National Library of Energy BETA

Sample records for waste management site

  1. Radioactive Waste Management Site located in

    National Nuclear Security Administration (NNSA)

    Radioactive Waste Management Site located in the southeastern portion of the Nevada National Security Site. This disposal facility features a multi-layer liner and collection system that drains any potential moisture away from the buried waste containers. This technologically advanced cell became operational in December 2010 and replaces the previous mixed low-level waste disposal cell which closed on November 30, 2010. All mixed low-level waste disposed at the Nevada National Security Site

  2. Waste management units: Savannah River Site

    SciTech Connect (OSTI)

    Molen, G.

    1991-09-01

    This report indexes every waste management unit of the Savannah River Site. They are indexed by building number and name. The waste units are also tabulated by solid waste units receiving hazardous materials with a known release or no known release to the environment. It also contains information on the sites which has received no hazardous waste, and units which have received source, nuclear, or byproduct material only. (MB)

  3. Waste management units - Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  4. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema (OSTI)

    None

    2014-10-28

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  5. Waste Management Magazine Highlights Nevada National Security Site |

    Office of Environmental Management (EM)

    Department of Energy Management Magazine Highlights Nevada National Security Site Waste Management Magazine Highlights Nevada National Security Site March 28, 2013 - 12:00pm Addthis A worker at NNSS handles large, high-powered batteries called radioisotope thermoelectric generators (RTGs), which are discussed in the recent article on the NNSS in RadWaste Solutions magazine. Like most low-level waste, RTGs disposed of at the NNSS were handled without any special equipment or clothing because

  6. Hanford Site Waste Management Area C Performance Assessment (PA) Current

    Office of Environmental Management (EM)

    Status | Department of Energy Assessment (PA) Current Status Hanford Site Waste Management Area C Performance Assessment (PA) Current Status Marcel Bergeron Washignton River Protection Solutions Alaa Aly INTERA Performance and Risk Assessment Community of Practice Technical Exchange December 11-12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation - Part 1 Video Presentation - Part 2 PDF icon Hanford Site Waste Management Area C

  7. Hanford Site Waste Management Area C Performance Assessment | Department of

    Office of Environmental Management (EM)

    Energy Assessment Hanford Site Waste Management Area C Performance Assessment Presentation from the 2015 Annual Performance and Risk Assessment (P&RA) Community of Practice (CoP) Technical Exchange Meeting held in Richland, Washington on December 15-16, 2015. PDF icon Hanford Site Waste Management Area C Performance Assessment More Documents & Publications Status Updates on the Performance and Risk Assessment Community of Practice (P&RA CoP) WM2014 Conference - Building the

  8. Waste management units - Savannah River Site. Volume 1, Waste management unit worksheets

    SciTech Connect (OSTI)

    Not Available

    1989-10-01

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only.

  9. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  10. Savannah River Site`s Site Specific Plan. Environmental restoration and waste management, fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering.

  11. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  12. A Short History of Waste Management at the Hanford Site

    SciTech Connect (OSTI)

    Gephart, Roy E.

    2010-03-31

    "The worlds first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanfords last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanfords only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book Hanford: A Conversation about Nuclear Waste and Cleanup.(1) "

  13. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2000-05-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste.

  14. Site specific plan. [Environmental Restoration and Waste Management, Savannah River Site

    SciTech Connect (OSTI)

    Hutchison, J.; Jernigan, G.

    1989-12-01

    The Environmental Restoration and Waste Management Five-Year Plan (FYP) covers the period for FY 1989 through FY 1995. The plan establishes a Department of Energy -- Headquarters (DOE-HQ) agenda for cleanup and compliance against which overall progress can be measured. The FYP covers three areas: Corrective Activities, Environmental Restoration, and Waste Management Operations. Corrective Activities are those activities necessary to bring active or standby facilities into compliance with local, state, and federal environmental regulations. Environmental restoration activities include the assessment and cleanup of surplus facilities and inactive waste sites. Waste management operations includes the treatment, storage, and disposal of wastes which are generated as a result of ongoing operations. This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show how environmental restoration and waste management activities that were identified during the preparation of the FYP will be implemented, tracked, and reported. The SSP describes DOE Savannah River (DOE-SR) and operating contractor, Westinghouse Savannah River Company (WSRC), organizations that are responsible, for undertaking the activities identified in this plan. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. 8 refs., 46 figs., 23 tabs.

  15. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2003-06-01

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  16. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  17. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  18. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B

    2014-02-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  19. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  20. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  1. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover. Precipitation did not infiltrate to the deepest sensor on the vegetated final cover at U-3ax/bl. Water drained from all Area 3 drainage lysimeters that received three times natural precipitation, but there was no drainage from the lysimeters that received only natural precipitation. Biota monitoring data show that tritium is the primary radionuclide accessible to plants and animals. Other human-produced radionuclides in the tissues of plant and animal samples from both RWMSs were not found at concentrations higher than in biota samples collected at control locations. This suggests that sampled animals did not intrude into the waste and that waste did not move to where it is accessible to plants or animals.

  2. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Yvonne Townsend

    2001-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste.

  3. Low-level radioactive waste (LLW) management at the Nevada Test Site (NTS)

    SciTech Connect (OSTI)

    Becker, B.D.; Gertz, C.P.; Clayton, W.A.; Crowe, B.M.

    1998-12-31

    In 1978, the Department of Energy, Nevada Operations Office (DOE/NV), established a managed LLW disposal project at the Nevada Test Site (NTS). Two, sites which were already accepting limited amounts of on-site generated waste for disposal and off-site generated Transuranic Waste for interim storage, were selected to house the disposal facilities. In those early days, these sites, located about 15 miles apart, afforded the DOE/NV the opportunity to use at least two technologies to manage its waste cost effectively. The Area 5 Radioactive Waste Management Site (RWMS) uses engineered shallow-land burial cells to dispose packaged waste while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. The paper describes the technical attributes of both Area 5 and Area 3 facilities, the acceptance process, the disposal processes, and present and future capacities of both sites.

  4. Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-01-01

    This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

  5. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    David B. Hudson

    2007-06-30

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of 2005. The vegetated final cover at U-3ax/bl continues to remove moisture by evapotranspiration. There was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation or were vegetated. Water drained from the bare-soil Area 3 drainage lysimeter that received three times natural precipitation. All 2006 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  6. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments.

  7. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX S WASTE INVENTORIES FOR CUMULATIVE IMPACT ANALYSES Integral to development of the inventory data set for the cumulative impact analyses presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington was identification of those waste sites potentially contributing to cumulative impacts on groundwater. Their identification involved two semi-independent, convergent processes: a Waste Information Data System screen and a

  8. Nevada Test Site 2007 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2008-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2007 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2007a; 2008; Warren and Grossman, 2008). Direct radiation monitoring data indicate exposure levels at the RWMSs are at background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. A single gamma spectroscopy measurement for cesium was slightly above the minimum detectable concentration, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. The measured levels of radionuclides in air particulates are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 136.8 millimeters (mm) (5.39 inches [in.]) of precipitation at the Area 3 RWMS during 2007 is 13 percent below the average of 158.1 mm (6.22 in.), and the 123.8 mm (4.87 in.) of precipitation at the Area 5 RWMS during 2007 is 6 percent below the average of 130.7 mm (5.15 in.). Soil-gas tritium monitoring at borehole GCD-05U continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward movement percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of 2005. The vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS effectively removes moisture from the cover by evapotranspiration. During 2007, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation or were vegetated but water drained from the bare-soil Area 3 drainage lysimeter that received 3 times natural precipitation. Elevated tritium levels in plants and animals sampled from the Area 3 and Area 5 RWMSs show tritium uptake by the biota, but the low levels of other radionuclides do not suggest that there has been intrusion into the waste. All 2007 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  9. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches [in.]) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that moisture from precipitation did not percolate below 90 centimeters (cm) (3 feet [ft]) before being removed by evaporation. Moisture from precipitation did not percolate below 30 cm (1 ft) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2009, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation or were vegetated, but water drained from the bare-soil Area 3 drainage lysimeter that received 3 times natural precipitation. Elevated tritium levels in plants and animals sampled from the Area 3 and Area 5 RWMSs show tritium uptake by the biota, but the low levels of other radionuclides do not indicate that there has been biota intrusion into the waste. All 2009 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  10. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  11. Nevada National Security Site 2013 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, D. B.

    2014-08-19

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) within the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2013 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2013; 2014a; 2014b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are close to detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 105.8 millimeters (mm) (4.17 inches [in.]) of precipitation at the Area 3 RWMS during 2013 is 30% below the average of 150.3 mm (5.92 in.), and the 117.5 mm (4.63 in.) of precipitation at the Area 5 RWMS during 2013 is 5% below the average of 123.6 mm (4.86 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2013, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3-times natural precipitation. All 2013 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  12. Nevada National Security Site 2012 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David B.

    2013-09-10

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2012 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2012; 2013a; 2013b). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below Derived Concentration Standards for these radionuclides. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. Leachate samples collected from the leachate collection system at the mixed low-level waste cell were below established contaminant regulatory limits. The 133.9 millimeters (mm) (5.27 inches [in.]) of precipitation at the Area 3 RWMS during 2012 is 12% below the average of 153.0 mm (6.02 in.), and the 137.6 mm (5.42 in.) of precipitation at the Area 5 RWMS during 2012 is 11% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 and Area 3 RWMS cell covers show no evidence of precipitation percolating through the cover to the waste. Moisture from precipitation did not percolate below 60 centimeters (cm) (2 feet [ft]) in the vegetated final cover on the U-3ax/bl disposal unit at the Area 3 RWMS, and moisture from precipitation and irrigation did not percolate below 45 cm (1.5 ft) on the 92-Acre Area final cover. Irrigation was applied to this cover for seed germination and plant growth. During 2012, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Twenty percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2012 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  13. WMA-C - Waste Management Area C Closure Process - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents > WMA-C - Waste Management Area C Closure Process Documents DOE - RL ContractsProcurements DOE-ORP ContractsProcurements CERCLA Five-Year Review Hanford Site Safety...

  14. Nevada National Security Site 2010 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-06-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2010 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2010a; 2010b; 2011). Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 246.9 millimeters (mm) (9.72 inches [in.]) of precipitation at the Area 3 RWMS during 2010 is 56 percent above the average of 158.7 mm (6.25 in.), and the 190.4 mm (7.50 in.) of precipitation at the Area 5 RWMS during 2010 is 50 percent above the average of 126.7 mm (4.99 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Data from the automated vadose zone monitoring system for the operational waste pit covers show that moisture from precipitation did not percolate below 90 centimeters (cm) (3 feet [ft]) before being removed by evaporation. Moisture from precipitation did not percolate below 61 cm (2 ft) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2010, there was no drainage through 2.4 meters (8 ft) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Water drained from both the bare-soil drainage lysimeter and the invader species drainage lysimeter that received 3 times natural precipitation. All 2010 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  15. Nevada National Security Site 2011 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-07-31

    Environmental monitoring data are collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada National Security Site (NNSS). These data are associated with radiation exposure, air, groundwater, meteorology, and vadose zone. This report summarizes the 2011 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NNSS. Slightly elevated exposure levels outside the Area 3 RWMS are attributed to nearby historical aboveground nuclear weapons tests. Air monitoring data show tritium concentrations in water vapor and americium and plutonium concentrations in air particles are only slightly above detection limits and background levels. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. During the last 2 weeks of March 2011, gamma spectroscopy results for air particles showed measurable activities of iodine-131 (131I), cesium-134 (134Cs), and cesium-137 (137Cs). These results are attributed to the release of fission products from the damaged Fukushima Daiichi power plant in Japan. The remaining gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below minimum detectable concentrations. Groundwater monitoring data indicate the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by RWMS operations. Results of groundwater analysis from wells around the Area 5 RWMS were all below established investigation levels. The 86.3 millimeters (mm) (3.40 inches [in.]) of precipitation at the Area 3 RWMS during 2011 is 44% below the average of 154.1 mm (6.07 in.), and the 64.8 mm (2.55 in.) of precipitation at the Area 5 RWMS during 2011 is 47% below the average of 122.4 mm (4.82 in.). Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation from the bare-soil weighing lysimeter. Automated vadose zone monitoring on Area 5 RWMS operational waste covers was not done during 2011 due to construction of the final evapotranspiration cover at these monitoring locations. Moisture from precipitation did not percolate below 122 centimeters (4 feet) in the vegetated final mono-layer cover on the U-3ax/bl disposal unit at the Area 3 RWMS before being removed by evapotranspiration. During 2011, there was no drainage through 2.4 meters (8 feet) of soil from the Area 3 drainage lysimeters that received only natural precipitation. Ten percent of the applied precipitation and irrigation drained from the bare-soil drainage lysimeter that received 3 times natural precipitation. All 2011 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility PAs.

  16. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ▪ Public Comments and DOE Responses 3-1053 Campaign A March 16, 2010 As a resident of the Pacifc Northwest, I oppose the "preferred alternative" to ship nuclear waste from other Department of Energy sites to Hanford, as outlined in the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (DOE/EIS--0391). I vehemently oppose the plan to add more radioactive waste to the Hanford site. Shipping this waste along Northwest

  17. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 TC & WM EIS Proposed Actions (1) Retrieve, treat, and dispose of waste in single-shell tank (SST) and double-shell tank (DST) farms and close the SST system. (2) Decommission the Fast Flux Test Facility, manage the resulting waste, and manage the disposition of the Hanford Site's (Hanford's) inventory of bulk sodium. (3) Manage waste from tank closure and other Hanford activities, as well as limited volumes received from U.S. Department of Energy sites. CHAPTER 2 PROPOSED ACTIONS AND

  18. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

  19. EIS-0109: Long-Term Management of the Existing Radioactive Wastes and Residues at the Niagara Falls Storage Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several alternatives for management and control of the radioactive wastes and residues at the Niagara Falls Storage Site, including a no action alternative, an alternative to manage wastes on site, and two off-site management alternatives.

  20. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 1 PROPOSED ACTIONS: BACKGROUND, PURPOSE AND NEED Chapter 1 describes the background, purpose and need for the agency action presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS). Section 1.1 provides summary information on the size and distribution of the waste inventory at the Hanford Site (Hanford), the specific objectives of this TC & WM EIS, and the regulatory basis for the proposed

  1. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E-1 APPENDIX E DESCRIPTIONS OF FACILITIES, OPERATIONS, AND TECHNOLOGIES Appendix E provides additional information about the technologies, processes, and facilities for the three key activities of this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington: tank closure, Fast Flux Test Facility decommissioning, and waste management. Section E.1 includes this information for tank closure; Section E.2, for Fast Flux Test Facility

  2. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Hanford Site, Richland, Washington 5-394 5.2 FFTF DECOMMISSIONING ALTERNATIVES This section describes the potential long-term environmental and human health impacts associated with implementation of alternatives considered to decommission FFTF and auxiliary facilities at Hanford; to manage waste from the decommissioning process, including waste designated as remote-handled special components (RH-SCs); and to manage the disposition of the Hanford inventory of radioactively contaminated

  3. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  4. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  5. Nevada National Security Site 2014 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Hudson, David

    2015-02-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2014 results. Analysis results for leachate contaminants collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included. During 2014, groundwater samples were collected and static water levels were measured at three wells surrounding the Area 5 RWMS. Groundwater samples were collected at wells UE5PW-1, UE5PW-2, and UE5PW-3 on March 11 and August 12, 2014, and static water levels were measured at each of these wells on March 10, June 2, August 11, and October 14, 2014. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. General water chemistry (cations and anions) was also measured. Results from samples collected in 2014 are within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. The data from the shallow aquifer indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS, and there were no significant changes in measured groundwater parameters compared to previous years. Leachate from above the primary liner of Cell 18 drains into a sump and is collected in a tank at the ground surface. Cell 18 began receiving waste in January 2011. Samples were collected from the tank when the leachate volume approached the 3,000-gallon tank capacity. Leachate samples have been collected 16 times since January 2011. During 2014, samples were collected on February 25, March 5, May 20, August 12, September 16, November 11, and December 16. Each leachate sample was analyzed for toxicity characteristic contaminants and polychlorinated biphenyls (PCB). Beginning with the sample from July 31, 2013, pH and specific conductance were also measured. Leachate analysis results show no evidence of contamination. Results for toxicity characteristic contaminants are all below regulatory levels and analysis quantification limits. No quantifiable PCB levels were detected in any sample. Results for pH and specific conductance are also within expected ranges. After analysis, leachate was pumped from the collection tank and used in Cell 18 for dust control. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  6. Environmental Restoration and Waste Management Site-Specific Plan for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    The Idaho National Engineering Laboratory (INEL) is a US Department of Energy (DOE) multiprogram laboratory whose primary mission has been to research nuclear technologies. Working with these technologies and conducting other types of research generates waste, including radioactive and/or hazardous wastes. While most of the waste treatment, storage, and disposal practices have been effective, some practices have led to the release of contaminants to the environment. As a result, DOE has developed (1) an Environmental Restoration (ER) Program to identify and, where necessary, cleanup releases from inactive waste sites and (2) a Waste Management (WM) Program to safely treat, store, and dispose of DOE wastes generated from current and future activities in an environmentally sound manner. This document describes the plans for FY 1993 for the INEL`s ER and WM programs as managed by DOE`s Idaho Field Office (DOE-ID).

  7. Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-01

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  8. Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-01-19

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  9. Nevada National Security Site 2012 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-02-11

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2012 results. During 2012, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Groundwater samples were collected at UE5PW-1, UE5PW-2, and UE5PW-3 on March 21, August 7, August 21, and September 11, 2012, and static water levels were measured at each of the three pilot wells on March 19, June 6, August 2, and October 15, 2012. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Final results from samples collected in 2012 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  10. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  11. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line work) of Swadley and Hoover (1990) and re-label these with map unit designations like those in northern Frenchman Flat (Huckins-Gang et al, 1995a,b,c; Snyder et al, 1995a,b,c,d).

  12. Management of the Area 5 Radioactive Waste Management Site using Decision-based, Probabilistic Performance Assessment Modeling

    SciTech Connect (OSTI)

    Carilli, J.; Crowe, B.; Black, P.; Tauxe, J.; Stockton, T.; Catlett, K.; Yucel, V.

    2003-02-27

    Low-level radioactive waste from cleanup activities at the Nevada Test Site and from multiple sites across the U.S. Department of Energy (DOE) complex is disposed at two active Radioactive Waste Management Sites (RWMS) on the Nevada Test Site. These facilities, which are managed by the DOE National Nuclear Security Administration Nevada Site Office, were recently designated as one of two regional disposal centers and yearly volumes of disposed waste now exceed 50,000 m3 (> 2 million ft3). To safely and cost-effectively manage the disposal facilities, the Waste Management Division of Environmental Management has implemented decision-based management practices using flexible and problem-oriented probabilistic performance assessment modeling. Deterministic performance assessments and composite analyses were completed originally for the Area 5 and Area 3 RWMSs located in, respectively, Frenchman Flat and Yucca Flat on the Nevada Test Site. These documents provide the technical bases for issuance of disposal authorization statements for continuing operation of the disposal facilities. Both facilities are now in a maintenance phase that requires testing of conceptual models, reduction of uncertainty, and site monitoring all leading to eventual closure of the facilities and transition to long-term stewardship.

  13. Low-level radioactive waste management at the Nevada Test Site -- Current status

    SciTech Connect (OSTI)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-04-01

    The performance objectives of the Department of Energy`s Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS`s since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  14. Waste Management at the Nevada Test Site Fiscal Year 2001 Current Status

    SciTech Connect (OSTI)

    B. D. Becker; W. A. Clayton; B. M. Crowe

    2002-05-01

    The performance objectives of the U. S. Department of Energy's National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified radioactive material, and high-specific-activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1 968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  15. Waste Management at the Nevada Test Site Year 2002: Current Status

    SciTech Connect (OSTI)

    Becker, Bruce, D.; Gertz, Carl, P.; Clayton, Wendy, A.; Carilli, Jhon, T.; Crowe, Bruce M.

    2003-02-24

    The performance attributes of the U. S. Department of Energy's National Nuclear Security Administration Nevada Site Office Low-level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other LLW disposal site in the United States. Situated at the southern end of the Great Basin, 244 meters (800 feet) above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity waste, classified material, and high-specific activity special case waste. Fifteen miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMSs since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  16. RCRA Assessment Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Chou, Charissa J.

    2006-03-03

    This document describes a groundwater assessment plan for the single-shell tank systems in Waste Management Area A-AX at the Hanford Site.

  17. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R-1 APPENDIX R CUMULATIVE IMPACTS: ASSESSMENT METHODOLOGY This appendix describes the cumulative impacts methodology for the U.S. Department of Energy's Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. The appendix is organized into sections on (1) regulations and guidance, (2) previous studies, (3) history of land use at the Hanford Site and in surrounding regions, (4) future land use at the Hanford Site, (5) future land use in

  18. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  19. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  20. Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-27

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  1. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L-1 APPENDIX L GROUNDWATER FLOW FIELD DEVELOPMENT This appendix describes the development of the regional-scale groundwater flow field used for the groundwater modeling that supports assessment of the groundwater quality impacts discussed in the Draft and Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS), Chapters 5 and 6 and Appendices O and V. Included are an overview of groundwater flow at the site; the purpose

  2. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P-1 APPENDIX P ECOLOGICAL RESOURCES AND RISK ANALYSIS This appendix presents the ecological resources (see Section P.1) at the Hanford Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential impacts of both airborne releases during operations and groundwater discharges under the various alternatives are evaluated in this appendix. The purpose of the risk analysis is to compare

  3. Capacitated location of collection sites in an urban waste management system

    SciTech Connect (OSTI)

    Ghiani, Gianpaolo; Lagana, Demetrio; Manni, Emanuele; Triki, Chefi

    2012-07-15

    Urban waste management is becoming an increasingly complex task, absorbing a huge amount of resources, and having a major environmental impact. The design of a waste management system consists in various activities, and one of these is related to the location of waste collection sites. In this paper, we propose an integer programming model that helps decision makers in choosing the sites where to locate the unsorted waste collection bins in a residential town, as well as the capacities of the bins to be located at each collection site. This model helps in assessing tactical decisions through constraints that force each collection area to be capacitated enough to fit the expected waste to be directed to that area, while taking into account Quality of Service constraints from the citizens' point of view. Moreover, we propose an effective constructive heuristic approach whose aim is to provide a good solution quality in an extremely reduced computational time. Computational results on data related to the city of Nardo, in the south of Italy, show that both exact and heuristic approaches provide consistently better solutions than that currently implemented, resulting in a lower number of activated collection sites, and a lower number of bins to be used.

  4. Hydrogeologic characterization of an arid zone Radioactive Waste Management Site

    SciTech Connect (OSTI)

    Ginanni, J.M.; O`Neill, L.J. [USDOE Nevada Operations Office, Las Vegas, NV (United States); Hammermeister, D.P.; Blout, D.O.; Dozier, B.L.; Sully, M.J.; Johnejack, K.R.; Emer, D.F. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Tyler, S.W. [Nevada Univ., Reno, NV (United States). Desert Research Inst.

    1994-06-01

    An in-depth subsurface site characterization and monitoring program for the soil water migration pathway has been planned, implemented, and completed to satisfy data requirements for a waiver from groundwater monitoring, for an exemption from liner leachate collections systems, and for different regulatory driven performance assessments. A traditional scientific approach has been taken to focus characterization and monitoring efforts. This involved developing a conceptual model of the hydrogeologic system and defining and testing hypotheses about this model. Specific hypotheses tested included: that the system was hydrologically heterogenous and anisotropic, and that recharge was very low or negligible. Mineralogical, physical, and hydrologic data collected to test hypotheses has shown the hydrologic system to be remarkably homogenous and isotropic rather than heterogenous and anisotropic. Both hydrodynamic and environmental tracer approaches for estimating recharge have led to the conclusion that recharge from the Area 5 RWMS is not occurring in the upper region of the vadose zone, and that recharge at depth is extremely small or negligible. This demonstration of ``no migration of hazardous constituents to the water table satisfies a key requirement for both the groundwater monitoring waiver and the exemption from liner leachate collection systems. Data obtained from testing hypotheses concerning the soil water migration pathway have been used to refine the conceptual model of the hydrogeologic system of the site. These data suggest that the soil gas and atmospheric air pathways may be more important for transporting contaminants to the accessible environment than the soil water pathway. New hypotheses have been developed about these pathways, and characterization and monitoring activities designed to collect data to test these hypotheses.

  5. Environmental restoration and waste management site-specific plan for Richland Operations Office. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This document was prepared to implement and support the US Department of Energy-Headquarters (DOE-HQ) national plan. The national plan, entitled Environmental Restoration and Waste Management Five-Year Plan (DOE 1990b) (hereinafter referred to as the DOE-HQ Five-Year Plan) is the cornerstone of the US Department of Energy's (DOE) long-term strategy in environmental restoration and waste management. The DOE-HQ Five-Year Plan addresses overall philosophy and environmental and waste-related activities under the responsibilities of the DOE Office of Environmental Restoration and Waste Management. The plan also reaffirms DOE-HQ goals to bring its nuclear sites into environmental compliance in cooperation with its regulators and the public, and to clean up and restore the environment by 2019 (the commitment for the Hanford Site is for one year sooner, or 2018). This document is part of the site-specific plan for the US Department of Energy-Richland Operations Office (DOE-RL). It is the first revision of the original plan, which was dated December 1989 (DOE-RL 1989a). This document is a companion document to the Overview of the Hanford Cleanup Five-Year Plan (DOE-RL 1989d) and The Hanford Site Environmental Restoration and Waste Management Five-Year Plan Activity Data Sheets (DOE-RL 1991). Although there are three documents that make up the complete DOE-RL plan, this detailed information volume was prepared so it could be used as a standalone document. 71 refs., 40 figs., 28 tabs.

  6. Characterization ReportOperational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada Geotechnical Sciences

    2005-06-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations.

  7. An Integrated Waste-Management System and Consent-Based Approach to Siting

    Office of Environmental Management (EM)

    An Integrated Waste-Management System and Consent-Based Approach to Siting Consent-Based Siting Initiative Kick-Off Meeting Renaissance Washington, D.C. Downtown Hotel January 20, 2016 FULL TRANSCRIPT Mr. Jim Hamilton. So good afternoon, welcome and thank you for being here. And for those joining us from earlier time zones on the webinar and conference call, good morning. My name is Jim Hamilton. I am part of the North Wind Consent-Based Siting Team advising the Department and I will be

  8. Environmental restoration and waste management Site-Specific Plan for the Oak Ridge Reservation. FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities undertaken to implement the FYP goals at the DOE Oak Ridge Field Office (DOE/OR) installations and programs specifically for the Oak Ridge Reservation (ORR) and surrounding areas. This SSP addresses activities and goals to be accomplished during FY93 even through the FYP focuses on FY94.

  9. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPENDIX F DIRECT AND INDIRECT IMPACTS: ASSESSMENT METHODOLOGY This appendix briefly describes the methods used to assess the potential direct and indirect effects of the alternatives in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Included in this appendix are discussions of general impact assessment methodologies for land resources, infrastructure, noise and vibration, air quality, geology and soils, water resources,

  10. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-1 APPENDIX X SUPPLEMENT ANALYSIS OF THE DRAFT TANK CLOSURE AND WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FOR THE HANFORD SITE, RICHLAND, WASHINGTON Consistent with U.S. Department of Energy (DOE) Regulations (10 CFR 1021.314(c)(3)), "DOE shall make the determination and the related Supplement Analysis available to the public for information. Copies of the determination and Supplement Analysis shall be provided upon written request. DOE shall make copies available for inspection in

  11. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 3, Book 1 Section 1: Overview Section 2: Topics of Interest Section 3: Individual Commentors U.S. Department of Energy November 2012 1 Cover Sheet Responsible Agency: U.S. Department of Energy (DOE) Cooperating Agencies: Washington State Department of Ecology (Ecology) U.S. Environmental Protection Agency (EPA) Title: Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS) (DOE/EIS-0391) Location: Benton County,

  12. LTS Information Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site maintenance information Community relations and public involvement information Health and safety information Permits Waste management and disposal information Technical...

  13. Environmental Restoration and Waste Management Site-Specific Plan for the Oak Ridge Reservation. [Appendix contains accromyms list and maps of waste management facilities

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The United States Department of Energy (DOE) is committed to achieving and maintaining environmental regulatory compliance at its waste sites and facilities, while responding to public concerns and emphasizing waste minimization. DOE publishes the Environmental Restoration and Waste Management Five-Year Plan (FYP) annually to document its progress towards these goals. The purpose of this Site-Specific Plan (SSP) is to describe the activities, planned and completed, undertaken to implement these FYP goals at the DOE Field Office-Oak Ridge (DOE/OR) installations and programs; specifically, for the Oak Ridge Reservation (ORR), Oak Ridge Associated Universities (ORAU), and Hazardous Waste Remedial Action Program (HAZWRAP). Activities described in this SSP address hazardous, radioactive, mixed, and sanitary wastes, along with treatment, storage, and disposal of current production waste and legacy waste from past operation. The SSP is presented in sections emphasizing Corrective Activities (A), Environmental Restoration (ER), Waste Management (WM), Technology Development (TD), and Transportation; and includes descriptions of activities, resources, and milestones by installation or program. 87 tabs.

  14. DESCISION SUPPORT SYSTEM FOR MANAGEMENT OF LOW-LEVEL WASTE DISPOSAL AT THE NEVADA TEST SITE

    National Nuclear Security Administration (NNSA)

    Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site G. Shott, V. Yucel, L. Desotell Bechtel Nevada P.O. Box 98521, Las Vegas, NV 89193-8521 USA J.T. Carilli U.S. Department of Energy National Nuclear Security Administration, Nevada Site Office P.O. Box 98518, Las Vegas, NV 89193-8518 USA ABSTRACT The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment --

  15. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Narbutovskih, Susan M.

    2001-01-01

    This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

  16. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    SciTech Connect (OSTI)

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

  17. Preliminary Performance Assessment for the Waste Management Area C at the Hanford Site in Southeast Washington

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Singleton, Kristin M.; Eberlein, Susan J.

    2015-01-07

    A performance assessment (PA) of Single-Shell Tank (SST) Waste Management Area C (WMA C) located at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington is being conducted to satisfy the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO), as well as other Federal requirements and State-approved closure plans and permits. The WMP C PA assesses the fate, transport, and impacts of radionuclides and hazardous chemicals within residual wastes left in tanks and ancillary equipment and facilities in their assumed closed configuration and the subsequent risks to humans into the far future. The part of the PA focused on radiological impacts is being developed to meet the requirements for a closure authorization under DOE Order 435.1 that includes a waste incidental to reprocessing determination for residual wastes remaining in tanks, ancillary equipment, and facilities. An additional part of the PA will evaluate human health and environmental impacts from hazardous chemical inventories in residual wastes remaining in WMA C tanks, ancillary equipment, and facilities needed to meet the requirements for permitted closure under RCRA.

  18. Low-Level Radioactive Waste Management at the Nevada Test Site - Current Status

    SciTech Connect (OSTI)

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada Operations Office; Wendy A. Clayton, DOE Nevada Operations Office

    1999-02-01

    The performance objective of the Department of Energy's Low-Level Radioactive Waste disposal facility at the Nevada Test Site transcends those of any other radioactive waste disposal site in the United States. This paper describes the technical attributes of the facility, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  19. Low-Level Radioactive Waste Management at the Nevada Test Site - Year 2000 Current Status

    SciTech Connect (OSTI)

    Bruce D. Becker, Bechtel Nevada; Bruce M. Crowe, Los Alamos National Laboratory; Carl P. Gertz, DOE Nevada; Wendy A. Clayton, DOE Nevada

    1999-08-06

    The performance objectives of the Department of Energy's Low-level radioactive waste disposal facilities at the Nevada Test Site transcend those of any other radioactive waste disposal site in the United States. The expanded paper will describe the technical attributes of the facilities, the present and the future disposal capacities and capabilities, and includes a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations.

  20. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 OVERVIEW OF THE PUBLIC COMMENT PROCESS 1-1 SECTION 1 OVERVIEW OF THE PUBLIC COMMENT PROCESS This section of this Comment-Response Document (CRD) describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM EIS) and the procedures used to respond to public comments. Section 1.1 summarizes the organization of this CRD. Section 1.2 discusses the public comment process and the means

  1. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a performance assessment (PA), composite analysis (CA), closure plan, monitoring plan, waste acceptance criteria, and a PA/CA maintenance plan. The DOE issued a DAS for the Area 5 RWMS in 2000. The Area 5 RWMS DAS was, in part, based on review of a CA as required under DOE M 435.1-1, Chapter IV, Section P.(3). A CA is a radiological assessment required for DOE waste disposed before 26 September 1988 and includes the radiological dose from all sources of radioactive material interacting with all radioactive waste disposed at the Area 5 RWMS. The approved Area 5 RWMS CA, which includes the inventory of TRU waste in T04C, indicates that the Area 5 RWMS waste inventory and all interacting sources of radioactive material can meet the 0.3 mSv dose constraint. The composite analysis maximum annual dose for a future resident at the Area 5 RWMS was estimated to be 0.01 mSv at 1,000 years. Therefore, the inadvertent disposal of TRU in T04C is protective of the public and the environment, and compliant with all the applicable requirements in DOE M 435.1-1 and the DAS. The U.S. Environmental Protection Agency promulgated 40 CFR 191 to establish standards for the planned disposal of spent nuclear fuel, high level, and transuranic wastes in geologic repositories. Although not required, the National Nuclear Security Administration Nevada Site Office requested a supplemental analysis to evaluate the likelihood that the inadvertent disposal of TRU waste in T04C meets the requirements of 40 CFR 191. The SA evaluates the likelihood of meeting the 40 CFR 191 containment requirements (CRs), assurance requirements, individual protection requirements (IPRs), and groundwater protection standards. The results of the SA indicate that there is a reasonable expectation of meeting all the requirements of 40 CFR 191. The conclusion of the SA is that the Area 5 RWMS with the TRU waste buried in T04C is in compliance with all requirements in DOE M 435.1-1 and the DAS. Compliance with the DAS is demonstrated by the results of the Area 5 RWMS CA. Supplemental analyses in the SA indicate there is a

  2. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate

  3. 2008 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) including calendar year 2008 results. Each of the three Pilot Wells was sampled on March 11, 2008, and September 10, 2008. These wells were sampled for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also monitored. Results from all samples collected in 2008 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. Other information in the report includes an updated Cumulative Chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

  4. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  5. Optimization of the Area 5 Radioactive Waste Management Site Closure Cover

    SciTech Connect (OSTI)

    Shott, Greg; Yucel, Vefa

    2009-04-01

    The U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management Manual, requires that performance assessments demonstrate that releases of radionuclides to the environment are as low as reasonably achievable (ALARA). Quantitative cost benefit analysis of radiation protection options is one component of the ALARA process. This report summarizes a quantitative cost benefit analysis of closure cover thickness for the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site. The optimum cover thickness that maintains doses ALARA is shown to be the thickness with the minimum total closure cost. Total closure cost is the sum of cover construction cost and the health detriment cost. Cover construction cost is estimated based on detailed cost estimates for closure of the 92-acre Low-Level Waste Management Unit (LLWMU). The health detriment cost is calculated as the product of collective dose and a constant monetary value of health detriment in units of dollars per unit collective dose. Collective dose is the sum of all individual doses in an exposed population and has units of person-sievert (Sv). Five discrete cover thickness options ranging from 2.5 to 4.5 meters (m) (8.2 to 15 feet [ft]) are evaluated. The optimization was subject to the constraints that (1) options must meet all applicable regulatory requirements and that (2) individual doses be a small fraction of background radiation dose. Total closure cost is found to be a monotonically increasing function of cover thickness for the 92-ac LLWMU, the Northern Expansion Area, and the entire Area 5 RWMS. The cover construction cost is orders of magnitude greater than the health detriment cost. Two-thousand Latin hypercube sampling realizations of the relationship between total closure cost and cover thickness are generated. In every realization, the optimum cover thickness is 2.5 m (8.2 ft) for the 92-ac Low-Level Waste Management Unit, the Northern Expansion Area, and the entire Area 5 RWMS. The conclusions of the optimization are found to be insensitive to all input parameters, the monetary value of the health detriment over a range of values from $200,000 to $15,000,000 per person-Sv, and the period of integration of collective dose. A 2.5 m (8.2 ft) closure cover at the Area 5 RWMS can meet all applicable regulatory requirements and maintain radionuclide releases ALARA.

  6. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  7. IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 7, 2008 IDAHO SITE TO PROVIDE WASTE TREATMENT FOR OTHER DOE SITES Plan won't impact DOE commitment to removing all stored waste from Idaho Site Idaho's Advanced Mixed Waste Treatment Facility offers state of the art waste characterization, treatment and packaging capabilities. Click on image to enlarge The U.S. Department of Energy (DOE) is amending the Record of Decision for the Waste Management Program: Treatment and Storage of Transuranic Waste, originally issued in 1998. The amendment

  8. Integrated Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consent-Based Siting » Integrated Waste Management Integrated Waste Management The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's nuclear waste. The Department envisions an integrated waste management system with storage, transportation, and disposal capabilities in order to safely and effectively manage our nation's nuclear waste. Components of an Integrated Waste

  9. RCRA Assessment Plan for Single-Shell Tank Waste Management Area TX-TY at the Hanford Site

    SciTech Connect (OSTI)

    Hodges, Floyd N.; Chou, Charissa J.

    2001-02-23

    A groundwater quality assessment plan was prepared to investigate the rate and extent of aquifer contamination beneath Waste Management Area TX-TY on the Hanford Site in Washington State. This plan is an update of a draft plan issued in February 1999, which guided work performed in fiscal year 2000.

  10. Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington--Frequent Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Final TC & WM EIS) (DOE/EIS-0391) Frequently Asked Questions What are the U.S. Department of Energy (DOE) proposed actions in the Final TC & WM EIS? The Final TC & WM EIS (DOE/EIS-0391) evaluates three sets of proposed actions, as follows: Retrieve and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of

  11. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q-1 APPENDIX Q LONG-TERM HUMAN HEALTH DOSE AND RISK ANALYSIS This appendix presents methods and results for assessment of potential human health impacts due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long periods of time following stabilization or closure. Q.1 INTRODUCTION Adverse impacts on human health and the environment may occur over long periods of time following

  12. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  13. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, Susan M.; Horton, Duane G.

    2001-01-18

    This document describes the interim status groundwater monitoring plan for Waste Management Area A-AX.

  14. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage at the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.

  15. Special Analysis of the Area 3 Radioactive Waste Management Site at the Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    National Security Technologies, LLC, Environmental Management

    2012-09-30

    This report describes the methods and results of a special analysis (SA) of the Area 3 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The purpose of the SA is to determine if the approved performance assessment (PA) and composite analysis (CA) (Shott et al., 2001) remain valid. The Area 3 RWMS PA and CA were prepared as a single document and received conditional approval on October 6, 1999. A conditional Disposal Authorization Statement (DAS) for the Area 3 RWMS was issued on October 20, 1999. Since preparation of the approved PA and CA, new information and additional environmental monitoring data have been used to update the PA and CA. At the same time, continual advancements in computer processors and software have allowed improvement to the PA and CA models. Annual reviews of the PA and CA required by U.S. Department of Energy (DOE) Order DOE O 435.1 have documented multiple changes occurring since preparation of the PA and CA. Potentially important changes include: Development of a new and improved baseline PA and CA model implemented in the probabilistic GoldSim simulation platform. A significant increase in the waste inventory disposed at the site. Revision and updating of model parameters based on additional years of site monitoring data and new research and development results. Although changes have occurred, many important PA/CA issues remain unchanged, including the site conceptual model, important features, events, and processes, and the points of compliance. The SA is performed to document the current status of the PA/CA model and to quantitatively assess the impact of cumulative changes on the PA and CA results. The results of the SA are used to assess the validity of the approved PA/CA and make a determination if revision of the PA or CA is necessary. The SA was performed using the Area 3 RWMS, version 2.102, GoldSim model, the current baseline PA/CA model. Comparison of the maximum SA results with the PA performance objectives indicates that there continues to be a reasonable expectation of compliance. The resident exposure scenario was evaluated for compliance with the air pathway and all-pathways annual total effective dose (TED) performance objectives. The maximum mean air pathway TED, 7E-6 millisievert (mSv) at 1,000 years (y) has decreased relative to the approved PA and is significantly less than the 0.1 mSv limit. The maximum mean all-pathways annual TED, 7E-5 mSv at 1,000 y has increased but remains a small fraction of the 0.25 mSv limit. The SA maximum mean radon-222 (222Rn) flux density, 0.03 becquerel per square meter per second (Bq m-2 s-1), has increased relative to the PA results but is significantly less than the 0.74 Bq m-2 s-1 limit. The SA results continue to support a conclusion that the disposed waste inventory is protective of intruders and groundwater resources. The maximum mean intruder TED, 0.01 mSv for an acute construction scenario at the U-3ah/at disposal unit, was less than the 5 mSv performance measure. Site monitoring data and research results continue to support a conclusion that a groundwater pathway will not exist within the 1,000 y compliance period. Projected releases to the environment are a small fraction of the performance objectives. Cost-effective options for reducing releases further are unlikely to exist. Therefore, releases from the Area 3 RWMS are judged to be as low as reasonably achievable. Comparison of the maximum CA result with the 0.3 mSv CA dose constraint indicates that no action is required to reduce the dose from the Area 3 RWMS and all interacting sources of residual radioactive contamination. The SA maximum mean CA annual TED, 0.02 mSv at 1,000 y, has increased from the approved CA result but remains less than 10% of the dose constraint. The CA TED continues to be due predominantly to inhalation of plutonium-239 resuspended from soils contaminated by nuclear weapons tests conducted near the Area 3 RWMS. The SA results estimated with the Area 3 RWMS version 2.102 model indicate that changes to the PA and CA do not

  16. Chicago To Host Energy Department’s First Public Meeting on Consent-Based Siting For Nuclear Waste Management System

    Broader source: Energy.gov [DOE]

    On Tuesday, March 29, in Chicago, the U.S. Department of Energy will host the first of eight public meetings around the country intended to help design its consent-based siting process for federal facilities to manage our nation's nuclear waste. These meetings are intended to allow the public, communities, states, Tribal Nations and others to help inform the Department’s thinking as it develops this process.

  17. Waste Management Update by Frank Marcinowski

    Office of Environmental Management (EM)

    U.S. DOE Environmental Management Update on Waste Management (and other EM Mission Units) Frank Marcinowski Deputy Assistant Secretary for Waste Management ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD CHAIRS MEETING APRIL 18-19, 2012 PADUCAH, KENTUCKY www.em.doe.gov 2  Compliance update  Recent program accomplishments  FY 12 waste management priorities  FY 13 waste management priorities  Strategic goals related to waste and materials disposition  Update on Blue Ribbon

  18. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -1 CHAPTER 7 ENVIRONMENTAL CONSEQUENCES AND MITIGATION DISCUSSION Chapter 7 discusses environmental consequences that would occur due to implementation of the reasonable alternatives for each of the following: (1) tank waste retrieval, treatment, and disposal and single-shell tank system closure at the Hanford Site (i.e., tank closure); (2) decommissioning of the Fast Flux Test Facility and auxiliary facilities and disposition of the inventory of radioactively contaminated bulk sodium (i.e.,

  19. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T-1 Cumulative Impacts Effects on the environment that result from the proposed action when added to other past, present, and reasonably foreseeable future actions, regardless of what agency or person undertakes such other actions (40 CFR 1508.7). APPENDIX T SUPPORTING INFORMATION FOR THE SHORT-TERM CUMULATIVE IMPACT ANALYSES This appendix contains the detailed tables that support the short-term cumulative impacts presented in Chapter 6 of this Tank Closure and Waste Management Environmental

  20. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    SciTech Connect (OSTI)

    NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.

    2012-01-31

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.

  1. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  2. Groundwater quality assessment plan for single-shell waste management area B-BX-BY at the Hanford Site

    SciTech Connect (OSTI)

    SM Narbutovskih

    2000-03-31

    Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), the owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.

  3. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  4. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site: Proposed Mixed Waste Disposal Unit (MWSU)

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-07-19

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When the proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.

  5. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  6. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Energy Savers [EERE]

    Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of...

  7. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapter 5 ▪ Long-Term Environmental Consequences 5-1163 5.3.3 Ecological Risk This section presents the results of the evaluation of long-term impacts on ecological resources of releases to air and groundwater under the Waste Management alternatives. Risk indices-Hazard Quotient and Hazard Index-were calculated by comparing the predicted dose to the benchmark dose (see Appendix P). Risk indices could not be calculated for soil-dwelling invertebrates, lizards, toads, or birds exposed to organic

  8. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    SciTech Connect (OSTI)

    Bechtel Nevada

    2005-06-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

  9. Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012

    Energy Savers [EERE]

    Supplemental Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant

  10. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast...

  11. Waste Stream Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stream Approval About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and...

  12. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-09-03

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  13. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NNSSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NNSS Area 3 and Area 5 Radioactive Waste Management Complex for disposal. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project at (702) 295-7063 or fax to (702) 295-1153.

  14. 2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Gregory J, Shott, Vefa Yucel

    2007-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R&D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for determination of the adequacy of the CAs.

  15. Waste Specification Records - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specification Records About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Specification Records Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Waste Specification Records (WSRds) are the tool

  16. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  17. Nevada Test Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2005-10-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  18. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  19. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington

    SciTech Connect (OSTI)

    Singleton, Kristin M.

    2015-01-07

    The Office of River Protection under the U.S. Department of Energy is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C under the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO). A baseline risk assessment (BRA) of current conditions is based on available characterization data and information collected at WMA C. The baseline risk assessment is being developed as a part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Corrective Measures Study (CMS) at WMA C that is mandatory under Comprehensive Environmental Response, Compensation, and Liability Act and RCRA corrective action. The RFI/CMS is needed to identify and evaluate the hazardous chemical and radiological contamination in the vadose zone from past releases of waste from WMA C. WMA C will be under Federal ownership and control for the foreseeable future, and managed as an industrial area with restricted access and various institutional controls. The exposure scenarios evaluated under these conditions include Model Toxics Control Act (MTCA) Method C, industrial worker, maintenance and surveillance worker, construction worker, and trespasser scenarios. The BRA evaluates several unrestricted land use scenarios (residential all-pathway, MTCA Method B, and Tribal) to provide additional information for risk management. Analytical results from 13 shallow zone (0 to 15 ft. below ground surface) sampling locations were collected to evaluate human health impacts at WMA C. In addition, soil analytical data were screened against background concentrations and ecological soil screening levels to determine if soil concentrations have the potential to adversely affect ecological receptors. Analytical data from 12 groundwater monitoring wells were evaluated between 2004 and 2013. A screening of groundwater monitoring data against background concentrations and Federal maximum concentration levels was used to determine vadose zone contamination impacts on groundwater. Waste Management Area C is the first of the Hanford tank farms to begin the closure planning process. The current baseline risk assessment will provide valuable information for making corrective actions and closure decisions for WMA C, and will also support the planning for future tank farm soil investigation and baseline risk assessments.

  20. Environmental Management Waste Management Facility (EMWMF) at...

    Office of Environmental Management (EM)

    Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge ... INTRODUCTION The Environmental Management Waste Management Facility (EMWMF) is a land ...

  1. DOE/NV/11718--1241 DOE/NV/25946--021 Nevada Test Site 2005 Waste Management Monitoring Report

    National Nuclear Security Administration (NNSA)

    Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge Available for a processing fee to the U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Telephone: (865) 576-8401 Fax: (865) 576-5728 E-mail: reports@adonis.osti.gov DOE/NV/11718--1241 DOE/NV/25946--021 Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and

  2. DOE/NV/11718--1241 DOE/NV/25946--021 Nevada Test Site 2005 Waste Management Monitoring Report

    National Nuclear Security Administration (NNSA)

    Online ordering: http://www.ntis.gov/ordering.htm Available electronically at http://www.osti.gov/bridge Available for a processing fee to the U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 Telephone: (865) 576-8401 Fax: (865) 576-5728 E-mail: reports@adonis.osti.gov DOE/NV/11718--1241 DOE/NV/25946--021 Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and

  3. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    SciTech Connect (OSTI)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposed in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  5. Post-Closure Evaluation of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site in Support of the Site-Wide Environmental Impact Statement

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-26

    The post-closure performance of the Area 3 Radioactive Waste Management Site (RWMS) and Area 5 RWMS are evaluated for the Site-Wide Environmental Impact Statement using current performance assessment and composite analysis methods and models. Two alternatives with different future waste volumes and inventories are evaluated. The No Action Alternative evaluates the inventory disposed through fiscal year (FY) 2010 plus an additional 4.5E5 cubic meters (m3) (1.59E7 cubic feet [ft3]) of waste disposed at the Area 5 RWMS. The Expanded Operations Alternative evaluates the FY 2010 inventory plus an additional 1.42E6 m3 (5.03E7 ft3) of waste disposed at the Area 5 RWMS and 4.93E4 m3 (1.74E6 ft3) disposed at the Area 3 RWMS. Both the No Action and Expanded Operations Alternatives have a reasonable expectation of meeting all performance objectives of U.S. Department of Energy Order DOE O 435.1, Radioactive Waste Management. No significant difference between the two alternatives was found because the waste concentrations are similar. The performance assessment model assesses radiological risk for residents at the RWMS boundary where risk is more closely related to waste concentration than total waste inventory. Results for the composite analysis also indicate that the dose constraint and dose limit can be met for both alternatives.

  6. Solid Waste Management Program Plan

    SciTech Connect (OSTI)

    Duncan, D.R.

    1990-08-01

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  7. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  8. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  9. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  10. Low-level radioactive waste management at the Nevada Test Site -- Year 2000 current status

    SciTech Connect (OSTI)

    Becker, B.D.; Clayton, W.A.; Gertz, C.P.; Crowe, B.M.

    2000-02-01

    This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. This paper also summarizes the current status of the waste disposal operations.

  11. Hanford site transuranic waste certification plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-12

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  12. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  13. PERFORMANCE ASSESSMENT TO SUPPORT CLOSURE OF SINGLE-SHELL TANK WASTE MANAGEMENT AREA C AT THE HANFORD SITE

    SciTech Connect (OSTI)

    BERGERON MP

    2010-01-14

    Current proposed regulatory agreements (Consent Decree) at the Hanford Site call for closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C in the year 2019. WMA C is part of the SST system in 200 East area ofthe Hanford Site and is one of the first tank farm areas built in mid-1940s. In order to close WMA C, both tank and facility closure activities and corrective actions associated with existing soil and groundwater contamination must be performed. Remedial activities for WMA C and corrective actions for soils and groundwater within that system will be supported by various types of risk assessments and interim performance assessments (PA). The U.S. Department of Energy, Office of River Protection (DOE-ORP) and the State ofWashington Department of Ecology (Ecology) are sponsoring a series of working sessions with regulators and stakeholders to solicit input and to obtain a common understanding concerning the scope, methods, and data to be used in the planned risk assessments and PAs to support closure of WMA C. In addition to DOE-ORP and Ecology staff and contractors, working session members include representatives from the U.S. Enviromnental Protection Agency, the U.S. Nuclear Regulatory Commission (NRC), interested tribal nations, other stakeholders groups, and members of the interested public. NRC staff involvement in the working sessions is as a technical resource to assess whether required waste determinations by DOE for waste incidental to reprocessing are based on sound technical assumptions, analyses, and conclusions relative to applicable incidental waste criteria.

  14. Environmental Management Waste Management Facility (EMWMF) at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Facility (EMWMF) at Oak Ridge Environmental Management Waste Management Facility (EMWMF) at Oak Ridge Full Document and Summary Versions are available for download...

  15. Women of Waste Management

    Broader source: Energy.gov [DOE]

    PHOENIX - For the seventh year at the Waste Management Conference, EM contractor Fluor hosted a discussion on the expanding role of women in environmental management this month in a panel session attended by more than 250 people.

  16. Hanford Site solid waste acceptance criteria

    SciTech Connect (OSTI)

    Ellefson, M.D.

    1998-07-01

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

  17. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, supersedes DOE M 435.1-1 Chg 1.

  18. Land Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us Land Management Email Email Page | Print Print Page |Text Increase Font Size...

  19. Alternative Evaluation Study: Methods to Mitigate/Accommodate Subsidence for the Radioactive Waste Management Sites at the Nevada Test Site, Nye County Nevada, with Special Focus on Disposal Cell U-3ax/bl

    SciTech Connect (OSTI)

    Barker, L.

    1997-09-01

    An Alternative Evaluation Study is a type of systematic approach to problem identification and solution. An Alternative Evaluation Study was convened August 12-15, 1997, for the purpose of making recommendations concerning closure of Disposal Cell U-3ax/bl and other disposal cells and mitigation/accommodation of waste subsidence at the Radioactive Waste Management Sites at the Nevada Test Site. This report includes results of the Alternative Evaluation Study and specific recommendations.

  20. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  1. Vermont Waste Management and Prevention Division | Open Energy...

    Open Energy Info (EERE)

    federal and state programs regulating hazardous wastes, solid wastes, and underground storage tanks, and manages cleanup at hazardous sites under state and federal authorities,...

  2. Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program

    SciTech Connect (OSTI)

    Not Available

    1986-05-01

    Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

  3. Site Management Guide (Blue Book)

    SciTech Connect (OSTI)

    2014-03-01

    The U.S. Department of Energy (Department) Office of Legacy Management (LM), established in 2003, manages the Department’s postclosure responsibilities and ensures the future protection of human health and the environment. During World War II and the Cold War, the Federal government developed and operated a vast network of industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Since 1989, the Department has taken an aggressive accelerated cleanup approach to reduce risks and cut costs. At most Departmental sites undergoing cleanup, some residual hazards will remain at the time cleanup is completed due to financial and technical impracticality. However, the Department still has an obligation to protect human health and the environment after cleanup is completed. LM fulfills DOE’s postclosure obligation by providing long-term management of postcleanup sites which do not have continuing missions. LM is also responsible for sites under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Currently, the U.S. Army Corps of Engineers (USACE) is responsible for site surveys and remediation at FUSRAP sites. Once remediation is completed, LM becomes responsible for long-term management. LM also has responsibility for uranium processing sites addressed by Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA). UMTRCA Title II sites are sites that were commercially owned and are regulated under a U.S. Nuclear Regulatory Commission (NRC) license. For license termination, the owner must conduct an NRC-approved cleanup of any on-site radioactive waste remaining from former uranium ore-processing operations. The site owner must also provide full funding for inspections and, if necessary, ongoing maintenance. Once site cleanup is complete, LM accepts title to these sites on behalf of the United States and assumes long-term management.

  4. Review of the Hanford Site Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management...

  5. An informal expert judgment assessment of subsidence mitigation options for low-level radioactive waste management sites on the Nevada Test Site

    SciTech Connect (OSTI)

    Crowe, B.M. |; Leary, K.; Jacobson, R.; Bensinger, H.; Dolenc, M.

    1999-03-01

    An assessment of options to mitigate the effects of subsidence at low-level radioactive waste disposal sites on the Nevada Test Site was conducted using an informal method of expert judgment. Mitigation options for existing waste cells and future waste cells were identified by a committee composed of knowledgeable personnel from the DOE and DOE-contractors. Eight ranking factors were developed to assess the mitigation options and these factors were scored through elicitation of consensus views from the committee. Different subsets of the factors were applied respectively, to existing waste cells and future waste cells, and the resulting scores were ranked using weighted and unweighted scores. These scores show that there is a large number of viable mitigation options and considerable flexibility in assessing the subsidence issue with a greater range of options for future waste cells compared to existing waste cells. A highly ranked option for both existing and future waste cells is covering the waste cells with a thick closure cap of native alluvium.

  6. Nevada National Security Site Waste Acceptance Criteria

    SciTech Connect (OSTI)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste DOE low-level radioactive waste (LLW) DOE mixed low-level waste (MLLW) U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  7. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, Radioactive Waste Management, for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

  8. International waste management fact book

    SciTech Connect (OSTI)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  9. Friendly Skies Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friendly Skies Waste Management AGOS keeps watch above the NNSS. Hyde Park goes undefeated en route to Middle School title. Nevada attends waste management symposium in Arizona. See page 8. See page 4. See page 6. RSL Goes Behind-the- Scenes During the 57th Presidential Inauguration An estimated one million people flooded the nation's capital on Jan. 21, 2013, to witness the 57th Presidential Inauguration and the historic second inauguration of Barack Obama. The event was designated as a

  10. Defense Waste Management Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Management Programs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  11. A simulation of the transport and fate of radon-222 derived from thorium-230 low-level waste in the near-surface zone of the Radioactive Waste Management Site in Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A (DOE, 1988) requires performance assessments on all new and existing low-level radioactive waste (LLW) disposal sites. An integral part of performance assessment is estimating the fluxes of radioactive gases such as radon-220 and radon-222. Data needs pointed out by mathematical models drive site characterization. They provide a logical means of performing the required flux estimations. Thorium-230 waste, consisting largely of thorium hydroxide and thorium oxides, has been approved for disposal in shallow trenches and pits at the LLW Radioactive Waste Management Site in Area 5 of the Nevada Test Site. A sophisticated gas transport model, CASCADR8 (Lindstrom et al., 1992b), was used to simulate the transport and fate of radon-222 from its source of origin, nine feet below a closure cap of native soil, through the dry alluvial earth, to its point of release into the atmosphere. CASCADR8 is an M-chain gas-phase radionuclide transport and fate model. It has been tailored to the site-specific needs of the dry desert environment of southern Nevada. It is based on the mass balance principle for each radionuclide and uses gas-phase diffusion as well as barometric pressure-induced advection as its main modes of transport. CASCADR8 uses both reversible and irreversible sorption kinetic rules as well as the usual classical Bateman (1910) M-chain decay rules for its kinetic processes. Worst case radon-222 gas-phase concentrations, as well as surface fluxes, were estimated over 40 days. The maximum flux was then used in an exposure assessment model to estimate the total annual dose equivalent received by a person residing in a standard 2500-square-foot house with 10-foot walls. Results are described.

  12. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  13. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-06-01

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for extraction of groundwater from the deep carbonate aquifer. Grazing and hunting are unlikely to be potential causes for inadvertent human intrusion into waste areas because of vegetation characteristics and lack of significant game animal populations.

  14. Fate and transport processes controlling the migration of hazardous and radioactive materials from the Area 5 Radioactive Waste Management Site (RWMS)

    SciTech Connect (OSTI)

    Estrella, R.

    1994-10-01

    Desert vadose zones have been considered as suitable environments for the safe and long-term isolation of hazardous wastes. Low precipitation, high evapotranspiration and thick unsaturated alluvial deposits commonly found in deserts make them attractive as waste disposal sites. The fate and transport of any contaminant in the subsurface is ultimately determined by the operating retention and transformation processes in the system and the end result of the interactions among them. Retention (sorption) and transformation are the two major processes that affect the amount of a contaminant present and available for transport. Retention processes do not affect the total amount of a contaminant in the soil system, but rather decrease or eliminate the amount available for transport at a given point in time. Sorption reactions retard the contaminant migration. Permanent binding of solute by the sorbent is also possible. These processes and their interactions are controlled by the nature of the hazardous waste, the properties of the porous media and the geochemical and environmental conditions (temperature, moisture and vegetation). The present study summarizes the available data and investigates the fate and transport processes that govern the migration of contaminants from the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS). While the site is currently used only for low-level radioactive waste disposal, past practices have included burial of material now considered hazardous. Fundamentals of chemical and biological transformation processes are discussed subsequently, followed by a discussion of relevant results.

  15. Information Exchange management site

    Energy Science and Technology Software Center (OSTI)

    2012-08-01

    Django site used to manage the approved information exchanges (content models) after creation and public comment at https://github.com/usgin-models.

  16. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs. Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs. Years of diverse research and uranium and isotope production led to numerous forms of waste in Oak Ridge. However, our EM program has worked to identify,

  17. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  18. Managing Legacy Records for Formerly Utilized Sites Remedial Action Program

    Office of Environmental Management (EM)

    Sites | Department of Energy Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites (Waste Management Conference 2008) PDF icon Managing Legacy Records for Formerly Utilized Sites Remedial Action Program Sites More Documents & Publications FUSRAP Overview Recent Developments in DOE FUSRAP Process for

  19. Disaster waste management: A review article

    SciTech Connect (OSTI)

    Brown, Charlotte; Milke, Mark; Seville, Erica

    2011-06-15

    Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

  20. Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012

    Office of Environmental Management (EM)

    Health, Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture

  1. Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the NTS

    SciTech Connect (OSTI)

    Vefa Yucel

    2007-01-03

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance.

  2. Nevada Washoe County Solid Waste Management Webpage | Open Energy...

    Open Energy Info (EERE)

    Washoe County Solid Waste Management Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Washoe County Solid Waste Management Webpage Author...

  3. Idaho DEQ Waste Management and Permitting Webpage | Open Energy...

    Open Energy Info (EERE)

    Waste Management and Permitting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho DEQ Waste Management and Permitting Webpage Abstract This...

  4. EIS-0200: Waste Management Programmatic Environmental Impact...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management ...

  5. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  6. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Supersedes DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  7. Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Waste Management Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing Tank Waste

  8. On-site waste storage assuring the success of on-site, low-level nuclear waste storage

    SciTech Connect (OSTI)

    Preston, E.L.

    1986-09-21

    Waste management has reached paramount importance in recent years. The successful management of radioactive waste is a key ingredient in the successful operation of any nuclear facility. This paper discusses the options available for on-site storage of low-level radioactive waste and those options that have been selected by the Department of Energy facilities operated by Martin Marietta Energy Systems, Inc. in Oak Ridge, Tennessee. The focus of the paper is on quality assurance (QA) features of waste management activities such as accountability and retrievability of waste materials and waste packages, retrievability of data, waste containment, safety and environmental monitoring. Technical performance and careful documentation of that performance are goals which can be achieved only through the cooperation of numerous individuals from waste generating and waste managing organizations, engineering, QA, and environmental management.

  9. Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility in Texas | Department of Energy Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas August 27, 2013 - 12:00pm Addthis Waste management and transportation personnel worked late to complete the first shipment to WCS. Through a contract with DOE, WCS will treat and accept potentially hazardous waste that has been at the Portsmouth site for decades. Pictured (from left) are Scott

  10. Final environmental assessment for off-site transportation of low-level waste from four California sites under the management of the U.S. Department of Energy Oakland Operations Office

    SciTech Connect (OSTI)

    NONE

    1997-10-01

    The Department of Energy Oakland Operations Office (DOE/OAK) manages sites within California that generate Low Level Waste (LLW) in the course or routine site operations. It is the preference of the DOE to dispose of LLW at federally owned and DOE-operated disposal facilities; however, in some circumstances DOE Headquarters has determined that disposal at commercial facilities is appropriate, as long as the facility meets all regulatory requirements for the acceptance and disposal of LLW, including the passage of a DOE audit to determine the adequacy of the disposal site. The DOE would like to ship LLW from four DOE/OAK sites in California which generate LLW, to NRC-licensed commercial nuclear waste disposal facilities such as Envirocare in Clive, Utah and Chem Nuclear in Barnwell, South Carolina. Transportation impacts for shipment of LLW and MLLW from DOE Oakland sites to other DOE sites was included in the impacts identified in the Department`s Waste Management Programmatic Environmental Impact Statement (WM-PEIS), published in May, 1997, and determined to be low. The low impacts for shipment to commercial sites identified herein is consistent with the WM-PEIS results.

  11. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  12. Regional solid waste management study

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  13. Waste Management Committee | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Committee Waste Management Committee Waste Management Committee Waste Management Committee Mission Statement The Northern New Mexico Citizens' Advisory Board (NNMCAB) Waste Management (WM) Committee reviews policies, practices and procedures, existing and proposed to provide recommendations, advice, suggestions and opinions to the US Department of Energy (DOE), regarding the waste management operations of Los Alamos National Laboratory (LANL), including Environmental Management

  14. Waste Receipt Quality Assurance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receipt Quality Assurance Program About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual Waste Forecast and Funding Arrangements Waste Stream Approval Waste Shipment Approval Waste Receipt Quality Assurance Program Waste Specification Records Tools Points of Contact Waste Receipt Quality Assurance Program Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The Hanford Site has a

  15. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  16. Negotiating equity for management of DOE wastes

    SciTech Connect (OSTI)

    Carnes, S.A.

    1994-09-01

    One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE`s waste management capabilities.

  17. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Environmental Management (EM)

    Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant December ......... 2 5.1 Radioactive Waste Management Planning ......

  18. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    SciTech Connect (OSTI)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2006-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  19. DOE - NNSA/NFO -- Photo Library EM Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Library > Photo Library > Waste Management NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Waste Management Foreseeing the need for environmental management at the Nevada Test Site, the U.S. Department of Energy Nevada Field Office formally established the Waste Management program in 1978. The program's primary mission is to manage radioactive waste generated by the U.S. Department of Energy and defense industry activities. Instructions: Click the

  20. Wetlands management at CERCLA sites

    SciTech Connect (OSTI)

    Harman, C.R.; Romaine, W.M.; D'Alleinne, C.P. )

    1993-01-01

    Wetlands have historically been viewed as dumping grounds for a wide range of waste products. The uncontrolled introduction of hazardous and toxic waste materials into these sensitive ecosystems has prompted the US Environmental Protection Agency (USEPA) to oversee many investigatory and remediation activities in wetlands, as mandated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). USEPA documents, in fact, note that approximately 72% of the CERCLA sites in USEPA Regions 1,2,3 and 4 are associated, to some degree, with wetlands. However, CERCLA activities in these areas are often complicated by the very regulatory measures designed to preserve and protect wetlands from anthropogenic disturbances. The ability of a Potentially Responsible Party (PRP) to effectively respond to issues at a CERCLA site, while still being responsive to both Federal and State wetlands regulations, requires the utmost in both technical and management expertise.

  1. Microsoft PowerPoint - Marcinowski - Waste Management (FINAL)

    Energy Savers [EERE]

    Update on WIPP, Tank Waste and Other Waste Disposition Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Fall Meeting - Idaho Falls, ID September 17, 2014 www.energy.gov/EM 2 * WIPP Recovery Update * EM Waste Disposition Updates by Site * Tank Waste Update * LLW/MLLW Disposal Update * Waste Disposition Map Planning Discussion Topics www.energy.gov/EM 3 February 5th Truck Fire: * All operations at the repository ceased following

  2. Hanford Site Solid Waste Acceptance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Tools Points of Contact Contact Us Hanford Site Solid Waste Acceptance Program Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size The Hanford Site operates waste treatment, storage and disposal facilities for the various types of radioactive waste onsite and from elsewhere in the U.S.

  3. 2009 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analysis

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2010-03-15

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Wate Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2009. This annual summary report presents data and conclusions from the FY 2009 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  4. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  5. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  6. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  7. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  8. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 APPENDIX V RECHARGE SENSITIVITY ANALYSIS In the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC & WM...

  9. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Ecology) U.S. Environmental Protection Agency (EPA) Title: Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington...

  10. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decommissioning tasks under each of the alternatives presented in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington....

  11. Site Manager Pantex Site Office

    National Nuclear Security Administration (NNSA)

    workforce. These re- ports serve the purpose of assisting management in workforce planning aligned to our strategic goals. Additionally, the reports help us analyze our...

  12. Site Management Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Management Guide Site Management Guide Site Management Guide (Blue Book) (Revision 17, January 2015) PDF icon Site Management Guide More Documents & Publications 2014 ANNUAL ...

  13. Read More About Nuclear Waste Management | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Consent-Based Siting » Read More About Nuclear Waste Management Read More About Nuclear Waste Management Background Information Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Blue Ribbon Commission on America's Nuclear Future Report to the Secretary of Energy Secretary Moniz's Remarks on "A Look Back on the Blue Ribbon Commission on America's Nuclear Future" FACT SHEET: The Path Forward on Nuclear Waste Disposal Report on

  14. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  15. RCRA Part A and Part B Permit Application for Waste Management Activities at the Nevada Test Site

    SciTech Connect (OSTI)

    NSTec Environmental Protection and Technical Services

    2009-09-30

    This permit application provides facility information on the design, processes, and security features associated with the proposed Mixed Waste Disposal Unit. The unit will receive and dispose of onsite and offsite containerized low-level mixed waste (LLMW) that has an approved U.S. Department of Energy nexus.

  16. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  17. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    SciTech Connect (OSTI)

    NNSA /NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  18. Waste Treatment & Immobilization Plant - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Treatment & Immobilization Plant Office of River Protection About ORP ORP Projects & Facilities Tank Farms Waste Treatment & Immobilization Plant 242-A Evaporator 222-S Laboratory Newsroom Contracts & Procurements Contact ORP Waste Treatment & Immobilization Plant Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Waste Treatment Plant Overview Waste Treatment and Immobilization Plant Background Information The Hanford Site, located in

  19. Transuranic Waste Processing Center Oak Ridge Site Specific...

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 ...EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste ...

  20. Waste Shipment Approval - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste customers can enter data directly into the Solid Waste Information Tracking System SWITS database in lieu of completing a Container Data Sheet.) A Contents...

  1. Integrated Waste Feed Delivery Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Integrated Waste Feed Delivery Plan Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Integrated Waste Feed Delivery Plan Email Email Page | Print

  2. Human factors in waste management

    SciTech Connect (OSTI)

    Moray, N.

    1994-10-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors.

  3. Results of Phase I groundwater quality assessment for single-shell tank waste management Area S-SX at the Hanford Site

    SciTech Connect (OSTI)

    Johnson, V.G.; Chou, C.J.

    1998-01-01

    Pacific Northwest National Laboratory (PNNL) conducted a Phase I, Resource Conservation and Recovery Act of 1976 (RCRA) groundwater quality assessment for the Richland Field Office of the U.S. Department of Energy (DOE-RL), in accordance with the Federal Facility Compliance Agreement. The purpose of the investigation was to determine if the Single-Shell Tank Waste Management Area (WMA) S-SX has impacted groundwater quality. The WMA is located in the southern portion of the 200 West Area of the Hanford Site and consists of the 241-S and 241-SX tank farms and ancillary waste systems. The unit is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and was placed in assessment groundwater monitoring (40 CFR 265.93 [d]) in August 1996 because of elevated specific conductance and technetium-99, a non-RCRA co-contaminant, in downgradient monitoring wells. Major findings of the assessment are summarized below: (1) Distribution patterns for radionuclides and RCRA/dangerous waste constituents indicate WMA S-SX has contributed to groundwater contamination observed in downgradient monitoring wells. (2) Drinking water standards for nitrate and technetium-99 are currently exceeded in one RCRA-compliant well (299-W22-46) located at the southeastern comer of the SX tank farm. (3) Technetium-99, nitrate, and chromium concentrations in downgradient well 299-W22-46 (the well with the highest current concentrations) appear to be declining after reaching maximum concentrations in May 1997. (4) Cesium-137 and strontium-90, major constituents of concern in single-shell tank waste, were not detected in any of the RCRA-compliant wells in the WMA network, including the well with the highest current technetium-99 concentrations (299-W22-46). (5) Low but detectable strontium-90 and cesium-137 were found in one old well (2-W23-7), located inside and between the S and SX tank farms.

  4. Nevada National Security Site Waste Acceptance Criteria

    National Nuclear Security Administration (NNSA)

    Nevada National Security Site Waste Acceptance Criteria Prepared by U.S. Department of Energy National Nuclear Security Administration Nevada Field Office Environmental...

  5. Waste Receiving and Processing Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities Waste Receiving and Processing Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial...

  6. Waste Receipt Quality Assurance Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receipt Quality Assurance Program About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford Customer Annual...

  7. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Not Available

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  8. Waste Management Programmatic Environmental Impact Statement...

    Office of Environmental Management (EM)

    Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS) ...

  9. Office of Civilian Radioactive Waste Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A chart detailling the Office of Civilian Radioactive Waste Management. Office of Civilian Radioactive Waste Management More Documents & Publications Reassessment of NAF Mission...

  10. Civilian Radioactive Waste Management System Requirements Document...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Civilian Radioactive Waste Management System Requirements Document Civilian Radioactive Waste Management System Requirements Document This document specifies the top-level...

  11. Enterprise Assessments Review of Radioactive Waste Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous...

  12. Vermont Hazardous Waste Management Regulations | Open Energy...

    Open Energy Info (EERE)

    Hazardous Waste Management Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Vermont Hazardous Waste Management...

  13. Tank Waste Feed Delivery System Readiness at the Hanford Site

    Energy Savers [EERE]

    Audit Report Tank Waste Feed Delivery System Readiness at the Hanford Site OAS-L-12-09 August 2012 Department of Energy Washington, DC 20585 August 23, 2012 MEMORANDUM FOR THE MANAGER, OFFICE OF RIVER PROTECTION FROM: David Sedillo, Director Western Audits Division Office of Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Tank Waste Feed Delivery System Readiness at the Hanford Site" BACKGROUND The Department of Energy's largest cleanup task

  14. Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Proposed Plan for the Site-wide Waste Disposition Evaluation Project Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of the buildings at the Portsmouth Site. Three remedial alternatives for management of anticipated Portsmouth waste were developed for consideration. This Proposed Plan describes the required no-action

  15. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  16. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  17. Waste shipment engineering data management plan

    SciTech Connect (OSTI)

    Marquez, D.L.

    1995-05-01

    This plan documents current data management practices and future data management improvements for TWRS Waste Shipment Engineering.

  18. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  19. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  20. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  1. Vitrification technology for Hanford Site tank waste

    SciTech Connect (OSTI)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  2. Waste Information Management System-2012 - 12114

    SciTech Connect (OSTI)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2012-07-01

    The Waste Information Management System (WIMS) -2012 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. WIMS continues to successfully accomplish the goals and objectives set forth by DOE for this project. It has replaced the historic process of each DOE site gathering, organizing, and reporting their waste forecast information utilizing different databases and display technologies. In addition, WIMS meets DOE's objective to have the complex-wide waste forecast and transportation information available to all stakeholders and the public in one easy-to-navigate system. The enhancements to WIMS made since its initial deployment include the addition of new DOE sites and facilities, an updated waste and transportation information, and the ability to easily display and print customized waste forecast, the disposition maps, GIS maps and transportation information. The system also allows users to customize and generate reports over the web. These reports can be exported to various formats, such as Adobe{sup R} PDF, Microsoft Excel{sup R}, and Microsoft Word{sup R} and downloaded to the user's computer. Future enhancements will include database/application migration to the next level. A new data import interface will be developed to integrate 2012-13 forecast waste streams. In addition, the application is updated on a continuous basis based on DOE feedback. (authors)

  3. Sorting and Characterizing Oversized Boxes of Transuranic Waste at the Nevada Test Site

    ScienceCinema (OSTI)

    None

    2014-10-28

    Characterization activities conducted inside the Visual Examination and Repackaging Building at the Area 5 Radioactive Waste Management Complex on the Nevada Test Site.

  4. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  5. Domestic and international nuclear waste management

    SciTech Connect (OSTI)

    Jones, J.

    1994-12-31

    Passage of the Nuclear Waste Policy Act in 1982, and subsequent 1987 amendments, allowed Congress to establish the plan to manage the nation`s spent nuclear fuel and other high-level radioactive waste. The principal elements in the waste management system include waste acceptance, storage, disposal, and transportation. Interim storage of spent fuel is proposed to be in a Monitored Retrievable Storage facility. The Department has been relying on a voluntary siting processes for the temporary storage of spent fuel. A potential repository site is located at Yucca Mountain, Nevada. Site characterizations are currently being conducted. Underground construction has started for the Exploratory Studies Facility; surface based activities, including drilling and trenching, are currently under way to acquire additional data. The United States is involved in cooperative studies with other countries. Most of these studies emphasize assessment of long-term performance. By participating in international activities, the United States has been involved in transfer of technological developments and information exchange. There are currently over 400 nuclear power reactors operating in 25 countries. Most countries producing electricity with nuclear power plan to dispose of the spent fuel within their own countries. This paper will provide the status of the US program in the storage and disposal of its nuclear waste.

  6. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  7. LTS Project Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management About Us LTS Home Page LTS Project Management LTS Transition and Timeline LTS Execution LTS Background LTS Information Management LTS Fact Sheets / Briefings LTS In The News LTS Related Links LTS Contact Us LTS Project Management Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size DOE-RL Office of Assistant Manager for Mission Support (AMMS) is responsible for LTS Program Management. The Site Stewardship Division is responsible for LTS under AMMS

  8. Environmental and Waste Management (WMO) Legacy TRU Waste Pause |

    Office of Environmental Management (EM)

    Department of Energy Environmental and Waste Management (WMO) Legacy TRU Waste Pause Environmental and Waste Management (WMO) Legacy TRU Waste Pause This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014,

  9. 2013 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada; Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2013. This annual summary report presents data and conclusions from the FY 2013 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2013 include the following: Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2013 Evaluation of new or revised waste streams by special analysis Development of version 4.115 of the Area 5 RWMS GoldSim PA/CA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2013 review of operations, facility design, closure plans, monitoring results, and R&D results for the Area 3 RWMS indicates no changes that would impact PA validity. The conclusion of the annual review is that all performance objectives can be met and the Area 3 RWMS PA remains valid. There is no need to the revise the Area 3 RWMS PA. Review of Area 5 RWMS operations, design, closure plans, monitoring results, and R&D activities indicates that no significant changes have occurred. The FY 2013 PA results, generated with the Area 5 RWMS v4.115 GoldSim PA model, indicate that there continues to be a reasonable expectation of meeting all performance objectives. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. A review of changes potentially impacting the CAs indicates that no significant changes occurred in FY 2013. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter the CAs results or conclusions were found. The revision of the Area 3 RWMS CA, which will include the Yucca Flat Underground Test Area (Corrective Action Unit [CAU] 97) source term, is scheduled for FY 2024, following the completion of the Corrective Action Decision Document/Corrective Action Plan in FY 2015. Inclusion of the Frenchman Flat Underground Test Area (CAU 98) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the CAU 98 Closure Report in FY 2015. Near-term R&D efforts will focus on continuing development of the PA, CA, and inventory models for the Area 3 and Area 5 RWMS.

  10. 2011 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2012-03-20

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2007a) requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs), with the results submitted annually to U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 1999a; 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2011. This annual summary report presents data and conclusions from the FY 2011 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2011 include the following: (1) Operation of a new shallow land disposal unit and a new Resource Conservation and Recovery Act (RCRA)-compliant lined disposal unit at the Area 5 RWMS; (2) Development of new closure inventory estimates based on disposals through FY 2011; (3) Evaluation of new or revised waste streams by special analysis; (4) Development of version 2.102 of the Area 3 RWMS GoldSim PA model; and (5) Development of version 4.113 of the Area 5 RWMS GoldSim PA model. Analysis of the latest available data using the Area 5 RWMS v4.113 GoldSim PA model indicates that all performance objectives can be met. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. In FY 2011, there were no operational changes, monitoring results, or R and D results for the Area 3 RWMS that would impact PA validity. Despite the increase in waste volume and inventory at the Area 3 RWMS since 1996 when the PA was approved, the facility performance evaluated with the Area 3 RWMS PA GoldSim model, version 2.0 (with the final closure inventory), remains well below the performance objectives set forth in U.S. Department of Energy Order DOE O 435.1, 'Radioactive Waste Management' (DOE, 2001). The conclusions of the Area 3 RWMS PA remain valid. A special analysis was prepared to update the PA and CA results for the Area 3 RWMS in FY 2011. Release of the special analysis is planned for FY 2012. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter CA results or conclusions were found. Inclusion of the Frenchman Flat Underground Test Area (UGTA) results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the closure report for the Frenchman Flat UGTA corrective action unit (CAU) in FY 2015. An industrial site, CAU 547, with corrective action sites near the Area 3 RWMS was found to have a significant plutonium inventory in 2009. CAU 547 will be evaluated for inclusion of future revisions or updates of the Area 3 RWMS CA. The revision of the Area 3 RWMS CA, which will include the UGTA source terms, is expected in FY 2024, following the completion of the Yucca Flat CAU Corrective Action Decision Document, scheduled for FY 2023. Near-term R and D efforts will focus on continuing development of the Are

  11. Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts

    SciTech Connect (OSTI)

    Not Available

    1985-08-01

    The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities.

  12. DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 Errata U.S. Department of Energy September 2010 2 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 DOE/WIPP-10-2225 3 2009 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2009 presents summary environmental data to (1) characterize site environmental management performance, (2) summarize environmental occurrences and

  13. Secondary Waste Forms and Technetium Management

    Office of Environmental Management (EM)

    Secondary Waste Forms and Technetium Management Joseph H. Westsik, Jr. Pacific Northwest ... liquid effluents under the Dangerous Waste Permit for disposal at the Integrated ...

  14. Technitium Management at the Hanford Site

    SciTech Connect (OSTI)

    Robbins, Rebecca A.

    2013-08-15

    Long Abstract. Full Text. The Hanford tank waste contains approx 26,000 Ci of technetium-99 (Tc-99), the majority of which is in the supernate fraction. Tc-99 is a long-lived radionuclide with a half-life of approx 212,000 years and, in its predominant pertechnetate (TcO{sub 4}) form, is highly soluble and very mobile in the vadose zone and ultimately the groundwater. Tc-99 is identified as the major dose contributor (in groundwater) by past Hanford site performance assessments and therefore considered a key radionuclide of concern at Hanford. The United States Department of Energy (DOE) River Protection Project's (RPP) long-term Tc-99 management strategy is to immobilize the Tc-99 in a waste form that will retain the Tc-99 for many thousands of years. To achieve this, the RPP flowsheet will immobilize the majority of the Tc-99 as a vitrified low-activity waste product that will be ultimately disposed on site in the Integrated Disposal Facility. The Tc-99 will be released gradually from the glass at very low rates such that the groundwater concentrations at any point in time would be substantially below regulatory limits.The liquid secondary waste will be immobilized in a low-temperature matrix (cast stone) and the solid secondary waste will be stabilized using grout. Although the Tc-99 that is immobilized in glass will meet the release rate for disposal in IDF, a proportion is driven into the secondary waste stream that will not be vitrified and therefore presents a disposal risk. If a portion of the Tc-99 were to be removed from the Hanford waste inventory and disposed off-site, (e.g., as HLW), it could lessen a major constraint on LAW waste form performance, i.e., the requirement to retain Tc-99 over thousands of years and have a positive impact on the IDF Performance Assessment. There are several technologies available at various stages of technical maturity that can be employed for Tc-99 removal. The choice of technology and the associated efficacy of the technology are dependent on the chemical fonn of the technetium in the waste, the removal location in the tlowsheet. and the ultimate disposition path chosen for the technetium product. This paper will discuss the current plans for the management of the technetium present in the Hanford tank waste. It will present the risks associated with processing technetium in the current treatment flowsheet and present potential mitigation opportunities, the status of available technetium removal technologies, the chemical speciation of technetium in the tank waste, and the available disposition paths and waste forms for technetium containing streams.

  15. Transuranic Waste Retrieval and Certification - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Retrieval and Certification About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S...

  16. Nevada Industrial Solid Waste Disposal Site Permit Application...

    Open Energy Info (EERE)

    Nevada Industrial Solid Waste Disposal Site Permit Application Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Industrial Solid Waste Disposal Site...

  17. Site Visit Report, Hanford Waste Encapsulation Storage Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford ... safety analysis for the Waste Encapsulation Storage Facility at DOE's Hanford Site. ...

  18. Enterprise Assessments Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review, Hanford Site Waste Treatment and Immobilization Plant - September 2014 Enterprise Assessments Review, Hanford Site Waste Treatment and Immobilization Plant - September 2014...

  19. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  20. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste...

  1. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  2. Site decommissioning management plan

    SciTech Connect (OSTI)

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  3. Hazardous waste site inspectors and operators: Their perceptions of the media and environmental groups

    SciTech Connect (OSTI)

    Graber, D.R.; Musham, C.

    1995-12-01

    This study assesses and compares the views and opinions of two groups (representing the `regulators` and the `regulated`) in one area of environmental management - the operation of commercial hazardous waste sites. A survey, sent to 141 managers of commercial treatment, storage, and disposal sites and 110 hazardous waste inspectors. This paper reports on their views of the role and influence of the media. In addition, the expectations for hazardous waste management by several stakeholder groups was examined.

  4. ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shilo Inn Convention Center 780 Lindsay Boulevard, Idaho Falls, ID 83402 September 17-18, 2014 2 Environmental Management Site-Specific Advisory Board - September 17-18, 2014 Meeting Minutes LIST OF ACRONYMS AIB - Accident Investigation Board AMWTP - Advanced Mixed Waste Treatment Project CAB - Citizens Advisory Board CBC - EM Consolidated Business Center CD - Critical Decision CPARS - Contractors Performance Assessment Rating System CR - Continuing Resolution D&D - Decontamination &

  5. Savannah River Site Contractor Receives Project Management Institute Award

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. The local chapter of the Project Management Institute (PMI) recently honored the Savannah River Site liquid waste contractor with its 2011 Project of the Year award.

  6. Hanford site transuranic waste sampling plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-13

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed.

  7. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    91 Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington Summary U.S. Department of Energy October 2009 Cover Sheet Responsible Agency: U.S. Department of Energy (DOE) Cooperating Agency: Washington State Department of Ecology (Ecology) Title: Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC & WM EIS) (DOE/EIS-0391) Location: Benton County, Washington Contacts: For

  8. An Integrated Waste Management System and a Consent-Based

    Office of Environmental Management (EM)

    An Integrated Waste Management System and a Consent-Based Approach to Siting Consent-Based Siting Initiative Kick-Off Meeting Renaissance Washington, DC Downtown Hotel January 20, 2016 1:00-1:15 PM Keynote Speaker: Finding Long-Term Solutions for Managing Our Nation's Nuclear Waste Dr. Lynn Orr, Undersecretary for Science and Energy, Department of Energy 1:15-1:50 PM Panel Discussion: Updates on DOE Planning for an Integrated Waste Management System and Discussion of Engagement Opportunities in

  9. Radioactive Waste Management BasisApril 2006

    SciTech Connect (OSTI)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  10. Remediation of DOE hazardous waste sites: Planning and integration requirements

    SciTech Connect (OSTI)

    Geffen, C.A.; Garrett, B.A.; Cowan, C.E.; Siegel, M.R.; Keller, J.F. )

    1989-09-01

    The US Department of Energy (DOE) is faced with a immense challenge in effectively implementing a program to mitigate and manage the environmental impacts created by current operations and from past activities at its facilities. The current regulatory framework and public interest in the environmental arena have made operating DOE facilities in an environmentally responsible manner a compelling priority. This paper provides information on the results of a project funded by DOE to obtain a better understanding of the regulatory and institutional drivers in the hazardous waste market and the costs and timeframes required for remediation activities. Few realize that before remediating a hazardous waste site, a comprehensive planning process must be conducted to characterize the nature and extent of site contamination, calculate the risk to the public, and assess the effectiveness of various remediation technologies. The US Environmental Protection Agency (EPA) and others have found that it may take up to 7 years to complete the planning process at an average cost of $1.0 million per site. While cost information is not yet available for DOE sites, discussions with hazardous waste consulting firms indicate that average characterization and assessment costs will be 5 to 10 times this amount for DOE sites. The higher costs are expected because of the additional administrative requirements placed on DOE sites, the need to handle mixed wastes, the amount and extent of contamination at many of these sites, and the visibility of the sites. 15 refs., 1 fig., 2 tabs.

  11. Oak Ridge Reservation Waste Management Plan

    SciTech Connect (OSTI)

    Turner, J.W.

    1995-02-01

    This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

  12. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  13. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    SciTech Connect (OSTI)

    Carilli, Jhon T. [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States)] [US Department Of Energy, Nevada Site Office, P. O. Box 98518, Las Vegas, Nevada 89193-8518 (United States); Krenzien, Susan K. [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)] [Navarro-Intera, LLC, P. O. Box 98952, Las Vegas, Nevada 89193-8952 (United States)

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  14. Public Preferences Related to Consent-Based Siting of Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Facilities for Storage and Disposal | Department of Energy Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies undertaken by the Center for Risk and Crisis Management (CRCM) and Sandia National Laboratories (SNL), which focus on

  15. Results of phase 1 groundwater quality assessment for Single-Shell Tank Waste Management Areas B-BX-BY at the Hanford Site

    SciTech Connect (OSTI)

    Narbutovskih, S.M.

    1998-02-01

    Pacific Northwest National Laboratory conducted a Phase 1 (or first determination) groundwater quality assessment for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement. The purpose of the assessment was to determine if the Single-Shell Tank Waste Management Area (WMA) B-BX-BY has impacted groundwater quality. This report will document the evidence demonstrating that the WMA has impacted groundwater quality.

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. 2012 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    SciTech Connect (OSTI)

    Shott, G.

    2013-03-18

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2012. This annual summary report presents data and conclusions from the FY 2012 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2012 include the following:  Release of a special analysis for the Area 3 RWMS assessing the continuing validity of the PA and CA  Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2012  Evaluation of new or revised waste streams by special analysis  Development of version 4.114 of the Area 5 RWMS GoldSim PA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2012 review of operations, facility design, closure plans, monitoring results, and R&D results for the Area 3 RWMS indicates no changes that would impact PA validity. A special analysis using the Area 3 RWMS v2.102 GoldSim PA model was prepared to update the PA results for the Area 3 RWMS in FY 2012. The special analysis concludes that all performance objectives can be met and the Area 3 RWMS PA remains valid. There is no need to the revise the Area 3 RWMS PA. Review of Area 5 RWMS operations, design, closure plans, monitoring results, and R&D activities indicates no significant changes other than an increase in the inventory disposed. The FY 2012 PA results, generated with the Area 5 RWMS v4.114 GoldSim PA model, indicate that there continues to be a reasonable expectation of meeting all performance objectives. The results and conclusions of the Area 5 RWMS PA are judged valid, and there is no need to the revise the PA. A review of changes potentially impacting the CAs indicates that no significant changes occurred in FY 2012. The continuing adequacy of the CAs was evaluated with the new models, and no significant changes that would alter CA results or conclusions were found. The revision of the Area 3 RWMS CA, which will include the Underground Test Area source term (Corrective Action Unit [CAU] 97), is scheduled for FY 2024, following the completion of the Yucca Flat CAU 97 Corrective Action Decision Document/Corrective Action Plan in FY 2016. Inclusion of the Frenchman Flat CAU 98 results in the Area 5 RWMS CA is scheduled for FY 2016, pending the completion of the CAU 98 closure report in FY 2015. Near-term R&D efforts will focus on continuing development of the Area 3 and Area 5 RWMS GoldSim PA/CA and inventory models.

  18. Radioactive Waste Management in Central Asia - 12034

    SciTech Connect (OSTI)

    Zhunussova, Tamara; Sneve, Malgorzata; Liland, Astrid

    2012-07-01

    After the collapse of the Soviet Union the newly independent states in Central Asia (CA) whose regulatory bodies were set up recently are facing problems with the proper management of radioactive waste and so called 'nuclear legacy' inherited from the past activities. During the former Soviet Union (SU) period, various aspects of nuclear energy use took place in CA republics of Kazakhstan, Kyrgyzstan, Tajikistan and Uzbekistan. Activities range from peaceful use of energy to nuclear testing for example at the former Semipalatinsk Nuclear Test Site (SNTS) in Kazakhstan, and uranium mining and milling industries in all four countries. Large amounts of radioactive waste (RW) have been accumulated in Central Asia and are waiting for its safe disposal. In 2008 the Norwegian Radiation Protection Authority (NRPA), with the support of the Norwegian Ministry of Foreign Affairs, has developed bilateral projects that aim to assist the regulatory bodies in Kazakhstan, Kyrgyzstan Tajikistan, and Uzbekistan (from 2010) to identify and draft relevant regulatory requirements to ensure the protection of the personnel, population and environment during the planning and execution of remedial actions for past practices and radioactive waste management in the CA countries. The participating regulatory authorities included: Kazakhstan Atomic Energy Agency, Kyrgyzstan State Agency on Environmental Protection and Forestry, Nuclear Safety Agency of Tajikistan, and State Inspectorate on Safety in Industry and Mining of Uzbekistan. The scope of the projects is to ensure that activities related to radioactive waste management in both planned and existing exposure situations in CA will be carried out in accordance with the international guidance and recommendations, taking into account the relevant regulatory practice from other countries in this area. In order to understand the problems in the field of radioactive waste management we have analysed the existing regulations through the so called 'Threat assessment' in each CA country which revealed additional problems in the existing regulatory documents beyond those described at the start of our ongoing bilateral projects in Kazakhstan, Kirgizistan Tajikistan and Uzbekistan. (authors)

  19. An Integrated Site-Wide Assessment of Nuclear Wastes to Remain at the Hanford Site, Washington

    SciTech Connect (OSTI)

    Morse, J.G.; Bryce, R.W.; Hildebrand, R.D.; Kincaid, C.T.

    2004-10-06

    Since its creation in 1943 until 1988, the Hanford Site, a facility in the U.S. Department of Energy (DOE) nuclear weapons complex was dedicated to the production of weapons grade plutonium and other special nuclear materials. The Hanford Site is located in eastern Washington State and is bordered on the north and east by the Columbia River. Decades of creating fuel, irradiating it in reactors, and processing it to recover nuclear material left numerous waste sites that involved the discharge of contaminated liquids and the disposal of contaminated solid waste. Today, the primary mission of the Hanford Site is to safely cleanup and manage the site's legacy waste. A site-wide risk assessment methodology has been developed to assist the DOE, as well as state and federal regulatory agencies, in making decisions regarding needed remedial actions at past waste sites, and safe disposal of future wastes. The methodology, referred to as the System Assessment Capability (SAC), utilizes an integrated set of models that track potential contaminants from inventory through vadose zone, groundwater, Columbia River and air pathways to human and ecological receptors.

  20. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect (OSTI)

    Jacobsen, P.H.

    1997-09-23

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  1. Summary - Salt Waste Processing Facility Design at the Savannah River Site

    Office of Environmental Management (EM)

    Salt Waste Processing Facility ETR Report Date: November 2006 ETR-4 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why DOE-EM Did This Review The Salt Waste Processing Facility (SWPF) is intended to remove and concentrate the radioactive strontium (Sr), actinides, and cesium (Cs) from the bulk salt waste solutions in the SRS high-level waste tanks. The sludge

  2. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  3. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    SciTech Connect (OSTI)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  4. West Valley Demonstration Project High-Level Waste Management

    Office of Environmental Management (EM)

    DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification

  5. DOE model conference on waste management and environmental restoration

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    Reports dealing with current topics in waste management and environmental restoration were presented at this conference in six sessions. Session 1 covered the Hot Topics'' including regulations and risk assessment. Session 2 dealt with waste reduction and minimization; session 3 dealt with waste treatment and disposal. Session 4 covered site characterization and analysis. Environmental restoration and associated technologies wee discussed in session 5 and 6. Individual papers have been cataloged separately.

  6. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  7. Legacy Management FUSRAP Sites | Department of Energy

    Energy Savers [EERE]

    Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Legacy Management FUSRAP Sites Long-Term Surveillance and Maintenance (LTS&M) of Remediated FUSRAP Sites The DOE Office of Legacy Management (LM) established LTS&M requirements for remediated FUSRAP sites. DOE evaluates the final site conditions of a remediated site on the basis of risk for different future uses. DOE then confirms that LTS&M requirements will maintain protectiveness. Most Formerly Utilized Sites Remedial

  8. Disposal of Low-Level Waste at the Nevada National Security Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Low-Level Waste at the Nevada National Security Site Disposal of Low-Level Waste at the Nevada National Security Site PDF icon Disposal of Low-Level Waste at the Nevada National Security Site More Documents & Publications Keynote Address: Update on Environmental Management Communication Is Key to Packaging and Transportation Safety and Compliance Status Updates on the Performance and Risk Assessment Community of Practice

  9. Independent Oversight Review, Hanford Site Waste Treatment and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Treatment and Immobilization Plant - June 2014 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant - June 2014 June 2014 Review of the Hanford ...

  10. Supplemental information related to risk assessment for the off-site transportation of low-level waste for the U.S. Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Monette, F.A.; Biwer, B.M.; LePoire, D.J.; Chen, S.Y. [Argonne National Lab., IL (United States). Environmental Assessment Div.

    1996-12-01

    This report presents supplemental information to support the human health risk assessment conducted for the transportation of low-level waste (LLW) in support of the US Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS). Detailed descriptions of the transportation health risk assessment method and results of the assessment are presented in Appendix E of the WM PEIS and are not repeated in this report. This report presents additional information that is not presented in Appendix E but that was needed to conduct the transportation risk assessment for Waste Management (WM) LLW. Included are definition of the LLW alternatives considered in the WM PEIS, data related to the inventory and to the physical and radiological characteristics of WM LLW, an overview of the risk assessment method, and detailed results of the assessment for each WM LLW alternative considered.

  11. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  12. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  13. Waste Information Management System with 2012-13 Waste Streams - 13095

    SciTech Connect (OSTI)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  14. Closure Report for Corrective Action Unit 537: Waste Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Envirornmental Restoration

    2007-07-01

    Corrective Action Unit (CAU) 537 is identified in the ''Federal Facility Agreement and Consent Order'' (FFACO) of 1996 as Waste Sites. CAU 537 is located in Areas 3 and 19 of the Nevada Test Site, approximately 65 miles northwest of Las Vegas, Nevada, and consists of the following two Corrective Action Sites (CASs): CAS 03-23-06, Bucket; Yellow Tagged Bags; and CAS 19-19-01, Trash Pit. CAU 537 closure activities were conducted in April 2007 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). At CAS 03-23-06, closure activities included removal and disposal of a 15-foot (ft) by 15-ft by 8-ft tall wooden shed containing wood and metal debris and a 5-gallon plastic bucket containing deteriorated plastic bags with yellow radioactive contamination tape. The debris was transported to the Area 9 U10c Landfill for disposal after being screened for radiological contamination according to the ''NV/YMP Radiological Control Manual'' (NNSA/NSO, 2004). At CAS 19-19-01, closure activities included segregation, removal, and disposal of non-friable, non-regulated asbestos-containing material (ACM) and construction debris. The ACM was determined to be non-friable by waste characterization samples collected prior to closure activities. The ACM was removed and double-bagged by licensed, trained asbestos workers and transported to the Area 9 U10c Landfill for disposal. Construction debris was transported in end-dump trucks to the Area 9 U10c Landfill for disposal. Closure activities generated sanitary waste/construction debris and ACM. Waste generated during closure activities was appropriately managed and disposed. Waste characterization sample results are included as Appendix A of this report, and waste disposition documentation is included as Appendix B of this report. Copies of the Sectored Housekeeping Site Closure Verification Forms for CAS 03-23-06 and CAS 19-19-01 are included as Appendix C of this report. These forms include before and after photographs of the sites, descriptions and removal status of waste, and waste disposal information. CAU 537, Waste Sites, was closed by characterizing and disposing of debris. The purpose of this CR is to summarize the completed closure activities, document appropriate waste disposal, and confirm that the closure standards were met.

  15. Radioactive Waste Management Complex performance assessment: Draft

    SciTech Connect (OSTI)

    Case, M.J.; Maheras, S.J.; McKenzie-Carter, M.A.; Sussman, M.E.; Voilleque, P.

    1990-06-01

    A radiological performance assessment of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory was conducted to demonstrate compliance with appropriate radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the general public. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the general public via air, ground water, and food chain pathways. Projections of doses were made for both offsite receptors and individuals intruding onto the site after closure. In addition, uncertainty analyses were performed. Results of calculations made using nominal data indicate that the radiological doses will be below appropriate radiological criteria throughout operations and after closure of the facility. Recommendations were made for future performance assessment calculations.

  16. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  17. Ventilation System to Improve Savannah River Site's Liquid Waste Operations

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The EM program and its liquid waste contractor at the Savannah River Site are improving salt waste disposition work and preparing for eventual operations of the Salt Waste Processing Facility (SWPF) currently being constructed.

  18. Enterprise Assessments Review, Hanford Site Waste Treatment and

    Broader source: Energy.gov (indexed) [DOE]

    Immobilization Plant - September 2014 | Department of Energy September 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy independent Office of Enterprise Assessments (EA) was established in May 2014 and assumed responsibility for managing the Department's Independent Oversight Program for the Department's former Office of Health, Safety and Security. The office now called the EA Office of Environment, Safety and Health

  19. The Integrated Waste Tracking Systems (IWTS) - A Comprehensive Waste Management Tool

    SciTech Connect (OSTI)

    Robert S. Anderson

    2005-09-01

    The US Department of Energy (DOE) Idaho National Laboratory (INL) site located near Idaho Falls, ID USA, has developed a comprehensive waste management and tracking tool that integrates multiple operational activities with characterization data from waste declaration through final waste disposition. The Integrated Waste Tracking System (IWTS) provides information necessary to help facility personnel properly manage their waste and demonstrate a wide range of legal and regulatory compliance. As a client?server database system, the IWTS is a proven tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of flexibility. This paper describes some of the history involved with the development and current use of IWTS as a comprehensive waste management tool as well as a discussion of IWTS deployments performed by the INL for outside clients. Waste management spans a wide range of activities including: work group interactions, regulatory compliance management, reporting, procedure management, and similar activities. The IWTS documents these activities and performs tasks in a computer-automated environment. Waste characterization data, container characterization data, shipments, waste processing, disposals, reporting, and limit compliance checks are just a few of the items that IWTS documents and performs to help waste management personnel perform their jobs. Throughout most hazardous and radioactive waste generating, storage and disposal sites, waste management is performed by many different groups of people in many facilities. Several organizations administer their areas of waste management using their own procedures and documentation independent of other organizations. Files are kept, some of which are treated as quality records, others not as stringent. Quality records maintain a history of: changes performed after approval, the reason for the change(s), and a record of whom and when the changes were made. As regulations and permits change, and as the proliferation of personal computers flourish, procedures and data files begin to be stored in electronic databases. With many different organizations, contractors, and unique procedures, several dozen databases are used to track and maintain aspects of waste management. As one can see, the logistics of collecting and certifying data from all organizations to provide comprehensive information would not only take weeks to perform, but usually presents a variety of answers that require an immediate unified resolution. A lot of personnel time is spent scrubbing the data in order to determine the correct information. The issue of disparate data is a concern in itself, and is coupled with the costs associated with maintaining several separate databases. In order to gain waste management efficiencies across an entire facility or site, several waste management databases located among several organizations would need to be consolidated. The IWTS is a system to do just that, namely store and track containerized waste information for an entire site. The IWTS has proven itself at the INL since 1995 as an efficient, successful, time saving management tool to help meet the needs of both operations and management for hazardous and radiological containerized waste. Other sites have also benefited from IWTS as it has been deployed at West Valley Nuclear Services Company DOE site as well as Ontario Power Ge

  20. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  1. Hanford Site environmental management specification

    SciTech Connect (OSTI)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  2. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  3. Categorical Exclusion Determinations: Civilian Radioactive Waste Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Civilian Radioactive Waste Management Categorical Exclusion Determinations: Civilian Radioactive Waste Management Categorical Exclusion Determinations issued by Civilian Radioactive Waste Management. DOCUMENTS AVAILABLE FOR DOWNLOAD April 5, 2011 CX-005549: Categorical Exclusion Determination Hot Springs Energy Efficiency and Conservation Block Grant Project CX(s) Applied: B2.5, B5.1 Date: 04/05/2011 Location(s): Hot Springs, Arkansas Office(s): Civilian Radioactive

  4. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  5. RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17.

  6. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect (OSTI)

    Roy B. Evans, Ph.D. Amy Adams Luft Don Martin; Randall C. Morris, Ph.D.; Timothy D. Reynolds, Ph.D.; Ronald W. Warren; Westinghouse Waste Isolation Division

    2000-09-30

    The U.S. Department of Energy?s (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  7. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    SciTech Connect (OSTI)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussions with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.

  8. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    SciTech Connect (OSTI)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  10. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    SciTech Connect (OSTI)

    Mohamed, Yasser T.

    2013-07-01

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Center has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)

  11. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  12. Savannah River Site - Salt Waste Processing Facility Independent Technical

    Energy Savers [EERE]

    Review | Department of Energy Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility Independent Technical Review Full Document and Summary Versions are available for download PDF icon Savannah River Site - Salt Waste Processing Facility Independent Technical Review PDF icon Summary - Salt Waste Processing Facility Design at the Savannah River Site More Documents & Publications Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt

  13. Legacy Management Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to managing its responsibilities associated with the environmental legacy of World War II and the Cold War. This legacy includes radioactive and chemical waste, environmental...

  14. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  15. Site Management Plan Page 1

    Office of Legacy Management (LM)

    Project Schedules and Milestones May 2009 Site Management Plan Page 1 5.0 Project Schedules and Milestones (FYs 2009-2011) 5.1 Establishing Project Schedules and Milestones As stated in Section 1.1.2, the SMP establishes the overall plan for remedial actions at the MMTS and milestones against which progress can be measured. The SMP also documents the overall plan for remedial actions at the MVP Site, which was deleted from the NPL on February 28, 2000. The SMP was first prepared in 1995 and was

  16. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  17. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  18. Transuranic (TRU) Waste Repackaging at the Nevada Test Site

    SciTech Connect (OSTI)

    E.F. Di Sanza; G. Pyles; J. Ciucci; P. Arnold

    2009-03-01

    This paper describes the activities required to modify a facility and the process of characterizing, repackaging, and preparing for shipment the Nevada Test Sites (NTS) legacy transuranic (TRU) waste in 58 oversize boxes (OSB). The waste, generated at other U.S. Department of Energy (DOE) sites and shipped to the NTS between 1974 and 1990, requires size-reduction for off-site shipment and disposal. The waste processing approach was tailored to reduce the volume of TRU waste by employing decontamination and non-destructive assay. As a result, the low-level waste (LLW) generated by this process was packaged, with minimal size reduction, in large sea-land containers for disposal at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The remaining TRU waste was repackaged and sent to the Idaho National Laboratory Consolidation Site for additional characterization in preparation for disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The DOE National Nuclear Security Administration Nevada Site Office and the NTS Management and Operating (M&O) contractor, NSTec, successfully partnered to modify and upgrade an existing facility, the Visual Examination and Repackaging Building (VERB). The VERB modifications, including a new ventilation system and modified containment structure, required an approved Preliminary Documented Safety Analysis prior to project procurement and construction. Upgrade of the VERB from a radiological facility to a Hazard Category 3 Nuclear Facility required new rigor in the design and construction areas and was executed on an aggressive schedule. The facility Documented Safety Analysis required that OSBs be vented prior to introduction into the VERB. Box venting was safely completed after developing and implementing two types of custom venting systems for the heavy gauge box construction. A remotely operated punching process was used on boxes with wall thickness of up to 3.05 mm (0.120 in) to insert aluminum bronze filters and sample ports to prevent sparking during penetration. A remotely operated cold-drilling process with self-drilling, self-tapping titanium coated spark-resistant filters was used for boxes with wall thickness of up to 6.35 mm (0.25 in). The box headspace was sampled for the presence of flammable gases. To further accelerate the project schedule, an innovative treatment process was used. Several of the OSBs were re-assayed and determined to be mixed low-level waste (MLLW) which allowed treatment, followed by disposal in the Mixed Waste Disposal Unit at the NTS Area 5 Radioactive Waste Management Complex (RWMC). The MLLW boxes were certified using real-time radiography and overpacked into custom-built polyethylene-lined macroencapsulation containers. The polyethylene-lined lid was welded to the poly-lined box using automatically controlled resistance heating through embedded wiring in the lid. The work was performed under the existing Documented Safety Analysis since plastic welding is accomplished at low temperature and does not introduce the risks of other macroencapsulation processes, such as welding stainless steel containers. The macroencapsulation process for MLLW not only accelerated the schedule by reducing the number of boxes requiring size reduction, but it also resulted in significantly improved safety with as low as reasonable achievable levels of exposure to workers plus reduced cost by eliminating the need to perform repackaging in the VERB.

  19. 2014 Waste Management Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management Conference 2014 Waste Management Conference April 9, 2014 - 11:06am Addthis What does this project do? Goal 2. Preserve, protect, and share records and information When you hear about the U.S. Department of Energy (DOE) Office of Legacy Management (LM), what comes to mind? Is it long-term surveillance and maintenance (LTS&M) activities such as conducting environmental monitoring, performing annual inspections, or maintaining protective remedies? Is it managing records and

  20. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 | Department of Energy Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis Report for the Low-Activity Waste Facility Reagent Systems - July 2015 July 2015 Review of the Hanford Site Waste Treatment and Immobilization Plant Hazards Analysis

  1. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  2. Soil characterization methods for unsaturated low-level waste sites

    SciTech Connect (OSTI)

    Wierenga, P.J.; Young, M.H. . Dept. of Soil and Water Science); Gee, G.W.; Kincaid, C.T. ); Hills, R.G. . Dept. of Mechanical Engineering); Nicholson, T.J.; Cady, R.E. )

    1993-01-01

    To support a license application for the disposal of low-level radioactive waste (LLW), applicants must characterize the unsaturated zone and demonstrate that waste will not migrate from the facility boundary. This document provides a strategy for developing this characterization plan. It describes principles of contaminant flow and transport, site characterization and monitoring strategies, and data management. It also discusses methods and practices that are currently used to monitor properties and conditions in the soil profile, how these properties influence water and waste migration, and why they are important to the license application. The methods part of the document is divided into sections on laboratory and field-based properties, then further subdivided into the description of methods for determining 18 physical, flow, and transport properties. Because of the availability of detailed procedures in many texts and journal articles, the reader is often directed for details to the available literature. References are made to experiments performed at the Las Cruces Trench site, New Mexico, that support LLW site characterization activities. A major contribution from the Las Cruces study is the experience gained in handling data sets for site characterization and the subsequent use of these data sets in modeling studies.

  3. DOE Issues Salt Waste Determination for the Savannah River Site |

    Energy Savers [EERE]

    Department of Energy Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks,

  4. Independent Oversight Review, Hanford Site Waste Treatment and

    Office of Environmental Management (EM)

    Immobilization Plant - June 2014 | Department of Energy Waste Treatment and Immobilization Plant - June 2014 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant - June 2014 June 2014 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant. The review, which

  5. Application for Permit to Operate a Class II Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-03-31

    The Nevada Test Site (NTS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NTS and National Security Technologies LLC (NSTec) is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The site will be used for the disposal of refuse, rubbish, garbage, sewage sludge, pathological waste, Asbestos-Containing Material (ACM), industrial solid waste, hydrocarbon-burdened soil, hydrocarbon-burdened demolition and construction waste, and other inert waste (hereafter called permissible waste). Waste containing free liquids or regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA) will not be accepted for disposal at the site. Waste regulated under the Toxic Substance Control Act (TSCA), excluding Polychlorinated Biphenyl [PCB], Bulk Product Waste (see Section 6.2.5) and ACM (see Section 6.2.2.2) will not be accepted for disposal at the site. The disposal site will be used as the sole depository of permissible waste which is: (1) Generated by entities covered under the U.S. Environmental Protection Agency (EPA) Hazardous Waste Generator Identification Number for the NTS; (2) Generated at sites identified in the Federal Facilities Agreement and Consent Order (FFACO); (3) Sensitive records and media, including documents, vugraphs, computer disks, typewriter ribbons, magnetic tapes, etc., generated by NNSA/NSO or its contractors; (4) ACM generated by NNSA/NSO or its contractors according to Section 6.2.2.2, as necessary; (5) Hydrocarbon-burdened soil and solid waste from areas covered under the EPA Hazardous Waste Generator Identification Number for the NTS; (6) Other waste on a case-by-case concurrence by NDEP/BFF. The generator of permissible waste is responsible for preparing documentation related to waste acceptance criteria, waste characterization, and load verification. Waste and Water (WW) personnel are responsible for operating the disposal site and reviewing documentation to determine if the waste is acceptable.

  6. Nuclear waste management. Semiannual progress report, April 1983-September 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1984-01-01

    The status of the following programs is reported: waste stabilization; waste isolation; low-level waste management; remedial action; and supporting studies. 58 figures, 39 tables.

  7. Site Manager Y-12 Site Office

    National Nuclear Security Administration (NNSA)

    workforce. These re- ports serve the purpose of assisting management in workforce planning aligned to our strategic goals. Additionally, the reports help us analyze our...

  8. Waste management fiscal year 1998 progress report

    SciTech Connect (OSTI)

    1998-12-31

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

  9. ENVIRONMENTAL MANAGEMENT SITE SPECIFIC ADVISORY BOARD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD (EM SSAB) HANFORD Application No. (Please leave blank) MEMBERSHIP APPLICATION (December 2015)...

  10. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect (OSTI)

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  11. Sensor system for buried waste containment sites

    DOE Patents [OSTI]

    Smith, Ann Marie (Pocatello, ID); Gardner, Bradley M. (Idaho Falls, ID); Kostelnik, Kevin M. (Idaho Falls, ID); Partin, Judy K. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID); Pfeifer, May Catherine (Idaho Falls, ID)

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  12. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    SciTech Connect (OSTI)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and reports. - Use of six-sigma tools can help improve the quality and efficiency of waste management processes. - A fair, easy to understand, transparent, and well-overseen process for distributing the cost of waste disposal and waste program oversight is essential. (authors)

  13. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  14. Nature and Waste Management P Ltd | Open Energy Information

    Open Energy Info (EERE)

    Waste Management P Ltd Jump to: navigation, search Name: Nature and Waste Management (P) Ltd. Place: Kolkata, West Bengal, India Zip: 700027 Product: Kolkatta-based MSW composting...

  15. Office of Environmental Management Taps Small Business for Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant...

  16. Letter to Congress RE: Office of Civilian Radioactive Waste Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial...

  17. RRC - Surface Waste Management Manual | Open Energy Information

    Open Energy Info (EERE)

    Surface Waste Management Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: RRC - Surface Waste Management...

  18. Timarpur Okhla Waste Management Company Pvt Ltd | Open Energy...

    Open Energy Info (EERE)

    Timarpur Okhla Waste Management Company Pvt Ltd Jump to: navigation, search Name: Timarpur-Okhla Waste Management Company Pvt Ltd Place: New Delhi, Delhi (NCT), India Zip: 110003...

  19. Guwahati Waste Management Company Ltd GWMCL | Open Energy Information

    Open Energy Info (EERE)

    Guwahati Waste Management Company Ltd GWMCL Jump to: navigation, search Name: Guwahati Waste Management Company Ltd. (GWMCL) Place: Guwahati, Assam, India Product: Setting up 6MW...

  20. Hawaii Permit Application for Solid Waste Management Facility...

    Open Energy Info (EERE)

    Permit Application for Solid Waste Management Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Permit Application for Solid Waste Management...

  1. Waste Management Committee Fiscal Year 2013 Work Plan | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fiscal Year 2012 Budget WM-FY13-WP - September 26, 2012 More Documents & Publications Waste Management Committee Fiscal Year 2012 Work Plan Waste Management Committee Fiscal Year...

  2. ENVIRONMENTAL MANAGEMENT SITE SPECIFIC ADVISORY BOARD

    Office of Environmental Management (EM)

    OAK RIDGE SITE SPECIFIC ADVISORY BOARD Application No. (Please leave blank) ______________ MEMBERSHIP APPLICATION ________________________________________________________________________________________________ The EM SSAB provides a meaningful opportunity for collaborative dialogue among the diverse communities at the Department of Energy (DOE) Environmental Management (EM) clean-up sites. At the request of the Assistant Secretary or the Site Manager/Assistant Manager for Environmental

  3. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  4. Environmental management 1994. Progress and plans of the environmental restoration and waste management program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy currently faces one of the largest environmental challenges in the world. The Department`s Environmental Restoration and Waste Management program is responsible for identifying and reducing risks and managing waste at 137 sites in 34 States and territories where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. The number of sites continues to grow as facilities are transferred to be cleaned up and closed down. The program`s main challenge is to balance technical and financial realities with the public`s expectations and develop a strategy that enables the Department to meet its commitments to the American people. This document provides a closer look at what is being done around the country. Included are detailed discussions of the largest sites in the region, followed by site activities organized by state, and a summary of activities at FUSRAP and UMTRA sites in the region.

  5. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  6. Waste Management Committee Fiscal Year 2016 Work Plan | Department of

    Office of Environmental Management (EM)

    Energy 6 Work Plan Waste Management Committee Fiscal Year 2016 Work Plan Topics: TA-54 WIPP Recovery Operations Waste Stored at Waste Control Specialists Consent Order Deliverables FY'17 Budget National Waste Forum PDF icon WM-FY16-WP - March 9, 2016 More Documents & Publications Waste Management Committee Fiscal Year 2014 Work Plan Waste Management Committee Fiscal Year 2013 Work Plan Waste Management Committee Fiscal Year 2012 Work Plan

  7. Savannah River Site Liquid-Waste Contractor Installs New Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liquid-Waste Contractor Installs New Cost-Saving Pump Design Savannah River Site Liquid-Waste Contractor Installs New Cost-Saving Pump Design October 29, 2015 - 12:05pm Addthis New...

  8. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  9. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  10. Savannah River Site Achieves Waste Transfer First | Department of Energy

    Office of Environmental Management (EM)

    Achieves Waste Transfer First Savannah River Site Achieves Waste Transfer First November 26, 2014 - 12:00pm Addthis Workers made a historic transfer from one tank farm to another through the new Consolidated Control Room. Workers made a historic transfer from one tank farm to another through the new Consolidated Control Room. AIKEN, S.C. - The EM program and its liquid waste contractor at the Savannah River Site (SRS) made history recently by safely transferring radioactive liquid waste from F

  11. Site Visit Report, Hanford Waste Encapsulation Storage Facility - January

    Energy Savers [EERE]

    2011 | Department of Energy Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford Waste Encapsulation Storage Facility Documented Safety Analysis results of a review conducted by the Department of Energy's Office of Health, Safety and Security (HSS) of the documented safety analysis for the Waste Encapsulation Storage Facility at DOE's Hanford Site. The review was performed from July

  12. Savannah River Site Salt Waste Processing Facility Technology Readiness

    Energy Savers [EERE]

    Assessment Report | Department of Energy Salt Waste Processing Facility Technology Readiness Assessment Report Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Full Document and Summary Versions are available for download PDF icon Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report PDF icon Summary - SRS Salt Waste Processing Facility More Documents & Publications Compilation of TRA Summaries Basis for Section

  13. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Environmental Management (EM)

    Facility - August 2013 | Department of Energy Salt Waste Processing Facility - August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing Facility Safety Basis and Design Development. This report documents the results of an independent oversight review of the safety basis and design development for the Salt Waste Processing Facility (SWPF) at the U.S. Department of Energy (DOE)

  14. Nuclear Waste Fund Activities Management Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Fund Activities Management Team Nuclear Waste Fund Activities Management Team The Nuclear Waste Fund Activities Management Team has responsibility to: Manage the investments and expenditures of the Nuclear Waste Fund; Support correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accounting Office and Freedom of Information Act inquiries; and, Manage the annual fee adequacy assessment process. Applicable Documents Nuclear Waste

  15. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  16. Radioactive waste management at the Savannah River Plant: a technical review. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report considers all SRP waste categories. The first part is descriptive: it deals with the SRP's physical environment, the radioactive wastes generated at the site and their current management, the associated monitoring procedures, and some of the hazards presented by the waste. The second part is a critique and evaluation of the practices and conditions described in the first part: it considers the major alternatives for long-range management and disposal of the waste, evaluates the effectiveness of current waste management practices and plans for future management and disposal, and presents the Panel's conclusions and recommendations for future action.

  17. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    SciTech Connect (OSTI)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  18. Managing America`s solid waste

    SciTech Connect (OSTI)

    Not Available

    1998-03-02

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  19. Fossil energy waste management. Technology status report

    SciTech Connect (OSTI)

    Bossart, S.J.; Newman, D.A.

    1995-02-01

    This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

  20. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management Summary Report TABLE OF CONTENTS Acronyms ........................................................................................................................................ iii Executive Summary ....................................................................................................................... vii 1.0 Overview of the Complex-Wide Review

  1. CRAD, NNSA- Radioactive Waste Management Program (RW)

    Broader source: Energy.gov [DOE]

    CRAD for Radioactive Waste Management Program (RW). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  2. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Energy Savers [EERE]

    Immobilization Plant Construction Quality - October 2015 | Department of Energy October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - October 2015 October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - October 2015 The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste

  3. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Environmental Management (EM)

    Immobilization Plant Construction Quality - June 2015 | Department of Energy Construction Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 June 2015 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste Treatment and

  4. Radioactive waste management in the former USSR

    SciTech Connect (OSTI)

    Bradley, D.J.

    1992-06-01

    Radioactive waste materials--and the methods being used to treat, process, store, transport, and dispose of them--have come under increased scrutiny over last decade, both nationally and internationally. Nuclear waste practices in the former Soviet Union, arguably the world's largest nuclear waste management system, are of obvious interest and may affect practices in other countries. In addition, poor waste management practices are causing increasing technical, political, and economic problems for the Soviet Union, and this will undoubtedly influence future strategies. this report was prepared as part of a continuing effort to gain a better understanding of the radioactive waste management program in the former Soviet Union. the scope of this study covers all publicly known radioactive waste management activities in the former Soviet Union as of April 1992, and is based on a review of a wide variety of literature sources, including documents, meeting presentations, and data base searches of worldwide press releases. The study focuses primarily on nuclear waste management activities in the former Soviet Union, but relevant background information on nuclear reactors is also provided in appendixes.

  5. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Site Waste Treatment and Immobilization Plant ... 2 5.1 Process Reviews......Incorporated BOD Basis of Design BOF Balance of Facilities ...

  6. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality ... CM Commercial Grade CRAD Criteria, Review and Approach Document DOE U.S. Department ...

  7. Waste Isolation Pilot Plant 2002 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... species, receive special consideration when ... set limits for doses due to radionuclide emissions to air. ... Waste Isolation Pilot Plant 2002 Site Environmental Report ...

  8. Innovative Technique Accelerates Waste Disposal at Idaho Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technique Accelerates Waste Disposal at Idaho Site Innovative Technique Accelerates Waste Disposal at Idaho Site May 15, 2013 - 12:00pm Addthis A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. A product drum of mixed low-level waste is lowered into a high-density polyethylene macro-pack. Macro-packs from the Idaho site are shown here safely and compliantly disposed. Macro-packs from the Idaho site are shown here safely and compliantly

  9. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and...

  10. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality - June 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - June 2015 June 2015 Review of the...

  11. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - October 2015 October 2015 Enterprise Assessments...

  12. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality - December 2015 December 2015 Review of Construction...

  13. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    SciTech Connect (OSTI)

    Segall, P.

    1998-04-13

    Hanford`s missions are to safely clean up and manage the site`s legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford`s environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford`s science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford`s original mission, the production of nuclear materials for the nation`s defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford`s operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues.

  14. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One of the targeted oversight activities is the DOE Office of River Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. Currently, EA is ...

  15. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... C-1 ii Acronyms BNI Bechtel National, Inc. BOF Balance of Facilities C5 Confinement Zone 5 ... Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. ...

  16. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Waste Treatment and Immobilization Plant, managed by Bechtel National, Inc. ... EA observed the Bechtel National, Inc. hazards analysis teams' activities associated with ...

  17. Review of the Hanford Site Waste Treatment and Immobilization...

    Office of Environmental Management (EM)

    Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight...

  18. DOE Site Facility Management Contracts Internet Posting | Department...

    Energy Savers [EERE]

    DOE Site Facility Management Contracts Internet Posting DOE Site Facility Management Contracts Internet Posting PDF icon DOE NNSA Site Facility Management Contracts - November...

  19. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  20. FAQS Reference Guide - Waste Management | Department of Energy

    Office of Environmental Management (EM)

    Waste Management FAQS Reference Guide - Waste Management This reference guide addresses the competency statements in the January 2003 edition of DOE-STD-1159-2003, Waste Management Functional Area Qualification Standard. PDF icon Waste Management Qualification Standard Reference Guide, August 2010 More Documents & Publications FAQS Reference Guide - Environmental Restoration DOE-HDBK-1018/2-93 FAQS Reference Guide - Facility Representative

  1. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

  2. Nuclear waste management. Quarterly progress report, January-March, 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-06-01

    Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

  3. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  4. Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |

    Energy Savers [EERE]

    Department of Energy Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort

  5. EIS-0200: Waste Management Programmatic Environmental Impact Statement for

    Office of Environmental Management (EM)

    Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste | Department of Energy 0: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Waste Management Programmatic Environmental Impact Statement for Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This Programmatic EIS evaluates the potential environmental and cost impacts of strategic

  6. Radioactive waste management treatments: A selection for the Italian scenario

    SciTech Connect (OSTI)

    Locatelli, G. [Univ. of Lincoln, Lincoln School of Engineering, Brayford Pool - Lincoln LN6 7TS (United Kingdom); Mancini, M. [Politecnico di Milano, Dept. of Management, Economics and Industrial Engineering, Via Lambruschini 4/B, Milano (Italy); Sardini, M. [Politecnico di Milano, Dept. of Energy, Via Lambruschini 4, Milano (Italy)

    2012-07-01

    The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonable according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)

  7. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    SciTech Connect (OSTI)

    Thomas, Steve; Dickert, Ginger

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

  8. LM Releases Update of Site Management Guide

    Broader source: Energy.gov [DOE]

    A new edition of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Site Management Guide (SMG) was posted to the LM website, February 24, 2015.

  9. New Savannah River Site Deputy Manager Named

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. DOEs Savannah River Operations Office selected Terrel Terry J. Spears as the deputy manager of the Savannah River Site (SRS) this month.

  10. Idaho Site Launches Startup of Waste Treatment Facility Following Federal

    Energy Savers [EERE]

    Inspection, DOE Milestone | Department of Energy Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the

  11. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Office of Environmental Management (EM)

    Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 | Department of Energy Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Low-Activity Waste Facility Hazards Analysis Reports for the Melter and Melter Offgas Systems - September 2015 September 2015 Review of the

  12. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Energy Savers [EERE]

    Facility - April 2014 | Department of Energy Salt Waste Processing Facility - April 2014 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - April 2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of the

  13. [DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1

    SciTech Connect (OSTI)

    Goheen, S.C.

    1995-04-01

    The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples.

  14. Civilian radioactive waste management program plan. Revision 2

    SciTech Connect (OSTI)

    1998-07-01

    This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative ... Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, ...

  16. Laboratory information management system at the Hanford Site

    SciTech Connect (OSTI)

    Leggett, W.; Barth, D.; Ibsen, T.; Newman, B.

    1994-03-01

    In January of 1994 an important new technology was brought on line to help in the monumental waste management and environmental restoration work at the Hanford Site. Cleanup at the Hanford Site depends on analytical chemistry information to identify contaminates, design and monitor cleanup processes, assure worker safety, evaluate progress, and prove completion. The new technology, a laboratory information management system (LIMS) called ``LABCORE,`` provides the latest systems to organize and communicate the analytical tasks: track work and samples; collect and process data, prepare reports, and store data in readily accessible electronic form.

  17. Environmental Management Performance Reports - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reports Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental CERCLA Five-Year Review NEPA - Categorical Exclusions NEPA - Environmental Assessments NEPA -

  18. Industrial Program of Waste Management - Cigeo Project - 13033

    SciTech Connect (OSTI)

    Butez, Marc [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France)] [Agence nationale pour la gestion des dechets radioactifs - Andra, 1-7, rue Jean Monnet 92298 Chatenay-Malabry (France); Bartagnon, Olivier; Gagner, Laurent [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France)] [AREVA NC Tour AREVA 1 place de la Coupole 92084 Paris La Defense (France); Advocat, Thierry; Sacristan, Pablo [Commissariat a l'energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France)] [Commissariat a l'energie atomique et aux energies alternatives - CEA, CEA-SACLAY 91191 Gif sur Yvette Cedex (France); Beguin, Stephane [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)] [Electricite de France - EDF, Division Combustible Nucleaire, 1, Place Pleyel Site Cap Ampere93282 Saint Denis (France)

    2013-07-01

    The French Planning Act of 28 June 2006 prescribed that a reversible repository in a deep geological formation be chosen as the reference solution for the long-term management of high-level and intermediate-level long-lived radioactive waste. It also entrusted the responsibility of further studies and design of the repository (named Cigeo) upon the French Radioactive Waste Management Agency (Andra), in order for the review of the creation-license application to start in 2015 and, subject to its approval, the commissioning of the repository to take place in 2025. Andra is responsible for siting, designing, implementing, operating the future geological repository, including operational and long term safety and waste acceptance. Nuclear operators (Electricite de France (EDF), AREVA NC, and the French Commission in charge of Atomic Energy and Alternative Energies (CEA) are technically and financially responsible for the waste they generate, with no limit in time. They provide Andra, on one hand, with waste packages related input data, and on the other hand with their long term industrial experiences of high and intermediate-level long-lived radwaste management and nuclear operation. Andra, EDF, AREVA and CEA established a cooperation agreement for strengthening their collaborations in these fields. Within this agreement Andra and the nuclear operators have defined an industrial program for waste management. This program includes the waste inventory to be taken into account for the design of the Cigeo project and the structural hypothesis underlying its phased development. It schedules the delivery of the different categories of waste and defines associated flows. (authors)

  19. Management plan -- Multi-Function Waste Tank Facility. Revision 1

    SciTech Connect (OSTI)

    Fritz, R.L.

    1995-01-11

    This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

  20. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  1. Site Specific Single Shell Tank (SST) phase 1 RFI and CMS Work Plan Addendum for Waste Management B-BX-BY

    SciTech Connect (OSTI)

    ROGERS, P.M.

    2000-05-19

    This site-specific work plan addendum for WMA B-BX-BY addresses vadose zone characterization plans for collecting and analyzing sediment samples.

  2. LANL completes excavation of 1940s waste disposal site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excavation of waste disposal site completed LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 30, 2011 Material Disposal Area B Material Disposal Area B, the Lab's oldest waste disposal site, was excavated inside sturdy metal enclosures.There was no open air excavation at MDA-B. Contact Small Business Office (505) 667-4419 Email "Safety for the public, the environment, and

  3. Secondary Waste Forms and Technetium Management

    Office of Environmental Management (EM)

    Secondary Waste Forms and Technetium Management Joseph H. Westsik, Jr. Pacific Northwest National Laboratory EM HLW Corporate Board Meeting November 18, 2010 What are Secondary Wastes? Process condensates and scrubber and/or off-gas treatment liquids from the pretreatment and ILAW melter facilities at the Hanford WTP. Sent from WTP to the Effluent Treatment Facility (ETF) for treatment and disposal Treated liquid effluents under the ETF State Wastewater Discharge Permit Solidified liquid

  4. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    SciTech Connect (OSTI)

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California`s waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator`s hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia`s site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized.

  5. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site - U10c Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-08-05

    The NTS is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. NNSA/NSO is the federal lands management authority for the NTS and NSTec is the Management & Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The U10C Disposal Site is located in the northwest corner of Area 9 at the NTS (Figure 1) and is located in a subsidence crater created by two underground nuclear events, one in October 1962 and another in April 1964. The disposal site opened in 1971 for the disposal of rubbish, refuse, pathological waste, asbestos-containing material, and industrial solid waste. A Notice of Intent form to operate the disposal site as a Class II site was submitted to the state of Nevada on January 26, 1994, and was acknowledged in a letter to the DOE on February 8, 1994. It operated as a state of Nevada Class II Solid Waste Disposal Site (SWDS) until it closed on October 5, 1995, for retrofit as a Class III SWDS. The retrofit consisted of the installation of a minimum four-foot compacted soil layer to segregate the different waste types and function as a liner to inhibit leachate and water flow into the lower waste zone. Five neutron monitoring tubes were installed in this layer to monitor possible leachate production and water activity. Upon acceptance of the installed barrier and approval of an Operating Plan by NDEP/BFF, the site reopened in January 1996 as a Class III SWDS for the disposal of industrial solid waste and other inert waste.

  6. Transuranic Waste Processing Center Oak Ridge Site Specific Advisory Board May 14, 2014

    Office of Environmental Management (EM)

    Transuranic Waste Processing Update Oak Ridge Site Specific Advisory Board May 14, 2014 Laura Wilkerson, Portfolio Federal Project Director Karen Deacon, Deputy Federal Project Director Oak Ridge Office of Environmental Management www.energy.gov/EM 2 ETTP ORNL Y-12 City of Oak Ridge Oak Ridge Reservation TWPC www.energy.gov/EM 3 Oak Ridge Transuranic (TRU) Waste Inventory * TRU waste is waste contaminated with man-made elements heavier than uranium with half-lives greater than 20 years * The Oak

  7. Strategic plan for Hanford Site Environmental Restoration Information Management

    SciTech Connect (OSTI)

    Cowley, P.J.; Beck, J.E.; Gephart, R.E.

    1994-06-01

    This strategic plan addresses information management for the Environmental Restoration (ER) Program at the Hanford Site. This Program leads the cleanup of the Hanford Site`s soil, groundwater, buried waste, and the decontamination and decommissioning of facilities. The vision that drives this strategic plan is to ensure that quality information is available to the people who need it, when they need it, at a convenient location, in a usable form, and at an acceptable cost. Although investments are being made in managing the vast amounts of information, which include data, records and documents associated with the Hanford Site`s production history and new cleanup mission, it is widely recognized that efforts to date have not accomplished the vision. Effective information management involves more than the compilation of massive amounts of electronic and non-electronic information. It also involves integrating information management into business processes that support user`s needs and decisionmaking. Only then can information management complement and enable environmental restoration priorities and practices, help identify environmental restoration requirements, and enable communication within the Environmental Restoration Program and between the Program and its stakeholders. Successfully accomplishing the Hanford Site mission requires an integrated approach to information management that crosses organizational boundaries, streamlines existing systems, and builds new systems that support the needs of the future. This plan outlines that approach.

  8. Hanford Site waste minimization and pollution prevention awareness program plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option.

  9. Nevada National Security Site Performance Assessment Updates for New Waste

    Energy Savers [EERE]

    Streams | Department of Energy Nevada National Security Site Performance Assessment Updates for New Waste Streams Nevada National Security Site Performance Assessment Updates for New Waste Streams Greg Shott National Security Technologies, LLC Performance and Risk Assessment Community of Practice Annual Technical Exchange Meeting December 11 and 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation PDF icon Nevada National Security Site

  10. Municipal solid-waste management in Istanbul

    SciTech Connect (OSTI)

    Kanat, Gurdal

    2010-08-15

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  11. Waste Treatment & Immobilization Plant Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reduction-Oxidation Plant (REDOX) River Corridor S Plant T Plant Tank Farms Transuranic Waste Retrieval and Certification Treated Effluent Disposal Facility U Plant Vitrification...

  12. Hanford site integrated pest management plan

    SciTech Connect (OSTI)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  13. Paducah Site Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Plan Paducah Site Management Plan The annual Paducah Gaseous Diffusion Plant Site Management Plan (SMP) outlines DOE's strategic approach for achieving cleanup under the Federal Facility Agreement. The purpose of the SMP is to coordinate and document the potential and selected operable units, including removal actions; to define cleanup priorities; to identify work activities that will serve as the basis for enforceable timetables and deadlines under the agreement; and to establish

  14. Overview of Low-Level Waste Disposal Operations at the Nevada Test Site

    SciTech Connect (OSTI)

    DOE /Navarro

    2007-02-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Environmental Management Program is charged with the responsibility to carry out the disposal of on-site and off-site generated low-level radioactive waste at the Nevada Test Site. Core elements of this mission are ensuring that disposal take place in a manner that is safe and cost-effective while protecting workers, the public, and the environment. This paper focuses on giving an overview of the Nevada Test Site facilities regarding currant design of disposal. In addition, technical attributes of the facilities established through the site characterization process will be further described. An update on current waste disposal volumes and capabilities will also be provided. This discussion leads to anticipated volume projections and disposal site requirements as the Nevada Test Site disposal operations look towards the future.

  15. Social and economic aspects of radioactive waste disposal: considerations for institutional management

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Issues addressed in this book include: magnitude, characteristics, and trends of public concerns over radioactive waste; the issue of public trust and confidence in the institutions responsible for radioactive waste management; effects of the number and location of waste repositories on socioeconomic and institutional burdens associated with nuclear waste management; effects associated with interim storage facilities located at reactors or away from reactors; kinds and relative magnitudes of effects associated with the use of alternative forms of transportation (rail, truck, barge); participation by local citizens in identifying, assessing, and proposing ways to ameliorate social and economic siting effects; and potential options for resolving conflict at federal, state, and local levels over repository siting.

  16. Managing America's Defense Nuclear Waste | Department of Energy

    Energy Savers [EERE]

    Managing America's Defense Nuclear Waste Managing America's Defense Nuclear Waste PDF icon Managing America's Defense Nuclear Waste More Documents & Publications Reorganization of the Office of Energy Efficiency and Renewable Energy: Preliminary Observations National Defense Authorization Act for Fiscal Year 2005, Information Request, Mission & Functions Statement for the Office of Environmental Management

  17. Tank Waste Committee Summaries - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Advisory Board Committee Meeting Information Tank Waste Committee Hanford Advisory Board Convening Report SSAB Guidance Memorandum of Understanding Membership Nomination and Appointment Process Operating Ground Rules Calendars Advice and Responses Full Board Meeting Information Committee Meeting Information Outgoing Board Correspondence Key Board Products and Special Reports HAB Annual Report HAB and Committee Lists Points of Contact Related Links Tank Waste Committee Summaries Email

  18. Waste Management Committee Fiscal Year 2012 Work Plan | Department of

    Office of Environmental Management (EM)

    Energy Management Committee Fiscal Year 2012 Work Plan Waste Management Committee Fiscal Year 2012 Work Plan Topics: TA-21 TA-54 Risk/Benefit Principles Consent Order PDF icon WM-FY12-WP - September 1, 2011 More Documents & Publications Waste Management Committee Fiscal Year 2013 Work Plan Waste Management Committee Fiscal Year 2014 Work Plan Waste Management Committee Fiscal Year 2016 Work Plan

  19. DOE - Office of Legacy Management -- Mound Site

    Office of Legacy Management (LM)

    Ohio Mound, Ohio, Site A CERCLA and/or RCRA Site Mound2014 Remediation of the Mound, Ohio, Site was conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The site long-term monitoring responsibility transferred to the Office of Legacy Management(LM) in 2010 and requires operation and maintenance of a pump and treatment system, groundwater monitoring, institutional controls monitoring, records-related activities, and stakeholder support.

  20. Office of Environmental Management Taps Small Business for Waste Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Contract | Department of Energy Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract August 29, 2012 - 4:54pm Addthis A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. John Hale

  1. Waste Management Program. Technical progress report, Aporil-June 1983

    SciTech Connect (OSTI)

    None

    1984-02-01

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  2. High-level waste management technology program plan

    SciTech Connect (OSTI)

    Harmon, H.D.

    1995-01-01

    The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

  3. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  4. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant

    Office of Environmental Management (EM)

    OH EM Project: On-Site Disposal Facility ETR Report Date: February 2008 ETR-12 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did This Review The On-Site Waste Disposal Facility (OSWDF) is proposed for long-term containment of contaminated materials from the planned Decontamination and Decommissioning (D&D) activities at the

  5. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  6. Waste management project technical baseline description

    SciTech Connect (OSTI)

    Sederburg, J.P.

    1997-08-13

    A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

  7. Huizenga Kicks Off Waste Management Conference

    Broader source: Energy.gov [DOE]

    PHOENIX EM Senior Advisor Dave Huizenga shared many accomplishments of the nuclear cleanup program in a speech at the annual Waste Management Conference today, including recent news of its progress on the U.S. Government Accountability Offices (GAO) High-Risk List.

  8. Office of Civilian Radioactive Waste Management

    Energy Savers [EERE]

    RW-0583 QA:N/A Office of Civilian Radioactive Waste Management EVALUATION OF TECHNICAL IMPACT ON THE YUCCA MOUNTAIN PROJECT TECHNICAL BASIS RESULTING FROM ISSUES RAISED BY EMAILS OF FORMER PROJECT PARTICIPANTS February 2006 This page intentionally left blank. Table of Contents Executive Summary .............................................................................................................v 1.

  9. Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant |

    Energy Savers [EERE]

    Department of Energy Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of tribes and pueblos along the WIPP transportation corridors. The funds are for first responder training and support. The following tribes and pueblos are involved with WIPP transportation corridors: Acoma Pueblo Nambe Pueblo Navajo Nation Pojoaque Pueblo San Ildefonso Pueblo Laguna Pueblo

  10. FAQS Qualification Card Waste Management

    Broader source: Energy.gov [DOE]

    A key element for the Departments Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  11. Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone | Department of Energy Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone Savannah River Site Celebrates Historic Closure of Radioactive Waste Tanks: Senior DOE Officials and South Carolina Congressional Leadership Gather to Commemorate Historic Cleanup Milestone

  12. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE

    Broader source: Energy.gov [DOE]

    Idaho - The Waste Disposition Project Team at the Department of Energy’s Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management’s commitment to environmental clean up.

  13. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  14. Idaho Site Taps Old World Process to Treat Nuclear Waste

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The EM program at the Idaho site is using an age-old process to treat transuranic (TRU) waste left over from nuclear reactor experiments.

  15. Independent Oversight Activity Report, Savannah River Site Waste Solidification Building

    Broader source: Energy.gov [DOE]

    Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07

  16. Vermont Hazardous Waste Handler Site ID Form | Open Energy Information

    Open Energy Info (EERE)

    to library Legal Document- Permit ApplicationPermit Application: Vermont Hazardous Waste Handler Site ID FormLegal Abstract This form is used to notify the Vermont Agency of...

  17. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  18. CRAD, Low-Level Radioactive Waste Management - April 30, 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) CRAD, Low-Level Radioactive Waste Management - April 30, 2015 (EA CRAD 31-11, Rev. 0) April 2015...

  19. ADEQ Managing Hazardous Waste Handbook | Open Energy Information

    Open Energy Info (EERE)

    Managing Hazardous Waste Handbook Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Managing Hazardous Waste HandbookLegal...

  20. ADEQ Hazardous Waste Management website | Open Energy Information

    Open Energy Info (EERE)

    Hazardous Waste Management website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: ADEQ Hazardous Waste Management websiteLegal...

  1. Title 10 Chapter 159 Waste Management | Open Energy Information

    Open Energy Info (EERE)

    159 Waste Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 10 Chapter 159 Waste ManagementLegal Abstract Statute...

  2. Waste management plan for Hanford spent nuclear fuel characterization activities

    SciTech Connect (OSTI)

    Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-10-17

    A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

  3. Twelfth annual US DOE low-level waste management conference

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  4. Tank waste remediation system risk management list

    SciTech Connect (OSTI)

    Collard, L.B.

    1995-10-31

    The Tank Waste Remedation System (TWRS) Risk Management List and it`s subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists.

  5. Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste ...

  6. Savannah River Site's Liquid Waste Operations Adds Multi-Functional

    Office of Environmental Management (EM)

    Laboratory | Department of Energy Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 - 12:00pm Addthis Laboratory technician Tanja Bolt measures chemicals in the new laboratory at SRS. Laboratory technician Tanja Bolt measures chemicals in the new laboratory at SRS. Construction is under way on Salt Disposal Unit 6, which will be approximately 10 times larger than the site’s current

  7. Idaho Site's New Conveyor System Improves Waste Processing Safety,

    Energy Savers [EERE]

    Efficiency | Department of Energy Idaho Site's New Conveyor System Improves Waste Processing Safety, Efficiency Idaho Site's New Conveyor System Improves Waste Processing Safety, Efficiency March 16, 2016 - 12:15pm Addthis Overpacked drums are shown before entering AMWTP’s new conveyor system. The conveyor system allows for batch processing of the retrieved, overpacked drums. Overpacked drums are shown before entering AMWTP's new conveyor system. The conveyor system allows for batch

  8. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Energy Savers [EERE]

    Immobilization Plant Project Engineering Processes - October 2015 | Department of Energy Project Engineering Processes - October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes - October 2015 October 2015 Review of Engineering Processes at the Hanford Site Waste Treatment and Immobilization Plant Project The U.S. Department of Energy Office of Environment, Safety and Health Assessments, within the independent

  9. Enterprise Assessments Review of the Hanford Site Waste Treatment and

    Broader source: Energy.gov (indexed) [DOE]

    Immobilization Plant Construction Quality - December 2015 | Department of Energy 2015 Review of Construction Quality at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy Office of Enterprise Assessments (EA) conducted a review of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP) with the onsite portion of the review conducted from September 14 to 17, 2015. This EA review was performed in the broader context of an

  10. Managing lead-based paint abatement wastes

    SciTech Connect (OSTI)

    Steele, N.L.C.

    1994-12-31

    Renovation, remodeling, demolition, and surface preparation for painting, in addition to specified lead abatement, are all activities that have the potential to produce hazardous wastes if a property was painted with lead-based paint. Lead-based paint was used on residential structures until 1978, when most residential uses were banned by the Consumer Products Safety Council. Prior to the 1950s, paints for residential uses may have contained up to 50% lead by weight. Today, commercial and military paints may still contain lead and can be used on non-residential structures. The lead content of residential paints is limited to 0.06% lead (by weight) in the dried film. This paper provides an overview of some of the information needed to properly manage lead-based paint abatement wastes. The issues covered in this paper include waste classification, generator status, treatment, and land disposal restrictions. The author assumes that the reader is familiar with the provision of the Health and Safety Code and the California Code of Regulations that pertain to generation and management of hazardous wastes. Citations provided herein do not constitute an exhaustive list of all the regulations with which a generator of hazardous waste must comply.

  11. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energys (DOEs) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  12. Waste Management Programmatic Environmental Impact Statement (WM PEIS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports and Records of Decision | Department of Energy Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing more than 2 million cubic meters of radioactive wastes from past, present, and

  13. EM International Program Presentation for Waste Management 2015 |

    Energy Savers [EERE]

    Department of Energy Presentation for Waste Management 2015 EM International Program Presentation for Waste Management 2015 EM Associate Principal Deputy Assistant Secretary Monica Regalbuto gave a presentation on EM's International Program at the Waste Management Conference in March 2015 in Phoenix. PDF icon EM International Program Presentation for Waste Management 2015 More Documents & Publications FY 2017 EM Budget Rollout Presentation FY 2014 EM Budget Rollout Presentation FY 2016

  14. James L. Folk, Jr. is the Deputy Assistant Manager for Waste Deposition (AMWD) a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. Folk, Jr. is the Deputy Assistant Manager for Waste Deposition (AMWD) at the Savannah River Operations Office in Aiken, South Carolina. He has been the Deputy AMWD since 2008. Mr. Folk has more than 31 years of experience in nuclear engineering; oversight of safety and technical management with the Department of Energy. As the Deputy AMWD he is responsible for the management of the liquid and solid waste systems at the Savannah River Site that historically produced materials for use in

  15. Applying Lean Concepts to Waste Site Closure - 13137

    SciTech Connect (OSTI)

    Proctor, M.L. [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)] [Washington Closure Hanford, 2620 Fermi, Richland, Washington 99354 (United States)

    2013-07-01

    Washington Closure Hanford (WCH) was selected by the U.S. Department of Energy, Richland Operations Office to manage the River Corridor Closure Project, a 10-year contract in which WCH will clean up 220 mi{sup 2} of contaminated land at the Hanford Site in Richland, Washington. In the summer of 2011, with Tri-Party (DOE-RL, Environmental Protection Agency and Washington State Department of Ecology) Agreement Milestones due at the end of the calendar year, standard work practices were challenged in regards to closure documentation development. The Lean process, a concept that maximizes customer value while minimizing waste, was introduced to WCH's Sample Design and Cleanup Verification organization with the intention of eliminating waste and maximizing efficiencies. The outcome of implementing Lean processes and concepts was impressive. It was determined that the number of non-value added steps far outnumbered the value added steps. Internal processing time, document size, and review times were all reduced significantly; relationships with the customer and the regulators were also improved; and collaborative working relationships with the Tri Parties have been strengthened by working together on Lean initiatives. (authors)

  16. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  17. Office of Civilian Radioactive Waste Management-Quality Assurance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the...

  18. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Accounting, Syracuse University B.S., Finance, Syracuse University Experience: 28 years ... Lead Project Engineer; Data Development; Waste Management; Co-Manager-Appendix ...

  19. Huizenga leads safety of spent fuel management, radioactive waste...

    National Nuclear Security Administration (NNSA)

    Huizenga leads safety of spent fuel management, radioactive waste management meeting in Vienna | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  20. Office of Civilian Radioactive Waste Management-Quality Assurance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements and Description | Department of Energy Management-Quality Assurance Requirements and Description Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description A report detailling the requirements and description of the Quality Assurance program. PDF icon Office of Civilian Radioactive Waste Management-Quality Assurance Requirements and Description More Documents & Publications Quality Assurance Requirements Civilian Radioactive Waste

  1. FAQS Gap Analysis Qualification Card - Waste Management | Department of

    Office of Environmental Management (EM)

    Energy Waste Management FAQS Gap Analysis Qualification Card - Waste Management Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. File Waste Management Gap Analysis Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Occupational Safety FAQS Gap Analysis Qualification Card - Chemical Processing FAQS Gap Analysis Qualification Card - Environmental

  2. Tank Waste Remediation Systems (TWRS) Configuration Management Implementation Plan

    SciTech Connect (OSTI)

    WEIR, W.R.

    2000-12-18

    The Tank Waste Configuration Management (TWRS) Configuration Management Implementation Plan descibes the execution of the configuration management (CM) that the contractor uses to manage and integrate its programmatic and functional operations to perform work.

  3. Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harmless | Department of Energy Feeds Bacteria to Render Hazardous Groundwater Waste Harmless Portsmouth Site Feeds Bacteria to Render Hazardous Groundwater Waste Harmless April 2, 2012 - 12:00pm Addthis Neil Smith puts a trained eye on the pressure and flow of a food-grade com¬pound being injected into an under¬ground plume of hazardous waste near the X-720 Maintenance Facility at the DOE Piketon Site. The sodium lactate compound promotes bacterial growth in the groundwater that turns

  4. Plan Approved for Waste Disposition at DOE's Portsmouth Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Plan Approved for Waste Disposition at DOE's Portsmouth Site Plan Approved for Waste Disposition at DOE's Portsmouth Site July 7, 2015 - 3:01pm Addthis PIKETON, Ohio - The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) have agreed upon a plan for the disposition of more than two million cubic yards of waste that would be generated from the decontamination and decommissioning (D&D) of the Portsmouth Gaseous Diffusion Plant in Piketon,

  5. DOE site performance assessment activities. Radioactive Waste Technical Support Program

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    Information on performance assessment capabilities and activities was collected from eight DOE sites. All eight sites either currently dispose of low-level radioactive waste (LLW) or plan to dispose of LLW in the near future. A survey questionnaire was developed and sent to key individuals involved in DOE Order 5820.2A performance assessment activities at each site. The sites surveyed included: Hanford Site (Hanford), Idaho National Engineering Laboratory (INEL), Los Alamos National Laboratory (LANL), Nevada Test Site (NTS), Oak Ridge National Laboratory (ORNL), Paducah Gaseous Diffusion Plant (Paducah), Portsmouth Gaseous Diffusion Plant (Portsmouth), and Savannah River Site (SRS). The questionnaire addressed all aspects of the performance assessment process; from waste source term to dose conversion factors. This report presents the information developed from the site questionnaire and provides a comparison of site-specific performance assessment approaches, data needs, and ongoing and planned activities. All sites are engaged in completing the radioactive waste disposal facility performance assessment required by DOE Order 5820.2A. Each site has achieved various degrees of progress and have identified a set of critical needs. Within several areas, however, the sites identified common needs and questions.

  6. Transition of Sites from Environmental Management Memorandum of

    Energy Savers [EERE]

    Understanding | Department of Energy Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from Environmental Management Memorandum of Understanding Transition of Sites from Environmental Management Memorandum of Understanding PDF icon Transition of Sites from Environmental Management Memorandum of Understanding More Documents & Publications Site Transition Guidance Transition of Long-Term Response Action Management Requirements Development of

  7. An economic evaluation of waste flow control policies in municipal solid waste management

    SciTech Connect (OSTI)

    Greco, J.

    1995-12-01

    The transport of municipal solid waste through legal means is commonly known as waste flow control. Flow control ordinances prohibit the export of locally generated solid waste to disposal sites outside of a jurisdiction, requiring delivery to a locally designated facility for disposal or processing. Local governments use flow control to support public facilities and to comply with federal and state mandates. A decision by Supreme Court in May, 1994 invalidated the use of flow control by local governments raising important policy questions concerning balances between providing low-cost service to rate-payers, the value of conserving disposal capacity be developing expensive waste management programs, and the protection of the environment from the dangers of poor solid waste management. Since Congress is currently considering passage of federal legislation which would restore flow control authority to local government, there is a need to evaluate waste flow control from economic, environmental, political and social perspectives. This analysis attempts to evaluate flow control policies within an interdisciplinary framework. It examines not only the economic consequences of flow control policies, but also the social and environmental objectives that local governments claim are achieved via use of flow control. The analysis reveals that flow control introduces economic distortions into a highly competitive market for solid waste services, a market which consistently produces lower costs than flow-controlled, publicly-sponsored facilities. Important questions are raised concerning the allocation of risk in capital investments made by municipalities that use flow control to insulate investors and themselves from financial liability. Controlling waste flow helps local governments fulfill regulatory responsibilities that may not be met by reliance on competitive market forces.

  8. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  9. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  10. Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012

    Broader source: Energy.gov (indexed) [DOE]

    Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background

  11. Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, May 2013

    Broader source: Energy.gov (indexed) [DOE]

    Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0

  12. Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012

    Broader source: Energy.gov (indexed) [DOE]

    Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background

  13. Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012

    Broader source: Energy.gov (indexed) [DOE]

    Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 March 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background

  14. DOE Human Resources Management Division - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs DOE Human Resources Management Division DOE Employment Recognition and Awards Program Federal Employees Union (AFGE Local 788) Work Schedules / Pay and Leave Benefits and Services EEO & Diversity Contact Us DOE Human Resources Management Division Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Richland Operations Office / Office of River Protection The Human Resources

  15. Radioactive Waste Management Complex low-level waste radiological performance assessment

    SciTech Connect (OSTI)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.; Sussman, M.E.; Bhatt, R.N.

    1994-04-01

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsite receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.

  16. Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN

    Office of Environmental Management (EM)

    Oak Ridge, TN EM Project: EM Waste Management Facility ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN Why DOE-EM Did This Review The Environmental Management Waste Management Facility (EMWMF) is a land disposal facility for wastes generated by environmental restoration activities being conducted at the US Department of

  17. Integrated solid waste management of Sevierville, Tennessee

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Sevierville, Tennessee integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

  18. Savannah River Site Liquid Waste Contractor Earns Excellent Performanc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM acknowledged SRR management's responsiveness to identify value-added engagement ... Successful First Year at Savannah River Site SRR employees work through the Lean process. ...

  19. Environmental monitoring plan for the Niagara Falls Storage Site and the Interim Waste Containment Facility

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    As part of the US Department of Energy's (DOE) Surplus Facility Management Program (SFMP), the Niagara Falls Storage Site (NFSS) is undergoing remedial action. Vicinity properties adjacent to and near the site are being cleaned up as part of DOE's Formerly Utilized Sites Remedial Action Program (FUSRAP). These programs are a DOE effort to clean up low-level radioactive waste resulting from the early days of the nation's atomic energy program. Radioactively contaminated waste from these remedial action activities are being stored at the NFSS in an interim waste containment facility (IWCF). When the remedial actions and IWCF are completed in 1986, activities at the site will be limited to waste management. The monitoring program was prepared in accordance with DOE Order 5484.1 and is designed to determine the contribution of radioactivity from the site to the environs and to demonstrate compliance with applicable criteria. Major elements of this program will also supplement other monitoring requirements including the performance monitoring system for the IWCF and the closure/post-closure plan. Emphasis will be directed toward the sampling and analysis of groundwater, surface water, air and sediment for parameters which are known to be present in the material stored at the site. The monitoring program will employ a phased approach whereby the first 5 years of data will be evaluated, and the program will be reviewed and modified as necessary. 17 refs., 10 figs., 3 tabs.

  20. Hazardous waste site characterization (on cd-rom). Data file

    SciTech Connect (OSTI)

    1996-07-01

    Site characterization is one facet of hazardous waste site investigations. Environmental scientists and engineers within and outside the regulated community are becoming overwhelmed by the increasing number of guidance manuals, directives, documents and software products relating to the characterization of hazardous waste sites. People in the private sector, academia, and government are looking for convenient, definitive sources for this information. This CD-ROM combines into a single source a collection of useful references. The CD-ROM contains over 3,200 pages of EPA`s RCRA and Superfund Directives and Manuals that may be searched by key words or printed. It also contains a compilation of EPA-developed computer programs and documents to aid environmental professionals in the characterization of hazardous waste sites.

  1. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  2. Municipal solid waste management in India: From waste disposal to recovery of resources?

    SciTech Connect (OSTI)

    Narayana, Tapan

    2009-03-15

    Unlike that of western countries, the solid waste of Asian cities is often comprised of 70-80% organic matter, dirt and dust. Composting is considered to be the best option to deal with the waste generated. Composting helps reduce the waste transported to and disposed of in landfills. During the course of the research, the author learned that several developing countries established large-scale composting plants that eventually failed for various reasons. The main flaw that led to the unsuccessful establishment of the plants was the lack of application of simple scientific methods to select the material to be composted. Landfills have also been widely unsuccessful in countries like India because the landfill sites have a very limited time frame of usage. The population of the developing countries is another factor that detrimentally impacts the function of landfill sites. As the population keeps increasing, the garbage quantity also increases, which, in turn, exhausts the landfill sites. Landfills are also becoming increasingly expensive because of the rising costs of construction and operation. Incineration, which can greatly reduce the amount of incoming municipal solid waste, is the second most common method for disposal in developed countries. However, incinerator ash may contain hazardous materials including heavy metals and organic compounds such as dioxins, etc. Recycling plays a large role in solid waste management, especially in cities in developing countries. None of the three methods mentioned here are free from problems. The aim of this study is thus to compare the three methods, keeping in mind the costs that would be incurred by the respective governments, and identify the most economical and best option possible to combat the waste disposal problem.

  3. Waste Sampling and Characterization Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sampling and Characterization Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory...

  4. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  5. DOE Site Facility Management Contracts Internet Posting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Site Facility Management Contracts Internet Posting DOE Site Facility Management Contracts Internet Posting PDF icon DOE NNSA Site Facility Management Contracts - November 2015.pdf More Documents & Publications DOE_site_facility_mgt_contracts_Internet_Posting_3-21-11(1).pdf DOE site facility mgt contracts Internet Posting 5-2-11.xlsx DOE Facility Management Contracts

  6. Oak Ridge National Laboratory Waste Management Plan. Revision 1

    SciTech Connect (OSTI)

    Forgy, Jr., J. R.

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  7. Record of Decision for the Department of Energy's Waste Management Program: Treatment and Disposal of Low-Level Waste and Mixed Low-Level Waste; Amendment of the Record of Decision for the Nevada Test Site (DOE/EIS-0200) (DOE/EIS-0243) (2/25/00)_

    National Nuclear Security Administration (NNSA)

    061 Federal Register / Vol. 65, No. 38 / Friday, February 25, 2000 / Notices 1 After the Final WM PEIS was issued in May 1997, DOE issued ''Accelerating Cleanup: Paths to Closure.'' In that document, DOE provided estimates of waste volumes that would result from the planned operations and accelerated cleanup processes at DOE sites. Because some of the estimates differed from those provided in the WM PEIS, DOE examined the LLW and MLLW volumes to determine if the updated volume estimates

  8. Management of offshore wastes in the United States.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-10-22

    During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

  9. Hanford site waste minimization and pollution prevention awareness program

    SciTech Connect (OSTI)

    Kirkendall, J.R.

    1996-09-23

    This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

  10. Savannah River Site Liquid Waste Contractor Earns Excellent Performance

    Energy Savers [EERE]

    Rating | Department of Energy Liquid Waste Contractor Earns Excellent Performance Rating Savannah River Site Liquid Waste Contractor Earns Excellent Performance Rating February 11, 2016 - 12:35pm Addthis SRR workers oversaw placement of nearly 6,100 cubic yards of grout into Tank 16 from June to September 2015, achieving operational closure ahead of the October 2015 scheduled deadline, and making it the seventh tank closed at SRS. SRR workers oversaw placement of nearly 6,100 cubic yards of

  11. Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

  12. A data base for low-level radioactive waste disposal sites

    SciTech Connect (OSTI)

    Daum, M.L.; Moskowitz, P.D.

    1989-07-01

    A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

  13. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  14. EIS-0217: Savannah River Site Waste Management

    Broader source: Energy.gov [DOE]

    This EIS evaluates thepotential environmental impacts and costs of storing, treating, and/or disposing of liquid high-level radioactive, low-level radioactive, hazardous, mixed (radioactive and...

  15. Nevada Test Site probable maximum flood study, part of US Geological Survey flood potential and debris hazard study, Yucca Mountain Site for US Department of Energy, Office of Civilian Radioactive Waste Management

    SciTech Connect (OSTI)

    Bullard, K.L.

    1994-08-01

    The US Geological Survey (USGS), as part of the Yucca Mountain Project (YMP), is conducting studies at Yucca Mountain, Nevada. The purposes of these studies are to provide hydrologic and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear waste repository, and to evaluate the ability of the mined geologic disposal system (MGDS) to isolate the waste in compliance with regulatory requirements. In particular, the project is designed to acquire information necessary for the Department of Energy (DOE) to demonstrate in its environmental impact statement (EIS) and license application whether the MGDS will meet the requirements of federal regulations 10 CFR Part 60, 10 CFR Part 960, and 40 CFR Part 191. Complete study plans for this part of the project were prepared by the USGS and approved by the DOE in August and September of 1990. The US Bureau of Reclamation (Reclamation) was selected by the USGS as a contractor to provide probable maximum flood (PMF) magnitudes and associated inundation maps for preliminary engineering design of the surface facilities at Yucca Mountain. These PMF peak flow estimates are necessary for successful waste repository design and construction. The PMF technique was chosen for two reasons: (1) this technique complies with ANSI requirements that PMF technology be used in the design of nuclear related facilities (ANSI/ANS, 1981), and (2) the PMF analysis has become a commonly used technology to predict a ``worst possible case`` flood scenario. For this PMF study, probable maximum precipitation (PMP) values were obtained for a local storm (thunderstorm) PMP event. These values were determined from the National Weather Services`s Hydrometeorological Report No. 49 (HMR 49).

  16. Ocean disposal option for bulk wastes containing naturally occurring radionuclides: an assessment case history. [From Niagara Falls storage site

    SciTech Connect (OSTI)

    Stull, E.A.; Merry-Libby, P.

    1985-01-01

    There are 180,000 m/sup 3/ of slightly contaminated radioactive wastes (36 pCi/g radium-226) currently stored at the US Department of Energy's Niagara Falls Storage Site (NFSS), near Lewiston, New York. These wastes resulted from the cleanup of soils that were contaminated above the guidelines for unrestricted use of property. An alternative to long-term management of these wastes on land is dispersal in the ocean. A scenario for ocean disposal is present

  17. Closure Report for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31

    Corrective Action Unit (CAU) 139 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Waste Disposal Sites' and consists of the following seven Corrective Action Sites (CASs), located in Areas 3, 4, 6, and 9 of the Nevada Test Site: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Closure activities were conducted from December 2008 to April 2009 according to the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 139 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. Closure activities are summarized. CAU 139, 'Waste Disposal Sites,' consists of seven CASs in Areas 3, 4, 6, and 9 of the NTS. The closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 139 as documented in this CR: (1) At CAS 03-35-01, Burn Pit, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (2) At CAS 04-08-02, Waste Disposal Site, an administrative UR was implemented. No postings or post-closure monitoring are required. (3) At CAS 04-99-01, Contaminated Surface Debris, soil and debris were removed and disposed as LLW, and debris was removed and disposed as sanitary waste. (4) At CAS 06-19-02, Waste Disposal Site/Burn Pit, no work was performed. (5) At CAS 06-19-03, Waste Disposal Trenches, a native soil cover was installed, and a UR was implemented. (6) At CAS 09-23-01, Area 9 Gravel Gertie, a UR was implemented. (7) At CAS 09-34-01, Underground Detection Station, no work was performed.

  18. Environmental Management Waste Management Facility (EMWMF) at Oak Ridge

    Office of Environmental Management (EM)

    Independent Technical Review Report: Oak Ridge Reservation Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 1 February 2008 (v3.0) i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 2 3. LINE OF INQUIRY NO. 1 2 4. LINE OF INQUIRY NO. 2 4 4.1 Compaction Testing of Soil and Debris Mixtures 5 4.2 Final

  19. Calcium spray dryer waste management: Design guidelines: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    Calcium spray drying is a commercially available and applied technology used to control SO/sub 2/ emissions. This process is rapidly gaining utility acceptance. Because physical and chemical properties of wastes generated by calcium spray drying differ from those of conventional coal combustion by-products (fly ash and scrubber sludge) typical waste management practices may need to be altered. This report presents technical guidelines for designing and operating a calcium spray drying waste management system. Waste transfer, storage, pretreatment/conditioning, transport and disposal are addressed. The report briefly describes eighteen existing or planned calcium spray drying waste management systems. Results of waste property tests conducted as part of this study, and test data from other studies are reported and compared. Conceptual designs of both new and retrofit calcium spray drying waste management systems also are presented to demonstrate the economic impact of spray drying on waste management. Parametric cost sensitivity analyses illustrate the impact of significant design parameters on waste management costs. Existing calcium spray drying waste management experiences, as well as spray drying waste property data provided the basis for guideline development. Because existing calcium spray drying facilities burn low sulfur coal, this report is considered applicable only to calcium spray drying wastes produced from low sulfur coal. At this time, calcium spray drying is not expected to be feasible for high sulfur coal applications.

  20. Career Map: Site/Plant Manager | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site/Plant Manager Career Map: Site/Plant Manager A female plant manager reads site plans on large sheets of paper next to several electrical components. Site/Plant Manager Position Title Site/Plant Manager Alternate Title(s) n/a Education & Training Level Mid-level, Bachelor's degree preferred, not always required Education & Training Level Description Wind plant managers need at least a high school diploma and years of experience in renewable energy, mechanical, electrical, field

  1. Integrated solid waste management of Scottsdale, Arizona

    SciTech Connect (OSTI)

    1995-11-01

    The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the city of Scottsdale, Arizona, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may per-form manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of MSW in Scottsdale; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

  2. Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site

    SciTech Connect (OSTI)

    Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

    2004-07-09

    A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

  3. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    SciTech Connect (OSTI)

    Wiersma, Bruce J.

    2014-02-08

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of the instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.

  4. The Performance of Underground Radioactive Waste Storage Tanks at the Savannah River Site: A 60-Year Historical Perspective

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wiersma, Bruce J.

    2014-02-08

    The Savannah River Site produced weapons-grade materials for nearly 35 years between 1953 and 1988. The legacy of this production is nearly 37 million gallons of radioactive waste. Since the 1950s, the liquid waste has been stored in large, underground carbon steel waste tanks. During the past 20 years, the site has begun to process the waste so that it may be stored in vitrified and grout forms, which are more suitable for long-term storage. Over the history of the site, some tanks have experienced leakage of the waste to the secondary containment. This article is a review of themore » instances of leakage and corrosion degradation that the tanks and associated equipment have experienced since the first tanks were built. Furthermore, the activities that the site has taken to mitigate the degradation and manage the service life of the tank for its anticipated lifetime are reviewed.« less

  5. Nuclear waste management. Quarterly progress report, April-June 1981

    SciTech Connect (OSTI)

    Chikalla, T.D.; Powell, J.A.

    1981-09-01

    Reports and summaries are presented for the following: high-level waste process development; alternative waste forms; TMI zeolite vitrification demonstration program; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton implantation; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclides in soils; handbook of methods to decrease the generation of low-level waste; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; and analysis of spent fuel policy implementation.

  6. Waste Encapsulation and Storage Facility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Encapsulation and Storage Facility About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal

  7. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as Appendix F of this report. The requirements are summarized in Section 5.2 of this report. The proposed post-closure requirements consist of visual inspections to determine the condition of postings and radiological surveys to verify contamination has not migrated. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 547; and (2) The transfer of CAU 547 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  8. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

  9. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    SciTech Connect (OSTI)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  10. Calcination/dissolution testing for Hanford Site tank wastes

    SciTech Connect (OSTI)

    Colby, S.A.; Delegard, C.H.; McLaughlin, D.F.; Danielson, M.J.

    1994-07-01

    Thermal treatment by calcination offers several benefits for the treatment of Hanford Site tank wastes, including the destruction of organics and ferrocyanides and an hydroxide fusion that permits the bulk of the mostly soluble nonradioactive constituents to be easily separated from the insoluble transuranic residue. Critical design parameters were tested, including: (1) calciner equipment design, (2) hydroxide fusion chemistry, and (3) equipment corrosion. A 2 gal/minute pilot plant processed a simulated Tank 101-SY waste and produced a free flowing 700 C molten calcine with an average calciner retention time of 20 minutes and >95% organic, nitrate, and nitrite destruction. Laboratory experiments using actual radioactive tank waste and the simulated waste pilot experiments indicate that 98 wt% of the calcine produced is soluble in water, leaving an insoluble transuranic fraction. All of the Hanford Site tank wastes can benefit from calcination/dissolution processing, contingent upon blending various tank waste types to ensure a target of 70 wt% sodium hydroxide/nitrate/nitrite fluxing agent. Finally, corrosion testing indicates that a jacketed nickel liner cooled to below 400 C would corrode <2 mil/year (0.05 mm/year) from molten calcine attack.

  11. LANL completes excavation of 1940s waste disposal site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communications Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos

  12. Waste Isolation Pilot Plant 2005 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-13

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated disposal rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel of seven rooms has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. One of the main attributes of salt, as a rock formation in which to isolate radioactive waste, is the ability of the salt to creep, that is, to deform continuously over time. Excavations into which the waste-filled drums are placed will close eventually, flowing around the drums and sealing them within the formation.

  13. Current status of the radioactive waste management programme in Spain

    SciTech Connect (OSTI)

    Lang-Lenton Leon, Jorge; Garcia Neri, Emilio

    2007-07-01

    Since 1984, ENRESA is responsible of the radioactive waste management and the decommissioning of nuclear installations in Spain. The major recent challenge has been the approval of the Sixth General Radioactive Waste Plan (GRWP) as 'master plan' of the activities to be performed by ENRESA. Regarding the LILW programme, the El Cabril LILW disposal facility will be described highlighting the most relevant events especially focused on optimizing the existing capacity and the start-up of a purpose -built disposal area for VLLW. Concerning the HLW programme, two aspects may be distinguished in the direct management of spent fuel: temporary storage and long-term management. In this regards, a major challenge has been the decision adopted by the Spanish Government to set up a Inter-ministerial Committee for the establishment of the criteria that must be met by the site of the Centralized Intermediate Storage (CTS) facility as the first and necessary step for the process. Also the developments of the long-term management programme will be presented in the frame of the ENRESA's R and D programme. Finally, in the field of decommissioning they will be presented the PIMIC project at the CIEMAT centre and the activities in course for the decommissioning of Jose Cabrera NPP. (authors)

  14. Recommendation 171: Commendation for Waste Information Management System |

    Office of Environmental Management (EM)

    Department of Energy 1: Commendation for Waste Information Management System Recommendation 171: Commendation for Waste Information Management System The ORSSAB commends DOE and Florida International University for development of the Waste Information Management System and strongly recommends that it be periodically updated and improved. PDF icon Recommendation 171 PDF icon DOE response to recommendation 171 PDF icon DOE Gelles response to recommendation 171 More Documents & Publications

  15. Advanced Waste Management Now Available as Accredited SEP Verification Body

    Energy Savers [EERE]

    | Department of Energy Superior Energy Performance » Advanced Waste Management Now Available as Accredited SEP Verification Body Advanced Waste Management Now Available as Accredited SEP Verification Body October 24, 2014 - 2:58pm Addthis The U.S. Department of Energy is pleased to announce that Advanced Waste Management Systems Inc. (AWM) is now a fully accredited Verification Body for Superior Energy Performance(tm) (SEP). This ANSI-ANAB accreditation enables AWM to provide third-party

  16. Enterprise Assessments Review of Radioactive Waste Management at the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portsmouth Gaseous Diffusion Plant - December 2015 | Department of Energy Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 Enterprise Assessments Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant - December 2015 December 2015 Review of Radioactive Waste Management at the Portsmouth Gaseous Diffusion Plant The U.S. Department of Energy (DOE) Office of Nuclear Safety and Environmental Assessments, within the independent

  17. Letter to Congress RE: Office of Civilian Radioactive Waste Management's

    Office of Environmental Management (EM)

    Annual Financial Report | Department of Energy to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report Letter to Congress RE: Office of Civilian Radioactive Waste Management's Annual Financial Report The following document is a letter from the Secretary of Energy to the Honorable Joseph R. Biden regarding the U.S. Department of Energy's Office of Civilian Radioactive Waste Management's Annual Financial Report for the years ended September 30, 2009 and 2008

  18. Solid waste management challenges for cities in developing countries

    SciTech Connect (OSTI)

    Abarca Guerrero, Lilliana; Maas, Ger; Hogland, William

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.

  19. DOE Fellows Join Waste Management Conference | Department of Energy

    Office of Environmental Management (EM)

    Fellows Join Waste Management Conference DOE Fellows Join Waste Management Conference March 31, 2014 - 12:00pm Addthis DOE Fellows gather with EM Lead Foreign Affairs Specialist Ana Han, front row, left to right, EM Acting Assistant Secretary David Huizenga, and Florida International University Applied Research Director Dr. Leonel E. Lagos at the Waste Management 2014 Conference. DOE Fellows gather with EM Lead Foreign Affairs Specialist Ana Han, front row, left to right, EM Acting Assistant

  20. Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Full Document...