases, the resulting ash may have high concentrations of materials such as Plutonium or Uranium that are valuable materials for recycling. Incineration can also be effective in treating waste that contains hazardous chemicals as well as radioactive contamination. Despite these advantages, the number of operating incinerators currently in the US currently appears to be small and potentially declining. This paper describes technical, regulatory, economic and political factors that affect the selection of incineration as a preferred method of treating radioactive waste. The history of incinerator use at commercial and DOE facilities is summarized, along with the factors that have affected each of the sectors, thus leading to the current set of active incinerator facilities. In summary: Incineration has had a long history of use in radioactive waste processing due to their ability to reduce the volume of the waste while destroying hazardous chemicals and biological material. However, combinations of technical, regulatory, economic and political factors have constrained the overall use of incineration. In both the Government and Private sectors, the trend is to have a limited number of larger incineration facilities that treat wastes from a multiple sites. Each of these sector is now served by only one or two incinerators. Increased use of incineration is not likely unless there is a change in the factors involved, such as a significant increase in the cost of disposal. Medical wastes with low levels of radioactive contamination are being treated effectively at small, local incineration facilities. No trend is expected in this group. (authors)

Diederich, A.R.; Akins, M.J. [WorleyParsons, Reading, PA (United States)

2008-07-01T23:59:59.000Z

178

Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We compare the environmental sustainability of two MSW collection systems. Black-Right-Pointing-Pointer We evaluate pneumatic and door-to-door collection systems. Black-Right-Pointing-Pointer The greenhouse gas emissions of pneumatic collection are around three times higher. Black-Right-Pointing-Pointer System components are decisive but assumptions on electricity use are also important. Black-Right-Pointing-Pointer Pneumatic collection could provide other benefits over door-to-door system. - Abstract: Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO{sub 2} and NO{sub x}. The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive.

Punkkinen, Henna, E-mail: henna.punkkinen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FI-02044 VTT (Finland); Merta, Elina, E-mail: elina.merta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FI-02044 VTT (Finland); Teerioja, Nea, E-mail: nea.teerioja@helsinki.fi [University of Helsinki, Department of Economics and Management, Latokartanonkaari 9, P.O. Box 27, FI-00014 HY (Finland); Moliis, Katja, E-mail: katja.moliis@helsinki.fi [University of Helsinki, Department of Economics and Management, Latokartanonkaari 9, P.O. Box 27, FI-00014 HY (Finland); Kuvaja, Eveliina, E-mail: eveliina.kuvaja@helsinki.fi [University of Helsinki, Department of Economics and Management, Latokartanonkaari 9, P.O. Box 27, FI-00014 HY (Finland)

2012-10-15T23:59:59.000Z

179

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

180

small business  

National Nuclear Security Administration (NNSA)

2%2A en Small Business http:nnsa.energy.govaboutusouroperationsapmsmallbusiness

Page...

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE  

E-Print Network [OSTI]

WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE January 2010 Prepared for the Interagency left intentionally blank.] #12;Prepared for the U.S. Department of Energy PNNL-SA-69994 under Contract DE-AC05-76RL01830 Waste Disposal Workshops: Anthrax-Contaminated Waste AM Lesperance JF Upton SL

182

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

183

Waste Hoist  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Largest friction hoist in the world when it was built in 1985 Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides (uses a balanced counterweight and tail ropes). With a 45-ton capacity, it was the largest friction hoist in the world when it was built in 1986. Hoist deck footprint: 2.87m wide x 4.67m long Hoist deck height: 2.87m wide x 7.46m high Access height to the waste hoist deck is limited by a high-bay door at 4.14m high Nominal configuration is 2-cage (over/under), with bottom (equipment) cage interior height of 4.52m The photo, at left, shows the 4.14m high-bay doors at the top collar of the waste hoist shaft. The perpendicular cross section of the opening is 3.5m x 4.14m, but the bottom cage cross section is 2.87m x 4.5m (and 4.67m into the plane of the photo).

184

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

185

Test plan: Sealing of the Disturbed Rock Zone (DRZ), including Marker Bed 139 (MB139) and the overlying halite, below the repository horizon, at the Waste Isolation Pilot Plant. Small-scale seal performance test-series F  

SciTech Connect (OSTI)

This test plan describes activities intended to demonstrate equipment and techniques for producing, injecting, and evaluating microfine cementitious grout. The grout will be injected in fractured rock located below the repository horizon at the Waste Isolation Pilot Plant (WIPP). These data are intended to support the development of the Alcove Gas Barrier System (AGBS), the design of upcoming, large-scale seal tests, and ongoing laboratory evaluations of grouting efficacy. Degradation of the grout will be studied in experiments conducted in parallel with the underground grouting experiment.

Ahrens, E.H.

1992-05-01T23:59:59.000Z

186

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

ELLEFSON, M.D.

1999-12-01T23:59:59.000Z

187

Radioactive Waste Management (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

188

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

1984-02-06T23:59:59.000Z

189

Transuranic Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

1999-07-09T23:59:59.000Z

190

Waste?to?Energy  

Broader source: Energy.gov [DOE]

Waste?to?Energy Roadmapping Workshop Waste?to?Energy Presentation by Jonathan Male, Director of the Bioenery Technolgies Office, Department of Energy

191

Nuclear Waste Disposal: Amounts of Waste  

Science Journals Connector (OSTI)

The term nuclear waste...embraces all residues from the use of radioactive materials, including uses in medicine and industry. The most highly radioactive of these are the spent fuel or reprocessed wastes from co...

2005-01-01T23:59:59.000Z

192

Operating limit evaluation for disposal of uranium enrichment plant wastes  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

Lee, D.W.; Kocher, D.C.; Wang, J.C.

1996-02-01T23:59:59.000Z

193

SBA Increases Size Standards for Waste Remediation Services &  

Broader source: Energy.gov (indexed) [DOE]

SBA Increases Size Standards for Waste Remediation Services & SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in Administrative and Support & Waste Management and Remediation Services categories, saying these revisions "reflect changes in marketplace conditions." The new standards are published in the Federal Register. Increases to size standards will enable some growing small businesses in these sectors to retain their small business status; will give federal

194

WasteTraining Booklet Waste & Recycling Impacts  

E-Print Network [OSTI]

WasteTraining Booklet #12;Waste & Recycling Impacts Environment: The majority of our municipal jobs while recycling 10,000 tons of waste creates 36 jobs. Environment: Recycling conserves resources. It takes 95% less energy to make aluminum from recycled aluminum than from virgin materials, 60% less

Saldin, Dilano

195

Small Buildings Small Portfolio Commercial Upstream Incentive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Small Portfolio Commercial Upstream Incentive Project: Regional Roll-Out - 2014 BTO Peer Review Small Buildings Small Portfolio Commercial Upstream Incentive Project:...

196

Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste  

SciTech Connect (OSTI)

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

NONE

1994-12-31T23:59:59.000Z

197

Recycling of sodium waste  

Science Journals Connector (OSTI)

Recycling of sodium waste ... Methods for handling and recycling a dangerous and costly chemical. ...

Bettina Hubler-Blank; Michael Witt; Herbert W. Roesky

1993-01-01T23:59:59.000Z

198

Central Waste Complex (CWC) Waste Analysis Plan  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

ELLEFSON, M.D.

2000-01-06T23:59:59.000Z

199

Infectious waste feed system  

DOE Patents [OSTI]

An infectious waste feed system for comminuting infectious waste and feeding the comminuted waste to a combustor automatically without the need for human intervention. The system includes a receptacle for accepting waste materials. Preferably, the receptacle includes a first and second compartment and a means for sealing the first and second compartments from the atmosphere. A shredder is disposed to comminute waste materials accepted in the receptacle to a predetermined size. A trough is disposed to receive the comminuted waste materials from the shredder. A feeding means is disposed within the trough and is movable in a first and second direction for feeding the comminuted waste materials to a combustor.

Coulthard, E. James (York, PA)

1994-01-01T23:59:59.000Z

200

Proceedings of the 17th Annual North American Waste-to-Energy Conference May 18-20, 2009, Chantilly, Virginia, USA  

E-Print Network [OSTI]

in the U.S. did not recover the heat of combustion generated via MSW incineration, until the mid seventies

Columbia University

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

202

Leaching behavior and possible resource recovery from air pollution control residues of fluidized bed combustion of municipal solid waste  

SciTech Connect (OSTI)

Ash residues are generated at several points during combustion of municipal solid waste (MSW), i.e., in cyclones, electrostatic precipitators and fabric filters. Such residues are of a complex physical and chemical nature and are often enriched in soluble salts and heavy metals such as Pb, Cd and Zn. Fluidized bed combustion (FBC) of MSW is a relatively new technique and very little information is available about the leaching behavior of its residues. In this study, the total elemental composition, mineralogy and leaching behavior of cyclone and bag-house filter ashes from a bubbling fluidized bed (BFB) boiler fired with municipal solid waste have been investigated. In addition, the possibilities of recovery heavy metals from these ashes were studied. The long-term leaching behavior of the ash constituents was evaluated using a two-step batch leaching test known as the CEN-test, whereas short and medium term leaching behavior was evaluated using a Column test. The extraction of elements from cyclone and filter ashes with various acidic solutions was also investigated. The leaching behavior of acid washed ashes was evaluated using the CEN test. The cyclone ash was mainly composed of aluminosilicate minerals, whereas the filter ash consisted of chlorides and hydroxides of alkali and alkaline earth metals. The concentration of heavy metals such as Zn, Cu, Cd and Pb was higher in the filter ash than in the cyclone ash. The leached amounts of sulfates and Pb from the cyclone ash decreased with leaching test contact time, indicating the formation of secondary mineral phases. Large amounts of chlorides, sulfates, Ca, Cu and Pb were leached from the filter ash. Acid extraction removed large amounts ({gt}50%) of Zn, Pb and Cu from the filter ash and approximately 56% of the total amount of Zn present in the cyclone ash. An efficient removal of heavy metal species from these types of ashes can probably be achieved by application of a recycling or multi-step process.

Abbas, Z.; Andersson, B.A.; Steenari, B.M.

1999-07-01T23:59:59.000Z

203

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

1999-07-09T23:59:59.000Z

204

Two stage fluid bed-plasma gasification process for solid waste valorisation: Technical review and preliminary thermodynamic modelling of sulphur emissions  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We investigate sulphur during MSW gasification within a fluid bed-plasma process. Black-Right-Pointing-Pointer We review the literature on the feed, sulphur and process principles therein. Black-Right-Pointing-Pointer The need for research in this area was identified. Black-Right-Pointing-Pointer We perform thermodynamic modelling of the fluid bed stage. Black-Right-Pointing-Pointer Initial findings indicate the prominence of solid phase sulphur. - Abstract: Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H{sub 2}S) - Na and K based species in particular. Work is underway to further investigate and validate this.

Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London, WC1E 7JE (United Kingdom); Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London, WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, South Marston Business park, Swindon, SN3 4DE (United Kingdom); Mazzei, Luca, E-mail: l.mazzei@ucl.ac.uk [Department of Chemical Engineering, University College London, London, WC1E 7JE (United Kingdom)

2012-04-15T23:59:59.000Z

205

No Time Wasted. 25 years COVRA: Radioactive Waste Management in the Netherlands  

SciTech Connect (OSTI)

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. December 2007 was a time to commemorate, as the national waste management organisation of the Netherlands, COVRA, celebrated its 12. anniversary. During this period of 25 years a stable policy has been formulated and implemented. For the situation in the Netherlands, it was obvious that a period of long term storage was needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. A historical overview of the activities of COVRA is presented and lessons learned over a period of 25 years are given. (authors)

Codee, H.D.K.; Verhoef, E.V. [COVRA N.V., Vlissingen (Netherlands)

2008-07-01T23:59:59.000Z

206

EVALUATION OF POSSIBLE GASIFIER-ENGINE APPLICATIONS WITH MUNICIPAL SOLID WASTE (A CASE STUDY OF KAMPALA).  

E-Print Network [OSTI]

?? Gasification of biomass for electricity power generation has been a proven technology in a number of countries in the world. MSW consists of biomass, (more)

BERNARD, KIVUMBI

2011-01-01T23:59:59.000Z

207

EM Exceeds Fiscal Year 2013 Small Business Goals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fiscal Year 2013 Small Business Goals Fiscal Year 2013 Small Business Goals EM Exceeds Fiscal Year 2013 Small Business Goals November 26, 2013 - 12:00pm Addthis Employees with Swift & Staley Inc., a Paducah site small business contractor, repair a railroad on the site. Employees with Swift & Staley Inc., a Paducah site small business contractor, repair a railroad on the site. Employees with Wastren Advantage, Inc., an Oak Ridge small business contractor, package waste for disposal at the Transuranic Waste Processing Center at Oak Ridge. Employees with Wastren Advantage, Inc., an Oak Ridge small business contractor, package waste for disposal at the Transuranic Waste Processing Center at Oak Ridge. Employees with Swift & Staley Inc., a Paducah site small business contractor, repair a railroad on the site.

208

EM Exceeds Fiscal Year 2013 Small Business Goals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EM Exceeds Fiscal Year 2013 Small Business Goals EM Exceeds Fiscal Year 2013 Small Business Goals EM Exceeds Fiscal Year 2013 Small Business Goals November 26, 2013 - 12:00pm Addthis Employees with Swift & Staley Inc., a Paducah site small business contractor, repair a railroad on the site. Employees with Swift & Staley Inc., a Paducah site small business contractor, repair a railroad on the site. Employees with Wastren Advantage, Inc., an Oak Ridge small business contractor, package waste for disposal at the Transuranic Waste Processing Center at Oak Ridge. Employees with Wastren Advantage, Inc., an Oak Ridge small business contractor, package waste for disposal at the Transuranic Waste Processing Center at Oak Ridge. Employees with Swift & Staley Inc., a Paducah site small business contractor, repair a railroad on the site.

209

OpenEI - MSW Biogenic  

Open Energy Info (EERE)

Renewable Energy Renewable Energy Consumption by Energy Use Sector and Energy Source, 2004 - 2008 http://en.openei.org/datasets/node/51 Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls License

210

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

211

Tandem microwave waste remediation and decontamination system  

DOE Patents [OSTI]

The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

1999-01-01T23:59:59.000Z

212

Medical waste treatment and decontamination system  

DOE Patents [OSTI]

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

213

Waste-to-Energy: Waste Management and Energy Production Opportunities...  

Office of Environmental Management (EM)

Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

214

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

215

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

216

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

1999-07-09T23:59:59.000Z

217

Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests  

SciTech Connect (OSTI)

The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

2013-09-12T23:59:59.000Z

218

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network [OSTI]

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid frequently and change them if contaminated. 5. Use radioactive waste container to collect the waste. 6. Check

Jia, Songtao

219

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from tank waste. * Decreases the volume of water to create room in double-shell tanks, allowing them to accept waste from noncompliant single- shell tanks. * Treats up to 1...

220

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

trucks for scale. The DSTs have limited capacity and are aging. Maintaining these tanks is important to ensure that waste is ready to supply the Waste Treatment Plant. The...

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

222

Nuclear waste solids  

Science Journals Connector (OSTI)

Glass and polycrystalline materials for high-level radioactive waste immobilization are discussed. Borosilicate glass has been selected as the waste form for defence high-level radwaste in the US. Since releas...

L. L. Hench; D. E. Clark; A. B. Harker

1986-05-01T23:59:59.000Z

223

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

224

DOE - Office of Legacy Management -- Waste Isolation Pilot Plant - 019  

Office of Legacy Management (LM)

Waste Isolation Pilot Plant - 019 Waste Isolation Pilot Plant - 019 FUSRAP Considered Sites Site: Waste Isolation Pilot Plant (019) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Waste Isolation Pilot Plant, or WIPP, is the world¿s first underground repository licensed to safely and permanently dispose of transuranic radioactive waste left from the research and production of nuclear weapons. Transuranic waste consists primarily of clothing, tools, rags, and other disposable items contaminated with small amounts of radioactive elements, mostly plutonium. After more than 20 years of scientific study and public input, WIPP began operations on March 26, 1999. Located in the remote

225

Sandia National Laboratories: No More Green Waste in the Landfill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

226

Protocol, Small Team Oversight Activities - June 2012 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Small Team Oversight Activities - June 2012 Small Team Oversight Activities - June 2012 Protocol, Small Team Oversight Activities - June 2012 June 2012 Protocol for Small Team Oversight Activities The purpose of this protocol is to establish the requirements and responsibilities for conducting and managing an Office of Health, Safety and Security (HSS) small team oversight activity. These activities are the primary means of gathering independent performance data to support the independent oversight function. This protocol further discusses and categorizes these activities as oversight and operational awareness activities. Protocol, Small Team Oversight Activities - June 2012 More Documents & Publications Protocol, Site Leads - May 2011 Independent Oversight Assessment, Waste Treatment and Immobilization Plant

227

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-Print Network [OSTI]

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

228

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network [OSTI]

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

229

Radioactive Waste Management Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

1999-07-09T23:59:59.000Z

230

Long-range master plan for defense transuranic waste management  

SciTech Connect (OSTI)

The Long Range Master Plan for the Defense Transuranic Waste Program (DTWP), or ''Master Plan,'' details current TRU waste management plans and serves as a framework for the DTWP. Not all final decisions concerning activities presented in the Master Plan have been made (e.g., land withdrawal legislation, the WIPP Compliance and Operational Plan and the TRUPACT Certificate of Compliance). It is the goal of the DTWP to end interim storage and achieve permanent disposal of TRU waste. To accomplish this goal, as much TRU waste as possible will be certified to meet the WIPP Acceptance Criteria (WAC). The certified waste will then be disposed of at WIPP. The small quantity of waste which is not practical to certify will be disposed of via alternative methods that require DOE Headquarters approval and shall comply with the National Environmental Policy Act requirements and EPA/State Regulations. The definition of TRU waste is ''without regard to source or form, waste that is contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years and concentrations greater than 100 nanocuries/gram (nCi/g) at the time of assay. Heads of Field Elements can determine that other alpha contaminated wastes, peculiar to a specific site, must be managed as transuranic waste.''

Not Available

1988-12-01T23:59:59.000Z

231

Vitrification of IFR and MSBR halide salt reprocessing wastes  

SciTech Connect (OSTI)

Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

Siemer, D.D. [Idaho National Laboratory, 12N 3167E, Idaho Falls, ID 83402 (United States)

2013-07-01T23:59:59.000Z

232

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

233

Transuranic Waste Transportation Working Group Agenda | Department...  

Office of Environmental Management (EM)

Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda Transuranic Waste Transportation Working Group Agenda More Documents &...

234

Waste Isolation Pilot Plant Transportation Security | Department...  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security More Documents &...

235

On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage  

E-Print Network [OSTI]

Evaluation and mitigation of landfill gas impacts on cadmiummunicipal solid waste (MSW) landfill gas on the release of

Zheng, L.

2010-01-01T23:59:59.000Z

236

Seven Small Businesses Awarded Contracts by the Office of Environmental  

Broader source: Energy.gov (indexed) [DOE]

Seven Small Businesses Awarded Contracts by the Office of Seven Small Businesses Awarded Contracts by the Office of Environmental Management Seven Small Businesses Awarded Contracts by the Office of Environmental Management June 19, 2012 - 2:45pm Addthis Large nuclear material processing tanks, like the one destined for Savannah River Site's (SRS) Salt Waste Processing Facility, will be managed with the support of qualified small businesses. Large nuclear material processing tanks, like the one destined for Savannah River Site's (SRS) Salt Waste Processing Facility, will be managed with the support of qualified small businesses. Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity Today the Energy Department announced contract awards to seven small-disadvantaged businesses to perform critical technical

237

Seven Small Businesses Awarded Contracts by the Office of Environmental  

Broader source: Energy.gov (indexed) [DOE]

Seven Small Businesses Awarded Contracts by the Office of Seven Small Businesses Awarded Contracts by the Office of Environmental Management Seven Small Businesses Awarded Contracts by the Office of Environmental Management June 19, 2012 - 2:45pm Addthis Large nuclear material processing tanks, like the one destined for Savannah River Site's (SRS) Salt Waste Processing Facility, will be managed with the support of qualified small businesses. Large nuclear material processing tanks, like the one destined for Savannah River Site's (SRS) Salt Waste Processing Facility, will be managed with the support of qualified small businesses. Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity Today the Energy Department announced contract awards to seven small-disadvantaged businesses to perform critical technical

238

Tank Waste and Waste Processing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing Tank Waste and Waste Processing The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. The Defense Waste Processing Facility set a record by producing 267 canisters filled with glassified waste in a year. New bubbler technology and other enhancements will increase canister production in the future. A Savannah River Remediation employee uses a manipulator located inside a shielded enclosure at the Defense Waste Processing Facility where the melter is pouring molten glass inside a canister. A Savannah River Remediation employee uses a manipulator located inside a

239

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

240

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect (OSTI)

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

242

Solid Waste Management Plan. Revision 4  

SciTech Connect (OSTI)

The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

NONE

1995-04-26T23:59:59.000Z

243

Waste Confidence Discussion | Department of Energy  

Office of Environmental Management (EM)

Waste Confidence Discussion Waste Confidence Discussion Long-Term Waste Confidence Update. Waste Confidence Discussion More Documents & Publications Status Update: Extended Storage...

244

EM Waste and Materials Disposition & Transportation | Department...  

Office of Environmental Management (EM)

EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

245

Transuranic (TRU) Waste | Department of Energy  

Office of Environmental Management (EM)

Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

246

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

247

6 - Nuclear Waste Regulations  

Science Journals Connector (OSTI)

The most influential national and international bodies providing recommendations on radiation protection are described, including the International Commission on Radiological Protection (ICRP) and the International Atomic Energy Agency (IAEA). Protection philosophies and the ICRP general principles of radiation protection are discussed. Radioactive material regulations and sources of radiation are explained. Criteria of exemption from regulatory control are discussed with examples of exemption levels for naturally occurring and radioactive waste radionuclides. Clearance of both moderate and bulk amounts of materials from regulatory control is also explained, including examples of EU and the UK regulations. Dose limits recommended by the ICRP are given, as well as the main principles of control of radiation hazards. Nuclear waste classification schemes are outlined, including the IAEA classification scheme. A brief explanation of nuclear waste classes including exempt waste, very short-lived waste, very low-level waste, low-level waste, intermediate-level waste and high-level waste is given. Examples of waste classification schemes are given, including that of the UK.

M.I. Ojovan; W.E. Lee

2014-01-01T23:59:59.000Z

248

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

249

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network [OSTI]

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

250

Stabilization of compactible waste  

SciTech Connect (OSTI)

This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

Franz, E.M.; Heiser, J.H. III; Colombo, P.

1990-09-01T23:59:59.000Z

251

Waste Inspection Tomography (WIT)  

SciTech Connect (OSTI)

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

252

Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach  

SciTech Connect (OSTI)

Highlights: 110 French incinerators are compared with LCA based on plant-specific data. Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

2013-12-15T23:59:59.000Z

253

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

18 18 19 T he WIPP's first waste receipt, 11 years later than originally planned, was a monumental step forward in the safe management of nuclear waste. Far from ending, however, the WIPP story has really just begun. For the next 35 years, the DOE will face many challenges as it manages a complex shipment schedule from transuranic waste sites across the United States and continues to ensure that the repository complies with all regulatory requirements. The DOE will work to maintain the highest level of safety in waste handling and trans- portation. Coordination with sites Disposal operations require coordination with sites that will ship transuranic waste to the WIPP and include periodic certification of waste characterization and handling practices at those facilities. During the WIPP's

254

SRS - Programs - Waste Solidification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

255

High level nuclear waste  

SciTech Connect (OSTI)

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

256

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

257

Synthesizing Optimal Waste Blends  

Science Journals Connector (OSTI)

Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. ... Durability restrictions ensure that the resultant glass meets the quantitative criteria for disposal/long-term storage in a repository. ... If glasses are formulated to minimize the volume of glass that would be produced, then the cost of processing the waste and storing the resultant glass would be greatly reduced. ...

Venkatesh Narayan; Urmila M. Diwekar; Mark Hoza

1996-10-08T23:59:59.000Z

258

Office of Waste Processing Technical Exchange  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Event Media Links Event Media Links Session 1: Technical Exchange Opening Topic Speaker PDF Podcast S01-01 Welcome T. Michalske, SRNL N/A Podcast S01-03 Introductions G. Flowers, SRNS N/A Podcast S01-04 Opening Remarks I. Triay, DOE-EM Presentation PDF Podcast S01-05 Status of Waste Processing Technology Development S. Schneider, DOE-EM Presentation PDF Podcast S01-06 Hanford/SRS Tank Waste Path Forward K. Subramanian/ T. Sams, SRR/WRPS Presentation PDF Podcast S01-07 Fluidized Bed Steam Reformer Overview B. Mason, TTT Presentation PDF Podcast S01-08 Next Generation Cesium Solvent B.Moyer/S. Fink/M. Geeting, ORNL/SRNL/SRR Presentation PDF Podcast S01-09 Rotary Microfilter Development/Small Column Ion Exchange D. Herman/ R. Edwards, SRNL/SRR Presentation PDF Podcast Session 2: Increased Waste Loading - Improved Current Processing

259

Waste Confidence Discussion  

Broader source: Energy.gov (indexed) [DOE]

Long-Term Long-Term Waste Confidence Update Christine Pineda Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Long-Term Update Draft Report, "Background and Preliminary Assumptions for an Environmental Impact Statement- Long-Term Waste Confidence Update" Elements of the Long-Term Update - Draft environmental impact statement - Draft Waste Confidence Decision - Proposed Waste Confidence Rule based on the EIS and Decision, if applicable 2 Overview of Draft Report Background and assumptions report is first step in process. Basic topics in the report are:

260

Norcal Waste Systems, Inc.  

SciTech Connect (OSTI)

Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

Not Available

2002-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Section 24: Waste Characterization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy (DOE). 1995b. Transuranic Waste Baseline Inventory Report (Revision 2, December). DOECAO-95-1121. ERMS 531643. Carlsbad Area Office, Carlsbad, NM. PDF Author U.S....

262

Hanford Dangerous Waste Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

training, security) * Closure plan Tank-Related Permit Units New * 149 single-shell tanks (SSTs) * 28 double-shell tanks (DSTs) Existing * 242-A Evaporator * Waste Treatment...

263

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

264

Waste minimization assessment procedure  

SciTech Connect (OSTI)

Perry Nuclear Power Plant began developing a waste minimization plan early in 1991. In March of 1991 the plan was documented following a similar format to that described in the EPA Waste Minimization Opportunity Assessment Manual. Initial implementation involved obtaining management's commitment to support a waste minimization effort. The primary assessment goal was to identify all hazardous waste streams and to evaluate those streams for minimization opportunities. As implementation of the plan proceeded, non-hazardous waste streams routinely generated in large volumes were also evaluated for minimization opportunities. The next step included collection of process and facility data which would be useful in helping the facility accomplish its assessment goals. This paper describes the resources that were used and which were most valuable in identifying both the hazardous and non-hazardous waste streams that existed on site. For each material identified as a waste stream, additional information regarding the materials use, manufacturer, EPA hazardous waste number and DOT hazard class was also gathered. Once waste streams were evaluated for potential source reduction, recycling, re-use, re-sale, or burning for heat recovery, with disposal as the last viable alternative.

Kellythorne, L.L. (Centerior Energy, Cleveland, OH (United States))

1993-01-01T23:59:59.000Z

265

Vitrification of waste  

DOE Patents [OSTI]

A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, G.G.

1999-04-06T23:59:59.000Z

266

Avoidable waste management costs  

SciTech Connect (OSTI)

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

267

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 19, 2014 - No second release at WIPP September 12, 2014 - Waste hoist transformer replacement September 09, 2014 - Additional areas cleared in WIPP underground...

268

Vitrification of waste  

DOE Patents [OSTI]

A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

Wicks, George G. (Aiken, SC)

1999-01-01T23:59:59.000Z

269

EM Supports Department's Small Business Commitment at Waste Management...  

Broader source: Energy.gov (indexed) [DOE]

Bahan from the Environmental Management Consolidated Business Center in Cincinnati and Kelly Brazil from the Office of River Protection at the Hanford site in Washington state....

270

Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely  

Broader source: Energy.gov (indexed) [DOE]

Site 2012 Outlook: Transuranic Waste Program Set to Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone January 1, 2012 - 12:00pm Addthis By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. Workers relocate a pipe overpack container used to transport small amounts of excess plutonium oxide destined for long-term storage at the Waste Isolation Pilot Plant in Carlsbad, New Mexico.

271

The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project  

SciTech Connect (OSTI)

This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

2003-02-25T23:59:59.000Z

272

Waste Loading Enhancements for Hanford Low-Activity Waste Glasses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

273

HUBZone, Great Opportunity for Small Businesses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Immediate Release HUBZone, Great Opportunity for Small Businesses CARLSBAD, N.M., March 25, 2003 - To help the region's small businesses attract federal and state work, Washington TRU Solutions LLC (WTS) will offer a Small Business Fair on May 2 in Carlsbad to introduce the U.S. Small Business Administration's (SBA) HUBZone concept and other socioeconomic programs. WTS is the prime contractor for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). A HUBZone (Historically Underutilized Business Zone) is a geographic area designated by the SBA as economically depressed based on a ratio of population versus business volume in the area. What that means for regional businesses that qualify is an enhanced opportunity to participate in state and federal government contracts they might not ordinarily be

274

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a PA is to examine the final waste disposition at Hanford, such as waste in the tanks at C-Farm. Vince said the quest is to model waste movement over 10,000 years,...

275

Hanford Waste Treatment Plant Support Task Order Modified | Department of  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant Support Task Order Modified Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the task order to $1.6 million from $833,499. The task order modification has a one-year performance period and two one-year option periods. The Task Order was awarded under an Indefinite Delivery/Indefinite Quantity (ID/IQ) master Contract. Aspen Resources Limited, Inc. is a small-disadvantaged business under the Small Business Administration's

276

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

277

Small Business - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Prime Contracts Current Solicitations Small Business Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Small Business Email Email Page...

278

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission lives. Radioactive Waste generated through wet chemistry Waste Minimization 30 Mixed waste / Liquid

279

Chapter 19 - Nuclear Waste Fund  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

280

Solid Waste Rules (New Hampshire)  

Broader source: Energy.gov [DOE]

The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solid Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

282

Waste Management | Department of Energy  

Energy Savers [EERE]

Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs....

283

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste"means all materials and substances discarded from residential...

284

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

285

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

286

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

287

Nuclear waste solutions  

DOE Patents [OSTI]

High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

1987-01-01T23:59:59.000Z

288

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

289

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026-FS, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1990. Record of Decision: Waste Isolation Pilot Plant. Federal Register, Vol. 55, No. 121, 25689-25692, U.S. Department of Energy. DOE 1994. Comparative Study of Waste Isolation Pilot Plant (WIPP) Transportation Alternatives.

290

HLW Glass Waste Loadings  

Broader source: Energy.gov (indexed) [DOE]

HLW HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview  Vitrification - general background  Joule heated ceramic melter (JHCM) technology  Factors affecting waste loadings  Waste loading requirements and projections  WTP DWPF  DWPF  Yucca Mountain License Application requirements on waste loading  Summary Vitrification  Immobilization of waste by conversion into a glass  Internationally accepted treatment for HLW  Why glass?  Amorphous material - able to incorporate a wide spectrum of elements over wide ranges of composition; resistant to radiation damage  Long-term durability - natural analogs Relatively simple process - amenable to nuclearization at large  Relatively simple process - amenable to nuclearization at large scale  There

291

Small-scale circulating fluidized bed combustor (CFBC) system for heat and power in remote areas  

SciTech Connect (OSTI)

Demand for heating and electric power has steadily increased in remote areas. The use of locally available fuel to achieve self sufficiency has become an important objective. Energy demands may require steam generation for district heating, power generation and process consumption. In addition, the steam generation unit can also be required to burn waste that includes MSW and sewage sludge. To meet these demands, new systems must be installed that use local fuel. This paper describes a lower cost CFBC for use in remote areas. With the support of DOE METC, in late summer 1994, DONLEE performed a test burn at its 10 MM btu/hr pilot CFBC using subbituminous coal from Wyoming. The Wyoming coal`s sulfur dioxide emissions were very low due to the low sulfur content of the Wyoming coal and the excellent efficiency at temperatures as low as 1,500 F thereby indicating no limestone addition was needed for sulfur capture. The CFBC testing indicated emissions met all of the environmental requirements, both Federal and state. These requirements include: particulates, SO{sub 2}, CO, NO{sub x}, opacity, chlorinated dioxins/furans, etc. The unit can be fabricated in modules, making the installation easier and less expensive for use in remote areas. The design is highly reliable and can be fully automated thereby requiring limited staffing.

Stuart, J.M.; Korenberg, J. [DONLEE Technologies Inc., York, PA (United States)

1995-12-31T23:59:59.000Z

292

Recommended strategy for the disposal of remote-handled transuranic waste  

SciTech Connect (OSTI)

The current baseline plan for RH TRU (remote-handled transuranic) waste disposal is to package the waste in special canisters for emplacement in the walls of the waste disposal rooms at the Waste Isolation Pilot Plant (WIPP). The RH waste must be emplaced before the disposal rooms are filled by contact-handled waste. Issues which must be resolved for this plan to be successful include: (1) construction of RH waste preparation and packaging facilities at large-quantity sites; (2) finding methods to get small-quantity site RH waste packaged and certified for disposal; (3) developing transportation systems and characterization facilities for RH TRU waste; (4) meeting lag storage needs; and (5) gaining public acceptance for the RH TRU waste program. Failure to resolve these issues in time to permit disposal according to the WIPP baseline plan will force either modification to the plan, or disposal or long-term storage of RH TRU waste at non-WIPP sites. The recommended strategy is to recognize, and take the needed actions to resolve, the open issues preventing disposal of RH TRU waste at WIPP on schedule. It is also recommended that the baseline plan be upgraded by adopting enhancements such as revised canister emplacement strategies and a more flexible waste transport system.

Bild, R.W. [Sandia National Lab., Albuquerque, NM (United States). Program Integration Dept.

1994-07-01T23:59:59.000Z

293

WEEE and portable batteries in residual household waste: Quantification and characterisation of misplaced waste  

SciTech Connect (OSTI)

Highlights: We analyse 26.1 Mg of residual waste from 3129 Danish households. We quantify and characterise misplaced WEEE and portable batteries. We compare misplaced WEEE and batteries to collection through dedicated schemes. Characterisation showed that primarily small WEEE and light sources are misplaced. Significant amounts of misplaced batteries were discarded as built-in WEEE. - Abstract: A total of 26.1 Mg of residual waste from 3129 households in 12 Danish municipalities was analysed and revealed that 89.6 kg of Waste Electrical and Electronic Equipment (WEEE), 11 kg of batteries, 2.2 kg of toners and 16 kg of cables had been wrongfully discarded. This corresponds to a Danish household discarding 29 g of WEEE (7 items per year), 4 g of batteries (9 batteries per year), 1 g of toners and 7 g of unidentifiable cables on average per week, constituting 0.34% (w/w), 0.04% (w/w), 0.01% (w/w) and 0.09% (w/w), respectively, of residual waste. The study also found that misplaced WEEE and batteries in the residual waste constituted 16% and 39%, respectively, of what is being collected properly through the dedicated special waste collection schemes. This shows that a large amount of batteries are being discarded with the residual waste, whereas WEEE seems to be collected relatively successfully through the dedicated special waste collection schemes. Characterisation of the misplaced batteries showed that 20% (w/w) of the discarded batteries were discarded as part of WEEE (built-in). Primarily alkaline batteries, carbon zinc batteries and alkaline button cell batteries were found to be discarded with the residual household waste. Characterisation of WEEE showed that primarily small WEEE (WEEE directive categories 2, 5a, 6, 7 and 9) and light sources (WEEE directive category 5b) were misplaced. Electric tooth brushes, watches, clocks, headphones, flashlights, bicycle lights, and cables were items most frequently found. It is recommended that these findings are taken into account when designing new or improving existing special waste collection schemes. Improving the collection of WEEE is also recommended as one way to also improve the collection of batteries due to the large fraction of batteries found as built-in. The findings in this study were comparable to other western European studies, suggesting that the recommendations made in this study could apply to other western European countries as well.

Bigum, Marianne, E-mail: mkkb@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljvej 113, 2500 Kgs. Lyngby (Denmark); Petersen, Claus, E-mail: claus_petersen@econet.dk [Econet A/S, Strandboulevarden 122, 5, 2100 Kbenhavn (Denmark); Christensen, Thomas H., E-mail: thho@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljvej 113, 2500 Kgs. Lyngby (Denmark); Scheutz, Charlotte, E-mail: chas@env.dtu.dk [Technical University of Denmark, Department of Environmental Engineering, Miljvej 113, 2500 Kgs. Lyngby (Denmark)

2013-11-15T23:59:59.000Z

294

SRS Small Modular Reactors  

SciTech Connect (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2012-04-27T23:59:59.000Z

295

SRS Small Modular Reactors  

ScienceCinema (OSTI)

The small modular reactor program at the Savannah River Site and the Savannah River National Laboratory.

None

2014-05-21T23:59:59.000Z

296

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

297

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

298

TRU Waste Sampling Program: Volume I. Waste characterization  

SciTech Connect (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

299

Hanford Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

300

Waste inspection tomography (WIT)  

SciTech Connect (OSTI)

The WIT program will provide an inspection system that offers the nuclear waste evaluator a unique combination of tools for regulatory-driven characterization of low-level waste (LLW), transuranic waste (TRU), and mixed waste drums. WIT provides nondestructive, noninvasive, and environmentally safe inspections using X-ray and gamma ray technologies, with reasonable cost and throughput. Two emission imaging techniques will be employed for characterizing materials in waste containers. The first of these is gamma emission tomography, commonly called single-photon emission computed tomography (SPECT). Rather than using an external radiation source, SPECT uses the emission of radioactive materials within the object of interest for imaging. In this case, emission from actual nuclear waste within a container will provide a three-dimensional image of the radioactive substances in the container. The second emission technique will use high-purity germanium detectors for gamma ray spectroscopy. This technique, called nondestructive assay (NDA), can identify the emitting isotopic species and strength. Work in emission tomography and assay of nuclear waste has been undertaken at Lawrence Livermore National Laboratory using a technique called Passive Tomography. Results from a process development unit are presented.

Bernardi, R.T.; Han, K.S.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Application of PCT to the EBR II ceramic waste form.  

SciTech Connect (OSTI)

We are evaluating the use of the Product Consistency Test (PCT) developed to monitor the consistency of borosilicate glass waste forms for application to the multiphase ceramic waste form (CWF) that will be used to immobilize waste salts generated during the electrometallurgical conditioning of spent sodium-bonded nuclear fuel from the Experimental Breeder Reactor No. 2 (EBR II). The CWF is a multiphase waste form comprised of about 70% sodalite, 25% borosilicate glass binder, and small amounts of halite and oxide inclusions. It must be qualified for disposal as a non-standard high-level waste (HLW) form. One of the requirements in the DOE Waste Acceptance System Requirements Document (WASRD) for HLW waste forms is that the consistency of the waste forms be monitored.[1] Use of the PCT is being considered for the CWF because of the similarities of the dissolution behaviors of both the sodalite and glass binder phases in the CWF to borosilicate HLW glasses. This paper provides (1) a summary of the approach taken in selecting a consistency test for CWF production and (2) results of tests conducted to measure the precision and sensitivity of the PCT conducted with simulated CWF.

Ebert, W. L.; Lewis, M. A.; Johnson, S. G.

2002-01-10T23:59:59.000Z

302

Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator  

SciTech Connect (OSTI)

This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

Zhong Zhaoping [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)]. E-mail: zzhong@seu.edu.cn; Jin Baosheng [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Huang Yaji [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Zhou Hongcang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Lan Jixiang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)

2006-07-01T23:59:59.000Z

303

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

304

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

305

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

306

Generating power with waste wood  

SciTech Connect (OSTI)

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

307

Methane generation from waste materials  

DOE Patents [OSTI]

An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

2010-03-23T23:59:59.000Z

308

Helping Wisconsin Small Businesses Increase Sustainability | Department of  

Broader source: Energy.gov (indexed) [DOE]

Wisconsin Small Businesses Increase Sustainability Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability June 28, 2012 - 3:51pm Addthis The Wisconsin Profitable Sustainability Initiative (PSI), an innovative, customizable and highly-effective program of the Wisconsin Manufacturing Extension Partnership (WMEP), demonstrates the range of economic, social and environmental benefits that can be realized by the state's small and midsize manufacturers through the implementation of sustainable business practices. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What Does the Future Look Like? Electricity demand from these participants will be reduced by nearly 13 million kilowatt hours. 9,000 tons of solid waste will be diverted from landfills.

309

Small Business Innovation Research (SBIR) and Small Business...  

Broader source: Energy.gov (indexed) [DOE]

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An...

310

Small Buildings and Small Portfolios Overview - 2014 BTO Peer...  

Broader source: Energy.gov (indexed) [DOE]

Small Buildings and Small Portfolios Overview - 2014 BTO Peer Review Small Buildings and Small Portfolios Overview - 2014 BTO Peer Review Presenter: Glenn Schatz, U.S. Department...

311

Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

2013-07-01T23:59:59.000Z

312

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

313

Small Column Ion Exchange Technology at Savannah River Site | Department of  

Broader source: Energy.gov (indexed) [DOE]

Small Column Ion Exchange Technology at Savannah River Site Small Column Ion Exchange Technology at Savannah River Site Small Column Ion Exchange Technology at Savannah River Site The Small Column Ion Exchange (SCIX) system being developed for deployment at the Savannah River Site (SRS) is a supplementary salt waste processing technology that, if implemented, will augment the baseline Salt Waste Processing Facility (SWPF) capability. An opportunity exists to shorten the SRS radioactive waste system lifecycle by 6 years, and significantly reduce life cycle costs, by accelerating salt processing to earlier completion, simultaneous with sludge vitrification. As described in the Enhanced Tank Waste Strategy, which is part of the Department of Energy (DOE) Office of Environmental Management (EM) Roadmap - EM Journey to Excellence,

314

Publisher: AGRONOMY; Journal: VZJ:Vadose Zone Journal; Copyright: Will notify... Volume: Will notify...; Issue: Will notify...; Manuscript: V12-0056; DOI: 10.2136/vzj201; PII  

E-Print Network [OSTI]

wastes and sewage sludge; MSW, municipal solid waste compost; SCM, stochastic­convective model; TDR, time of urban wastes by application to cultivated land. Waste composting creates a relatively low-cost product, a biowaste compost (BIO), a municipal solid waste compost (MSW), and a co-compost of green waste and sewage

Paris-Sud XI, Université de

315

Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

316

Waste Treatment Plant Overview  

Broader source: Energy.gov (indexed) [DOE]

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

317

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

318

Waste and Recycling  

ScienceCinema (OSTI)

Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

McCarthy, Kathy

2013-05-28T23:59:59.000Z

319

Citrus Waste Biomass Program  

SciTech Connect (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

320

Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France: comparison of  

E-Print Network [OSTI]

13 Constructed Wetlands and Waste Stabilization Ponds for municipal wastewater treatment in France In France, vertical flow constructed wetlands and waste stabilisation ponds are both extensive treatment processes well adapted to small rural communities mainly because they are easy to operate

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Small Business Research  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy participates in DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. SBIR and STTR are U.S. government programs in...

322

After the flood : crisis, voice and innovation in Maputo's solid waste management sector  

E-Print Network [OSTI]

This thesis explores responses to the problem of solid waste management (SWM) in two neighborhoods of Maputo, Mozambique in the wake of catastrophic flooding in 2000. In these neighborhoods, small-scale service providers ...

Kruks-Wisner, Gabrielle (Gabrielle K.)

2006-01-01T23:59:59.000Z

323

Independent Activity Report, Hanford Waste Treatment Plant -...  

Broader source: Energy.gov (indexed) [DOE]

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

324

Rhenium solubility in borosilicate nuclear waste glass  

E-Print Network [OSTI]

Glasses Developed for Nuclear Waste Immobilization," 91[12],solubility in borosilicate nuclear waste glass Ashutoshfor the researchers in nuclear waste community around the

McCloy, John S.

2014-01-01T23:59:59.000Z

325

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

326

Municipal Solid Waste | Open Energy Information  

Open Energy Info (EERE)

Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSolidWaste&oldid...

327

Waste Processing Annual Technology Development Report 2007 |...  

Office of Environmental Management (EM)

Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007 Waste Processing Annual Technology Development Report 2007...

328

Pollution Prevention, Waste Reduction, and Recycling | Department...  

Office of Environmental Management (EM)

Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The Pollution Prevention, Waste Reduction and Recycling Program was...

329

Waste Isolation Pilot Plant | Department of Energy  

Office of Environmental Management (EM)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare...

330

Cooperative Research Program in Coal-Waste Liquefaction  

SciTech Connect (OSTI)

The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

Gerald Huffman

2000-03-31T23:59:59.000Z

331

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov (indexed) [DOE]

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

332

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect (OSTI)

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

333

Energy from waste via coal/waste co-firing  

SciTech Connect (OSTI)

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

334

Solid Waste and Infectious Waste Regulations (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and Infectious Waste Regulations (Ohio) and Infectious Waste Regulations (Ohio) Solid Waste and Infectious Waste Regulations (Ohio) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste. The chapter establishes specific regulations for biomass facilities, which includes permitting, siting, operation, safety guidelines, and closing requirements. Siting regulations include setbacks from waste handling areas for state facilities (1000 feet from jails, schools), requirements for not siting

335

LANL reaches waste shipment milestone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL reaches waste shipment milestone LANL reaches waste shipment milestone LANL reaches waste shipment milestone The Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total. May 31, 2011 A shipment of transuranic waste on its way to the WIPP repository A shipment of transuranic waste on its way to the WIPP repository. Contact Fred deSousa Communicatons Office (505) 665-3430 Email LOS ALAMOS, New Mexico, May 31, 2011 - Los Alamos National Laboratory has reached an important milestone in its campaign to ship transuranic (TRU) waste from Cold War-era nuclear operations to the U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This month, the Lab surpassed 100,000 plutonium-equivalent curies of TRU waste shipped to WIPP, about one-third of the Lab's total.

336

The largest radioactive waste glassification  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

337

Waste Treatment Plant - 12508  

SciTech Connect (OSTI)

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

338

Mixed waste characterization reference document  

SciTech Connect (OSTI)

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

339

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

340

Event:World Solid Waste Congress 2012 | Open Energy Information  

Open Energy Info (EERE)

Solid Waste Congress 2012 Solid Waste Congress 2012 Jump to: navigation, search Calendar.png World Solid Waste Congress 2012: on 2012/09/17 During the three days of this Congress you can meet academics presenting cutting edge research; scientists, government administrators and decision makers, representatives of the world's largest companies in the waste sector, and many other practitioners too from small and medium enterprises. Florence 2012: where else in the world can you network with these people in such a short time The Congress location is at the Palazzo dei Congressi adjacent to the Santa Maria Novella mainline railway station in the City center. ATIA-ISWA ITALIA is also organising a series of events in Italy leading to the main Congress this year. This beautiful city will also host

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy utilization: municipal waste incineration. Final report  

SciTech Connect (OSTI)

An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

LaBeck, M.F.

1981-03-27T23:59:59.000Z

342

Electrochemical corrosion testing of metal waste forms  

SciTech Connect (OSTI)

Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys.

Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

1999-12-14T23:59:59.000Z

343

Waste generator services implementation plan  

SciTech Connect (OSTI)

Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

Mousseau, J.; Magleby, M.; Litus, M.

1998-04-01T23:59:59.000Z

344

Feasibility Study Using a Solar Evaporator to Reduce the Metalworking Fluid (MWF) Waste Stream  

SciTech Connect (OSTI)

A solar evaporator was designed, built, and operated to reduce the water-based metalworking fluid waste stream. The evaporator was setup in Waste Managements barrel lot inside one of the confinement areas. The unit processed three batches of waste fluid during the prototype testing. Initial tests removed 13% of the fluid waste stream. Subsequent modifications to the collector improved the rate to almost 20% per week. Evaluation of the risk during operation showed that even a small spill when associated with precipitation, and the unit placement within a confinement area, gave it the potential to contaminate more fluid that what it could save.

Lazarus, Lloyd

2008-12-03T23:59:59.000Z

345

Transuranic Waste Tabletop  

Broader source: Energy.gov (indexed) [DOE]

Transuranic (TRU) Waste Transuranic (TRU) Waste (Hazard Class 7 Radioactive) Moderator's Version of Tabletop Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-07D.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools planning tools planning tools T T T T Tr r r r ransur ansur ansur ansur ansuranic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) Waste aste aste aste aste (Hazar (Hazar (Hazar (Hazar (Hazard Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radioactiv activ activ activ active) e) e) e) e) Moder Moder Moder Moder Moderat at at at ator' or' or' or' or's V s V s V s V s Version of T ersion of T ersion of T ersion of T ersion of Tablet ablet ablet ablet abletop

346

Pioneering Nuclear Waste Disposal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 3 T he journey to the WIPP began nearly 60 years before the first barrels of transuranic waste arrived at the repository. The United States produced the world's first sig- nificant quantities of transuranic material during the Manhattan Project of World War II in the early 1940s. The government idled its plutonium- producing reactors and warhead manu- facturing plants at the end of the Cold War and scheduled most of them for dismantlement. However, the DOE will generate more transuranic waste as it cleans up these former nuclear weapons facilities. The WIPP is a cor- nerstone of the effort to clean up these facilities by providing a safe repository to isolate transuranic waste in disposal rooms mined out of ancient salt beds, located 2,150 feet below ground. The need for the WIPP

347

Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

NONE

1996-07-01T23:59:59.000Z

348

Pyrolysis of waste tyres: A review  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. Product yields are influenced by reactor type, temperature and heating rate. Pyrolysis oils are complex and can be used as chemical feedstock or fuel. Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

2013-08-15T23:59:59.000Z

349

FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN  

E-Print Network [OSTI]

;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

Columbia University

350

Waste IncIneratIon and Waste PreventIon  

E-Print Network [OSTI]

disposing of waste, it also makes consider- able amounts of energy available in the form of electricity emissions annu- ally. About 50 percent of the energy contained in residual municipal waste comes from- sions from the fossil waste fraction and the fos- sil energy purchased from external sources

351

SMALL BUSINESS ADMINISTRATION  

Broader source: Energy.gov (indexed) [DOE]

22 Federal Register 22 Federal Register / Vol. 76, No. 29 / Friday, February 11, 2011 / Rules and Regulations SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121 and 124 RIN 3245-AF53 Small Business Size Regulations; 8(a) Business Development/Small Disadvantaged Business Status Determinations AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: This rule makes changes to the regulations governing the section 8(a) Business Development (8(a) BD) program, the U.S. Small Business Administration's (SBA or Agency) size regulations, and the regulations affecting Small Disadvantaged Businesses (SDBs). It is the first comprehensive revision to the 8(a) BD program in more than ten years. Some of the changes involve technical issues such as changing the term ''SIC code'' to

352

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

353

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

354

High-Level Waste Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

1999-07-09T23:59:59.000Z

355

Pathology waste includes: Transgenic animals.  

E-Print Network [OSTI]

resistant, have tight fitting covers, be clean, and in good repair. · Pathology waste must be transferred via the Internet: · Visit www.ehs.uci.edu/programs/enviro/. · Fill out the "Biomedical Waste

George, Steven C.

356

Waste Management Coordinating Lead Authors  

E-Print Network [OSTI]

-use and recycling ..............602 10.4.6 Wastewater and sludge treatment.....................602 10.4.7 Waste ............................................591 10.2.2 Wastewater generation ....................................592 10.2.3 Development trends for waste and ......................... wastewater ......................................................593

Columbia University

357

Leaching of Nuclear Waste Glasses  

Science Journals Connector (OSTI)

Resistance to aqueous corrosion is the most important requirement of glasses designed to immobilize high level radioactive wastes. Obtaining a highly durable nuclear waste glass is complicated by the requirement ...

L. L. Hench

1985-01-01T23:59:59.000Z

358

The Discovery of Nuclear Waste  

Science Journals Connector (OSTI)

When did man discover nuclear waste? To answer this question, we first have to ask if nuclear waste really is something that could be called ... Prize in physics. In early writings within nuclear energy research ...

Gran Sundqvist

2002-01-01T23:59:59.000Z

359

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

360

Hydrothermal Processing of Wet Wastes  

Broader source: Energy.gov [DOE]

Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Zero Waste, Renewable Energy & Environmental  

E-Print Network [OSTI]

· Dioxins & Furans · The `State of Waste' in the US · WTE Technologies · Thermal Recycling ­ Turnkey dangerous wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans

Columbia University

362

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

363

Explosive Waste Treatment Facility  

Broader source: Energy.gov (indexed) [DOE]

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

364

Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Isolation Pilot Plant Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE _______________ ) ) ss: __________________ COUNTY OF _____________ ) That I, ________________________, am the _________________________ (Indicate relationship) of ___________________________, who is deceased and make the attached request pursuant to 10 CFR, Section 1008. That the information contained on the attached request is true and correct to the best of my knowledge and belief, and I am signing this authorization subject to the penalties provided in 18 U.S.C. 1001. ____________________________ SIGNATURE NOTARIZATION: SUBSCRIBED and SWORN to before me this ______day of __________, 20_____

365

Converter waste disposal study  

SciTech Connect (OSTI)

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

366

Alternatives for the disposal of NORM (naturally occurring radioactive materials) wastes in Texas  

SciTech Connect (OSTI)

Some of the Texas wastes containing naturally occurring radioactive materials (NORM) have been disposed of in a uranium mill tailings impoundment. There is currently no operating disposal facility in Texas to accept these wastes. As a result, some wastes containing extremely small amounts of radioactivity are sent to elaborate disposal sites at extremely high costs. The Texas Low-Level Radioactive Waste Disposal Authority has sponsored a study to investigate lower cost, alternative disposal methods for certain wastes containing small quantities of NORM. This paper presents the results of a multipathway safety analysis of various scenarios for disposing of wastes containing limited quantities of NORM in Texas. The wastes include pipe scales and sludges from oil and gas production, residues from rare-earth mineral processing, and water treatment resins, but exclude large-volume, diffuse wastes (coal fly ash, phosphogypsum). The purpose of the safety analysis is to define concentration and quantity limits for the key nuclides of NORM that will avoid dangerous radiation exposures under different waste disposal scenarios.

Nielson, K.K.; Rogers, V.C. (Rogers Associates Engineering Corporation, Salt Lake City, UT (USA)); Pollard, C.G. (Texas Low-Level Radioactive Waste Disposal Authority, Austin (USA))

1989-11-01T23:59:59.000Z

367

Integrated Plant for the Municipal Solid Waste of Madrid  

E-Print Network [OSTI]

such as steam- boiler water treatment, compressed-air, control and instrumentation, etc. The incinerator of the project was to recover the energy content of RDF generated by the recycling plant of the city of Madrid and Composting Plant The MSW is brought by the collecting trucks which unload in the storage area with a two

Columbia University

368

WORLDWIDE FOCUS ON NUCLEAR WASTE  

Science Journals Connector (OSTI)

WORLDWIDE FOCUS ON NUCLEAR WASTE ... Volume grows and years pile up, but world lacks consensus on disposing of nuclear waste ... WHAT TO DO WITH SPENT nuclear fuel and high-level radioactive waste is a problem shared by much of the world. ...

JEFF JOHNSON

2001-06-18T23:59:59.000Z

369

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING  

E-Print Network [OSTI]

RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. ·We collect over 40

Howitt, Ivan

370

Mixed Waste Working Group report  

SciTech Connect (OSTI)

The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

Not Available

1993-11-09T23:59:59.000Z

371

Waste-to-Energy Workshop  

Broader source: Energy.gov [DOE]

The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

372

Land treatment for seafood processing waste  

SciTech Connect (OSTI)

The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

Rubin, A.R.; McClease, J.D.; Morgan, C.B.

1983-12-01T23:59:59.000Z

373

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Broader source: Energy.gov (indexed) [DOE]

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

374

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Broader source: Energy.gov (indexed) [DOE]

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

375

Microstructural characterization of halite inclusions in a surrogate glass bonded ceramic waste form  

SciTech Connect (OSTI)

A glass-bonded ceramic waste form is being developed to immobilize high-level chloride waste salts generated during the conditioning of spent sodium-bonded nuclear fuel for disposal. The waste salt is loaded into zeolite cavities, mixed with a borosilicate glass, and consolidated at 800--900 C by hot isostatic pressing. During this process, small amounts of halite are generated, whereas the zeolite converts to the mineral sodalite, which retains most of the waste salt. In this work, optical microscopy, scanning electron microscopy, and transmission electron microscopy2048e used to characterize the halite inclusions in the final waste form. The halite inclusions were detected within micron- to submicron-sized pores that form within the glass phase in the vicinity of the sodalite/glass interface. The chemical nature and distribution of the halite inclusions were determined. The particular microstructure of the halite inclusions has been related to the corrosion of the ceramic waste form.

Luo, J. S.; Zyryanov, V. N.; Ebert, W. L.

2000-05-12T23:59:59.000Z

376

Disposal of Nuclear Wastes  

Science Journals Connector (OSTI)

...generated between now and A.D. 2000 is about 0.04 km3 (0.01...high-level wastes do not be-come a public hazard. The AEC adopts this...pre-sented at the 66th national meeting of the American Institute of...ARH-SA-41 (Atlantic Richfield Hanford Co., Richland, Washington...

Arthur S. Kubo; David J. Rose

1973-12-21T23:59:59.000Z

377

Radioactive Waste Management  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

1999-07-09T23:59:59.000Z

378

D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE  

Broader source: Energy.gov (indexed) [DOE]

10 CFR Ch. X (1-1-12 Edition) Pt. 1022 D11 WASTE DISPOSAL FACILITIES FOR TRANSURANIC WASTE Siting, construction or expansion, and op- eration of disposal facilities for transuranic (TRU) waste and TRU mixed waste (TRU waste also containing hazardous waste as designated in 40 CFR part 261). D12 INCINERATORS Siting, construction, and operation of in- cinerators, other than research and develop- ment incinerators or incinerators for non- hazardous solid waste (as designated in 40 CFR 261.4(b)). PART 1022-COMPLIANCE WITH FLOODPLAIN AND WETLAND EN- VIRONMENTAL REVIEW REQUIRE- MENTS Subpart A-General Sec. 1022.1 Background. 1022.2 Purpose and scope. 1022.3 Policy. 1022.4 Definitions. 1022.5 Applicability. 1022.6 Public inquiries. Subpart B-Procedures for Floodplain and

379

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Broader source: Energy.gov (indexed) [DOE]

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

380

Small Hydroelectric | Open Energy Information  

Open Energy Info (EERE)

Small)) Jump to: navigation, search TODO: Add description List of Small Hydroelectric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSmallHydroelectric&oldid26...

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

WIPP TRANSURANIC WASTE How has the WIPP TRU Waste Inventory Changed  

E-Print Network [OSTI]

of tank waste from the Hanford site that is currently managed as high-level waste. None of this waste has that these Hanford tank wastes will be treated and will eventually be able to meet the WIPP waste acceptance criteria on the Hanford Tank Waste and K-Basin Sludges that were included in the waste inventory for recertifica- tion

382

Small Business Status  

Broader source: Energy.gov (indexed) [DOE]

Impact of Teaming Arrangements on Impact of Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a myriad of capabilities on the part of offerors, which might result in teaming arrangements or joint ventures being formed. Given this, the Department believes that potential offerors should be aware of the Small Business Administration's regulations regarding affiliation. As such, DOE will include the following provision in solicitations where it expects teaming or joint ventures to propose. GUIDANCE FOR PROSPECTIVE OFFERORS - IMPACT OF TEAMING ARRANGEMENTS ON SMALL BUSINESS STATUS (a) This procurement has been set aside for small business. In order to ensure that award

383

Small Business Solicitation Provision  

Broader source: Energy.gov (indexed) [DOE]

Solicitation Provision Solicitation Provision The Department of Energy has many exceptionally complex projects and programs involving the environmental remediation of its sites, and because of this complexity, are beyond the capabilities of small business in terms of a small business acting as the prime contractor. However, there are many opportunities within these projects in which small businesses can take part. It is the Department of Energy's policy to promote the participation of small business in all of its programs and projects. As such, the following solicitation provision, and evaluation criteria, will be included by the Department of Energy in environmental remediation acquisitions which are not set aside for small business. In addition, a contract clause will also be included in the resulting contract, providing

384

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect (OSTI)

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

385

Waste acceptance and waste loading for vitrified Oak Ridge tank waste  

SciTech Connect (OSTI)

The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC`s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC.

Harbour, J.R.; Andrews, M.K.

1997-06-06T23:59:59.000Z

386

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

387

Waste Isolation Pilot Plant - Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

388

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

389

Process Waste Assessment, Mechanics Shop  

SciTech Connect (OSTI)

This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

Phillips, N.M.

1993-05-01T23:59:59.000Z

390

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

391

WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop  

E-Print Network [OSTI]

; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

392

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1  

SciTech Connect (OSTI)

This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

NONE

1995-02-01T23:59:59.000Z

393

Iron Phosphate Glass-Containing Hanford Waste Simulant  

SciTech Connect (OSTI)

Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that is high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.

Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.; Schweiger, M. J.; Rodriguez, Carmen P.; Kim, Dong-Sang; Riley, Brian J.

2012-01-18T23:59:59.000Z

394

Treatment of halogen-containing waste and other waste materials  

DOE Patents [OSTI]

A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1997-03-18T23:59:59.000Z

395

Treatment of halogen-containing waste and other waste materials  

DOE Patents [OSTI]

A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

1997-01-01T23:59:59.000Z

396

Managing America's Defense Nuclear Waste | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste More Documents & Publications National Defense...

397

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

398

Small Site Closures  

Office of Environmental Management (EM)

CO 1997 Old Rifle, CO 1997 Slick Rock Old North Continent, CO 1997 Slick Rock Union Carbide, CO 1997 New Brunswick Site, NJ 1997 List of Small Site Closures by Year 2 Site Name,...

399

Small Business First Policy  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Department of Energy (DOE) is committed to maximizing opportunities for small business contracts, including prime contracts and subcontracts, while driving towards operational excellence and efficiency across the enterprise. Does not cancel other directives.

2012-12-14T23:59:59.000Z

400

Idaho National Laboratory receives national recognition for Small Business  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Media contacts: Media contacts: Erik Simpson (208) 360-0426 Idaho National Laboratory receives national recognition for Small Business Mentoring Program With the help of American Recovery and Reinvestment Act funds, the Idaho Cleanup Project continues work to protect the Snake River Plain Aquifer this week by injecting grout into 21 buried waste locations in the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Department of Energy�s Idaho Site. The project will cost $8.2 million and will reduce the threat of contaminants migrating toward the aquifer by keeping water out of the waste. �Protecting the Snake River Plain Aquifer is a priority at the Idaho Site. Thanks to Recovery Act funds, this grouting work will help ensure the safety of our important natural resource,� said Rick Provencher, manager of DOE�s Idaho Operations Office.

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nuclear waste management. Semiannual progress report, October 1983-March 1984  

SciTech Connect (OSTI)

Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

McElroy, J.L.; Powell, J.A.

1984-06-01T23:59:59.000Z

402

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

403

Tritium waste package  

DOE Patents [OSTI]

A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

1995-01-01T23:59:59.000Z

404

Waste | OpenEI  

Open Energy Info (EERE)

Waste Waste Dataset Summary Description The Planning Database Project provides the UK Department of Energy and Climate Change (DECC) with regular data to track progress towards achieving EU targets for electricity generation from renewable energy (RE) sources. Extracts from the database are available each month. Information collected in the database includes: name, location and installed capacity of RE projects over 0.1MW; environmental designations; planning status; and construction status. Included here is the October 2010 Progress Datasheet, and an extract from December, 15, 2010 (i.e. Source UK Department of Energy and Climate Change (DECC) Date Released December 15th, 2010 (3 years ago) Date Updated Unknown Keywords biomass co-firing installed capacity

405

Tritium waste package  

DOE Patents [OSTI]

A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

1995-11-07T23:59:59.000Z

406

SRS - Programs - Liquid Waste Disposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

407

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

408

Method for processing aqueous wastes  

DOE Patents [OSTI]

A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

1993-01-01T23:59:59.000Z

409

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

410

Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy  

E-Print Network [OSTI]

activities, such as waste burning versus waste dumping.and the Geographies of Waste Governance: A Burning Issue forEurope: Burning oriented Incineration (waste-to-energy)

Mengozzi, Alessandro

2010-01-01T23:59:59.000Z

411

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

412

Tank waste treatment R and D activities at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) served as the pilot plant for the Hanford production facility during the 1940s. As a result, the waste contained in the ORNL storage tanks has similarities to waste found at other sites, but is typically 10 to 100 times less radioactive. It is estimated that nearly 4.9 million liters of legacy of waste is stored on the site of ORNL. Of this volume about one-fifth is transuranic sludges. The remainder of the waste volume is classified as low-level waste. The waste contains approximately 130,000 Ci, composed primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. The wastes were originally acidic in nature but were neutralized using Na{sub 2}CO{sub 3}, NaOH, or CaO to allow their storage in tanks constructed of carbon steel or concrete (Gunite). In addition to the legacy waste, about 57,000 L of concentrated waste is generated annually, which contains about 13,000 Ci, consisting primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. As part of the US department of Energy`s (DOE`s) Environmental Management Tanks Focus Area and Efficient Separations and Processing programs, a number of tasks are under way at ORNL to address the wastes currently stored in tanks across the DOE complex. This paper summarizes the efforts in three of these tasks: (1) the treatment of the tank supernatant to remove Cs, Tc, and Sr; (2) the leaching or washing of the sludges to reduce the volume of waste to be vitrified; and (3) the immobilization of the sludges.

Jubin, R.T.; Lee, D.D.; Beahm, E.C.; Collins, J.L.; Davidson, D.J.; Egan, B.Z.; Mattus, A.J.; Walker, J.F. Jr. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-08-01T23:59:59.000Z

413

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

/spills and subsequent clean up costs ($20,000) Sewage Sludge Volume Reduction 234,000 Radioactive Waste $910,000 $193,400 $716,600 60,000 gallons of radioactive STP liquid waste could have been disposed of through,000) Digital Imaging System Substitution 282 Hazardous Waste / Radioactive Waste / Industrial Waste $25,000 $25

414

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

equipment. Savings are based on the cost of one PCB spill and clean-up event. Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste Yard Sorting Table surveying to sort clean waste from radioactive waste Radioactive Emissions Emission Reduction 0 Radioactive Emissions $0

415

Hydration Aging of Nuclear Waste Glass  

Science Journals Connector (OSTI)

...of Nuclear Waste Glass 10...STEINDLER Chemical Engineering...60439 The aging of simulated nuclear waste glass by...nuclear waste forms can meet...simulated aging reac-tions...whether a waste formn can...pro-jected Nuclear Regulatory...STEINDLEt Chemical Engineering...Basisfor Waste Form Integrity...

J. K. BATES; L. J. JARDINE; M. J. STEINDLER

1982-10-01T23:59:59.000Z

416

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

417

Waste/By-Product Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE/BY-PRODUCT HYDROGEN WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen Overview Overview ƒ Growing populations, rising standards of living, and increased urbanization leads to a escalating volume of waste leads to a escalating volume of waste. ƒ Huge volumes of waste are collected in dumps, creating a major environmental issue. ƒ ƒ Wastewater treatment plants generate noxious gasses that are released in Wastewater treatment plants generate noxious gasses that are released in

418

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carlsbad, New Mexico 8822 Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted

419

WTE IN ATTICA, Georgia Columbus  

E-Print Network [OSTI]

#12;WTE TECHNOLOGIES Mass Burning · waste is fed into a chute leading to furnace · waste onto stoker.0046.5048.5056.50Organic biowaste 2005 (%)1997 (%)1991 (%)1984-1985 (%)Type of waste Composition MSW IN ATTICA #12;MSW PLANT AT ANO LIOSSIA 1st stage: reception of wastes 2nd stage: mechanical sorting · screening · solids

Columbia University

420

Stamp out energy waste | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stamp out energy waste Stamp out energy waste Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager Save energy Stamp out energy waste Find cost-effective investments Engage occupants Purchase energy-saving products Put computers to sleep Get help from an expert Take a comprehensive approach Install renewable energy systems

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Small Business Internet Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(DOE) - (DOE) - http://www.energy.gov DOE OSDBU -- DOE Small Business Forecast, DOE's Special Emphasis Programs: Mentor-Protégé, 8(a) Pilot, Women-owned Small Business Program, List of SB Program Managers, and other Web Links. http://smallbusiness.energy.gov or http://www.hr.doe.gov/ED/OSDBU/Osdbu.html DOE's Annual Small Business Procurement Conference - http://www.smallbusiness-outreach.doe.gov/ Office of Economic Impact and Diversity --Parent Organization to the OSDBU - http://www.hr.doe.gov/ED/index.html Forecast of Prime and Subcontracting Business Opportunities -- http://hqlnc.doe.gov/support/smallbusutil.nsf/Index?openform DOE Phone Directory - http://phonebook.doe.gov/callup.html DOE's Linked Organizational Chart -- Link to any DOE program element offices --

422

Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1  

SciTech Connect (OSTI)

This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

NONE

1995-02-01T23:59:59.000Z

423

Hydrothermal Processing of Wet Wastes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mill Waste, Plastic Bottles Aquatic Water Hyacinths, Kelp (Marine), Red Algae (Marine), Green Algae (Brackish), Green Algae (Marine), Green Algae (Fresh), Diatoms, Cyanobacteria...

424

Chernobyls waste site  

SciTech Connect (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

425

Process for preparing liquid wastes  

DOE Patents [OSTI]

A process for preparing radioactive and other hazardous liquid wastes for treatment by the method of vitrification or melting is provided for.

Oden, Laurance L. (Albany, OR); Turner, Paul C. (Albany, OR); O'Connor, William K. (Lebanon, OR); Hansen, Jeffrey S. (Corvallis, OR)

1997-01-01T23:59:59.000Z

426

Funds denied for nuclear waste  

Science Journals Connector (OSTI)

... curb on the amount of nuclear waste that can be stored in the state's West Valley .facility, which has been closed since 1972. ...

David Dickson

1979-05-24T23:59:59.000Z

427

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE May 7, 2014 Richland, WA Topics in this Meeting Summary Opening ......

428

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions...

429

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Permit (Permit), introduced the discussion of Permit units that relate to tanks. Liz said the Permit was last available for review in 1994. There have been revisions...

430

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 2 Review of Responses to HAB Advice 271 Leaking Tanks and HAB Advice 273 Openness and Transparency Related to Tank Waste Treatment...

431

Waste/By-Product Hydrogen  

Broader source: Energy.gov [DOE]

Presentation by Ruth Cox, Fuel Cell and Hydrogen Energy Association, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

432

Progress Update: TRU Waste Shipping  

SciTech Connect (OSTI)

A progress update at the Savannah River Site. A continued effort on shipping TRU waste to WIPP in Carlsbad, New Mexico.

Cody, Tom

2010-01-01T23:59:59.000Z

433

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or statements that outline goals, objectives, and methods for source reduction and recycling of hazardous and mixed waste at the facility; 2. Employee training or incentive...

434

Reporting Fraud, Waste, and Abuse  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice reminds all DOE employees of their duty to report allegations of fraud, waste, and abuse to the Office of Inspector General. No cancellation.

2004-09-15T23:59:59.000Z

435

Nuclear waste could bury itself  

Science Journals Connector (OSTI)

... we can have strong scientific confidence in," says the chairman of Britain's Radioactive Waste Management Advisory Committee, Charles Curtis, a geochemist at the University of Manchester. ...

Tom Clarke

2003-08-13T23:59:59.000Z

436

Tank Waste Committee - Transcribed Flipcharts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRU waste retrieval Provided the State of New Mexico concurs Determine not HLW (process knowledge) As long as meets all applicable requirements "evaluation" not...

437

Hazardous waste assessment and reduction options in an auto service station  

SciTech Connect (OSTI)

A hazardous waste assessment was performed and options for reduction of waste antifreeze and car wash wastewater were studied for Thompson`s Freeway Amoco, a gasoline station with a small repair shop and car wash, located in Duluth, Minnesota. In 1992, 1,310 gallons of waste aqueous antifreeze solution (50 vol% ethylene glycol, 50 vol% water), 6,580 gallons of waste oil, 138 gallons of waste parts washer solvent, and 2,702 lbs of waste oil filters, all classified as hazardous waste, were generated by this and three other sister stations of similar size under the same ownership. In addition, 779,810 gallons of car wash wastewater, not classified as hazardous waste, were also produced and discharged into the sewer. Various options were studied for reductions in waste antifreeze and car was wastewater by recycling and reuse. The economic evaluations are presented with the conclusions that on-site recycling of antifreeze is viable but not car wash wastewater recycling.

Baria, D.N.; Dorland, D.; Miller, K.C. [Univ. of Minnesota, Duluth, MN (United States). Dept. of Chemical Engineering

1994-12-31T23:59:59.000Z

438

Small Business Innovation Research and Small Business Technology Transfer  

Broader source: Energy.gov [DOE]

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

439

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation  

Broader source: Energy.gov (indexed) [DOE]

ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M. - The Waste Isolation Pilot Plant (WIPP) received its

440

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation  

Broader source: Energy.gov (indexed) [DOE]

DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, N.M. - The Waste Isolation Pilot Plant (WIPP) received its

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Environmental, Economic, and Energy Assessment of the Ultimate Analysis and Moisture Content of Municipal Solid Waste in a Parallel  

E-Print Network [OSTI]

and can mitigate air quality degradation associated with combustion of conventional fossil fuels. Co for the MSW scenario with recycled paper and composted organics, with 8251 MBtu/lb. Results show that SO2, CO

Alvarez, Pedro J.

442

Small Power Production Facilities (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities (Montana) Facilities (Montana) Small Power Production Facilities (Montana) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Interconnection Provider Montana Public Service Commission For the purpose of these regulations, a small power production facility is defined as a facility that: : (a) produces electricity by the use, as a primary energy source, of biomass, waste, water, wind, or other renewable resource, or any combination of those sources; or : (b) produces electricity and useful forms of thermal energy, such as heat

443

Waste acceptance criteria for the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

NONE

1996-04-01T23:59:59.000Z

444

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

445

Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995  

SciTech Connect (OSTI)

This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

Haller, C.S.; Dove, T.H.

1994-11-01T23:59:59.000Z

446

Radioactive waste processing apparatus  

DOE Patents [OSTI]

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

447

DOE Announces Small Business Awards at its Annual Small Business...  

Office of Environmental Management (EM)

Technologies, Inc. President and CTO: Abe Lederman Santa Fe, New Mexico Small Technology Transfer Research-Small Business of the Year Recipient: SABIA, Inc. President: Clint...

448

Nuclear Waste Policy Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

449

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

450

Waste oil reduction: GKN  

SciTech Connect (OSTI)

This report details the steps required to establish a waste oil management program. Such a program can reduce operational costs, cut wastewater treatment costs and produce a better quality wastewater effluent through such means as: reducing the volume of oils used; segregating oils at the source of generation for recovery and reuse; and reducing the quality of oily wastewater generated. It discusses the metal-working fluid recovery options available for such a program, namely settling, filtration, hydrocyclone, and centrifugation. Included are source lists for vendors of oil skimmer equipment and coolant recovery systems.

Hunt, G.

1995-08-01T23:59:59.000Z

451

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Broader source: Energy.gov (indexed) [DOE]

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

452

Small Business Revolving Loan Fund | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Small Business Revolving Loan Fund Small Business Revolving Loan Fund Small Business Revolving Loan Fund < Back Eligibility Commercial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Per loan: $45,000 Lifetime maximum per business: $65,000 Program Info State Arkansas Program Type State Loan Program Provider Arkansas Department of Environmental Quality The Arkansas Department of Environmental Quality (ADEQ) offers low-interest loans to small businesses to institute pollution control measures required by state or federal law, or to institute pollution prevention and waste reduction measures. Energy efficiency projects are also eligible for these loans. Loan applications can be found on the program web site or interested

453

Helping Wisconsin Small Businesses Increase Sustainability | Department of  

Broader source: Energy.gov (indexed) [DOE]

Helping Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability Helping Wisconsin Small Businesses Increase Sustainability June 28, 2012 - 3:51pm Addthis The Wisconsin Profitable Sustainability Initiative (PSI), an innovative, customizable and highly-effective program of the Wisconsin Manufacturing Extension Partnership (WMEP), demonstrates the range of economic, social and environmental benefits that can be realized by the state's small and midsize manufacturers through the implementation of sustainable business practices. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What Does the Future Look Like? Electricity demand from these participants will be reduced by nearly 13 million kilowatt hours. 9,000 tons of solid waste will be diverted from landfills.

454

Small Business Loan Program (Missouri)  

Broader source: Energy.gov [DOE]

The Small Business Loan Program provides low-interest and no-interest direct loans for small businesses. The statewide program is open to all small businesses that employ 15 or fewer employees and...

455

EM Awards Two Large Contracts to Small Businesses for Trucking Services |  

Broader source: Energy.gov (indexed) [DOE]

Awards Two Large Contracts to Small Businesses for Trucking Awards Two Large Contracts to Small Businesses for Trucking Services EM Awards Two Large Contracts to Small Businesses for Trucking Services June 1, 2012 - 12:00pm Addthis A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an impressive record. In addition to transporting more than 10,500 shipments safely, WIPP drivers have logged more than 12.6 million safe loaded miles — equivalent to 26 roundtrips to the moon — without a serious accident or injury. Their work has helped DOE clean up 22 transuranic waste sites around the nation. A Waste Isolation Pilot Plant (WIPP) truck approaches the WIPP facility near Carlsbad, N.M. Since opening in 1999, WIPP has established an

456

SPHERICAL RESORCINOL-FORMALDEHYDE PERFORMANCE TESTING WITH HANFORD TANK WASTE  

SciTech Connect (OSTI)

The efficacy of a new spherically engineered form of resorcinol-formaldehyde (RF) resin was tested for cesium removal on two actual Hanford tank wastes. Small-scale processing was conducted according to the River Protection Project-Waste Treatment and Immobilization Plant flowsheet in a lead-lag column format. The RF resin processed 95 bed volumes (BVs) of high potassium-bearing waste (AP-101) and >200 BVs of a high complexant-bearing waste (AN-102) before reaching 50% cesium breakthrough. Elution with 0.5 M nitric acid was effective and complete after processing 16 BVs. Cesium and other analyte fractionations to the process stream effluent and eluate were evaluated. The RF resin resulted in very little metal and radionuclide fractionation, other than cesium, to the eluate. The spent resins were measured for most analytes relevant to land-disposal requirements. The actinide concentrations on the spent resins were <3% of the transuranic waste limit; the residual cesium concentrations were <4 mCi/kg; chromium was the only metal, regulated by the Resource Conservation Recovery Act, that was measured in quantities significant to land-disposal regulations.

Fiskum, Sandra K.; Arm, Stuart T.; Steele, Marilyn J.; Thorson, Murray R.

2008-07-16T23:59:59.000Z

457

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Broader source: Energy.gov (indexed) [DOE]

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

458

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste |  

Broader source: Energy.gov (indexed) [DOE]

Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste Biomass Burner Cogenerates Jobs and Electricity from Lumber Mill Waste December 6, 2011 - 3:57pm Addthis Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of Washington DNR. Dale and Sharon Borgford, small business owners in Stevens County, WA, break ground with Peter Goldmark, Washington State Commissioner of Public Lands. The pair brought more than 75 jobs to the area with help from DOE's State Energy Program and the U.S. Forest Service. | Photo courtesy of

459

Hazardous Wastes Management (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

460

Independent Oversight Assessment, Salt Waste Processing Facility...  

Broader source: Energy.gov (indexed) [DOE]

Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy...

Note: This page contains sample records for the topic "waste msw small" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This...

462

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report...

463

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report...

464

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Tank Farm - January 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm - January 2014 January 2014 Hanford Waste...

465

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization...