Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Waste Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management Facility ISO 14001 Registered A wide range of wastes are generated during the normal course of business at BNL. These waste streams are common to many businesses...

2

Solid Waste Management Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

3

Solid Waste Management Program Plan  

SciTech Connect

The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

Duncan, D.R.

1990-08-01T23:59:59.000Z

4

SRS - Programs - Solid Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

manner possible. SRS's waste is categorized as transuranic, low-level, hazardous, mixed, high-level or sanitary waste. SWM is responsible for managing all of these...

5

Solid Waste Management Program (South Dakota) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Solid Waste Management Program (South Dakota) Solid Waste Management Program (South Dakota) Eligibility Utility Fed....

6

Mixed Waste Focus Area program management plan  

SciTech Connect

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

7

Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

3MS Environment and Waste Management Programs Environment and Waste Management Programs Environment and Waste Management Programs AN L-934 Surveillance of Site A and Plot M...

8

Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment and Waste Management Programs Environment and Waste Management Programs Environment and Waste Management Programs AN L-9213 Surveillance of Site A and Plot M Report...

9

Management Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

r Environment and Waste Management Programs Environment and Waste Management Programs Environment and Waste Management Programs ANL-949 Surveillance of Site A and Plot M Report...

10

Emergency Management Program Review at the Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ......

11

Waste Management Program. Technical progress report, October-December 1982  

SciTech Connect

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1983-07-01T23:59:59.000Z

12

Waste Management Program. Technical progress report, Aporil-June 1983  

Science Conference Proceedings (OSTI)

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1984-02-01T23:59:59.000Z

13

Sandia National Laboratories, California Waste Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2010-02-01T23:59:59.000Z

14

Mission Plan for the Civilian Radioactive Waste Management Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the Department of Energy (DOE) has prepared this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct., and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these

15

Waste Management Program. Technical progress report, July-December, 1984  

Science Conference Proceedings (OSTI)

This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement.

None

1986-10-01T23:59:59.000Z

16

ICPP waste management technology development program  

SciTech Connect

A program has been implemented at the Idaho Chemical Processing Plant (ICPP) to identify technologies for disposing of sodium-bearing liquid radioactive waste, radioactive calcine, and irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The sodium bearing waste and calcine, have resulted from ICPP reprocessing operations conducted since 1953. The irradiated spent fuel consists of various fuel compositions and ranges from complete fuel elements to fuel pieces for which no reprocessing flowsheet had been identified. The program includes a very strong systems analysis program to assure complete consideration of all issues (technical, economic, safety, environmental, etc.) affecting final disposal of the waste and spent fuel. A major goal of the program is to assure the final implementation is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

17

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

18

Solid Waste Management Policy and Programs (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy and Programs (Minnesota) Policy and Programs (Minnesota) Solid Waste Management Policy and Programs (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse environmental impacts, encourage

19

Emergency Management Program Review at the Waste Isolation Pilot Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazards Survey and Hazards Assessments .................................. 6 Program Plans, Procedures, and Responder Performance ........ 9 Training, Drills, and Exercises ..................................................... 13 Emergency Public Information and Offsite Response Interfaces ....................................................................................... 15 Feedback and Continuous Improvement Process

20

Civilian radioactive waste management program plan. Revision 2  

SciTech Connect

This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

22

Fuzzy parametric programming model for multi-objective integrated solid waste management under uncertainty  

Science Conference Proceedings (OSTI)

Solid waste management is increasingly becoming a challenging task for the municipal authorities due to increasing waste quantities, changing waste composition, decreasing land availability for waste disposal sites and increasing awareness about the ... Keywords: Fuzzy parametric programming, Integrated solid waste management system, Long term planning, Multi-objective and multi-period planning, Solid waste management

Amitabh Kumar Srivastava; Arvind K. Nema

2012-04-01T23:59:59.000Z

23

Fuel cycle and waste management demonstration in the IFR Program  

Science Conference Proceedings (OSTI)

Argonne's National Laboratory's Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. (Argonne National Lab., Idaho Falls, ID (United States)); Laidler, J.J.; Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

24

Fuel cycle and waste management demonstration in the IFR Program  

SciTech Connect

Argonne`s National Laboratory`s Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Laidler, J.J.; Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States)

1992-09-01T23:59:59.000Z

25

Transuranic Solid Waste Management Programs. Progress report, July-- December 1974  

SciTech Connect

Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory by the Energy Research and Development Administration Division of Waste Management and Transportation. Under the Transuranic Waste Research and Development Program, a completed evaluation of stainless steel drums showed that although the material has superior corrosion-resistant properties, its higher cost makes a thorough investigation of other container systems mandatory. A program to investigate more economical, nonmetallic containers is proposed. Preliminary fire tests in mild steel drums have been completed with fire propagation not appearing to be a problem unless container integrity is lost. Investigation of the corrosion of mild steel drums and the evaluation of potential corrosion inhibitors, in a variety of humid environments, continues. Experimental results of both laboratory and field investigations on radiolysis of transuranic elements in hydrogenous waste are discussed. Progress in the development of instrumentation for monitoring and segregating low-level wastes is described. New plans and developments for the Transuranic-Contaminated Solid Waste Treatment Development Facility are presented. The current focus is on a comparison of all alternative waste reduction systems toward a relative Figure of Merit with universal application. Drawings, flowsheets, and building layouts are included, and the proposed incinerator device is detailed. The release mechanisms, inter- and intraregional transport mechanisms, and exhumation studies relevant to the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas Program are defined and analyzed. A detailed description is given of the formulation of the computer simulation scheme for the intraregional biological transport model. (auth)

1975-10-01T23:59:59.000Z

26

High-level waste management technology program plan  

Science Conference Proceedings (OSTI)

The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

Harmon, H.D.

1995-01-01T23:59:59.000Z

27

Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

1995-03-01T23:59:59.000Z

28

Tank waste remediation system nuclear criticality safety program management review  

SciTech Connect

This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.

BRADY RAAP, M.C.

1999-06-24T23:59:59.000Z

29

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

30

Sandia National Laboratories, California Waste Management Program annual report : February 2009.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2009-02-01T23:59:59.000Z

31

Office of Civilian Radioactive Waste Management Transportation Program: Tribal Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS BREAKOUT COMMUNICATIONS BREAKOUT SESSION Jay Jones Office of Civilian Radioactive Waste Management April 22, 2004 Albuquerque, New Mexico 2 Session Overview * Meeting objectives and expectations * Topic Group Background and History * Transportation information products - Information Product Survey results - Alliance for Transportation Research Institute Assessments * Discussion on future DOE communications * Information Display 3 Objectives and Expectations * OCRWM communications approach - Transportation Strategic Plan Collaborative effort with stakeholders Two-way interactions with program participants and public - provide information and receive feedback * Implement communications strategy - Identify stakeholders and issues - Engage nationally, regionally and with States - Participate through discussion and issue resolution

32

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

33

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

Washington TRU Solutions

2002-09-24T23:59:59.000Z

34

Environmental management 1994. Progress and plans of the environmental restoration and waste management program  

SciTech Connect

The Department of Energy currently faces one of the largest environmental challenges in the world. The Department`s Environmental Restoration and Waste Management program is responsible for identifying and reducing risks and managing waste at 137 sites in 34 States and territories where nuclear energy or weapons research and production resulted in radioactive, hazardous, and mixed waste contamination. The number of sites continues to grow as facilities are transferred to be cleaned up and closed down. The program`s main challenge is to balance technical and financial realities with the public`s expectations and develop a strategy that enables the Department to meet its commitments to the American people. This document provides a closer look at what is being done around the country. Included are detailed discussions of the largest sites in the region, followed by site activities organized by state, and a summary of activities at FUSRAP and UMTRA sites in the region.

Not Available

1994-02-01T23:59:59.000Z

35

Environmental Statements, Availability, Etc., Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8679 8679 Thursday June 1, 1995 Part III Department of Energy Environmental Statements, Availability, Etc.; Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs: Notice 28680 Federal Register / Vol. 60, No. 105 / Thursday, June 1, 1995 / Notices DEPARTMENT OF ENERGY Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The Department of Energy has issued a Record of Decision on Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. The Record of Decision includes a Department-wide decision to

36

Savannah River Site Waste Management Program Plan, FY 1993. Revision 1  

SciTech Connect

The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

1993-06-01T23:59:59.000Z

37

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

38

National low-level waste management program radionuclide report series, Volume 15: Uranium-238  

Science Conference Proceedings (OSTI)

This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

Adams, J.P.

1995-09-01T23:59:59.000Z

39

Waste Logic Decommissioning Waste Manager 2.0 Users Manual  

Science Conference Proceedings (OSTI)

The Decommissioning Waste Manager, part of EPRI's Waste Logic series of computer programs, analyzes decommissioning waste cost and volume reduction strategies with the intent of quantifying the existing waste management program for any given waste generator.

2001-10-29T23:59:59.000Z

40

Summary of non-US national and international radioactive waste management programs 1981  

SciTech Connect

Many nations and international agencies are working to develop improved technology and industrial capability for neuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of May 1981.

Harmon, K.M.; Kelman, J.A.

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Summary of non-US national and international radioactive waste management programs 1980  

Science Conference Proceedings (OSTI)

Many nations and international agencies are working to develop improved technology and industrial capability for nuclear fuel cycle and waste management operations. The effort in some countries is limited to research in university laboratories on treating low-level waste from reactor plant operations. In other countries, national nuclear research institutes are engaged in major programs in all phases of the fuel cycle and waste management, and there is a national effort to commercialize fuel cycle operations. Since late 1976, staff members of Pacific Northwest Laboratory have been working under US Department of Energy sponsorship to assemble and consolidate openly available information on foreign and international nuclear waste management programs and technology. This report summarizes the information collected on the status of fuel cycle and waste management programs in selected countries making major efforts in these fields as of the end of January 1980.

Harmon, K.M.; Kelman, J.A.; Stout, L.A.; Hsieh, K.A.

1980-03-01T23:59:59.000Z

42

Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management's Yucca Mountain Project and the Office of Nuclear Energy's Advanced Fuel Cycle Initiative (AFCI) and Global Nuclear Energy Partnership (GNEP) programs. Efforts...

43

National low-level waste management program radionuclide report series, Volume 14: Americium-241  

Science Conference Proceedings (OSTI)

This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.

Winberg, M.R.; Garcia, R.S.

1995-09-01T23:59:59.000Z

44

Proceedings of the Third Annual Information Meeting DOE Low-Level Waste-Management Program  

SciTech Connect

The Third Annual Participants Information Meeting of the Low-Level Waste Management Program was held in New Orleans, Louisiana, November 4-6, 1981 The specific purpose was to bring together appropriate representatives of industry, USNRC, program management, participating field offices, and contractors to: (1) exchange information and analyze program needs, and (2) involve participants in planning, developing and implementing technology for low-level waste management. One hundred seven registrants participated in the meeting. Presentation and workshop findings are included in these proceedings under the following headings: low-level waste activities; waste treatment; shallow land burial; remedial action; greater confinement; ORNL reports; panel workshops; and summary. Forty-six papers have been abstracted and indexed for the data base.

Large, D.E.; Lowrie, R.S.; Stratton, L.E.; Jacobs, D.G. (comps.)

1981-12-01T23:59:59.000Z

45

Spent Fuel and Waste Management Technology Development Program. Annual progress report  

SciTech Connect

This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Bryant, J.W.

1994-01-01T23:59:59.000Z

46

Quality Assurance Program Plan (QAPP) Waste Management Project  

Science Conference Proceedings (OSTI)

The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

HORHOTA, M.J.

2000-12-21T23:59:59.000Z

47

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

48

Idaho Chemical Processing Plant spent fuel and waste management technology development program plan: 1994 Update  

SciTech Connect

The Department of Energy has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage since 1951 and reprocessing since 1953. Until April 1992, the major activity of the ICPP was the reprocessing of SNF to recover fissile uranium and the management of the resulting high-level wastes (HLW). In 1992, DOE chose to discontinue reprocessing SNF for uranium recovery and shifted its focus toward the continued safe management and disposition of SNF and radioactive wastes accumulated through reprocessing activities. Currently, 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3,800 cubic meters of calcine waste, and 289 metric tons heavy metal of SNF are in inventory at the ICPP. Disposal of SNF and high-level waste (HLW) is planned for a repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will be properly stored and prepared for final disposal in accordance with regulatory drivers. This Plan presents a brief summary of each of the major elements of the SF&WMTDP; identifies key program assumptions and their bases; and outlines the key activities and decisions that must be completed to identify, develop, demonstrate, and implement a process(es) that will properly prepare the SNF and radioactive wastes stored at the ICPP for safe and efficient interim storage and final disposal.

1994-09-01T23:59:59.000Z

49

Federal Energy Management Program: Municipal Solid Waste Resources...  

NLE Websites -- All DOE Office Websites (Extended Search)

The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal...

50

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

51

Office of Civilian Radioactive Waste Management Program Cost and Schedule Baseline; Revision 3  

SciTech Connect

The purpose of this document is to establish quantitative expressions of proposed costs and schedule to serve as a basis for measurement of program performance. It identifies the components of the Program Cost and Schedule Baseline (PCSB) that will be subject to change control by the Executive (Level 0) and Program (Level 1) Change Control Boards (CCBS) and establishes their baseline values. This document also details PCSB reporting, monitoring, and corrective action requirements. The Program technical baseline contained in the Waste Management System Description (WMSD), the Waste Management System Requirements (WMSR), and the Physical System Requirements documents provide the technical basis for the PCSB. Changes to the PCSB will be approved by the Pregrain Change Control Board (PCCB)In addition to the PCCB, the Energy System Acquisition Advisory Board Baseline CCB (ESAAB BCCB) will perform control functions relating to Total Project Cost (TPC) and major schedule milestones for the Yucca Mountain Site Characterization Project and the Monitored Retrievable Storage (MRS) Project.

NONE

1992-09-01T23:59:59.000Z

52

Hazardous Waste Program (Alabama)  

Energy.gov (U.S. Department of Energy (DOE))

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

53

Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

1993-09-01T23:59:59.000Z

54

Summary of non-US national and international fuel cycle and radioactive waste management programs 1982  

SciTech Connect

Brief program overviews of fuel cycle, spent fuel, and waste management activities in the following countries are provided: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, German Federal Republic, India, Italy, Japan, Republic of Korea, Mexico, Netherlands, Pakistan, South Africa, Spain, Sweden, Switzerland, Taiwan, USSR, and the United Kingdom. International nonproliferation activities, multilateral agreements and projects, and the international agencies specifically involved in the nuclear fuel cycle are also described.

Harmon, K.M.; Kelman, J.A.

1982-08-01T23:59:59.000Z

55

ORNL long-range environmental and waste management plan: Program overview and summary  

SciTech Connect

The primary purpose of this report is to provide a thorough and systematic planning document to reflect the continuing process of site assessment, strategy development, and planning for the current and long-term control of environmental issues, waste management practices, and remedial action requirements. The docuemnt also provides an estimate of the resources required to implement the current plan. This document is not intended to be a budget document: it is, however, intended to provide guidance to both Martin Marietta Energy Systems, Inc., and the US Department of Energy (DOE) Management as to the near order of magnitude of the resources (primarily funding requirements) and the time frame required to execute the strategy in the present revision of the plan. The near-term (one to three years) part of the plan is a realistic assessment of the current program and ongoing capital projects and reflects the efforts preceived to be necessary to comply with all current state and federal regulations and DOE orders. It also should be in general agreement with current budget (funding) requests and obligations for these immediate years. Beyond the immediate time frame, the document reflects the strategy and the project and funding estimates as a snapshot at the time of publication. Annual revision will reflect the continuing evoltuion and development of environmental and waste management processes, characterizations, remedial actions, regulations, an strategies for the establishment and conduct of a comprehensive environmental and waste management program. 15 figs., 10 tabs.

Bates, L.D.; Berry, J.B.; Butterworth, G.E.; du Mont, S.P.; Easterday, C.A.; Geisler, A.H.; Hill, L.G.; Kendrick, C.M.; McNeese, L.E.; Myrick, T.E.; Pudelek, R.E.; Rohwer, P.S.; Scanlan, T.F.; Stratton, L.E.; Trabalka, J.R.; Youngblood, E.L.

1988-04-01T23:59:59.000Z

56

Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.

Sun Wei [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Huang, Guo H., E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing 102206 (China); Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Lv Ying; Li Gongchen [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

2012-06-15T23:59:59.000Z

57

LFRG Program Management Plan  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the EM Low-Level Waste Disposal Facility Federal Review Group Program Management Plan (LFRG PMP) is to establish the LFRG roles and responsibilities, the LFRG management processes,...

58

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

59

Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management  

SciTech Connect

The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

Bissani, M; Fischer, R; Kidd, S; Merrigan, J

2006-04-03T23:59:59.000Z

60

SRS - Programs - Waste Solidification  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Solidification Waste Solidification The two primary facilities operated within the Waste Solidification program are Saltstone and the Defense Waste Processing Facility (DWPF). Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. Each DWPF canister is 10 feet tall and 2 feet in diameter, and typically takes a little over a day to fill. The largest radioactive waste glassification plant in the world, DWPF converts the high-level liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for immobilizing high-level radioactive liquids into a more stable, manageable form until a federal

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Continuous-discrete simulation-based decision making framework for solid waste management and recycling programs  

Science Conference Proceedings (OSTI)

Solid waste produced as a by-product of our daily activities poses a major threat to societies as populations grow and economic development advances. Consequently, the effective management of solid waste has become a matter of critical importance for ... Keywords: Continuous-discrete modeling, Modeling of large scale systems, Recycling systems, Simulation based optimization, Solid waste management systems

Eric D. Antmann, Xiaoran Shi, Nurcin Celik, Yading Dai

2013-07-01T23:59:59.000Z

62

Solid Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

63

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

64

Report to Congress on reassessment of the Civilian Radioactive Waste Management Program  

SciTech Connect

In the Report of the House Committee on Appropriations (House Report No. 101-96) on the Energy and Water Development Appropriation Act, 1990 (P.L. 101-101), the Committee directed the Department of Energy (DOE) ``{hor_ellipsis} to submit a report within 60 days of enactment {hor_ellipsis} which describes in detail how the Department plans to respond to the Committee`s {hor_ellipsis} concerns dealing with endemic schedule slips, problems in management structure, and lack of integrated contractor efforts.`` This report has been prepared in response to the above-mentioned Congressional directive. It is based on a comprehensive review that the Secretary of Energy has recently completed of the Civilian Radioactive Waste Management Program. The Secretary`s review has led to the development of a three-point action plan for restructuring the program. This plan is explained in this report.

1989-11-01T23:59:59.000Z

65

ORNLIRASA-95117 LIFE SCIENCES DIVISION Environmental Restoration and Waste Management Non-Defense Programs  

Office of Legacy Management (LM)

95117 95117 LIFE SCIENCES DIVISION Environmental Restoration and Waste Management Non-Defense Programs (Activity No. EX 20 20 01 0; ADS1310AA) Results of the Independent Radiological Verification Survey at the Former Chapman Valve Manufacturing Company, Indian Orchard, Massachusetts (cIooo1v) R. E. Rodriguez and C. A. Johnson Date issued -May 1997 Investigation Team R. D. Foley-Measurement Applications and Development Manager M. E. Murray-FUSRAP Project Director R. E. Rodriguez-Field Survey Team Leader Survey Team Members R. C. Gosslee V. P. Patania R. E. Rodriguez Work performed by the Measurement Applications and Development Group Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6285 managed by LOCKHEED MARTIN ENERGY RESEARCH CORP.

66

EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary-1995.html[6/27/2011 12:08:32 PM] Summary-1995.html[6/27/2011 12:08:32 PM] SUMMARY DOE/EIS-0203-F Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement Summary April 1995 U.S. Department of Energy Office of Environmental Management Idaho Operations Office Department of Energy Washington, DC 20585 April 1995 Dear Citizen: This is a summary of the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement. The Department of Energy and

67

Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program  

SciTech Connect

The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms.

Taylor, L.L.; Shikashio, R.

1993-09-01T23:59:59.000Z

68

HEALXH AND SAFEIY RFSEARCH DIVISION Waste Management Research and Development Programs  

Office of Legacy Management (LM)

HEALXH AND SAFEIY RFSEARCH DIVISION HEALXH AND SAFEIY RFSEARCH DIVISION Waste Management Research and Development Programs (Activity No. AH 10 05 00 0; NEAHC01) RADIOLOGICAL SURVEY OFTHE FORMER AEROPROJECTS, FACILITY, WEST cI%mER, PENNSYL.VANIA W. D. Cottrell and R. F. Carrier Date published - October 1990 Investigation Team R. E. Swaja - Measurement Applications and Development Manager W. D. Cottrell - NSRAP Project Director Suwey Team Members J. A Roberts* J. L. Quillent l Bechtel National, Inc tNuclear Fuel Services, Inc Work performed by the MEASUREMENT APPLXATIONS AND DEVELOPMENT GROUP Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 378314285 operated by MARTINMARIEITAENERGYSYSIEM&INC for the U. S. DEF+ARm OF ENERGY under contract DE-ACO5-840R21400 ACKNOWLEDGMENTS ...................

69

Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 -- a fee levied on electricity generated in commercial nuclear power plants -- is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee and is consistent with the program strategy and plans contained in the DOE`s Draft 1988 Mission Plan Amendment. The total-system cost for the system with a repository at Yucca Mountain, Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $24 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $31 to $33 billion, depending on the quantity of spent fuel to be disposed of. The $7 billion cost savings for the single-repository system in comparison with the two-repository system is due to the elimination of $3 billion for second-repository development and $7 billion for the second-repository facility. These savings are offset by $2 billion in additional costs at the first repository and $1 billion in combined higher costs for the MRS facility and transportation. 55 refs., 2 figs., 24 tabs.

NONE

1989-05-01T23:59:59.000Z

70

Waste Management Process Improvement Project  

SciTech Connect

The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

Atwood, J.; Borden, G.; Rangel, G. R.

2002-02-25T23:59:59.000Z

71

Oak Ridge National Laboratory Waste Management Plan  

Science Conference Proceedings (OSTI)

The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

Not Available

1992-12-01T23:59:59.000Z

72

Waste Logic(TM): Decommissioning Waste Manager, Version 2.1 and Solid Waste Manager, Version 2.1  

Science Conference Proceedings (OSTI)

Waste Logic(TM) Decommissioning Waste Manager, Version 2.1: Rising program costs and a more competitive business environment have made solid waste management a major cost concern. Effective management of solid waste can reduce long range operating costs for a large nuclear plant by millions of dollars. To assist waste managers in maximizing potential cost savings, EPRI developed the Waste Logic Decommissioning Waste Manager(TM) computer code. It provides a comprehensive methodology for capturing and quan...

2003-03-03T23:59:59.000Z

73

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

74

Interagency Review of the Department of Energy Environmental Restoration and Waste Management Program  

SciTech Connect

This report presents the findings of the Interagency Requirements Review of the Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) Program. The review was requested by Admiral Watkins to help determine the FY 1993 funding levels necessary to meet all legal requirements. The review was undertaken by analysts from the Office of Management and Budget (OMB) and Army Corps of Engineers, reporting to an Interagency Group (IAG) of senior Administration officials concerned with environmental cleanup issues. The purpose of the study was to determine the level of finding needed in FY 1993 for each ERWM Field Office to comply with all Federal, State, and local government legal requirements; all DOE Orders that establish standards for environment, safety and health (ES and H) management; and for prudent investments in other discretionary and management activities such as upgrading administrative buildings, information systems, etc. The study also reviewed the cost estimates supporting the ERWM proposed budget, including direct costs (labor, equipment) and indirect costs (administrative, landlord services, contractor overhead). The study did not analyze whether the Federal/State legal requirements and DOE Orders were necessary or whether the proposed clean-up remedies represent the most cost effective alternatives available.

1992-04-29T23:59:59.000Z

75

Guidance document for the preparation of waste management plans for the Environmental Restoration Program at Oak Ridge National Laboratory. Environmental Restoration Program  

SciTech Connect

A project waste management (WM) plan is required for all Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program remedial investigation, decommission and decontamination (D&D), and remedial action (RA) activities. The project WM plan describes the strategy for handling, packaging, treating, transporting, characterizing, storing, and/or disposing of waste produced as part of ORNL ER Program activities. The project WM plan also contains a strategy for ensuring worker and environmental protection during WM activities.

Clark, C. Jr.

1993-07-01T23:59:59.000Z

76

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

1997-05-20T23:59:59.000Z

77

18th U.S. Department of Energy Low-Level Radioactive Waste Management Conference. Program  

SciTech Connect

This conference explored the latest developments in low-level radioactive waste management through presentations from professionals in both the public and the private sectors and special guests. The conference included two continuing education seminars, a workshop, exhibits, and a tour of Envirocare of Utah, Inc., one of America's three commercial low-level radioactive waste depositories.

None

1997-05-20T23:59:59.000Z

78

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

79

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

80

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

82

Pennsylvania Source Term Tracking System. National Low-Level Waste Management Program  

SciTech Connect

The Pennsylvania Source Term Tracking System tabulates surveys received from radioactive waste generators in the Commonwealth of radioactive waste is collected each quarter from generators using the Low-Level Radioactive Waste Management Quarterly Report Form (hereafter called the survey) and then entered into the tracking system data base. This personal computer-based tracking system can generate 12 types of tracking reports. The first four sections of this reference manual supply complete instructions for installing and setting up the tracking system on a PC. Section 5 presents instructions for entering quarterly survey data, and Section 6 discusses generating reports. The appendix includes samples of each report.

1992-08-01T23:59:59.000Z

83

Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.  

SciTech Connect

Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.

Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory (Raytheon Ktech, Albuquerque, NM)

2011-11-01T23:59:59.000Z

84

Nevada National Security Site 2010 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2010 results. During 2010, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 10 and August 10, 2010; at UE5PW-2 on March 10, August 10, and August 25, 2010; and at UE5PW-3 on March 31, August 10, and August 25, 2010. Static water levels were measured at each of the three pilot wells on March 1, April 26, August 9, and November 9, 2010. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2010 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2011-01-01T23:59:59.000Z

85

EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

02-1995/voli.html[6/27/2011 12:23:34 PM] 02-1995/voli.html[6/27/2011 12:23:34 PM] DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement VOLUME II VOLUME II Part A COVER SHEET RESPONSIBLE AGENCIES: Lead Federal Agency: U.S. Department of Energy Cooperating Federal Agency: U.S. Department of the Navy TITLE: Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement. CONTACT: For further information on this Environmental Impact Statement call or contact: DOE Idaho Operations Office Bradley P. Bugger Office of Communications 850 Energy Drive, MS 1214 Idaho Falls, ID 83403-3189

86

EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

02-1995/voli.html[6/27/2011 12:23:34 PM] 02-1995/voli.html[6/27/2011 12:23:34 PM] DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement VOLUME II VOLUME II Part A COVER SHEET RESPONSIBLE AGENCIES: Lead Federal Agency: U.S. Department of Energy Cooperating Federal Agency: U.S. Department of the Navy TITLE: Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement. CONTACT: For further information on this Environmental Impact Statement call or contact: DOE Idaho Operations Office Bradley P. Bugger Office of Communications 850 Energy Drive, MS 1214 Idaho Falls, ID 83403-3189

87

Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)  

SciTech Connect

Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

Not Available

1980-10-01T23:59:59.000Z

88

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

89

Integrated waste management.  

E-Print Network (OSTI)

??Integrated waste management is considered from a systems approach, with a particular emphasis on advancing sustainability. The focus of the thesis is to examine the (more)

Seadon, Jeffrey Keith

2010-01-01T23:59:59.000Z

90

NIST Performance Management Program  

Science Conference Proceedings (OSTI)

NIST Performance Management Program. Performance ... appraisal. APMS and FWS Performance Management Programs: ...

2010-10-05T23:59:59.000Z

91

Presidential Management Fellows Program  

Science Conference Proceedings (OSTI)

Presidential Management Fellows Program. Summary: About the Program: The Presidential Management Fellows (PMF ...

2012-08-31T23:59:59.000Z

92

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

93

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

94

Hazardous Waste Management Training  

E-Print Network (OSTI)

Hazardous Waste Management Training Persons (including faculty, staff and students) working be thoroughly familiar with waste handling and emergency procedures ap- plicable to their job responsibilities before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

95

Nevada National Security Site 2011 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2011 results. During 2011, groundwater samples were collected and static water levels were measured at the three pilot wells surrounding the Area 5 RWMS. Samples were collected at UE5PW-1 on March 8, August 2, August 24, and October 19, 2011; at UE5PW-2 on March 8, August 2, August 23, and October 19, 2011; and at UE5PW-3 on March 8, August 2, August 23, and October 19, 2011. Static water levels were measured at each of the three pilot wells on March 1, June 7, August 1, and October 17, 2011. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Initial total organic carbon and total organic halides results for samples collected in August 2011 were above previous measurements and, in some cases, above the established investigation limits. However, after field sample pumps and tubing were disinfected with Clorox solution, the results returned to normal levels. Final results from samples collected in 2011 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2012-02-27T23:59:59.000Z

96

Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

97

Mixed Waste Management Guidelines  

Science Conference Proceedings (OSTI)

The management of mixed waste presents serious challenges to nuclear utilities. Regulatory and practical predicaments make compliance with the letter of all applicable regulations extremely difficult. Utility experts developed these guidelines to identify opportunities for improving work practices and regulatory compliance while minimizing any potential adverse impacts of mixed waste management.

1994-12-31T23:59:59.000Z

98

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect

Irradiated nuclear fuel has been reprocessed at the Idaho Chemical Processing Plant (ICPP) since 1953 to recover uranium-235 and krypton-85 for the US Department of Energy (DOE). The resulting acidic high-level liquid radioactive waste (HLLW) has been solidified to a high-level waste (HLW) calcine since 1963 and stored in stainless-steel bins enclosed in concrete vaults. Residual HLW and radioactive sodium-bearing waste are stored in stainless-steel underground tanks contained in concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also stored at INEL. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium. As a result of the decision to curtail reprocessing the ICPP Spent Fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the INEL. The plan was developed jointly by DOE and Westinghouse Idaho Nuclear Company, Inc., (WINCO) and with the concurrence of the State of Idaho.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-06-01T23:59:59.000Z

99

Establishment of review groups on US Department of Energy Environmental Restoration and Waste Management Program  

SciTech Connect

A primary purpose of this grant was the establishment of expert research review groups to help facilitate expanded and improved communications and information among states, public, federal agencies, contractors, and DOE, relative to national environmental and waste management issues/problems. The general objectives of this grant were: Research on the further participation avenues of industry and academia and provide appropriate research documentation concerning the implementation of multi-party agreements; Analysis of the impediments that delay the accomplishment of agreements between states and the federal government for environmental compliance, as well as an assessment of the public need for research because of the above agreements; Analysis of the impact of environmental actions on states, industry, academia, public and other federal agencies; Provide research to help facilitate an interactive system that provides the various involved parties the capability and capacity to strengthen their commitment to national environmental and waste management goals and objectives; and Furthering research of public education in the environmental arena and research of needed national education resources in scientific and technical areas related to environmental restoration and waste management.

Eyman, L.D.

1992-12-01T23:59:59.000Z

100

Solid Waste Management (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Kansas) Solid Waste Management (Kansas) Solid Waste Management (Kansas) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct, alter or operate a solid waste processing facility or a solid waste disposal area of a solid waste management system, except for clean rubble disposal sites, without first obtaining a permit from the secretary. Every person desiring to obtain a permit shall make application for such a permit on forms

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hazardous Waste Management (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

102

Technical changes that would contribute to success in the civilian radioactive waste management program; Revision 1  

SciTech Connect

This paper briefly reviews the history of the United States program for high-level waste disposal. It then describes the current DOE strategy for licensing and safety for a repository at Yucca Mountain, Nevada. Changes that have occurred since the origin of the program and since publication of the Site Characterization Plan are reviewed. These include changes in external circumstances, changes in technology and new understanding of Yucca Mountain. An alternative approach is then described, based on four key concepts: a simple safety case, reversibility, demonstrability, and decompling operation of a repository from the operation of reactors.

Ramspott, L.D.

1993-10-01T23:59:59.000Z

103

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

104

ANL Technical Support Program for DOE Environmental Restoration and Waste Management; Annual report, October 1992--September 1993  

SciTech Connect

This report is an overview of the progress during FY 1993 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defense Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are anticipated to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: reviewing and evaluating available data on parameters that will be important in establishing the long-term performance of glass in a repository environment; performing tests to further quantify the effects of important variables where there are deficiencies in the available data; and initiating long-term tests to determine glass performance under a range of conditions applicable to repository disposal.

Bates, J.K.; Bourcier, W.L.; Bradley, C.R. [and others

1994-06-01T23:59:59.000Z

105

ANL Technical Support Program for DOE Environmental Restoration and Waste Management. Annual report, October 1990--September 1991  

SciTech Connect

This report provides an overview of progress during FY 1991 for the Technical Support Program that is part of the ANL Technology Support Activity for DOE, Environmental Restoration and Waste Management (EM). The purpose is to evaluate, before hot start-up of the Defenses Waste Processing Facility (DWPF) and the West Valley Demonstration Project (WVDP), factors that are likely to affect glass reaction in an unsaturated environment typical of what may be expected for the candidate Yucca Mountain repository site. Specific goals for the testing program include the following: (1) to review and evaluate available information on parameters that will be important in establishing the long-term performance of glass in a repository environment; (2) to perform testing to further quantify the effects of important variables where there are deficiencies in the available data; and (3) to initiate long-term testing that will bound glass performance under a range of conditions applicable to repository disposal.

Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Bourcier, W.L.; Morgan, L.E.; Nielsen, J.K.; Steward, S.A. [Lawrence Livermore National Lab., CA (United States); Ewing, R.C.; Wang, L.M. [New Mexico Univ., Albuquerque, NM (United States); Han, W.T.; Tomozawa, M. [Rensselaer Polytechnic Inst., Troy, MI (United States)

1992-03-01T23:59:59.000Z

106

Economic impacts of the total nuclear waste management program envisioned for the United States  

SciTech Connect

This paper presents information on the costs of nuclear waste management and on the impacts of those costs on the price of power and on the capital and labor markets. It is assumed that the LWR would be the sole commercial reactor used through the year 2000. Two fuel cycle options are considered: the throwaway mode (spent fuel is waste), and the full recycle for comparison. Total costs are calculated for all facilities needed to store, package, and reposit all the spent fuel through the lifetime of 380 GW capacity installed by 2000 and operating for 30 y. The economic impact is: the price of power produced by the reactors would be increased by 1.4%; the capital for nuclear plants would apply to waste management; the average annual labor effort needed over the next 50 to 75 years is 3000 to 5000 man years; and the unit cost of spent fuel disposal is $129/kg ($119/kg for full recycle). 7 tables. (DLC)

Busch, L.; Zielen, A.J.; Parry, S.J.S.

1978-01-01T23:59:59.000Z

107

Chemical Engineering Division waste management programs. Quarterly report, April--June 1975  

SciTech Connect

Consolidation techniques for Zircaloy fuel-cladding hulls were studied. They included (1) further work on a pyrochemical-volatility scheme for separating the zirconium as the volatile tetrachloride and (2) ignition tests and shock- ignition tests on several Zircaloy materials to further characterize the pyrophoric behavior of Zircaloy and the impact on hulls management. Quantitative results on the reaction with molten zinc chloride are presented. A series of steel-melting experiments examined the compatibility of various crucible materials with the molten steel and provided information on the behavior (distribution) of CeO$sub 2$ and UO$sub 2$ (used as stand-ins for PuO$sub 2$). Examination of existing information on deep-well injection of industrial wastes and on low-level aqueous wastes from fuel reprocessing led to the conclusions that the technology is generally available from industrial practice, that costs are of the order of 10$sup -4$ mill/kWh, that environmental effects could be insignificant in normal operation (but could include contamination of groundwater and resources and also stimulation of minor earthquakes in maloperation), that legal constraints may be the most significant barrier to adopting the practice, and that the site of such an operation would best be at a fuel reprocessing plant located at one of the U. S. sedimentary basins. The conclusions and recommendations from a study of the reliability of high-level-waste canisters are presented. (auth)

Steindler, M.J.; Levitz, N.M.; Mecham, W.J.

1975-07-01T23:59:59.000Z

108

Environmental Management Waste Management Facility (EMWMF) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Environmental Management Search form Search Office of Environmental Management Services Waste Management Site & Facility Restoration...

109

ANL technical support program for DOE Environmental Restoration and Waste Management. Annual report, October 1991--September 1992  

Science Conference Proceedings (OSTI)

A program was established for DOE Environmental Restoration and Waste Management (EM) to evaluate factors that are anticipated to affect waste glass reaction during repository disposal, especially in an unsaturated environment typical of what may be expected for the proposed Yucca Mountain repository site. This report covers progress in FY 1992 on the following tasks: 1. A compendium of the characteristics of high-level nuclear waste borosilicate glass has been written. 2. A critical review of important parameters that affect the reactivity of glass in an unsaturated environment is being prepared. 3. A series of tests has been started to evaluate the reactivity of fully radioactive glasses in a high-level waste repository environment and compare it to the reactivity of synthetic, nonradioactive glasses of similar composition. 4. The effect of radiation upon the durability of waste glasses at a high glass surface area-to-liquid volume (SA/V) ratio and a high gas-to-liquid volume ratio will be assessed. These tests address both vapor and high SA/V liquid conditions. 5. A series of tests is being performed to compare the extent of reaction of nuclear waste glasses at various SAN ratios. Such differences in the SAN ratio may significantly affect glass durability. 6. A series of natural analogue tests is being analyzed to demonstrate a meaningful relationship between experimental and natural alteration conditions. 7. Analytical electron microscopy (AEM), infrared spectroscopys and nuclear resonant profiling are being used to assess the glass/water reaction pathway by identifying intermediate phases that appear on the reacting glass. Additionally, colloids from the leach solutions are being studied using AEM. 8. A technical review of AEM results is being provided. 9. A study of water diffusion involving nuclear waste glasses is being performed. 10. A mechanistically based model is being developed to predict the performance of glass over repository-relevant time periods.

Bates, J.K.; Bradley, C.R.; Buck, E.C.; Cunnane, J.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Gerding, T.J.; Gong, M.; Hoh, J.C.; Mazer, J.J.; Wronkiewicz, D.J. [Argonne National Lab., IL (United States); Bourcier, W.L.; Morgan, L.E.; Newton, L.; Nielsen, J.K.; Phillips, B.L. [Lawrence Livermore National Lab., CA (United States); Ewing, R.C.; Wang, L. [Univ. of New Mexico, Albuquerque, NM (United States); Li, H.; Tomozawa, M. [Rensselaer Polytechnic Inst., Troy, NY (United States)

1993-05-01T23:59:59.000Z

110

Integrating hazardous waste management into a multimedia pollution prevention paradigm. A protoype regulatory program for petroleum refinesments  

SciTech Connect

An emerging trend in environmental regulatory management promises enhanced environmental protection and more flexibility for regulated entities. This trend reflects three concepts. First, regulations designed to reduce one type of environmental pollution (e.g., air pollution) should not increase other types of pollution (e.g. hazardous waste). Second, pollution prevention is an important alternative to end-of-pipe control requirements. Third, offering polluting entities the flexibility of meeting certain performance criteria may produce better environmental results than prescribing specific technologies or approaches. A significant body of literature supports the need to develop regulatory programs that incorporate these concepts. However, there is little evidence that these concepts have been integrated into actual multimedia regulatory programs. Argonne National Laboratory and the U.S. Department of Energy are developing a prototype regulatory program for petroleum refineries that embraces these concepts. The development approach in this case study comprises several steps: (1) identifying and evaluating existing regulations governing petroleum refineries (if any); (2) characterizing expected future operating conditions of refineries; (3) setting goals for the regulatory program; (4) identifying and evaluating options for the program; (5) developing a prototype based on selected options; (6) identifying and addressing implementation issues; and (7) testing the prototype on a pilot basis. The approach being used in the U.S. effort is flexible and can be used in environmental management efforts throughout the Pacific Basin--in both developing and developed countries.

Elcock, D.; Gasper, J.

1996-12-31T23:59:59.000Z

111

Waste Management & Research290 Waste Manage Res 2002: 20: 290301  

E-Print Network (OSTI)

Waste Management & Research290 Waste Manage Res 2002: 20: 290­301 Printed in UK ­ all rights reserved Copyright © ISWA 2002 Waste Management & Research ISSN 0734­242X Introduction Chromated copper of sorting technologies for CCA treated wood waste Monika Blassino Helena Solo-Gabriele University of Miami

Florida, University of

112

Waste Management & Research172 Waste Manage Res 2003: 21: 172177  

E-Print Network (OSTI)

Waste Management & Research172 Waste Manage Res 2003: 21: 172­177 Printed in UK ­ all rights reserved Copyright © ISWA 2003 Waste Management & Research ISSN 0734­242X In many market segments of PVC in Germany increased by 9%, the fastest growth rate of all plastics. The waste stream in Germany

Columbia University

113

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

114

Virginia Waste Management Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

115

AVLIS production plant waste management plan  

Science Conference Proceedings (OSTI)

Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

Not Available

1984-11-15T23:59:59.000Z

116

Nuclear waste management. Semiannual progress report, October 1982-March 1983  

SciTech Connect

This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

Chikalla, T.D.; Powell, J.A. (comps.)

1983-06-01T23:59:59.000Z

117

DOE/EIS-0203-SA-01; Supplement Analysis of the INEEL Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Operations Office 850 Energy Drive Idaho Falls, Idaho 83401-1563 November 2002 SUBJECT: Conclusions of the Supplement Analysis of the DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs EIS (1995 EIS) ~ Dear Citizen: The Record of Decision (ROD) for the DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs EIS (1995 EIS) left several decisions concerning INEEL proposed actions outstanding. That is, decisions were deferred .pending further project definition, funding priorities, or appropriate review under NEPA" In May 2000 a team of DOE-ID program representatives and subject area technical specialists (interdisciplinary

118

Copenhagen Waste Management and Incineration  

E-Print Network (OSTI)

Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen 24 20092 Presentation · General introduction to Copenhagen Waste Management System · National incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste

Columbia University

119

Hazardous Waste Management (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

120

Solid waste management of Jakarta.  

E-Print Network (OSTI)

?? Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the (more)

Trisyanti, Dini

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

122

Waste Material Management: Energy and materials for industry  

DOE Green Energy (OSTI)

This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

Not Available

1993-05-01T23:59:59.000Z

123

Categorical Exclusion 4565, Waste Management Construction Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FornI FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is an attempt to cover the general activities that construction would perform in support of Waste Management activities. Work includes construction work performed in support of Waste Management Sustainability and Stewardship projects and programs to include: load waste into containers; open, manipulate containers; empty containers; decommission out-of-service equipment (includes removal of liquids, hazardous, and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls; operate wheeled and tracked equipment; general carpentry. Work will be performed on dirt, vegetated, graveled, or paved surfaces in

124

Waste Management Update by Frank Marcinowski  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DOE Environmental Management U.S. DOE Environmental Management Update on Waste Management (and other EM Mission Units) Frank Marcinowski Deputy Assistant Secretary for Waste Management ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD CHAIRS MEETING APRIL 18-19, 2012 PADUCAH, KENTUCKY www.em.doe.gov 2  Compliance update  Recent program accomplishments  FY 12 waste management priorities  FY 13 waste management priorities  Strategic goals related to waste and materials disposition  Update on Blue Ribbon Commission Related Activities  Update on DOE 435.1 revision  Update on Asset Revitalization Initiative Discussion Outline www.em.doe.gov 3  Office of Site Restoration (EM-10) o Soil and Ground Remediation o D&D & Facility Engineering

125

Waste management fiscal year 1998 progress report  

SciTech Connect

The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

1998-12-31T23:59:59.000Z

126

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

127

Fossil energy waste management. Technology status report  

SciTech Connect

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

128

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

129

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

130

Record of Decision for the Department of Energy's Waste Management Program; Treatment and Storage of Transuranic Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3630 3630 Federal Register / Vol. 63, No. 15 / Friday, January 23, 1998 / Notices to agreements DOE has entered into, such as those with States, relating to the treatment and storage of TRU waste. Future NEPA review could include, but would not necessarily be limited to, analysis of the need to supplement existing environmental reviews. DOE would conduct all such TRU waste shipments between sites in accordance with applicable transportation requirements and would coordinate these shipments with appropriate State, Tribal and local authorities. This Record of Decision was prepared in coordination with the Record of Decision issued on January 16, 1998, on disposal of DOE's TRU waste, which is based on the Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement (WIPP

131

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

132

Management of Solid Waste (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid waste and/or waste tires. The following solid waste disposal facilities require a solid waste permit prior to construction and/or operation: land disposal facilities; solid waste processing facilities, including: transfer stations; solid waste incinerators receiving waste from off-site sources; regulated medical waste

133

Comprehensive Municipal Solid Waste Management, Resource Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation...

134

Commercial radioactive waste minimization program development guidance  

SciTech Connect

This document is one of two prepared by the EG G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans.

Fischer, D.K.

1991-01-01T23:59:59.000Z

135

Commercial radioactive waste minimization program development guidance  

SciTech Connect

This document is one of two prepared by the EG&G Idaho, Inc., Waste Management Technical Support Program Group, National Low-Level Waste Management Program Unit. One of several Department of Energy responsibilities stated in the Amendments Act of 1985 is to provide technical assistance to compact regions Host States, and nonmember States (to the extent provided in appropriations acts) in establishing waste minimization program plans. Technical assistance includes, among other things, the development of technical guidelines for volume reduction options. Pursuant to this defined responsibility, the Department of Energy (through EG&G Idaho, Inc.) has prepared this report, which includes guidance on defining a program, State/compact commission participation, and waste minimization program plans.

Fischer, D.K.

1991-01-01T23:59:59.000Z

136

Plan for the management of radioactive waste, Savannah River Plant  

SciTech Connect

The following areas are covered in the Savannah River Plant's radioactive waste management plan: program administration; description of waste generating processes; waste management facilities; radioactive wastes stored; plans and budget projections; and description of decontamination and decommissioning . (LK)

1975-07-01T23:59:59.000Z

137

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG&G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG&G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

138

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

139

FAQS Qualification Card - Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Waste Management FAQS Qualification Card - Waste Management A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-WasteManagement.docx Description Waste Management Qualification Card More Documents & Publications FAQS Qualification Card - General Technical Base

140

Nonhazardous Solid Waste Management Regulations & Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Nonhazardous Solid Waste Management Regulations & Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transuranic solid waste management research programs. Progress report, January--June 1975  

DOE Green Energy (OSTI)

Tests continued to evaluate less costly fiber drums as alternate storage containers for low-level wastes. Tests completed to date indicated that the factory-applied fire retardants were not satisfactory; however, investigations of more promising coatings have been undertaken. The fiber drums were more satisfactory in other aspects. Expanded laboratory and field radiolysis experiments were performed. These were accompanied by investigations of H/sub 2/ diffusion through common waste packaging materials and through Los Alamos soil. Radiolysis studies were also initiated on wastes typical of Mound Laboratory. All results to date show that while H/sub 2/ is being slowly generated, the quantities are not excessive and should diffuse rapidly away. Construction of the TDF facility began and was 14 percent complete at the end of this reporting period. The incinerator was received, installed and checked out, and is operational. Additional specifications were developed and equipment procurement continued. Progress is reported on development of a system for evaluating radioactively contaminated solid waste burial sites. Source term data are summarized for some Los Alamos areas along with waste composition and configuration considerations. Physical and biotic transport pathways are discussed and development of modeling methods for projecting the environmental fate of transuranic materials is detailed.

Not Available

1976-03-01T23:59:59.000Z

142

Waste Management Quality Assurance Plan  

SciTech Connect

Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

Not Available

1993-11-30T23:59:59.000Z

143

Hazardous Waste Management Keith Williams  

E-Print Network (OSTI)

Hazardous Waste Management Keith Williams DES ­ Environmental Affairs Extension 53163 #12,100 Locally · 1998 Univ of Va $33,990 · 1998 Univ. of MD $0 !!!!! #12;Hazardous Waste Disposal Procedures Hazardous (Chemical) Waste Management in University of Maryland Laboratories o All laboratories and work

Appelbaum, Ian

144

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

145

Proceedings of the Fifth Annual Participants' Information Meeting: DOE Low-Level Waste Management Program  

SciTech Connect

The meeting consisted of the following six sessions: (1) plenary session I; (2) disposal technology; (3) characteristics and treatment of low-level waste; (4) environmental aspects and performance prediction; (5) overall summary sessions; and (6) plenary session II. Fifty two papers of the papers presented were processed for inclusion in the Energy Data Base. (ATT)

Not Available

1983-12-01T23:59:59.000Z

146

Chemical Engineering Division waste management programs. Quarterly report, January--March 1975  

SciTech Connect

Development work on the study of consolidation techniques for Zircaloy fuel-cladding hulls included scouting tests on volatility schemes for separating the zirconium as the volatile tetrachloride and ignition tests on several Zircaloy materials to further characterize the pyrophoric behavior of Zircaloy. All tests were with nonirradiated metal pending acquisition of irradiated samples. Installation is nearly complete of a glovebox facility for studies on the salvage of alpha-contaminated metals by pyrochemical methods. Disposal of a major portion of fission product tritium formed in light water reactor fuels by deep- well injection of the low-level aqueous waste from plants reprocessing such fuels is being evaluated. The question of siting is a very important factor in determining the feasibility of this particular disposal option. A review is given of the status of information for U. S. sedimentary basins, the areas most likely to be generally suitable for siting of waste wells. Work on the reliability of high-level-waste canisters included an examination of creep, shot- peening, and subcooling of the filler canister below storage temperatures, as methods of relieving stresses induced in canisters due to differential contraction of canister and glass during cooling. A method was investigated for relieving stresses in calcine-filled canisters. Properties of fission product oxides were examined to elucidate possible adverse corrosive effects at the canister-waste interface. (LK)

Steindler, M.J.; Levitz, N.M.; Mecham, W.J.; Seefeldt, W.B.; Trevorrow, L.E.; Winsch, I.O.; Cannon, T.F.; Gerding, T.J.; Kullen, B.J.; Webster, D.S.; Burris, L.

1975-06-01T23:59:59.000Z

147

Hazardous waste management in the Pacific basin  

Science Conference Proceedings (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

148

Chapter 30 Waste Management: General Administrative Procedures (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 30 Waste Management: General Administrative Procedures Chapter 30 Waste Management: General Administrative Procedures (Kentucky) Chapter 30 Waste Management: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous

149

Federal Energy Management Program: Federal Energy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Management Program Contacts to someone by E-mail Share Federal Energy Management Program: Federal Energy Management Program Contacts on Facebook Tweet about Federal...

150

National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63  

Science Conference Proceedings (OSTI)

This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

Carboneau, M.L.; Adams, J.P.

1995-02-01T23:59:59.000Z

151

Tank waste remediation system configuration management plan  

SciTech Connect

The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

Vann, J.M.

1998-01-08T23:59:59.000Z

152

National Low-Level Waste Management Program Radionuclide Report Series: Volume 12, Cobalt-60  

SciTech Connect

This report outlines the basic radiological and chemical characteristics of cobalt-60 ({sup 60}Co) and examines how these characteristics affect the behavior of {sup 60}Co in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 60}Co production, waste types, and waste forms that contain {sup 60}Co. All cobalt atoms contain 27 protons (Z = 27) and various numbers of neutrons (typically N = 27 to 37 neutrons) within the atom`s nucleus. There is only one stable isotope of cobalt, namely {sup 59}Co. All other cobalt isotopes, including {sup 60}Co, are radioactive. The radioactive isotopes of cobalt have half-lives ranging from less than a second ({sup 54}Co-0.19 s) to 5.2 years ({sup 60}Co). The radioactive isotopes of cobalt are not a normal constituent of the natural environment and are generated as a result of human activities. The primary source of {sup 60}Co in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 59}Co that is present in the structural components of nuclear reactor vessels. This isotope is also intentionally produced, usually in reactors but also to some degree in accelerators for industrial and medical uses, such as for radiation sources for cancer treatment and nondestructive testing of metals and welds. {sup 60}Co may enter the environment as a result of the activities associated with nuclear reactor operations and decommissioning and when industrial and medical sources are being used, manufactured, or disposed.

Adams, J.P.

1995-06-01T23:59:59.000Z

153

Estimating and understanding DOE waste management costs`  

SciTech Connect

This paper examines costs associated with cleaning up the US Department of Energy`s (DOE`s) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties.

Kang, J.S. [USDOE, Washington, DC (United States); Sherick, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

154

FAQS Reference Guide Waste Management  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the January 2003 edition of DOE-STD-1159-2003, Waste Management Functional Area Qualification Standard.

155

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

156

Federal Energy Management Program: Energy Management Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Energy Management Guidance to someone by E-mail Share Federal Energy Management Program: Energy Management Guidance on Facebook Tweet about Federal Energy Management Program: Energy Management Guidance on Twitter Bookmark Federal Energy Management Program: Energy Management Guidance on Google Bookmark Federal Energy Management Program: Energy Management Guidance on Delicious Rank Federal Energy Management Program: Energy Management Guidance on Digg Find More places to share Federal Energy Management Program: Energy Management Guidance on AddThis.com... Requirements by Subject Requirements by Regulation Notices & Rules Guidance Facility Reporting Fleet Reporting Energy Management Guidance The Federal Energy Management Program (FEMP) provides guidance on Federal

157

Stormwater Management Program (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

Stormwater Management program of the Department of Environmental Protection's Bureau of Conservation and Restoration administers the rules and regulations for stormwater management for Pennsylvania...

158

Corrective Action Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Corrective Action Management Program (CAMP) Home CAMP Background DOE Directives Corrective Action Management Team Corrective Action Tracking System (CATS) CAMP Quarterly Reports...

159

Potential GTCC LLW sealed radiation source recycle initiatives. National Low-Level Waste Management Program  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

160

Gaines County Solid Waste Management Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Texas Program Type Environmental Regulations Provider Gaines County Solid Waste Management District This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and regulation of waste disposal. The District has the power to prepare, adopt plans for, purchase, obtain permits for, construct, acquire, own, operate, maintain, repair, improve, and extend inside and outside the boundaries of the district any works,

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore  

E-Print Network (OSTI)

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected plants · 8% (non-incinerable waste) and incineration ash goes to the offshore Semakau Landfill · To reach

Columbia University

162

Nuclear Waste Management using Electrometallurgical Technology - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Bookmark and Share The NE system engineering activities involve the conceptual design, through the manufacturing and qualification testing of the Mk-IV and Mk-V electrorefiner and the cathode processor. These first-of-a-kind large scale

163

System Engineering Design [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

System Engineering System Engineering Design Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology System Engineering Design Bookmark and Share Two major pieces of electrometallurgical process equipment are the Electrorefiner and the Cathode Processor. NE personnel have been involved in the conceptual design, final design, procurement, manufacture,

164

Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

Not Available

1993-10-01T23:59:59.000Z

165

US CMS Program Management  

NLE Websites -- All DOE Office Websites (Extended Search)

USCMS US CMS Home US CMS @ Work US CMS Research Program Management Joel Butler, US CMS Research Program Manager E-mail: butler@fnal.gov Phone: (630) 840-3148, Fax: (630) 840-2194...

166

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

167

Energy aspects of solid waste management: Proceedings  

Science Conference Proceedings (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-01-01T23:59:59.000Z

168

Federal Energy Management Program: Computerized Maintenance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Computerized Computerized Maintenance Management Systems to someone by E-mail Share Federal Energy Management Program: Computerized Maintenance Management Systems on Facebook Tweet about Federal Energy Management Program: Computerized Maintenance Management Systems on Twitter Bookmark Federal Energy Management Program: Computerized Maintenance Management Systems on Google Bookmark Federal Energy Management Program: Computerized Maintenance Management Systems on Delicious Rank Federal Energy Management Program: Computerized Maintenance Management Systems on Digg Find More places to share Federal Energy Management Program: Computerized Maintenance Management Systems on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management

169

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

170

Site Programs & Cooperative Agreements: Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of...

171

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Water-Efficient Irrigation on Facebook Tweet about Federal Energy Management Program: Best...

172

Illinois Solid Waste Management Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) < Back Eligibility Agricultural Commercial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Illinois Program Type Environmental Regulations Provider Illinois EPA It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid waste planning and management. In furtherance of those aims, while recognizing that landfills will continue to be necessary, this Act establishes the following waste management hierarchy, in descending order of preference, as State policy: volume reduction at the source; recycling and reuse; combustion

173

Preliminary estimates of the total-system cost for the restructured program: An addendum to the May 1989 analysis of the total-system life cycle cost for the Civilian Radioactive Waste Management Program  

SciTech Connect

The total-system life-cycle cost (TSLCC) analysis for the Department of Energy`s (DOE) Civilian Radioactive Waste Management Program is an ongoing activity that helps determine whether the revenue-producing mechanism established by the Nuclear Waste Policy Act of 1982 - a fee levied on electricity generated and sold by commercial nuclear power plants - is sufficient to cover the cost of the program. This report provides cost estimates for the sixth annual evaluation of the adequacy of the fee. The costs contained in this report represent a preliminary analysis of the cost impacts associated with the Secretary of Energy`s Report to Congress on Reassessment of the Civilian Radioactive Waste Management Program issued in November 1989. The major elements of the restructured program announced in this report which pertain to the program`s life-cycle costs are: a prioritization of the scientific investigations program at the Yucca Mountain candidate site to focus on identification of potentially adverse conditions, a delay in the start of repository operations until 2010, the start of limited waste acceptance at the monitored retrievable storage (MRS) facility in 1998, and the start of waste acceptance at the full-capability MRS facility in 2,000. Based on the restructured program, the total-system cost for the system with a repository at the candidate site at Yucca Mountain in Nevada, a facility for monitored retrievable storage (MRS), and a transportation system is estimated at $26 billion (expressed in constant 1988 dollars). In the event that a second repository is required and is authorized by the Congress, the total-system cost is estimated at $34 to $35 billion, depending on the quantity of spent fuel and high-level waste (HLW) requiring disposal. 17 figs., 17 tabs.

NONE

1990-12-01T23:59:59.000Z

174

Waste Management Quality Assurance Plan  

E-Print Network (OSTI)

PROGRAM .4 Organizational Structure ..4 Management Quality Assurance Functions 5 Planning 5 2.0 PERSONNEL TRAINING AND

Waste Management Group

2006-01-01T23:59:59.000Z

175

Hazardous Waste Management (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Hazardous Waste Management (North Dakota) Hazardous Waste Management (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and treatment as

176

Rules and Regulations Pertaining to the Management of Wastes (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pertaining to the Management of Wastes Pertaining to the Management of Wastes (Nebraska) Rules and Regulations Pertaining to the Management of Wastes (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to waste management permits and licenses,

177

Georgia Hazardous Waste Management Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

178

Pet Waste Management  

E-Print Network (OSTI)

About 1 million pounds of dog waste is deposited daily in North Texas alone. That's why proper disposal of pet waste can make a big difference in the environment. 5 photos, 2 pages

Mechell, Justin; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

179

Environmental Restoration Information Resource Management Program Plan  

SciTech Connect

The Environmental Restoration Information Resources Management (ER IRM) Program Plan defines program requirements, organizational structures and responsibilities, and work breakdown structure and to establish an approved baseline against which overall progress of the program as well as the effectiveness of its management will be measured. This plan will guide ER IRM Program execution and define the program`s essential elements. This plan will be routinely updated to incorporate key decisions and programmatic changes and will serve as the project baseline document. Environmental Restoration Waste Management Program intersite procedures and work instructions will be developed to facilitate the implementation of this plan.

Not Available

1994-09-01T23:59:59.000Z

180

WIMS - Waste Information Management System  

Office of Environmental Management (EM)

Welcome To WIMS Welcome To WIMS Waste Information Management System WIMS new web address: http://www.emwims.org WIMS is developed to provide DOE Headquarters and site waste managers with the tools necessary to easily visualize, understand, and manage the vast volumes, categories, and problems of forecasted waste streams. WIMS meets this need by providing a user-friendly online system to gather, organize, and present waste forecast data from DOE sites. This system provides a method for identification of waste forecast volumes, material classes, disposition pathways, and potential choke points and barriers to final disposition. Disclaimer: Disposition facility information presented is for planning purposes only and does not represent DOE's decisions or commitments. Any selection of disposition facility will be made after technical, economic, and policy considerations.

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B  

SciTech Connect

Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

1994-06-01T23:59:59.000Z

182

CRAD, Hazardous Waste Management - December 4, 2007 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 December 4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) Line management ensures that the requirements for generating, storing, treating, transporting, and disposing of hazardous waste, universal waste, and used oil, established under 40 CFR Subchapter I, applicable permits, and DOE requirements have been effectively implemented for federal and contractor employees, including subcontractors. Written programs and plans are in place and updated when conditions or requirements change. Employees have been properly trained for the wastes they handle. Documentation of waste characterizations, manifests, land disposal restrictions,

183

Solid Waste Management Rules (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

184

Livestock Waste Management Act (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livestock Waste Management Act (Nebraska) Livestock Waste Management Act (Nebraska) Livestock Waste Management Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality This statute establishes the animal feeding operation permitting program and gives the Department of Environmental Quality the authority to administer the state permitting program. Permits are required for the

185

Nuclear Waste Management Policy in France  

Science Conference Proceedings (OSTI)

Technical Paper / New Directions in Nuclear Energy with Emphasis on Fuel Cycles / Radioactive Waste Management

Jean F. Lefevre

186

Waste management models and their application to sustainable waste management  

SciTech Connect

The purpose of this paper is to review the types of models that are currently being used in the area of municipal waste management and to highlight some major shortcomings of these models. Most of the municipal waste models identified in the literature are decision support models and for the purposes of this research, are divided into three categories--those based on cost benefit analysis, those based on life cycle assessment and those based on multicriteria decision making. Shortcomings of current waste management models include that they are concerned with refinements of the evaluation steps (e.g. stage four of AHP or the improvement of weight allocations in ELECTRE) rather than addressing the decision making process itself. In addition, while many models recognise that for a waste management model to be sustainable, it must consider environmental, economic and social aspects, no model examined considered all three aspects together in the application of the model.

Morrissey, A.J.; Browne, J

2004-07-01T23:59:59.000Z

187

ISSUES MANAGEMENT PROGRAM MANUAL  

E-Print Network (OSTI)

ISSUES MANAGEMENT PROGRAM MANUAL LBNL/PUB-5519 (1), Rev. 0and Analysis Program Manual. LBNL/PUB-5519 (1), Rev. 0the Regulations and Procedures Manual (RPM): CATS database o

Gravois, Melanie

2007-01-01T23:59:59.000Z

188

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary  

Science Conference Proceedings (OSTI)

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

189

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A  

SciTech Connect

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

1994-06-01T23:59:59.000Z

190

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1  

Science Conference Proceedings (OSTI)

This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

191

Solid Waste Management (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Solid Waste Management (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental considerations;

192

Solid Waste Management (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan) Michigan) Solid Waste Management (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Siting and Permitting Provider Department of Environmental Quality This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that maximize the utilization

193

Environmental Restoration and Waste Management: Strategic plan  

Science Conference Proceedings (OSTI)

The Brookhaven National Laboratory (BNL) site is currently divided into five major areas, Operable Units (OUs), and several Areas of Concern (AOCs), which are the focus of investigation and clean-up. The primary environmental concern is groundwater contamination and a major emphasis of the restoration activities is focused on this medium. Each year, BNL generates 60 tons of hazardous waste and 7,000 to 8,000 cubic feet of radioactive waste that result from research activities. These wastes are collected at a central location, packaged and shipped off site for disposal. The operations for Hazardous and Radioactive Waste Management are conducted in compliance with EPA and DOE regulations. BNL has continued to actively pursue means by which these wastes may be minimized. Activities in both the remediation and waste management arenas are intimately connected with the future vision of BNL. The long-range goal for remediation in conjunction with vigorous monitoring of BNL`s activities is to restore the site and maintain strong environmental controls. The goals of the waste minimization program include activities to find environmentally safe alternatives to materials currently in use. By careful planning, BNL will minimize the amount of all waste, including sanitary, that is generated on site.

Not Available

1994-09-01T23:59:59.000Z

194

Federal Energy Management Program: Program Areas  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

program areas of the Federal Energy Management Program (FEMP) focus on specific energy management actions to help Federal agencies deploy the available technologies appropriate...

195

Citrus Waste Biomass Program  

DOE Green Energy (OSTI)

Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

Karel Grohman; Scott Stevenson

2007-01-30T23:59:59.000Z

196

Integrated Solid Waste Management Act (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Integrated Solid Waste Management Act (Nebraska) Integrated Solid Waste Management Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and

197

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

198

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

199

Mathematical Models in Municipal Solid Waste Management  

E-Print Network (OSTI)

Two mathematical models developed as tools for solid waste planners in decisions concerning the overall management of solid waste in a municipality are described. The models have respectively been formulated as integer and mixed integer linear programming problems. The choice between the two models from the practical point of view depends on the user and the technology used. One user may prefer to measure the transportation costs in terms of costs per trip made from the waste source, in which case the first model is more appropriate. In this case we replace the coefficients of the decision variables in the objective function with the total cost per trip from the waste collection point. At the same time, instead of measuring the amount of waste using the number of trucks used multiplied by their capacities, continuous variables can be introduced to measure directly the amount of waste that goes to the plants and landfills. The integer linear problem is then transformed into a mixed integer problem that gives better total cost estimates and more precise waste amount measurements, but measuring transportation costs in terms of costs per trip. For instance, at the moment the first model is more relevant to the Ugandan situation, where the technology to measure waste as it is carried away from the waste sources is not available. Another user may prefer to measure the transportation costs in terms of costs per unit mass of

Michael K. Nganda

2007-01-01T23:59:59.000Z

200

Tank Waste Disposal Program redefinition  

SciTech Connect

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Federal Energy Management Program: Energy Management Requirements...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Requirements by Subject to someone by E-mail Share Federal Energy Management Program: Energy Management Requirements by Subject on Facebook Tweet about Federal...

202

CRAD, Emergency Management - Los Alamos National Laboratory Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Los Alamos National Laboratory Waste Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Los Alamos National Laboratory Waste

203

Solid Waste Management Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Solid Waste Management Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of Environmental

204

A model for a national low level waste program  

SciTech Connect

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

205

Waste management handling in Benin City.  

E-Print Network (OSTI)

??The researcher was inspired by the topic Waste management handling due to the ugly situa-tion of waste being littered all over the city, which have (more)

Oseghale, Peter

2011-01-01T23:59:59.000Z

206

Federal Energy Management Program: Energy Incentive Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Incentive Energy Incentive Programs to someone by E-mail Share Federal Energy Management Program: Energy Incentive Programs on Facebook Tweet about Federal Energy Management Program: Energy Incentive Programs on Twitter Bookmark Federal Energy Management Program: Energy Incentive Programs on Google Bookmark Federal Energy Management Program: Energy Incentive Programs on Delicious Rank Federal Energy Management Program: Energy Incentive Programs on Digg Find More places to share Federal Energy Management Program: Energy Incentive Programs on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Energy Incentive Programs Most states offer energy incentive programs to help offset energy costs.

207

8-Waste treatment and disposal A. Responsibility for waste management  

E-Print Network (OSTI)

8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

208

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

209

SOLID WASTE MANAGEMENT PLAN  

E-Print Network (OSTI)

ACKNOWLEDGMENTS The Chelan County Public Works Department would like to thank the following organizations and individuals for their assistance in the development of this plan: ? Chelan Countys Solid Waste Council members, past and present, and the municipalities they represent. ? Chelan Countys Solid Waste Advisory Committee members, past and present, and the agencies and businesses they represented. ? the ChelanDouglas Health District staff. ? Washington Department of Ecology staff. Chelan County residents and businesses also contributed to this document through comments provided during public meetings and through various other channels. The Board of County Commissioners and the Public Works Department gratefully acknowledge this input by the

unknown authors

2007-01-01T23:59:59.000Z

210

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures,

211

Drilling Waste Management Fact Sheet: Bioremediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioremediation Bioremediation Fact Sheet - Bioremediation Bioremediation (also known as biological treatment or biotreatment) uses microorganisms (bacteria and fungi) to biologically degrade hydrocarbon-contaminated waste into nontoxic residues. The objective of biotreatment is to accelerate the natural decomposition process by controlling oxygen, temperature, moisture, and nutrient parameters. Land application is a form of bioremediation that is described in greater detail in a separate fact sheet. This fact sheet focuses on forms of bioremediation technology that take place in more intensively managed programs, such as composting, vermiculture, and bioreactors. McMillen et al. (2004) summarizes over ten years of experience in biotreating exploration and production wastes and offers ten lessons learned.

212

Fiscal year 1986 program plan for the Defense Transuranic Waste Program (DTWP)  

SciTech Connect

The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy is national planning, integration, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY 86 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Research Development (R D), the organizational interfaces and communication channels for R D and the establishment of procedures for planning, reporting, and budgeting of all R D activities meet requirements tated in the Technical Management Plan for the Transuranic Waste Management Program. The Program Plan is revised as needed. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY 86; outyear budget projections are presented for future years.

1985-11-01T23:59:59.000Z

213

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

214

Solid Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Solid Waste Management Act (Oklahoma) Solid Waste Management Act (Oklahoma) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that are environmentally safe and sanitary, as well as economically feasible; submission of laboratory reports or analyses performed by certified laboratories for the purposes of compliance monitoring and testing and for

215

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

216

Identity Management Systems Program Homepage  

Science Conference Proceedings (OSTI)

Identity Management Systems Program. ... Identity management systems are responsible for the creation, use, and termination of electronic identities. ...

2010-10-05T23:59:59.000Z

217

Waste management plan for inactive LLLW tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This Project Waste Management Plan identifies the waste that is expected to be generated in connection with the removal and disposition of inactive liquid low-level radioactive waste tanks 3001-B, 3004-B, and T-30, and grouting of tank 3013 at the Oak Ridge National Laboratory and the isolation of these tanks` associated piping systems. The plan also identifies the organization, responsibilities, and administrative controls that will be followed to ensure proper handling of the waste.

NONE

1995-07-01T23:59:59.000Z

218

Hazardous Waste Management Standards and Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

219

Greater-than-Class C low-level radioactive waste transportation regulations and requirements study. National Low-Level Waste Management Program  

SciTech Connect

The purpose of this report is to identify the regulations and requirements for transporting greater-than-Class C (GTCC) low-level radioactive waste (LLW) and to identify planning activities that need to be accomplished in preparation for transporting GTCC LLW. The regulations and requirements for transporting hazardous materials, of which GTCC LLW is included, are complex and include several Federal agencies, state and local governments, and Indian tribes. This report is divided into five sections and three appendices. Section 1 introduces the report. Section 2 identifies and discusses the transportation regulations and requirements. The regulations and requirements are divided into Federal, state, local government, and Indian tribes subsections. This report does not identify the regulations or requirements of specific state, local government, and Indian tribes, since the storage, treatment, and disposal facility locations and transportation routes have not been specifically identified. Section 3 identifies the planning needed to ensure that all transportation activities are in compliance with the regulations and requirements. It is divided into (a) transportation packaging; (b) transportation operations; (c) system safety and risk analysis, (d) route selection; (e) emergency preparedness and response; and (f) safeguards and security. This section does not provide actual planning since the details of the Department of Energy (DOE) GTCC LLW Program have not been finalized, e.g., waste characterization and quantity, storage, treatment and disposal facility locations, and acceptance criteria. Sections 4 and 5 provide conclusions and referenced documents, respectively.

Tyacke, M.; Schmitt, R.

1993-07-01T23:59:59.000Z

220

Federal Energy Management Program: Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

Outreach to someone by E-mail Share Federal Energy Management Program: Outreach on Facebook Tweet about Federal Energy Management Program: Outreach on Twitter Bookmark Federal...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Federal Energy Management Program: Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning to someone by E-mail Share Federal Energy Management Program: Commissioning on Facebook Tweet about Federal Energy Management Program: Commissioning on Twitter...

222

Evaluating the quality and effectiveness of hazardous waste training programs  

SciTech Connect

An installation`s compliance with Resource Conservation and Recovery Act (RCRA) hazardous waste regulations is strongly dependent on the knowledge, skill, and behavior of all individuals involved in the generation and management of hazardous waste. Recognizing this, Headquarters Air Force Materiel Command (HQ/AFMC) determined that an in-depth evaluation of hazardous waste training programs at each AFMC installation was an appropriate element in assessing the overall effectiveness of installation hazardous waste management programs in preventing noncompliant conditions. Consequently, pursuant to its authority under Air Force Instruction (AFI) 32-7042, Solid and Hazardous Waste Compliance (May 12, 1994) to support and maintain hazardous waste training, HQ/AFMC directed Argonne National Laboratory to undertake the Hazardous Waste Training Initiative. This paper summarizes the methodology employed in performing the evaluation and presents the initiative`s salient conclusions.

Kolpa, R.L.; Haffenden, R.A. [Argonne National Lab., IL (United States); Weaver, M.A. [Headquarters Air Force Materiel Command, Wright-Patterson Air Force Base, OH (United States)

1996-05-01T23:59:59.000Z

223

Hazardous Waste Management (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

224

ICDF Complex Operations Waste Management Plan  

SciTech Connect

This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

W.M. Heileson

2006-12-01T23:59:59.000Z

225

Radioactive Waste Management BasisApril 2006  

Science Conference Proceedings (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2011-08-31T23:59:59.000Z

226

Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonhazardous Solid Waste Management Regulations and Criteria Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

227

Inspection of Emergency Management at the Waste Isolation Pilot Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management at the Waste Isolation Pilot Emergency Management at the Waste Isolation Pilot Plant - Volume II, August 2002 Inspection of Emergency Management at the Waste Isolation Pilot Plant - Volume II, August 2002 The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health and emergency management programs at the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP emergency management program. The results of the review of the WIPP environment, safety, and

228

CRAD, Management - Los Alamos National Laboratory Waste Characterization,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Management - Los Alamos National Laboratory Waste CRAD, Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Los Alamos National Laboratory Waste Characterization,

229

Solid Waste Management (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Dakota) South Dakota) Solid Waste Management (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling programs

230

Chapter 30 Waste Management: General Administrative Procedures...  

Open Energy Info (EERE)

or disposed of, or otherwise managed. Policy Contact Department Department for Environmental Protection Division Division of Waste Management Address 200 Fair Oaks Ln.,...

231

Hazardous Waste Management (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (Delaware) Hazardous Waste Management (Delaware) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

232

Hazardous Waste Management Implementation Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Director of the Office of ES&H Evaluations on (301) 903-5392. Subject: Hazardous Waste Management Inplementation Inspection Criteria, Approach, Evaluations Management Date:...

233

Federal Energy Management Program: Metering  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering to Metering to someone by E-mail Share Federal Energy Management Program: Metering on Facebook Tweet about Federal Energy Management Program: Metering on Twitter Bookmark Federal Energy Management Program: Metering on Google Bookmark Federal Energy Management Program: Metering on Delicious Rank Federal Energy Management Program: Metering on Digg Find More places to share Federal Energy Management Program: Metering on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency Data Center Energy Efficiency Industrial Facilities

234

Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

Not Available

1993-05-01T23:59:59.000Z

235

Oak Ridge Reservation Waste Management Plan  

Science Conference Proceedings (OSTI)

This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

Turner, J.W. [ed.

1995-02-01T23:59:59.000Z

236

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

237

The Remote-Handled TRU Waste Program  

SciTech Connect

RH TRU Waste is radioactive waste that requires shielding in addition to that provided by the container to protect people nearby from radiation exposure. By definition, the radiation dose rate at the outer surface of the container is greater than 200 millirem per hour and less than 1,000 rem per hour. The DOE is proposing a process for the characterization of RH TRU waste planned for disposal in the WIPP. This characterization process represents a performance-driven approach that satisfies the requirements of the New Mexico Hazardous Waste Act, the Environmental Protection Agency (EPA) regulations for WIPP long-term performance, the transportation requirements of the Nuclear Regulatory Commission (NRC) and the Department of Transportation, as well as the technical safety requirements of RH TRU waste handling. The transportation, management and disposal of RH TRU waste is regulated by external government agencies as well as by the DOE itself. Externally, the characterization of RH-TRU waste for disposal at the WIPP is regulated by 20.4.1.500 New Mexico Administrative Code (incorporating 40 CFR 261.13) for the hazardous constituents and 40 CFR 194.24 for the radioactive constituents. The Nuclear Regulatory Commission certifies the shipping casks and the transportation system must meet DOT regulations. Internally, the DOE evaluates the environmental impacts of RH TRU waste transportation, handling and disposal through its National Environmental Policy Act program. The operational safety is assessed in the RH TRU Waste Safety Analysis Report, to be approved by the DOE. The WIPP has prepared a modification request to the Hazardous Waste Facility Permit that includes modifications to the WIPP facility for the safe receipt and handling of RH TRU waste and the addition of an RH TRU waste analysis plan. Modifications to the facility include systems and equipment for safe handling of RHTRU containers. Two shipping casks are to be used to optimize RH TRU was te throughput: the RH-72B and the CNS 10-160B transportation casks. Additionally, a draft Notification of Proposed Change to the EPA 40 CFR 194 Certification of the WIPP has been prepared, which contains a proposal for the RH TRU characterization program for compliance with the EPA requirements.

Gist, C. S.; Plum, H. L.; Wu, C. F.; Most, W. A.; Burrington, T. P.; Spangler, L. R.

2002-02-26T23:59:59.000Z

238

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Faucets and Showerheads to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Faucets and Showerheads on Facebook Tweet about Federal Energy...

239

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Water Intensive Processes to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Other Water Intensive Processes on Facebook Tweet about...

240

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Water-Efficient Landscaping to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Water-Efficient Landscaping on Facebook Tweet about Federal...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Inspection of Environment, Safety, and Health Management at the Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment, Safety, and Health Management at the Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002 The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP ES&H programs. The results of the review of the WIPP emergency management program are

242

Federal Energy Management Program: About the Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Federal Energy Management Program Search...

243

MIxed Waste Integrated Program (MWIP): Technology summary  

Science Conference Proceedings (OSTI)

The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE`s mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel.

NONE

1994-02-01T23:59:59.000Z

244

Permit Fees for Hazardous Waste Material Management (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Material Management (Connecticut) Permit Fees for Hazardous Waste Material Management (Connecticut) Eligibility Agricultural Commercial Construction Fed. Government...

245

CRAD, Emergency Management - Los Alamos National Laboratory Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Emergency Management - Los Alamos National Laboratory Waste...

246

Mixed Waste Integrated Program Quality Assurance requirements plan  

SciTech Connect

Mixed Waste Integrated Program (MWIP) is sponsored by the US Department of Energy (DOE), Office of Technology Development, Waste Management Division. The strategic objectives of MWIP are defined in the Mixed Waste Integrated Program Strategic Plan, and expanded upon in the MWIP Program Management Plan. This MWIP Quality Assurance Requirement Plan (QARP) applies to mixed waste treatment technologies involving both hazardous and radioactive constituents. As a DOE organization, MWIP is required to develop, implement, and maintain a written Quality Assurance Program in accordance with DOE Order 4700.1 Project Management System, DOE Order 5700.6C, Quality Assurance, DOE Order 5820.2A Radioactive Waste Management, ASME NQA-1 Quality Assurance Program Requirements for Nuclear Facilities and ANSI/ASQC E4-19xx Specifications and Guidelines for Quality Systems for Environmental Data Collection and Environmental Technology Programs. The purpose of the MWIP QA program is to establish controls which address the requirements in 5700.6C, with the intent to minimize risks and potential environmental impacts; and to maximize environmental protection, health, safety, reliability, and performance in all program activities. QA program controls are established to assure that each participating organization conducts its activities in a manner consistent with risks posed by those activities.

1994-04-15T23:59:59.000Z

247

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parts 370-376: Hazardous Waste Parts 370-376: Hazardous Waste Management System (New York) Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators, transporters, as well as treatment, storage and disposal facilities. The regulations also define specific types

248

Mixed wasted integrated program: Logic diagram  

SciTech Connect

The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)

1994-11-30T23:59:59.000Z

249

Federal Computer Security Program Managers' Forum (Forum ...  

Science Conference Proceedings (OSTI)

Federal Computer Security Program Managers' Forum. Summary: The Federal Computer Security Program Managers' Forum ...

2013-01-15T23:59:59.000Z

250

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

251

Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan  

SciTech Connect

The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

Randklev, E.H.

1993-06-01T23:59:59.000Z

252

Federal Energy Management Program: About the Program  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: About the Program to someone by E-mail Share Federal Energy...

253

Montana Integrated Waste Management Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Integrated Waste Management Act (Montana) Montana Integrated Waste Management Act (Montana) Montana Integrated Waste Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Residential Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Nonprofit General Public/Consumer Program Info State Montana Program Type Industry Recruitment/Support Provider Montana Department of Environmental Quality This legislation sets goals for the reduction of solid waste generated by households, businesses, and governments, through source reduction, reuse, recycling, and composting. The state aims to achieve recycling and composting rates of: (a) 17% of the state's solid waste by 2008;

254

Rethinking the Hanford Tank Waste Program  

Science Conference Proceedings (OSTI)

The program to treat and dispose of the highly radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford site has been studied. A strategy/management approach to achieve an acceptable (technically sound) end state for these wastes has been developed in this study. This approach is based on assessment of the actual risks and costs to the public, workers, and the environment associated with the wastes and storage tanks. Close attention should be given to the technical merits of available waste treatment and stabilization methodologies, and application of realistic risk reduction goals and methodologies to establish appropriate tank farm cleanup milestones. Increased research and development to reduce the mass of non-radioactive materials in the tanks requiring sophisticated treatment is highly desirable. The actual cleanup activities and milestones, while maintaining acceptable safety standards, could be more focused on a risk-to-benefit cost effectiveness, as agreed to by the involved stakeholders and in accordance with existing regulatory requirements. If existing safety standards can be maintained at significant cost savings under alternative plans but with a change in the Tri-Party Agreement (a regulatory requirement), those plans should be carried out. The proposed strategy would also take advantage of the lessons learned from the activities and efforts in the first phase of the two-phased cleanup of the Hanford waste tank farms.

Parker, F. L.; Clark, D. E.; Morcos, N.

2002-02-26T23:59:59.000Z

255

TRU Waste Sampling Program: Volume I. Waste characterization  

DOE Green Energy (OSTI)

Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

Clements, T.L. Jr.; Kudera, D.E.

1985-09-01T23:59:59.000Z

256

Federal Energy Management Program: News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT FUNDING PROJECT FUNDING TECHNOLOGIES SERVICES NEWS & EVENTS EERE » Federal Energy Management Program » News & Events Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: News to someone by E-mail Share Federal Energy Management Program: News on Facebook Tweet about Federal Energy Management Program: News on Twitter Bookmark Federal Energy Management Program: News on Google Bookmark Federal Energy Management Program: News on Delicious Rank Federal Energy Management Program: News on Digg Find More places to share Federal Energy Management Program: News on AddThis.com... News Events News Subscribe to RSS News Feed RSS Feed icon January 13, 2014 FEMP Offers New Advanced eTraining on UESCs The U.S. Department of Energy (DOE) Federal Energy Management Program

257

Study of investigation-derived waste management options. Master's thesis  

Science Conference Proceedings (OSTI)

USAF is dedicated to the clean up of past releases of hazardous substances at its bases under the Installation Restoration Program (IRP) . Clean up decisions are based upon data produced from investigations. Large amounts of waste may be derived from investigations. Investigation-derived waste (IDW), especially that with a hazardous component, may pose significant health protection and regulatory compliance problems if neglected. This study identifies the status and the need for improvement of IDW management to avoid those problems. Information on the background of IDW management was collected through a review of environmental laws, waste management regulations, and existing guidance. Practical IDW management information was gleaned from conversations with iRP managers at twelve USAF bases around the country. This study revealed that IDW management needs improvement. All bases acknowledged IDW concerns and have adopted various methods to deal with them. However, current methods appear to rely more upon expediency rather than permanence. This study showed that critical protection and compliance issues are being overlooked. Development of specific IDW management guidance may better assure that critical issues are addressed. Waste minimization, Waste management, Environmental management, Nonhazardous wastes, Hazardous material, Solid wastes.

Mountain, B.C.

1993-09-01T23:59:59.000Z

258

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

of the following homes per month: 10,343 286 tons of plastic 95 tons of aluminum 0 KW-Hrs of Electricity from Waste-to-Energy: This provides enough energy to heat and cool at a Waste-to-Energy (WTE) the following homes per month: 10Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company

Delgado, Mauricio

259

LFRG Program Management Plan (LFRG PMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LOW-LEVEL WASTE DISPOSAL FACILITY LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP PROGRAM MANAGEMENT PLAN SEPTEMBER 18, 2000 LOW-LEVEL WASTE DISPOSAL FACILITY FEDERAL REVIEW GROUP PROGRAM MANAGEMENT PLAN Jay Rhoderick, Co-Chair William E. Murphie, Co-Chair LFRG Members Joel Case, Idaho Operations Office Frank DiSanza, Nevada Operations Office Doug Hildebrand, Richland Operations Office Randy Janke, Ohio Field Office Bill McMillan, Oak Ridge Operations Office Virgil Sauls, Savannah River Operations Office Jim Orban, Albuquerque Operations Office Andy Wallo, Office of Environment, Safety and Health DOE Headquarters Distribution: David M. Michaels, Assistant Secretary for Environment, Safety and Health, EH-1 Madelyn Creedon, Deputy Administrator for Defense Programs, DP-1 Rose E. Gottemoeller, Deputy Administrator for Defense Nuclear Nonproliferation, NN-1

260

STATEMENT OF CONSIDERATIONS REQUEST BY WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC. WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER EG&G IDAHO, INC. SUBCONTRACT NO. EGG-C93-170221, W(A)-93-005, CH-0757 Under this subcontract, Waste Management Environmental Services, Inc. (WMES) will demonstrate key technical features of its proposed Idaho National Engineering Laboratory (INEL) Pit-9 remediation program. Pit-9 is an area in the Radioactive Waste Management Complex at the INEL containing radioactive and hazardous materials in the form of toxic metals and organic materials, including plutonium and americium. Specifically, the subject subcontract is directed toward a Proof-of-Process (POP) demonstration program intended to provide EG&G Idaho, Inc. (EG&G) with additional information that it will use in the

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project  

SciTech Connect

Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

1995-07-01T23:59:59.000Z

262

Disaster waste management: A review article  

SciTech Connect

Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz [University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Milke, Mark, E-mail: mark.milke@canterbury.ac.nz [University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Seville, Erica, E-mail: erica.seville@canterbury.ac.nz [University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

2011-06-15T23:59:59.000Z

263

Federal Energy Management Program: Best Management Practice: Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Information and Education Programs to someone by E-mail Information and Education Programs to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Information and Education Programs on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Information and Education Programs on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Information and Education Programs on Google Bookmark Federal Energy Management Program: Best Management Practice: Information and Education Programs on Delicious Rank Federal Energy Management Program: Best Management Practice: Information and Education Programs on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Information and Education Programs on AddThis.com...

264

Federal Energy Management Program: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

that about 10% of this is used to heat Details Bookmark & Share View Related Federal Energy Management Program Overview - Facilitating Sound, Cost-Effective Energy Management...

265

Federal Energy Management Program: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Technologies to someone by E-mail Share Federal Energy Management...

266

Animal Waste Treatment System Loan Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Animal Waste Treatment System Loan Program is to finance animal waste treatment systems for independent livestock and poultry producers at below conventional interest rates. Loan...

267

ISSUES MANAGEMENT PROGRAM MANUAL  

Science Conference Proceedings (OSTI)

The Lawrence Berkeley National Laboratory (LBNL) Issues Management Program encompasses the continuous monitoring of work programs, performance and safety to promptly identify issues to determine their risk and significance, their causes, and to identify and effectively implement corrective actions to ensure successful resolution and prevent the same or similar problems from occurring. This document describes the LBNL Issues Management Program and prescribes the process for issues identification, tracking, resolution, closure, validation, and effectiveness of corrective actions. Issues that are governed by this program include program and performance deficiencies or nonconformances that may be identified through employee discovery, internal or external oversight assessment findings, suggested process improvements and associated actions that require formal corrective action. Issues may also be identified in and/or may result in Root Cause Analysis (RCA) reports, Price Anderson Amendment Act (PAAA) reports, Occurrence Reporting and Processing System (ORPS) reports, Accident Investigation reports, assessment reports, and External Oversight reports. The scope of these issues may include issues of both high and low significance as well as adverse conditions that meet the reporting requirements of the University of California (UC) Assurance Plan for LBNL or other reporting entities (e.g., U.S. Environmental Protection Agency, U.S. Department of Energy). Issues that are found as a result of a walk-around or workspace inspection that can be immediately corrected or fixed are exempt from the requirements of this document.

Gravois, Melanie

2007-06-27T23:59:59.000Z

268

Agricultural Waste Management System Component Design  

E-Print Network (OSTI)

Management Field Handbook 10­1(210-vi-AWMFH, rev. 1, July 1996) Chapter 10 Agricultural Waste Management..............................................................................................10­67 (b) Gravity flow pipes Waste Management Field Handbook 10­2 (210-vi-AWMFH, rev. 1, July 1996) 651.1006 Utilization 10­71 (a

Mukhtar, Saqib

269

Waste Management Quality Assurance Plan  

E-Print Network (OSTI)

Raya James Johnson Rad/Mixed Waste** Steve Bakhtiar Leadhazardous, radioactive, and mixed waste at the Hazardoustraining. Radioactive and mixed waste generators must take

Waste Management Group

2006-01-01T23:59:59.000Z

270

Review of Westinghouse AP1000 LLW Management Program  

Science Conference Proceedings (OSTI)

Significant operational cost and waste volume reduction savings opportunities exist, based upon current low level waste (LLW) treatment technology gains, for future operators of the AP1000 reactors. This report is a summary of a review of the AP1000 Radioactive Waste Management Program as defined in the EPRI Utility Requirements Document (URD) and the AP1000 Design Control Document (DCD).

2003-11-19T23:59:59.000Z

271

Federal Energy Management Program: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News & Events Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: News to someone by E-mail Share Federal Energy Management Program:...

272

Federal Energy Management Program: Best Management Practice: Cooling Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooling Tower Management to someone by E-mail Cooling Tower Management to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Google Bookmark Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Delicious Rank Federal Energy Management Program: Best Management Practice: Cooling Tower Management on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Cooling Tower Management on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

273

Federal Energy Management Program: Best Management Practice: Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Management Planning to someone by E-mail Water Management Planning to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Water Management Planning on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Water Management Planning on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Water Management Planning on Google Bookmark Federal Energy Management Program: Best Management Practice: Water Management Planning on Delicious Rank Federal Energy Management Program: Best Management Practice: Water Management Planning on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Water Management Planning on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

274

Proceedings: Radioactive Low Level Waste Management Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on low level waste management. The workshop was the fifth in a series to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of low level waste management as they relate to nuclear plant decommissioning. Workshop information will help utilities assess benefits of waste management, select technologies for their individual projects, and reduce decommissioning costs.

2000-05-25T23:59:59.000Z

275

DOE Seeks Independent Evaluation of Remote-Handled Waste Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Seeks Independent Evaluation Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste program. The program must be approved by the New Mexico Environment Department and the U.S. Environmental Protection Agency before DOE will be permitted to accept and dispose of RH-TRU waste at WIPP. "Safety and compliance are our primary considerations in developing the plans for

276

WEB RESOURCE: Radioactive Waste Management in Australia  

Science Conference Proceedings (OSTI)

May 8, 2007 ... A glossary of terms and public discussion papers on current and past projects are included. Citation: "Radioactive Waste Management in...

277

Hazardous Waste Management (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Michigan) Hazardous Waste Management (Michigan) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

278

Northwest Interstate Compact on Low-Level Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info Start Date 1981 State Alaska Program Type Siting and Permitting Provider Northwest Interstate Compact The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect their citizens, and maintain and enhance economic viability, while sharing the responsibilities

279

Program Management for Large Scale Engineering Programs  

E-Print Network (OSTI)

The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

Oehmen, Josef

280

Federal Energy Management Program: Best Management Practice:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Single-Pass Cooling Equipment to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Single-Pass Cooling Equipment on Facebook Tweet about Federal...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Feed Materials Production Center waste management plan (Revision to NLCO-1100, R. 6)  

Science Conference Proceedings (OSTI)

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-10-15T23:59:59.000Z

282

Transportation and Program Management Services | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Program Management Services Transportation and Program Management Services Overview of Secured Transportation Services (STS) Transportation and Program Management Services More...

283

Federal Energy Management Program: Operations and Maintenance...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Maintenance Program Management to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance Program Management on Facebook Tweet about...

284

Office of Civilian Radioactive Waste Management annual report to Congress  

SciTech Connect

This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

1990-12-01T23:59:59.000Z

285

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

286

Systems and Components Development Expertise [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems and Components Systems and Components Development Expertise Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Systems and Components Development Expertise Bookmark and Share Electrorefiner The electrorefiner: an apparatus used for electrometallurgical treatment of spent nuclear fuel to facilitate storage and ultimate disposal. Click on

287

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect

Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

1991-04-01T23:59:59.000Z

288

Investigation-Derived Waste Management Plan. Revision 2  

SciTech Connect

SRS has implemented a comprehensive environmental program to maintain compliance with environmental regulations and mitigate impacts to the environment. One element of the environmental program is the investigation of inactive waste units. Environmental Investigation-Derived Waste (IDW). IDW may include purge water , soil cuttings, drilling fluids, well pumping test and development water, decontamination solutions, contaminated equipment, and personal protection equipment (PPE). In cases where investigations confirm the presence of contamination and the IDW contains waste constituents in concentrations high enough to be of environmental or health concern, special management procedures are warranted. This IDW Management Plan describes specific SRS initiatives for IDW management. The goal is the development of a plan for prudent management of IDW from environmental investigations that is protective of human health and the environment.

Molen, G.

1995-05-24T23:59:59.000Z

289

Federal Energy Management Program: Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services to Services to someone by E-mail Share Federal Energy Management Program: Services on Facebook Tweet about Federal Energy Management Program: Services on Twitter Bookmark Federal Energy Management Program: Services on Google Bookmark Federal Energy Management Program: Services on Delicious Rank Federal Energy Management Program: Services on Digg Find More places to share Federal Energy Management Program: Services on AddThis.com... Project Assistance Training Outreach Services The Federal Energy Management Program (FEMP) offers specialized services through: Technical and Project Assistance: Find resources for technical assistance and information about FEMP calls for projects. Training: Look up FEMP-produced live and on-demand courses, workshops, and webinars. Outreach: Get information about awards and campaigns that motivate energy-

290

Solid Waste Program (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (Alabama) Program (Alabama) Solid Waste Program (Alabama) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties. Solid waste refers to any garbage, rubbish, construction or demolition debris, ash, or sludge from a waste treatment facility, water supply plant, or air pollution control facility, and any other discarded materials, including solid, liquid, semisolid, or contained gaseous material resulting

291

Nuclear waste treatment program: Annual report for FY 1987  

SciTech Connect

Two of the US Department of Energy's (DOE) nuclear waste management-related goals are to ensure that waste management is not an obstacle to the further development of light-water reactors and the closure of the nuclear fuel cycle and to fulfill its institutional responsibility for providing safe storage and disposal of existing and future nuclear wastes. As part of its approach to achieving these goals, the Office of Remedial Action and Waste Technology of DOE established what is now called the Nuclear Waste Treatment Program (NWTP) at the Pacific Northwest Laboratory during the second half of FY 1982. To support DOE's attainment of its goals, the NWTP is to provide technology necessary for the design and operation of nuclear waste treatment facilities by commercial enterprises as part of a licensed waste management system and problem-specific treatment approaches, waste form and treatment process adaptations, equipment designs, and trouble-shooting assistance, as required to treat existing wastes. This annual report describes progress during FY 1987 towards meeting these two objectives. 24 refs., 59 figs., 24 tabs.

Brouns, R.A.; Powell, J.A. (comps.)

1988-09-01T23:59:59.000Z

292

Negotiating equity for management of DOE wastes  

SciTech Connect

One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1994-09-01T23:59:59.000Z

293

Negotiating equity for management of DOE wastes  

SciTech Connect

One important factor frustrating optimal management of DOE-complex wastes is inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1993-11-01T23:59:59.000Z

294

Waste Management Facilities Cost Information Report  

Science Conference Proceedings (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

295

Hazardous Waste Management Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Mississippi) Regulations (Mississippi) Hazardous Waste Management Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the Mississippi Department of Environmental Quality requires that each generator of greater than 220

296

Tank Farm Waste Transfer Compatibility Program  

SciTech Connect

The compatibility program described in this document formalizes the process for determining waste compatibility. The primary goal of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures during future operations. The process described involves characterizing waste, comparing characteristics with criteria, resolving potential incompatibilities and documenting the process.

FOWLER, K.D.

2000-07-12T23:59:59.000Z

297

Nuclear Waste Management. Semiannual progress report, October 1984-March 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

McElroy, J.L.; Powell, J.A. (comps.)

1985-06-01T23:59:59.000Z

298

Federal Energy Management Program: Operations and Maintenance Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Support to someone by E-mail Management Support to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance Management Support on Facebook Tweet about Federal Energy Management Program: Operations and Maintenance Management Support on Twitter Bookmark Federal Energy Management Program: Operations and Maintenance Management Support on Google Bookmark Federal Energy Management Program: Operations and Maintenance Management Support on Delicious Rank Federal Energy Management Program: Operations and Maintenance Management Support on Digg Find More places to share Federal Energy Management Program: Operations and Maintenance Management Support on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management

299

Program Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management Program Management Safety The Office of Environmental Management's (EM) top priority is to ensure proper implementation and continuous improvement of Integrated Safety Management Systems (ISMS) in the EM complex and to serve as a focal point for EM safety standards and policy development and interpretation and interfaces with internal/external oversight organizations Read more Acquisition The Office of Environmental Management strives to assure effective project, acquisition, and contract management, by working closely with senior level officials in Headquarters and Field Managers; external stakeholders; and major contractors for the purpose of achieving acquisition and project management objectives of the Office of Environmental Management (EM)

300

Community Energy Education Management Program | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Education Management Program Community Energy Education Management Program Eligibility Local Government Savings For Heating & Cooling Commercial Heating & Cooling Heating...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Revision to the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of Transuranic Waste 9/6/02)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

989 989 Federal Register / Vol. 67, No. 173 / Friday, September 6, 2002 / Notices 1 The only exception to this decision was the Sandia National Laboratory in New Mexico, which will ship its TRU waste to the Los Alamos National Laboratory for disposal preparation and storage before disposal at WIPP. SANDEL, E. A. MS. SAUL, E. L. MR. SCHAEFER, J. C. MR. SCHAEFER JR, W. J. MR. SCHNEIDER, P. A. MR. SCHREGARDOUS, D. R. MR. SCHUBERT, D. CAPT SHEA, R. M. MAJGEN SHECK, E. E. MR. SHEPHARD, M. R. MS. SIMON, E. A. MR. SOMOROFF, A. R. DR. STELLOH-GARNER, C. MS. STOREY, R. C. MR. STUSSIE, W. A. MR. SULLIVAN, P. E. RADML TAMBURRINO, P. M. MR. TARRANT, N. J. MS. TESCH, T. G. MR. THOMAS, J. R. BGEN THOMAS, R. O. MR. THOMPSON, R. C. MR. THROCKMORTON JR., E. L. MR. TOWNSEND, D. K. MS.

302

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann.

1992-01-01T23:59:59.000Z

303

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann

1992-03-01T23:59:59.000Z

304

Revision to the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of Transuranic Waste (07/25/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46 46 Federal Register / Vol. 66, No. 143 / Wednesday, July 25, 2001 / Notices the Director of OMB provide interested Federal agencies and the public an early opportunity to comment on information collection requests. The Office of Management and Budget (OMB) may amend or waive the requirement for public consultation to the extent that public participation in the approval process would defeat the purpose of the information collection, violate State or Federal law, or substantially interfere with any agency's ability to perform its statutory obligations. The Leader, Information Management Group, Office of the Chief Information Officer, publishes this notice containing proposed information collection requests at the beginning of the Departmental review of the information collection. Each proposed information

305

Record of Decision for the Department of Energy's Waste Management Program: Storage of High-Level Radioactive Waste (08/26/99)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

661 661 Federal Register / Vol. 64, No. 165 / Thursday, August 26, 1999 / Notices Installation State Function(s) Total au- thorizations Public an- nounce- ment date Solicitation issued or scheduled date SELFRIDGE ......................... MI FUELS MANAGEMENT ..................................................... 8 01-Jun-98 27-Apr-99. SELFRIDGE ......................... MI TRANSIENT AIRCRAFT MAINTENANCE ......................... 8 04-Jun-98 28-Apr-99. SEYMOUR JOHNSON ......... NC TRANSIENT AIRCRAFT MAINTENANCE ......................... 8 12-Nov-97 02-Jul-99. SHAW ................................... SC COMMUNICATION FUNCTIONS ....................................... 3 18-May-99 09-May-00. SHAW ................................... SC LIBRARY .............................................................................

306

Nuclear waste management. Quarterly progress report, January-March, 1981  

SciTech Connect

Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

Chikalla, T.D.; Powell, J.A. (comp.)

1981-06-01T23:59:59.000Z

307

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year...

308

South Carolina Solid Waste Policy and Management Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The state of South Carolina supports a regional approach to solid waste management and encourages the development and implementation of alternative waste management practices and resource recovery....

309

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

310

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

311

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

312

Waste management facilities cost information for transuranic waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

313

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

314

Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A  

Science Conference Proceedings (OSTI)

This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure.

NONE

1995-09-01T23:59:59.000Z

315

Revision to the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of Transuranic Waste (DOE/EIS-0200) (6/30/04)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Federal Register / Vol. 69, No. 125 / Wednesday, June 30, 2004 / Notices Washington, DC 20585-0350 (FAX 202- 287-5736). FOR FURTHER INFORMATION CONTACT: Steven Mintz (Program Office) 202-586- 9506 or Michael Skinker (Program Attorney) 202-586-2793. SUPPLEMENTARY INFORMATION: Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. 824a(e)). On May 24, 2004, the Office of Fossil Energy (FE) of the Department of Energy (DOE) received an application from Coral to transmit electric energy from the United States to Mexico for a period of five years. Coral is owned by subsidiaries of Shell Oil Company and InterGen, N.V., with its principal place of business in Houston, Texas. Coral

316

EERE Program Management Guide - About the Program Management Guide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Managers and their teams need to know what to do, how to do it, and why it needs to be done. User instructions help make EERE's program management processes and tools easier. The DOE and EERE Strategic Management System (SMS) provides a needed standard approach. Need for a Program Management "Operator's Guide" Program management is complex and difficult. It requires knowledge and discipline as well as a broad range of concepts, processes, and tools to be carried out effectively and efficiently. In the Office of Energy Efficiency and Renewable Energy (EERE) environment, many Program Managers and their teams bring to the job educational backgrounds and work experiences that are focused on science and technology. To complement that background they

317

CRC handbook of management of radiation protection programs  

Science Conference Proceedings (OSTI)

This volume details the organization and management of radiation safety programs, including both preventive and emergency response measures. Included are guidelines and checklists for managing radioactive waste processing programs, dealing with litigation, and responding to public or news media concerns. The last sections list state, federal, and international requirements for transportation of radioactive materials.

Miller, K.L.; Weider, W.A.

1985-01-01T23:59:59.000Z

318

Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3  

Science Conference Proceedings (OSTI)

US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

Turner, J.W. [ed.

1993-12-01T23:59:59.000Z

319

Fifty years of federal radioactive waste management: Policies and practices  

SciTech Connect

This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

Bradley, R.G.

1997-04-01T23:59:59.000Z

320

International nuclear waste management fact book  

Science Conference Proceedings (OSTI)

The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

Abrahms, C W; Patridge, M D; Widrig, J E

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Federal Energy Management Program: Outreach  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Awards for Leadership in Federal Energy Management, and Department of Energy (DOE) Sustainability programs. Energy Action Month: Observed in October of each year, FEMP Energy...

322

An overview of the sustainability of solid waste management at military installations  

E-Print Network (OSTI)

Arc Gasification. Sustainability of Solid Waste Management.waste collection. Sustainability of Solid Waste Managment.Energy Refinery. Sustainability of Solid Waste Management.

Borglin, S.

2010-01-01T23:59:59.000Z

323

Revision to the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of Transuranic Waste (DOE/EIS-0200) (12/29/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

985 985 Federal Register / Vol. 65, No. 251 / Friday, December 29, 2000 / Notices collection; and (6) Reporting and/or Recordkeeping burden. OMB invites public comment. The Department of Education is especially interested in public comment addressing the following issues: (1) Is this collection necessary to the proper functions of the Department; (2) will this information be processed and used in a timely manner; (3) is the estimate of burden accurate; (4) how might the Department enhance the quality, utility, and clarity of the information to be collected; and (5) how might the Department minimize the burden of this collection on the respondents, including through the use of information technology. Dated: December 22, 2000. John Tressler, Leader, Regulatory Information Management,

324

DOE/EIS-0200 Amendement to the Record of Decision for the Department of Energy's Waste Management Program: Treatment and Storage of Transuranic Waste (03/07/08)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

401 Federal Register 401 Federal Register / Vol. 73, No. 46 / Friday, March 7, 2008 / Notices DEPARTMENT OF ENERGY Office of Fossil Energy Ultra-Deepwater Advisory Committee; Correction AGENCY: Department of Energy. ACTION: Notice of Open Meeting Correction. The Department of Energy published a notice of open meeting announcing a meeting of the Ultra-Deepwater Advisory Committee, 73 FR 8863. In FR Doc. E8-2891, published on Friday, February 15, 2008, page 8863, under SUPPLEMENTARY INFORMATION, first column, forty-sixth line, remove ''onshore unconventional'' and add in its place ''ultra-deepwater''. Issued in Washington, DC on March 3, 2008. Rachel Samuel, Deputy Committee Management Officer. [FR Doc. E8-4536 Filed 3-6-08; 8:45 am] BILLING CODE 6450-01-P DEPARTMENT OF ENERGY

325

Federal Energy Management Program: Operations and Maintenance Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement to someone by E-mail Measurement to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance Program Measurement on Facebook Tweet about Federal Energy Management Program: Operations and Maintenance Program Measurement on Twitter Bookmark Federal Energy Management Program: Operations and Maintenance Program Measurement on Google Bookmark Federal Energy Management Program: Operations and Maintenance Program Measurement on Delicious Rank Federal Energy Management Program: Operations and Maintenance Program Measurement on Digg Find More places to share Federal Energy Management Program: Operations and Maintenance Program Measurement on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management

326

Federal Energy Management Program: Energy Management Requirements by Law  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Energy Management Requirements by Law and Regulation to someone by E-mail Share Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Facebook Tweet about Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Twitter Bookmark Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Google Bookmark Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Delicious Rank Federal Energy Management Program: Energy Management Requirements by Law and Regulation on Digg Find More places to share Federal Energy Management Program: Energy Management Requirements by Law and Regulation on AddThis.com... Requirements by Subject Requirements by Regulation

327

Software requirements specification for the program analysis and control system risk management module  

Science Conference Proceedings (OSTI)

TWR Program Analysis and Control System Risk Module is used to facilitate specific data processes surrounding the Risk Management program of the Tank Waste Retrieval environment. This document contains the Risk Management system requirements of the database system.

SCHAEFER, J.C.

1999-06-02T23:59:59.000Z

328

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

In Oklahoma, industry consumes about 35% of the total energy consumed. While it is true that much work has been done in the larger companies, most small to medium sized companies have yet to undertake a substantial energy management program. Often they simply do not understand the savings possible or the techniques available. Recognizing this, a program was developed to acquaint Oklahoma industry with the potential savings allowable through energy management techniques. The program is entitled 'Oklahoma Industrial Energy; Management Program' and is located at Oklahoma State University. This paper describes past, on-going, and proposed activities of this Program and assesses their impact. Included are industrial energy management conferences, closed circuit television short courses on selected energy management topics, energy auditing, industrial energy audits (through the Oklahoma Energy Analysis and Diagnostic Center) , energy and water management research, and two courses currently being offered.

Turner, W. C.; Estes, C. B.

1982-01-01T23:59:59.000Z

329

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

Not Available

1994-06-01T23:59:59.000Z

330

Waste Management Assistance Act (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

331

Managing low-level radioactive wastes: a proposed approach  

SciTech Connect

In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document.

Peel, J.W.; Levin, G.B.

1980-01-01T23:59:59.000Z

332

Federal Energy Management Program: Federal Energy Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Management Program Contacts Contact Us By phone: 202-586-5772 By mail: U.S. Department of Energy EE-2L 1000 Independence Ave., S.W. Washington, D.C. 20585-0121 Contact...

333

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

334

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

335

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect

The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

1988-12-01T23:59:59.000Z

336

1998 Environmental Management Science Program Annual Report  

SciTech Connect

The Environmental Management Science Program (EMSP) is a collaborative partnership between the DOE Office of Environmental Management (EM), Office of Science (DOE-SC), and the Idaho Operations Office (DOE-ID) to sponsor basic environmental and waste management related research. Results are expected to lead to reduction of the costs, schedule, and risks associated with cleaning up the nation's nuclear complex. The EMSP research portfolio addresses the most challenging technical problems of the EM program related to high level waste, spent nuclear fuel, mixed waste, nuclear materials, remedial action, decontamination and decommissioning, and health, ecology, or risk. The EMSP was established in response to a mandate from Congress in the fiscal year 1996 Energy and Water Development Appropriations Act. Congress directed the Department to ''provide sufficient attention and resources to longer-term basic science research which needs to be done to ultimately reduce cleanup costs, develop a program that takes advantage of laboratory and university expertise, and seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective''. This mandate followed similar recommendations from the Galvin Commission to the Secretary of Energy Advisory Board. The EMSP also responds to needs identified by National Academy of Sciences experts, regulators, citizen advisory groups, and other stakeholders.

1999-03-01T23:59:59.000Z

337

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlsbad, New Mexico 8822 Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty of law that this document and all enclosures were prepared under our direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted

338

Boiler Chemical Cleaning Waste Management Manual  

Science Conference Proceedings (OSTI)

Chemical cleaning to remove tube deposits/oxides that occur during unit operation or scale during unit commissioning from conventional fossil plants and combined cycle plants with heat recovery steam generators (HRSGs) will result in the generation of a waste solution. The waste contains residual solvent and elevated levels of heavy metals (primarily iron and copper) in addition to rinse and passivation solutions. An earlier manual, Boiler Chemical Cleaning Wastes Management Manual (EPRI ...

2013-12-20T23:59:59.000Z

339

Summary - Environmental Management Waste Management Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management...

340

WASTE MANAGEMENT QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualification Standard Qualification Standard Reference Guide August 2010 Waste Management This page is intentionally blank. Table of Contents iii LIST OF FIGURES ..................................................................................................................... iv LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Montana Solid Waste Management Act (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the public policy of the state to control solid waste management systems to protect the public health and safety and to conserve natural resources whenever possible. The Department of...

342

Federal Energy Management Program: Operations and Maintenance Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Operations and Maintenance Program Structure to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance Program Structure on Facebook Tweet about Federal Energy Management Program: Operations and Maintenance Program Structure on Twitter Bookmark Federal Energy Management Program: Operations and Maintenance Program Structure on Google Bookmark Federal Energy Management Program: Operations and Maintenance Program Structure on Delicious Rank Federal Energy Management Program: Operations and Maintenance Program Structure on Digg Find More places to share Federal Energy Management Program: Operations and Maintenance Program Structure on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements

343

Federal Energy Management Program: Operations and Maintenance Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Operations and Maintenance Program Implementation to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance Program Implementation on Facebook Tweet about Federal Energy Management Program: Operations and Maintenance Program Implementation on Twitter Bookmark Federal Energy Management Program: Operations and Maintenance Program Implementation on Google Bookmark Federal Energy Management Program: Operations and Maintenance Program Implementation on Delicious Rank Federal Energy Management Program: Operations and Maintenance Program Implementation on Digg Find More places to share Federal Energy Management Program: Operations and Maintenance Program Implementation on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance

344

Design and Implementation of Waste Management Robots  

Science Conference Proceedings (OSTI)

Recently, there are many problems caused by global environment warming. The limited natural resources require efficient methods and systems for recycling and processing of the wastes for a better environment. One of the problems today is the processing ... Keywords: Waste Management, Robot, Compost, Sensor Technology

Keita Matsuo; Yuichi Ogata; Kouhei Umezaki; Evjola Spaho; Leonard Barolli

2012-03-01T23:59:59.000Z

345

Development of small and powdery waste management  

Science Conference Proceedings (OSTI)

The actual world is facing a dilemma: to have in present a great welfare without any care concerning the future and the natural environment or the acceptance of the opportunity cost generated by adopting clean, green technologies or of those which fundamentally ... Keywords: pollution, products, pulverous waste, recovery, siderurgy, waste management

Socalici Ana; Harau Carmen; Heput Teodor; Ardelean Erika

2012-03-01T23:59:59.000Z

346

Managing America`s solid waste  

Science Conference Proceedings (OSTI)

This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

Not Available

1998-03-02T23:59:59.000Z

347

Site-specific waste management instruction - radiological screening facility  

DOE Green Energy (OSTI)

This Site-Specific Waste Management Instruction provides guidance for managing waste generated from radiological sample screening operations conducted to support the Environmental Restoration Contractor`s activities. This document applies only to waste generated within the radiological screening facilities.

G. G. Hopkins

1997-12-31T23:59:59.000Z

348

2005 Supplement Analysis of the INL Site Portion of the April 1995 Programmatic Spent Nuclear Fule Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

03-F-SA-02 03-F-SA-02 2005 SUPPLEMENT ANALYSIS of the INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement June 2005 United States Department of Energy Idaho Operations Office 1.0. 2.0. 3.0. 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 4.0. 5.0. 5.1. 5.2. 5.3. 5.3.1. 5.3.2. 5.3.3. 5.3.4. 5.3.5. 5.4. 6.0. 6.1. 6.2. 6.3. 6.3.1. 6.3.2. 6.3.3. 6.3.4. 6.3.5. 6.3.6. 6.3.7. 6.3.8. 6.3.9. 6.3.10. 6.3.11. 6.3.12. 6.3.13. 6.3.14. 6.3.15. 6.3.16. 6.3.17. 6.3.18. DOE/EIS-0203-F-SA-02 Table of Contents EXECUTIVE SUMMARY..................................................................................1 INTRODUCTION..............................................................................................

349

Solid Waste Management and Land Protection (North Dakota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Land Protection (North Dakota) and Land Protection (North Dakota) Solid Waste Management and Land Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The policy of the State of North Dakota is to encourage and provide for environmentally acceptable and economical solid waste management practices, and the Department of Health may promulgate regulations related to waste

350

Optimising waste management performance - The key to successful decommissioning  

SciTech Connect

Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

Keep, Matthew [Entec UK Limited. 17 Angel Gate. City Road. London EC1V 2SH (United Kingdom)

2007-07-01T23:59:59.000Z

351

Federal Energy Management Program: Best Management Practice: Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Kitchen Equipment to someone by E-mail Commercial Kitchen Equipment to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Commercial Kitchen Equipment on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Commercial Kitchen Equipment on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Commercial Kitchen Equipment on Google Bookmark Federal Energy Management Program: Best Management Practice: Commercial Kitchen Equipment on Delicious Rank Federal Energy Management Program: Best Management Practice: Commercial Kitchen Equipment on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Commercial Kitchen Equipment on AddThis.com... Sustainable Buildings & Campuses

352

Federal Energy Management Program: Best Management Practice: Alternate  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternate Water Sources to someone by E-mail Alternate Water Sources to someone by E-mail Share Federal Energy Management Program: Best Management Practice: Alternate Water Sources on Facebook Tweet about Federal Energy Management Program: Best Management Practice: Alternate Water Sources on Twitter Bookmark Federal Energy Management Program: Best Management Practice: Alternate Water Sources on Google Bookmark Federal Energy Management Program: Best Management Practice: Alternate Water Sources on Delicious Rank Federal Energy Management Program: Best Management Practice: Alternate Water Sources on Digg Find More places to share Federal Energy Management Program: Best Management Practice: Alternate Water Sources on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases

353

Solid Waste Management Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

354

Training Program EHS 0611 ~ Universal Waste Regulatory Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Health, & Safety Training Program EHS 0611 Universal Waste Regulatory Training Course Syllabus Subject...

355

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management  

SciTech Connect

Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

Not Available

1994-06-01T23:59:59.000Z

356

National waste terminal storage program  

SciTech Connect

An overview is provided of the national geologic disposal program. The portions of the program concerning South Dakota are discussed in detail. (LK)

Zerby, C.D.

1976-10-07T23:59:59.000Z

357

WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

is required by and has bee n prepared in accordance with the WIPP Hazardous Waste Facility Perm it Part 2, Permit Condition 2.4. We certify under penalty of law that this...

358

The Waste Management Quality Assurance Implementing Management Plan (QAIMP)  

E-Print Network (OSTI)

meeting applicable requirements of LBL, DOE, DOT, and otherDOE Orders, and waste management acceptance requirements ofwith the requirements of this QAIMP and DOE Order 1324.2A.

Albert editor, R.

2009-01-01T23:59:59.000Z

359

Drilling Waste Management Technology Identification Module  

NLE Websites -- All DOE Office Websites (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

360

EERE Program Management Guide- About the Program Management Guide  

Energy.gov (U.S. Department of Energy (DOE))

The Introduction describes the need for an Operators Guide, provides information on content and the relationship between the guide and the EERE Program Management Initiative, and provides information on how to use the guide.

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Innovative technologies for managing oil field waste.  

Science Conference Proceedings (OSTI)

Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

Veil, J. A.; Environmental Assessment

2003-09-01T23:59:59.000Z

362

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of EnergyIdaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

Tripp, Julia Lynn; Archibald, Kip Ernest; Argyle, Mark Don; Demmer, Ricky Lynn; Miller, Rose Anna; Lauerhass, Lance

1999-03-01T23:59:59.000Z

363

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy ? Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

C. B. Millet; J. L. Tripp; K. E. Archibald; L. Lauerhauss; M. D. Argyle; R. L. Demmer

1999-02-01T23:59:59.000Z

364

Oklahoma Industrial Energy Management Program  

E-Print Network (OSTI)

Each and every citizen has been affected by the energy crisis by now. Business and industry have especially been hurt as the rising cost of energy and its dwindling supplies are the twin jaws of a vise rapidly closing in on profits. Much work is being done in large companies; but most small to medium companies have yet to undertake a substantial energy management program. The reasons are many but often they simply I do not understand the savings possible or the techniques available. Recognizing this, the Oklahoma Department of Energy designed a program to acquaint Oklahoma industry with the potential savings available through energy management and some basic techniques. The program is, entitled "Oklahoma Industrial Energy Management Program" and is housed at Oklahoma State University. The program is funded by the U. S. Department of Energy through the State Energy Conservation Plan. This paper describes the program offerings, impact to date and plans for the future.

Estes, C. B.; Turner, W. C.

1980-01-01T23:59:59.000Z

365

Hazardous waste management in the Texas construction industry  

E-Print Network (OSTI)

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations: specifically, the Resource Conservation and Recovery Act (RCRA) and the Texas Solid Waste Disposal Act (TSWDA). The study was needed because there is presently no knowledge of how well general contractors in Texas are complying with laws enacted to protect human health and the environment from the mismanagement of hazardous waste. The importance of this study is that it addresses the issue of whether regulatory compliance is a problem for general contractors in Texas and the construction industry in general. The implications for this stem from the potential that both environmental harm and enforcement activity could increase as a consequence . Using a combination of survey and archival design methods, the study derived two counts: (1) actual number of general contractors in Texas who generate regulated amounts of hazardous waste and observe regulatory requirements; and (2) estimated number of contractors in Texas who generate regulated amounts of hazardous waste. The comparison equates to one of "compilers" versus "should be complying." Dividing the count of compilers by the count of should-be compilers, equals the degree of regulatory compliance. Using a 95% confidence interval, the study observed that during 1990 only 1 out of 28 general contractors, generating regulated amounts of hazardous waste complied with regulatory requirements (a strong showing of noncompli-ance). In order to resolve the problem of non-compliance, the study recommends that related efforts be undertaken to: (a) expand this study, both in scope and detail to verify the problem identified; (b) improve industry understanding of waste management regulations; (c) promote observance of proper waste-management procedures; (d) summon government support for outreach programs aimed at improving waste management in the construction industry - in particular hazardous waste; (e) initiate further research to design solutions for hazardous-waste-management problems; and (f) implement hazardous-waste minimization and recovery practices in the construction industry.

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

366

Mixed wastes management at Fernald: Making it happen quickly, economically and compliantly  

SciTech Connect

At the end of calender year 1992, the Fernald Environmental Management Project (FEMP) had approximately 12,500 drums of mixed low-level waste in storage and the Fernald Environmental Restoration Management Corporation (FERMCO) had just begun to develop an aggressive project based program to treat and dispose of this mixed waste. By 1996 the FERMCO mixed waste management program had reduced the aforementioned 12,500 drums of waste once in inventory to approximately 5800 drums. Projects are currently in progress to completely eliminate the FEMP inventory of mixed waste. As a result of these initiatives and aggressive project management, the FEMP has become a model for mixed waste handling, treatment and disposal for DOE facilities. Mixed waste management has traditionally been viewed as a singular and complex environmental problem. FERMCO has adopted the viewpoint that treatment and disposal of mixed waste is an engineering project, to be executed in a disciplined fashion with timely and economic results. This approach allows the larger mixed waste management problem to be divided into manageable fractions and managed by project. Each project is managed by problem solving experts, project managers, in lieu of environmental experts. In the project approach, environmental regulations become project requirements for individual resolution, as opposed to what had formerly been viewed as technically unachievable environmental standards.

Witzeman, J.T. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Rast, D.M. [USDOE, Washington, DC (United States)

1996-02-09T23:59:59.000Z

367

Solid Waste Program technical baseline description  

SciTech Connect

The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

Carlson, A.B.

1994-07-01T23:59:59.000Z

368

Federal Energy Management Program: About the Program  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program About the Program The U.S. Department of Energy's Federal Energy Management Program (FEMP) works with key individuals to accomplish energy change within organizations, by bringing expertise from all levels of project and policy implementation, to enable Federal agencies to meet energy-related goals and provide energy leadership to the country. As the nation's largest energy consumer, the Federal Government has a tremendous opportunity and clear responsibility to lead by example. FEMP is central to this responsibility, guiding agencies to use funding more effectively in meeting Federal and agency-specific energy management objectives. Directed by Dr. Timothy Unruh, FEMP helps agencies meet its objectives by providing information through its primary program, technology, and service areas.

369

Quality assurance program plan for low-level waste at the WSCF Laboratory  

Science Conference Proceedings (OSTI)

The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME).

Morrison, J.A.

1994-11-01T23:59:59.000Z

370

Federal Energy Management Program: Operations and Maintenance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Management Effective management is critical to any operations and maintenance (O&M) program. The management function should bind the distinct parts of the O&M program into...

371

Training Program EHS 604 ~ Hazardous Waste Generator Training  

NLE Websites -- All DOE Office Websites (Extended Search)

604 Hazardous Waste Generator Training Course Syllabus Subject Category: Waste Management Course Prerequisite: EHS0348 or equivalent Course Length: 45 minutes Medical Approval:...

372

[DOE method for evaluating environmental and waste management samples: Revision 1, Addendum 1  

SciTech Connect

The US Dapartment of Energy`s (DOE`s) environmental and waste management (EM) sampling and analysis activities require that large numbers of samples be analyzed for materials characterization, environmental surveillance, and site-remediation programs. The present document, DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods), is a supplemental resource for analyzing many of these samples.

Goheen, S.C.

1995-04-01T23:59:59.000Z

373

Environmental Management Science Program Workshop  

SciTech Connect

This program summary book is a compendium of project summaries submitted by principal investigators in the Environmental Management Science Program and Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program). These summaries provide information about the most recent project activities and accomplishments. All projects will be represented at the workshop poster sessions, so you will have an opportunity to meet with the researchers. The projects will be presented in the same order at the poster session as they are presented in this summary book. Detailed questions about an individual project may be directed to the investigators involved.

1998-07-01T23:59:59.000Z

374

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs  

Science Conference Proceedings (OSTI)

This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

NONE

1994-06-01T23:59:59.000Z

375

Implementation plan: Executive summary. Environmental restoration and waste management programmatic environmental impact statement  

SciTech Connect

In November 1989, the Secretary of Energy established the U.S. Department of Energy Office of Environmental Restoration and Waste Management. This action consolidated the Department`s environmental restoration and waste management activities throughout the nation. In January 1990, the Secretary of Energy decided that the Department would prepare a Programmatic Environmental Impact Statement on the proposed integrated Environmental Restoration and Waste Management Program. The principal focus of the Programmatic Environmental Impact Statement process will be the evaluation of strategies for conducting remediation of Department sites and facilities to ensure the protection of human health and the environment; and the evaluation of potential configurations for waste management capabilities.

Not Available

1994-01-01T23:59:59.000Z

376

Department of Energy - Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 en U.S. Department of Energy to Host 1 en U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal http://energy.gov/articles/us-department-energy-host-press-call-radioactive-waste-shipment-and-disposal waste-shipment-and-disposal" class="title-link">U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal

377

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 6, 2010 Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal Judge RICHLAND, Wash. - The U.S. Department of Energy and Washington State Department of...

378

Modelling integrated waste management system of the Czech Republic  

Science Conference Proceedings (OSTI)

The paper is devoted to environmental modelling, particularly modelling of Integrated Municipal Solid Waste Management Systems at the Czech Republic (IMSWMS). There are considered input macroeconomic variables (landfills fees, price of electricity, tax ... Keywords: environmental modelling, integrated waste management system, municipal solid waste, waste management modelling

Jiri Hrebicek; Jana Soukopova

2010-07-01T23:59:59.000Z

379

Federal Energy Management Program: Interagency Energy Management Task Force  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program About the Program Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Interagency Energy Management Task Force Members to someone by E-mail Share Federal Energy Management Program: Interagency Energy Management Task Force Members on Facebook Tweet about Federal Energy Management Program: Interagency Energy Management Task Force Members on Twitter Bookmark Federal Energy Management Program: Interagency Energy Management Task Force Members on Google Bookmark Federal Energy Management Program: Interagency Energy Management Task Force Members on Delicious Rank Federal Energy Management Program: Interagency Energy Management Task Force Members on Digg Find More places to share Federal Energy Management Program: Interagency Energy Management Task Force Members on AddThis.com...

380

Management of low-level radioactive wastes around the world  

SciTech Connect

This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

Lakey, L.T.; Harmon, K.M.; Colombo, P.

1985-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Acquisition Career Management Program Handbook, Partial Revision...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Procurement and Assistance Management SUBJECT: Acquisition Career Management Program Handbook, Partial Revision of Chapter 11, Contracting Officer's Representative SUMMARY: The...

382

Federal Energy Management Program: Energy Service Companies  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Companies to someone by E-mail Share Federal Energy Management Program: Energy Service Companies on Facebook Tweet about Federal Energy Management Program: Energy Service...

383

Federal Energy Management Program: Campaign Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Materials to someone by E-mail Share Federal Energy Management Program: Campaign Materials on Facebook Tweet about Federal Energy Management Program: Campaign Materials on...

384

Federal Energy Management Program: Covered Product Category:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ballasts to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Fluorescent Ballasts on Facebook Tweet about Federal Energy Management Program:...

385

Federal Energy Management Program: Office Energy Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Checklist to someone by E-mail Share Federal Energy Management Program: Office Energy Checklist on Facebook Tweet about Federal Energy Management Program: Office Energy...

386

Federal Energy Management Program: Sustainable Building Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Basics to someone by E-mail Share Federal Energy Management Program: Sustainable Building Basics on Facebook Tweet about Federal Energy Management Program:...

387

Federal Energy Management Program: Sustainable Building Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Building Contacts to someone by E-mail Share Federal Energy Management Program: Sustainable Building Contacts on Facebook Tweet about Federal Energy Management Program:...

388

Federal Energy Management Program: Water Efficiency Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share Federal Energy Management Program: Water Efficiency Contacts on Facebook Tweet about Federal Energy Management Program: Water Efficiency...

389

Federal Energy Management Program: Types of Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

of Commissioning to someone by E-mail Share Federal Energy Management Program: Types of Commissioning on Facebook Tweet about Federal Energy Management Program: Types of...

390

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

391

Federal Energy Management Program: Federal Interagency Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Federal Interagency Energy Management Task Force to someone by...

392

Federal Energy Management Program: Federal Requirements  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Requirements to someone by E-mail Share Federal Energy Management Program: Federal Requirements on Facebook Tweet about Federal Energy Management Program: Federal...

393

Federal Energy Management Program: ESPC ENABLE  

NLE Websites -- All DOE Office Websites (Extended Search)

ESPC ENABLE to someone by E-mail Share Federal Energy Management Program: ESPC ENABLE on Facebook Tweet about Federal Energy Management Program: ESPC ENABLE on Twitter Bookmark...

394

Federal Energy Management Program: Executive Order 13514  

NLE Websites -- All DOE Office Websites (Extended Search)

514 to someone by E-mail Share Federal Energy Management Program: Executive Order 13514 on Facebook Tweet about Federal Energy Management Program: Executive Order 13514 on Twitter...

395

Federal Energy Management Program: Distributed Energy Resource...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Basics to someone by E-mail Share Federal Energy Management Program: Distributed Energy Resource Basics on Facebook Tweet about Federal Energy Management Program:...

396

Federal Energy Management Program: Energy Action Month  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Action Month to someone by E-mail Share Federal Energy Management Program: Energy Action Month on Facebook Tweet about Federal Energy Management Program: Energy Action Month...

397

Federal Energy Management Program: Covered Product Category:...  

NLE Websites -- All DOE Office Websites (Extended Search)

Luminaires to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Fluorescent Luminaires on Facebook Tweet about Federal Energy Management Program:...

398

Federal Energy Management Program: Predictive Maintenance Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies to someone by E-mail Share Federal Energy Management Program: Predictive Maintenance Technologies on Facebook Tweet about Federal Energy Management Program: Predictive...

399

Federal Energy Management Program: Greenhouse Gas Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Basics on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Basics on...

400

Federal Energy Management Program: Greenhouse Gas Mitigation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mitigation Planning to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Mitigation Planning on Facebook Tweet about Federal Energy Management Program:...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Federal Energy Management Program: Greenhouse Gas Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share Federal Energy Management Program: Greenhouse Gas Contacts on Facebook Tweet about Federal Energy Management Program: Greenhouse Gas Contacts on...

402

Federal Energy Management Program: Home Energy Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Checklist to someone by E-mail Share Federal Energy Management Program: Home Energy Checklist on Facebook Tweet about Federal Energy Management Program: Home Energy...

403

Federal Energy Management Program: Awarded ESPC Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Awarded ESPC Projects to someone by E-mail Share Federal Energy Management Program: Awarded ESPC Projects on Facebook Tweet about Federal Energy Management Program: Awarded ESPC...

404

Federal Energy Management Program: Renewable Energy Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Training to someone by E-mail Share Federal Energy Management Program: Renewable Energy Training on Facebook Tweet about Federal Energy Management Program: Renewable Energy...

405

Federal Energy Management Program: Purchasing Renewable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Purchasing Renewable Power to someone by E-mail Share Federal Energy Management Program: Purchasing Renewable Power on Facebook Tweet about Federal Energy Management Program:...

406

Federal Energy Management Program: Energy Management Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance Guidance The Federal Energy Management Program (FEMP) provides guidance on Federal laws and regulations related to energy management. General Guidance for Facilities Overview of Federal Energy Management Policy and Mandates: Guidance document outlining Federal energy management goals and requirements for Federal energy managers. Sustainability Requirement Crosswalk: Crosswalk of sustainability and energy goals and targets within executive orders and other statutes. Guidelines Establishing Criteria for Excluding Buildings from the Energy Performance Requirements of Section 543 of the National Energy Conservation Policy Act as Amended by the Energy Policy Act of 2005 (EPAct 2005): Guidelines that established criteria for exclusions from the energy performance requirement for a fiscal year or any Federal building or collection of Federal buildings within the statutory framework provided by the law.

407

and Environmental Management Programs  

E-Print Network (OSTI)

City, Utah. The purpose of the workshop was to solicit early public input on major issues associated with a potential rulemaking for land disposal of unique waste streams including significant quantities of depleted uranium in radioactive waste disposal facilities. The public workshop was intended to solicit the views from a variety of stakeholders that may be affected by the rulemaking. Approximately 90 people attended the workshop including roundtable participants from the U.S. Department of Energy (DOE); the States of Washington, Texas, and Utah; low-level waste disposal facility operators, enrichment facility operators, academic experts, and public interest groups. U.S. Nuclear Regulatory Commission (NRC) staff delivered technical presentations on various aspects of the proposed rulemaking. Participants at the roundtable engaged the NRC staff and other panelists in a discussion of technical, regulatory, and legislative issues. Members of the public in attendance were also given the opportunity to participate in the discussion. Attendees provided comments and gave positive feedback about the productive and collaborative nature of the workshop. CONTACT: Priya Yadav, FSME/DWMEP

Patrice Bubar; Deputy Director

2009-01-01T23:59:59.000Z

408

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.  

SciTech Connect

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.

Dennis, Matthew L.; Cochran, John Russell; Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)

2011-10-01T23:59:59.000Z

409

External > Programs > Environmental Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Haul Road Environmental Management The Oak Ridge Reservation is one of the U.S. Department of Energy's (DOE) most unique and complex sites, encompassing three major campuses and...

410

Federal Energy Management Program: Bureau of Land Management...  

NLE Websites -- All DOE Office Websites (Extended Search)

Bureau of Land Management - Campground, Utah to someone by E-mail Share Federal Energy Management Program: Bureau of Land Management - Campground, Utah on Facebook Tweet about...

411

Federal Energy Management Program: DOE Enhances Management of...  

NLE Websites -- All DOE Office Websites (Extended Search)

resource Send a link to Federal Energy Management Program: DOE Enhances Management of Energy Savings Performance Contracts to someone by E-mail Share Federal Energy Management...

412

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM - 2011  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2011 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2011 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2011-00026, HLW Tank Farm Inspection Plan for 2011, were completed. Ultrasonic measurements (UT) performed in 2011 met the requirements of C-ESR-G-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 25, 26 and 34 and the findings are documented in SRNL-STI-2011-00495, Tank Inspection NDE Results for Fiscal Year 2011, Waste Tanks 25, 26, 34 and 41. A total of 5813 photographs were made and 835 visual and video inspections were performed during 2011. A potential leaksite was discovered at Tank 4 during routine annual inspections performed in 2011. The new crack, which is above the allowable fill level, resulted in no release to the environment or tank annulus. The location of the crack is documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.6.

West, B.; Waltz, R.

2012-06-21T23:59:59.000Z

413

Secondary Waste Forms and Technetium Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secondary Waste Forms and Secondary Waste Forms and Technetium Management Joseph H. Westsik, Jr. Pacific Northwest National Laboratory EM HLW Corporate Board Meeting November 18, 2010 What are Secondary Wastes? Process condensates and scrubber and/or off-gas treatment liquids from the pretreatment and ILAW melter facilities at the Hanford WTP. Sent from WTP to the Effluent Treatment Facility (ETF) for treatment and disposal Treated liquid effluents under the ETF State Wastewater Discharge Permit Solidified liquid effluents under the Dangerous Waste Permit for disposal at the Integrated Disposal Facility (IDF) Solidification Treatment Unit to be added to ETF to provide capacity for WTP secondary liquid wastes 2 Evaporator Condensate Solution Evaporator Pretreatment Melter SBS/ WESP Secondary

414

Drilling Waste Management Fact Sheet: Land Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Land Application Land Application Fact Sheet - Land Application The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation, and is important enough to be described in its own fact sheet; other forms of bioremediation are described in a separate fact sheet. Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

415

Mass Tracking System Software [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Tracking System Mass Tracking System Software Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Mass Tracking System Software Bookmark and Share The NE Division has developed a computer-based Mass Tracking (MTG) system, which is used at the Idaho National Laboratory Fuel Conditioning Facility (FCF) to maintain a real-time accounting of the inventory of containers and

416

Federal Energy Management Program: Federal Interagency Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Meetings to someone by E-mail Share Federal Energy Management Program: Federal Interagency Energy Management Task Force Meetings on Facebook Tweet about Federal Energy Management...

417

Build an energy management program | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Build an energy management program Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

418

Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

419

Waste Management Coordinating Lead Authors  

E-Print Network (OSTI)

to advice on C programming to filling compressed air cylinders. In three trips to New Zealand during my Ph

Columbia University

420

Office of Environmental Management | Department of Energy  

Office of Environmental Management (EM)

Environmental Management Search form Search Office of Environmental Management Services Waste Management Site & Facility Restoration Program Management Communication & Engagement...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Federal Energy Management Program: Building Life Cycle Cost Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Site Map Printable Version Share this resource Send a link to Federal Energy Management Program: Building Life Cycle Cost Programs to someone by E-mail Share Federal Energy Management Program: Building Life Cycle Cost Programs on Facebook Tweet about Federal Energy Management Program: Building Life Cycle Cost Programs on Twitter Bookmark Federal Energy Management Program: Building Life Cycle Cost Programs on Google Bookmark Federal Energy Management Program: Building Life Cycle Cost Programs on Delicious Rank Federal Energy Management Program: Building Life Cycle Cost Programs on Digg Find More places to share Federal Energy Management Program: Building Life Cycle Cost Programs on AddThis.com... Publications Software FAQs Building Life Cycle Cost Programs

422

Multiple system modelling of waste management  

Science Conference Proceedings (OSTI)

Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

Eriksson, Ola, E-mail: ola.eriksson@hig.se [Profu i Goeteborg AB, Goetaforsliden 13 Nedre, SE 431 34 Moelndal (Sweden); Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle (Sweden); Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se [Profu i Goeteborg AB, Goetaforsliden 13 Nedre, SE 431 34 Moelndal (Sweden)

2011-12-15T23:59:59.000Z

423

Municipal solid-waste management in Istanbul  

SciTech Connect

Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

Kanat, Gurdal, E-mail: gkanat@gmail.co [Yildiz Teknik Universitesi Cevre Muh Bolumu, 34220 Davutpasa-Esenler, Istanbul (Turkey)

2010-08-15T23:59:59.000Z

424

Waste Logic Liquid Waste Manager (WL-LWM) Software, Version 2.0  

Science Conference Proceedings (OSTI)

In response to continuing industry efforts to reduce operating expenditures, EPRI developed the Waste Logic&trade: Liquid Waste Manager code to analyze costs associated with liquid waste processing and the disposition of its resultant solid waste. EPRI's Waste Logic: Liquid Waste Manager software for windows-based PC computers provides a detailed economic and performance view of liquid waste processing activities. The software will help nuclear utilities evaluate the costs associated with liquid radwaste...

2002-06-05T23:59:59.000Z

425

Federal Energy Management Program: Maintenance Types  

NLE Websites -- All DOE Office Websites (Extended Search)

Maintenance Types Maintenance Types to someone by E-mail Share Federal Energy Management Program: Maintenance Types on Facebook Tweet about Federal Energy Management Program: Maintenance Types on Twitter Bookmark Federal Energy Management Program: Maintenance Types on Google Bookmark Federal Energy Management Program: Maintenance Types on Delicious Rank Federal Energy Management Program: Maintenance Types on Digg Find More places to share Federal Energy Management Program: Maintenance Types on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Reactive Preventive Predictive Reliability-Centered Major Equipment Types Resources Contacts

426

Federal Energy Management Program: Commissioning Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Commissioning Commissioning Process to someone by E-mail Share Federal Energy Management Program: Commissioning Process on Facebook Tweet about Federal Energy Management Program: Commissioning Process on Twitter Bookmark Federal Energy Management Program: Commissioning Process on Google Bookmark Federal Energy Management Program: Commissioning Process on Delicious Rank Federal Energy Management Program: Commissioning Process on Digg Find More places to share Federal Energy Management Program: Commissioning Process on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Types Process Metering Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases

427

Federal Energy Management Program: Reactive Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactive Reactive Maintenance to someone by E-mail Share Federal Energy Management Program: Reactive Maintenance on Facebook Tweet about Federal Energy Management Program: Reactive Maintenance on Twitter Bookmark Federal Energy Management Program: Reactive Maintenance on Google Bookmark Federal Energy Management Program: Reactive Maintenance on Delicious Rank Federal Energy Management Program: Reactive Maintenance on Digg Find More places to share Federal Energy Management Program: Reactive Maintenance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Reactive Preventive Predictive Reliability-Centered Major Equipment Types

428

Federal Energy Management Program: Metering Process  

NLE Websites -- All DOE Office Websites (Extended Search)

Process Process to someone by E-mail Share Federal Energy Management Program: Metering Process on Facebook Tweet about Federal Energy Management Program: Metering Process on Twitter Bookmark Federal Energy Management Program: Metering Process on Google Bookmark Federal Energy Management Program: Metering Process on Delicious Rank Federal Energy Management Program: Metering Process on Digg Find More places to share Federal Energy Management Program: Metering Process on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency Data Center Energy Efficiency

429

Federal Energy Management Program: Operations and Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Operations and Maintenance to someone by E-mail Share Federal Energy Management Program: Operations and Maintenance on Facebook Tweet about Federal Energy Management Program: Operations and Maintenance on Twitter Bookmark Federal Energy Management Program: Operations and Maintenance on Google Bookmark Federal Energy Management Program: Operations and Maintenance on Delicious Rank Federal Energy Management Program: Operations and Maintenance on Digg Find More places to share Federal Energy Management Program: Operations and Maintenance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources

430

Federal Energy Management Program: Predictive Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Federal Energy Management Program: Predictive Maintenance on Facebook Tweet about Federal Energy Management Program: Predictive Maintenance on Twitter Bookmark Federal Energy Management Program: Predictive Maintenance on Google Bookmark Federal Energy Management Program: Predictive Maintenance on Delicious Rank Federal Energy Management Program: Predictive Maintenance on Digg Find More places to share Federal Energy Management Program: Predictive Maintenance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Reactive Preventive Predictive Reliability-Centered Major Equipment Types Resources

431

Federal Energy Management Program: Preventive Maintenance  

NLE Websites -- All DOE Office Websites (Extended Search)

Preventive Preventive Maintenance to someone by E-mail Share Federal Energy Management Program: Preventive Maintenance on Facebook Tweet about Federal Energy Management Program: Preventive Maintenance on Twitter Bookmark Federal Energy Management Program: Preventive Maintenance on Google Bookmark Federal Energy Management Program: Preventive Maintenance on Delicious Rank Federal Energy Management Program: Preventive Maintenance on Digg Find More places to share Federal Energy Management Program: Preventive Maintenance on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Computerized Maintenance Management Systems Maintenance Types Reactive Preventive Predictive Reliability-Centered Major Equipment Types

432

Federal Energy Management Program: Metering Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Metering Systems Metering Systems to someone by E-mail Share Federal Energy Management Program: Metering Systems on Facebook Tweet about Federal Energy Management Program: Metering Systems on Twitter Bookmark Federal Energy Management Program: Metering Systems on Google Bookmark Federal Energy Management Program: Metering Systems on Delicious Rank Federal Energy Management Program: Metering Systems on Digg Find More places to share Federal Energy Management Program: Metering Systems on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Federal Requirements Program Management Commissioning Metering Systems Approaches Process Computerized Maintenance Management Systems Maintenance Types Major Equipment Types Resources Contacts Greenhouse Gases Water Efficiency

433

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

434

Federal Energy Management Program: Publications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Search Browse by Topic Mail Requests Help Software FAQs Feature featured product thumbnail Federal Energy Management Program Overview - Facilitating Sound, Cost-Effective Energy Management Details Bookmark & Share View Related Welcome to the Federal Energy Management Program's (FEMP) publication and product library. Use this database to: Search for FEMP publications and products View or download publications Request hard copies of select publications and products. Search the Library Search (Searches Title, Description, Filename and Keywords) Advanced Search Browse by Topic Most Popular Energy Savings Performance Contract (ESPC) ENABLE Program The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE pr Details Bookmark & Share

435

DOE Seeks Proposals for Management of New Mexico Waste Isolation Pilot  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Proposals for Management of New Mexico Waste Isolation Proposals for Management of New Mexico Waste Isolation Pilot Plant DOE Seeks Proposals for Management of New Mexico Waste Isolation Pilot Plant June 20, 2011 - 12:00pm Addthis Media Contact Bill Taylor 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati --The U.S. Department of Energy (DOE) today issued a Final Request for Proposal for management and operations of the Waste Isolation Pilot Plan (WIPP) located in Carlsbad, New Mexico. The successful contractor will manage the WIPP site and DOE's National Transuranic Waste (TRU) program. DOE anticipates awarding a competitive, cost-plus-award-fee contract with an approximate value of $135 million per year, for five years. There will be an option to extend the contract for five additional years. The overall mission of the WIPP and the National TRU program is to protect

436

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

437

SDMSM 2.1 - Waste Logic Solid and Decommissioning Multi-Site Manager, Version 2.1  

Science Conference Proceedings (OSTI)

The Waste Logic Solid and Decommissioning Multi-Site Manager (SDMSM) software, Version 2.1, combines several existing Waste Logic programs into a single software package offering comprehensive waste management cost and performance input and analysis for multiple nuclear stations.

2006-06-27T23:59:59.000Z

438

Liquid low level waste management expert system  

SciTech Connect

An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

Ferrada, J.J.; Abraham, T.J. (Oak Ridge National Lab., TN (United States)); Jackson, J.R. (Southwest Baptist Univ., Bolivar, MO (USA))

1991-01-01T23:59:59.000Z

439

Framework for managing wastes from oil and gas exploration and production (E&P) sites.  

Science Conference Proceedings (OSTI)

Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2007-09-15T23:59:59.000Z

440

EERE: Federal Energy Management Program Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map About the Program Program Plans, Implementation, and Results Interagency Coordination Interagency Energy Management Task Force Contacts Program Areas Sustainable Buildings...

Note: This page contains sample records for the topic "waste management programs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tank waste remediation system systems engineering management plan  

Science Conference Proceedings (OSTI)

This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance.

Peck, L.G.

1998-01-08T23:59:59.000Z

442

CRAD, Management - Office of River Protection K Basin Sludge Waste System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection K Basin Sludge Waste Office of River Protection K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Management at the Office of River Protection K Basin Sludge Waste System. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Office of River Protection K Basin Sludge Waste System More Documents & Publications CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge