Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

2

Solid Waste Management Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

3

Virginia Waste Management Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

4

Waste Management Assistance Act (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

5

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

6

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Energy.gov (U.S. Department of Energy (DOE))

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

7

Illinois Solid Waste Management Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) < Back Eligibility Agricultural Commercial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Illinois Program Type Environmental Regulations Provider Illinois EPA It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid waste planning and management. In furtherance of those aims, while recognizing that landfills will continue to be necessary, this Act establishes the following waste management hierarchy, in descending order of preference, as State policy: volume reduction at the source; recycling and reuse; combustion

8

Georgia Hazardous Waste Management Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

9

Hazardous Waste Management Act (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) Hazardous Waste Management Act (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive regulatory program of hazardous waste management, and the South Dakota Department of Environment

10

Solid Waste Management Services Act (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

This Act affirms the commitment of the state government to the development of systems and facilities and technology necessary to initiate large-scale processing of solid wastes and resource...

11

Gaines County Solid Waste Management Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) Gaines County Solid Waste Management Act (Texas) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Texas Program Type Environmental Regulations Provider Gaines County Solid Waste Management District This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and regulation of waste disposal. The District has the power to prepare, adopt plans for, purchase, obtain permits for, construct, acquire, own, operate, maintain, repair, improve, and extend inside and outside the boundaries of the district any works,

12

Montana Solid Waste Management Act (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

It is the public policy of the state to control solid waste management systems to protect the public health and safety and to conserve natural resources whenever possible. The Department of...

13

Integrated Solid Waste Management Act (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Integrated Solid Waste Management Act (Nebraska) Integrated Solid Waste Management Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and

14

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures,

15

Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

16

Solid Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Solid Waste Management Act (Oklahoma) Solid Waste Management Act (Oklahoma) < Back Eligibility Agricultural Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that are environmentally safe and sanitary, as well as economically feasible; submission of laboratory reports or analyses performed by certified laboratories for the purposes of compliance monitoring and testing and for

17

Oklahoma Hazardous Waste Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) Oklahoma Hazardous Waste Management Act (Oklahoma) < Back Eligibility Agricultural Construction Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility engaged in the operation of storing, treating or disposing of hazardous waste or storing recyclable materials. The Department shall not issue a permit for the treatment, disposal or temporary storage of any liquid hazardous waste in a

18

Solid Waste Management Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Solid Waste Management Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of Environmental

19

Livestock Waste Management Act (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Livestock Waste Management Act (Nebraska) Livestock Waste Management Act (Nebraska) Livestock Waste Management Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality This statute establishes the animal feeding operation permitting program and gives the Department of Environmental Quality the authority to administer the state permitting program. Permits are required for the

20

Montana Integrated Waste Management Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Integrated Waste Management Act (Montana) Montana Integrated Waste Management Act (Montana) Montana Integrated Waste Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Residential Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Nonprofit General Public/Consumer Program Info State Montana Program Type Industry Recruitment/Support Provider Montana Department of Environmental Quality This legislation sets goals for the reduction of solid waste generated by households, businesses, and governments, through source reduction, reuse, recycling, and composting. The state aims to achieve recycling and composting rates of: (a) 17% of the state's solid waste by 2008;

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Capacity-to-Act in India's Solid Waste Management and Waste-to-  

E-Print Network (OSTI)

1 Capacity-to-Act in India's Solid Waste Management and Waste-to- Energy Industries Perinaz Bhada and disposal of garbage, or municipal solid waste, compounded by increasing consumption levels. Another serious of converting waste into different forms of energy. The process of using waste as a fuel source and converting

Columbia University

22

South Carolina Solid Waste Policy and Management Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The state of South Carolina supports a regional approach to solid waste management and encourages the development and implementation of alternative waste management practices and resource recovery....

23

Solid Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

24

South Carolina Hazardous Waste Management Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

25

RS-NWPA [National Waste Policy Act] | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Policy Act Basalt Waste & Salt River projects RS-NWPA National Waste Policy Act More Documents & Publications OFFICE OF PROCUREMENT & ASSISTANCE MANAGEMENT...

26

Comprehensive Municipal Solid Waste Management, Resource Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation...

27

Solid Waste Planning and Recycling Act (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

It is the purpose of this Act to provide incentives for decreased generation of municipal waste, to require certain counties to develop comprehensive waste management plans that place substantial...

28

Coastal Management Act (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

The Coastal Management Act provides enabling authority for the State to prepare and administer a coastal management program. The Act does not establish new regulations or laws; it is designed to...

29

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

30

Stormwater Management Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

The policy and purpose of this act is to encourage planning and management of storm water runoff in each watershed consistent with sound water and land use practices.

31

Nuclear Waste Policy Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Policy Act Nuclear Waste Policy Act Document on the Nuclear Waste Policy Act of 1982 An Act to provide for the development of repositories for the disposal of...

32

MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT  

E-Print Network (OSTI)

#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

33

Nuclear Waste Policy Act.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Civilian Radioactive Civilian Radioactive Waste Management Washington, D.C. 20585 March 2004 i THE NUCLEAR WASTE POLICY ACT OF 1982 1 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SHORT TITLE AND TABLE OF CONTENTS Section 1. This Act may be cited as the "Nuclear Waste Policy Act of 1982". Sec. 1. Short title and table of contents...........................................................................i

34

Montana Hazardous Waste Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) Montana Hazardous Waste Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental Quality is authorized to enact regulations pertaining to all aspects of hazardous waste storage and disposal, and the Act addresses permitting requirements for disposal

35

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Policy Act Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

36

Nuclear Waste Policy Act Signed | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Waste Policy Act Signed Nuclear Waste Policy Act Signed January 07, 1983 Washington, DC Nuclear Waste Policy Act Signed President Reagan signs the Nuclear Waste...

37

Hazardous Waste Management Standards and Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

38

Oak Ridge National Laboratory Waste Management Plan  

Science Conference Proceedings (OSTI)

The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

Not Available

1992-12-01T23:59:59.000Z

39

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

40

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oak Ridge Reservation Waste Management Plan  

Science Conference Proceedings (OSTI)

This report presents the waste management plan for the Oak Ridge Reservation facilities. The primary purpose is to convey what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year.

Turner, J.W. [ed.

1995-02-01T23:59:59.000Z

42

Hazardous Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

43

Solid Waste Resource Recovery Financing Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The State of Texas encourages the processing of solid waste for the purpose of extracting, converting to energy, or otherwise separating and preparing solid waste for reuse. This Act provides for...

44

Waste Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management Facility ISO 14001 Registered A wide range of wastes are generated during the normal course of business at BNL. These waste streams are common to many businesses...

45

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

46

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

47

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

48

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

49

The First Recovery Act Funded Waste Shipment depart from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The First Recovery Act Funded Waste Shipment departs from the Advanced Mixed Waste Treatment Facility A shipment of mixed low-level waste left DOEs Advanced Mixed Waste...

50

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

51

Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Management's Yucca Mountain Project and the Office of Nuclear Energy's Advanced Fuel Cycle Initiative (AFCI) and Global Nuclear Energy Partnership (GNEP) programs. Efforts...

52

Integrated waste management.  

E-Print Network (OSTI)

??Integrated waste management is considered from a systems approach, with a particular emphasis on advancing sustainability. The focus of the thesis is to examine the (more)

Seadon, Jeffrey Keith

2010-01-01T23:59:59.000Z

53

Pennsylvania Solid Waste- Resource Recovery Development Act  

Energy.gov (U.S. Department of Energy (DOE))

This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

54

Hazardous Waste Management Training  

E-Print Network (OSTI)

Hazardous Waste Management Training Persons (including faculty, staff and students) working be thoroughly familiar with waste handling and emergency procedures ap- plicable to their job responsibilities before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

55

Recovery Act Funding Leads to Record Year for Transuranic Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations...

56

Federal Information Security Management Act (FISMA) ...  

Science Conference Proceedings (OSTI)

Federal Information Security Management Act (FISMA) Implementation Project. Summary: The FISMA Implementation Project ...

2013-01-15T23:59:59.000Z

57

Mixed Waste Management Guidelines  

Science Conference Proceedings (OSTI)

The management of mixed waste presents serious challenges to nuclear utilities. Regulatory and practical predicaments make compliance with the letter of all applicable regulations extremely difficult. Utility experts developed these guidelines to identify opportunities for improving work practices and regulatory compliance while minimizing any potential adverse impacts of mixed waste management.

1994-12-31T23:59:59.000Z

58

Drilling Waste Management Technology Descriptions  

NLE Websites -- All DOE Office Websites (Extended Search)

skip navigation Drilling Waste Management Information System: The information resource for better management of drilling wastes DWM Logo Search Search you are in this section...

59

Hazardous Waste Management (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

60

Solid Waste Management (Kansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Kansas) Solid Waste Management (Kansas) Solid Waste Management (Kansas) < Back Eligibility Commercial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Kansas Program Type Environmental Regulations Provider Health and Environment This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct, alter or operate a solid waste processing facility or a solid waste disposal area of a solid waste management system, except for clean rubble disposal sites, without first obtaining a permit from the secretary. Every person desiring to obtain a permit shall make application for such a permit on forms

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Federal Energy Management Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act to Recovery Act to someone by E-mail Share Federal Energy Management Program: Recovery Act on Facebook Tweet about Federal Energy Management Program: Recovery Act on Twitter Bookmark Federal Energy Management Program: Recovery Act on Google Bookmark Federal Energy Management Program: Recovery Act on Delicious Rank Federal Energy Management Program: Recovery Act on Digg Find More places to share Federal Energy Management Program: Recovery Act on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Technical Assistance Projects Project Stories Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal

62

Resource Recovery and Management Act (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Environmental Protection administers the state solid and hazardous waste management programs. The programs aim to:...

63

Environmental Management Waste Management Facility (EMWMF) at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Office of Environmental Management Search form Search Office of Environmental Management Services Waste Management Site & Facility Restoration...

64

Environmental Management and Protection Act, 2010 (Saskatchewan)  

Energy.gov (U.S. Department of Energy (DOE))

The Environmental Management and Protection Act of 2010 protects air, land, water resources and ecosystems of the province by managing and regulating potentially harmful activities and substances....

65

Waste Management & Research290 Waste Manage Res 2002: 20: 290301  

E-Print Network (OSTI)

Waste Management & Research290 Waste Manage Res 2002: 20: 290­301 Printed in UK ­ all rights reserved Copyright © ISWA 2002 Waste Management & Research ISSN 0734­242X Introduction Chromated copper of sorting technologies for CCA treated wood waste Monika Blassino Helena Solo-Gabriele University of Miami

Florida, University of

66

Waste Management & Research172 Waste Manage Res 2003: 21: 172177  

E-Print Network (OSTI)

Waste Management & Research172 Waste Manage Res 2003: 21: 172­177 Printed in UK ­ all rights reserved Copyright © ISWA 2003 Waste Management & Research ISSN 0734­242X In many market segments of PVC in Germany increased by 9%, the fastest growth rate of all plastics. The waste stream in Germany

Columbia University

67

AVLIS production plant waste management plan  

Science Conference Proceedings (OSTI)

Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

Not Available

1984-11-15T23:59:59.000Z

68

Nuclear Waste Fund Activities Management Team | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Fund Activities Management Team Waste Fund Activities Management Team Nuclear Waste Fund Activities Management Team The Nuclear Waste Fund Activities Management Team has responsibility to: Manage the investments and expenditures of the Nuclear Waste Fund; Support correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accounting Office and Freedom of Information Act inquiries; and, Manage the annual fee adequacy assessment process. Applicable Documents Nuclear Waste Policy Act of 1982 Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste Standard Contract Amendment for New Reactors FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Fee Adequacy, Pub 2008 2009 Letter to Congress OCRWM Financial Statements for Annual Report for Years Ended

69

Copenhagen Waste Management and Incineration  

E-Print Network (OSTI)

Copenhagen Waste Management and Incineration Florence, April 24 2009 Julie B. Svendsen 24 20092 Presentation · General introduction to Copenhagen Waste Management System · National incentives · Waste Management plan 2012 · Incineration plants #12;Florence, April 24 20093 Copenhagen Waste

Columbia University

70

SRS - Programs - Solid Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

manner possible. SRS's waste is categorized as transuranic, low-level, hazardous, mixed, high-level or sanitary waste. SWM is responsible for managing all of these...

71

Hazardous Waste Management (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

72

Solid waste management of Jakarta.  

E-Print Network (OSTI)

?? Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the (more)

Trisyanti, Dini

2004-01-01T23:59:59.000Z

73

Coastal Management Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Act (Georgia) Management Act (Georgia) Coastal Management Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Coastal Management Act provides enabling authority for the State to prepare and administer a coastal management program. The Act does not

74

Water Management Act (Massachusetts) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Act (Massachusetts) Management Act (Massachusetts) Water Management Act (Massachusetts) < Back Eligibility Agricultural Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This Act regulates and registers water withdrawals in the Commonwealth of Massachusetts to enable effective planning and management of water use and conservation. The Act establishes a Water Resources Management Advisory Committee within the MA Department of Environmental Protection to oversee the development of standards, rules and regulations for water resources

75

Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program  

SciTech Connect

In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

1995-05-01T23:59:59.000Z

76

Mission Plan for the Civilian Radioactive Waste Management Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the Department of Energy (DOE) has prepared this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct., and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these

77

Solid Waste Management Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

78

Drilling Waste Management Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

The Drilling Waste Management Information System is an online resource for technical and regulatory information on practices for managing drilling muds and cuttings, including...

79

Waste Logic Decommissioning Waste Manager 2.0 Users Manual  

Science Conference Proceedings (OSTI)

The Decommissioning Waste Manager, part of EPRI's Waste Logic series of computer programs, analyzes decommissioning waste cost and volume reduction strategies with the intent of quantifying the existing waste management program for any given waste generator.

2001-10-29T23:59:59.000Z

80

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coastal Zone Management Act | Open Energy Information  

Open Energy Info (EERE)

Zone Management Act Zone Management Act Jump to: navigation, search Statute Name Coastal Zone Management Act Year 1972 Url [[File:|160px|link=]] Description The Coastal Zone Management Act of 1972 (CZMA; Pub.L. 92-583, 86 Stat. 1280, enacted October 27, 1972, 16 U.S.C. §§ 1451-1464, Chapter 33) is an Act of Congress passed in 1972 to encourage coastal states to develop and implement coastal zone management plans (CZMPs). This act was established as a United States National policy to preserve, protect, develop, and where possible, restore or enhance, the resources of the Nation's coastal zone for this and succeeding generations. References Wikipedia[1] National Oceanic and Atmospheric Administration[2] The U.S. Congress recognized the importance of meeting the challenge of

82

The Nuclear Waste Policy Act, as amended with appropriations acts appended  

Science Conference Proceedings (OSTI)

The Nuclear Waste Policy Act of 1982 provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel. Titles 1 and 2 cover these subjects. Also included in this Act are: Title 3: Other provisions relating to radioactive waste; Title 4: Nuclear waste negotiation; Title 5: Nuclear waste technical review board; and Title 6: High-level radioactive waste. An appendix contains excerpts from appropriations acts from fiscal year 1984--1994.

Not Available

1994-03-01T23:59:59.000Z

83

Nonhazardous Solid Waste Management Regulations & Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Nonhazardous Solid Waste Management Regulations & Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

84

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

85

WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uses Recovery Act Funding to Reduce Nuclear Waste Footprint Uses Recovery Act Funding to Reduce Nuclear Waste Footprint WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint August 1, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP). Expediting TRU waste shipments supports DOE's goal to dispose of 90 percent of legacy TRU waste by 2015, saving taxpayers million of dollars in storage and maintenance costs. Recovery Act funds allowed highly trained teams to safely prepare and load

86

Hazardous Waste Management Keith Williams  

E-Print Network (OSTI)

Hazardous Waste Management Keith Williams DES ­ Environmental Affairs Extension 53163 #12,100 Locally · 1998 Univ of Va $33,990 · 1998 Univ. of MD $0 !!!!! #12;Hazardous Waste Disposal Procedures Hazardous (Chemical) Waste Management in University of Maryland Laboratories o All laboratories and work

Appelbaum, Ian

87

Recovery Act Funding Leads to Record Year for Transuranic Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

With the help of Ameri- can Recovery and Reinvestment Act fund- ing, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste ship- ments in a single year since...

88

Federal Energy Management Program: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP completed nearly 120 technical assistance projects through this effort. FEMP national laboratory teams and contractor service providers visited more than 80 Federal sites located throughout the U.S. The site visits were a key component of FEMP Recovery Act funded technical assistance activity, which provided more than $13.2 million in funding for direct technical assistance to energy managers across the Federal Government. This service helped agencies accelerate their Recovery Act projects and make internal management decisions for investment in energy efficiency and deployment of renewable energy.

89

The Nuclear Waste Policy Act, as amended, with appropriations acts appended. Revision 1  

SciTech Connect

This act provides for the development of repositories for the disposal of high-level radioactive wastes, low-level radioactive wastes, and spent nuclear fuels. In addition, it establishes research and development programs, as well as demonstration programs regarding the disposal of these wastes. This Act consists of the Act of Jan. 7, 1983 (Public Law 97-425; 96 Stat. 2201), as amended by Public Law 100-203 and Public Law 102-486.

NONE

1995-02-01T23:59:59.000Z

90

FAQS Reference Guide Waste Management  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the January 2003 edition of DOE-STD-1159-2003, Waste Management Functional Area Qualification Standard.

91

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore  

E-Print Network (OSTI)

Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected plants · 8% (non-incinerable waste) and incineration ash goes to the offshore Semakau Landfill · To reach

Columbia University

92

Waste Management Process Improvement Project  

SciTech Connect

The Bechtel Hanford-led Environmental Restoration Contractor team's Waste Management Process Improvement Project is working diligently with the U.S. Department of Energy's (DOE) Richland Operations Office to improve the waste management process to meet DOE's need for an efficient, cost-effective program for the management of dangerous, low-level and mixed-low-level waste. Additionally the program must meet all applicable regulatory requirements. The need for improvement was highlighted when a change in the Groundwater/Vadose Zone Integration Project's waste management practices resulted in a larger amount of waste being generated than the waste management organization had been set up to handle.

Atwood, J.; Borden, G.; Rangel, G. R.

2002-02-25T23:59:59.000Z

93

Summary - Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge, TN Oak Ridge, TN EM Project: EM Waste Management Facility ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management Waste Management Facility (EMWMF) at Oak Ridge, TN Why DOE-EM Did This Review The Environmental Management Waste Management Facility (EMWMF) is a land disposal facility for wastes generated by environmental restoration activities being conducted at the US Department of Energy's (DOE) Oak Ridge Reservation. Low-level radioactive wastes, hazardous wastes (Subtitle C of the Resource Conservation and Recovery Act), and wastes defined by the Toxic Substances Control Act are approved for disposal in the EMWMF. All of the cells are lined with a

94

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

95

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

96

Radiation Management Act (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiation Management Act (Oklahoma) Radiation Management Act (Oklahoma) Radiation Management Act (Oklahoma) < Back Eligibility Utility Investor-Owned Utility Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality This Act establishes The Department of Environmental Quality as the designated official agency of the State of Oklahoma for all regulatory activities for the use of atomic energy and sources of radiation, except for the use of sources of radiation by diagnostic x-ray facilities. It also states rules for permits and fees related to the establishment of standards for safe levels of protection against radiation; the maintenance and submission of records; the determination, prevention and control of radiation hazards; the reporting of radiation accidents; the handling,

97

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

98

Acting Assistant Secretary for DOE Office of Environmental Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acting Assistant Secretary for DOE Office of Environmental Management Visits Hanford - First Visit, Commemorates Completion of Major Recovery Act Project Acting Assistant Secretary...

99

Water Resources Protection and Management Act (West Virginia...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Protection and Management Act (West Virginia) Water Resources Protection and Management Act (West Virginia) Eligibility Utility Fed. Government Commercial Agricultural...

100

Federal Energy Management Program: Energy Independence & Security Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Independence & Security Act to someone by E-mail Share Federal Energy Management Program: Energy Independence & Security Act on Facebook Tweet about Federal Energy Management Program: Energy Independence & Security Act on Twitter Bookmark Federal Energy Management Program: Energy Independence & Security Act on Google Bookmark Federal Energy Management Program: Energy Independence & Security Act on Delicious Rank Federal Energy Management Program: Energy Independence & Security Act on Digg Find More places to share Federal Energy Management Program: Energy Independence & Security Act on AddThis.com... Requirements by Subject Requirements by Regulation National Energy Conservation Policy Act Executive Order 13514 Energy Independence & Security Act

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Pet Waste Management  

E-Print Network (OSTI)

About 1 million pounds of dog waste is deposited daily in North Texas alone. That's why proper disposal of pet waste can make a big difference in the environment. 5 photos, 2 pages

Mechell, Justin; Lesikar, Bruce J.

2008-08-28T23:59:59.000Z

102

Solid Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

103

Solid Waste Management (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan) Michigan) Solid Waste Management (Michigan) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Michigan Program Type Siting and Permitting Provider Department of Environmental Quality This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that maximize the utilization

104

WIMS - Waste Information Management System  

Office of Environmental Management (EM)

Welcome To WIMS Welcome To WIMS Waste Information Management System WIMS new web address: http://www.emwims.org WIMS is developed to provide DOE Headquarters and site waste managers with the tools necessary to easily visualize, understand, and manage the vast volumes, categories, and problems of forecasted waste streams. WIMS meets this need by providing a user-friendly online system to gather, organize, and present waste forecast data from DOE sites. This system provides a method for identification of waste forecast volumes, material classes, disposition pathways, and potential choke points and barriers to final disposition. Disclaimer: Disposition facility information presented is for planning purposes only and does not represent DOE's decisions or commitments. Any selection of disposition facility will be made after technical, economic, and policy considerations.

105

Solid Waste Management Rules (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

106

Nuclear Waste Management Policy in France  

Science Conference Proceedings (OSTI)

Technical Paper / New Directions in Nuclear Energy with Emphasis on Fuel Cycles / Radioactive Waste Management

Jean F. Lefevre

107

Waste management models and their application to sustainable waste management  

SciTech Connect

The purpose of this paper is to review the types of models that are currently being used in the area of municipal waste management and to highlight some major shortcomings of these models. Most of the municipal waste models identified in the literature are decision support models and for the purposes of this research, are divided into three categories--those based on cost benefit analysis, those based on life cycle assessment and those based on multicriteria decision making. Shortcomings of current waste management models include that they are concerned with refinements of the evaluation steps (e.g. stage four of AHP or the improvement of weight allocations in ELECTRE) rather than addressing the decision making process itself. In addition, while many models recognise that for a waste management model to be sustainable, it must consider environmental, economic and social aspects, no model examined considered all three aspects together in the application of the model.

Morrissey, A.J.; Browne, J

2004-07-01T23:59:59.000Z

108

Solid Waste Management Program Plan  

SciTech Connect

The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

Duncan, D.R.

1990-08-01T23:59:59.000Z

109

County Solid Waste Control Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this chapter is to authorize a cooperative effort by counties, public agencies, and other persons for the safe and economical collection, transportation, and disposal of solid waste...

110

Federal Energy Management Program: Energy Independence and Security Act,  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Independence and Security Act, Section 432: Federal Facility Management and Benchmarking Requirements to someone by E-mail Share Federal Energy Management Program: Energy Independence and Security Act, Section 432: Federal Facility Management and Benchmarking Requirements on Facebook Tweet about Federal Energy Management Program: Energy Independence and Security Act, Section 432: Federal Facility Management and Benchmarking Requirements on Twitter Bookmark Federal Energy Management Program: Energy Independence and Security Act, Section 432: Federal Facility Management and Benchmarking Requirements on Google Bookmark Federal Energy Management Program: Energy Independence and Security Act, Section 432: Federal Facility Management and Benchmarking Requirements on Delicious

111

Local Solid Waste Disposal Act (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

It is the purpose of this Act and the policy of this State to protect the public health and welfare and the quality of the environment by providing local governments with the ability to properly...

112

Hazardous Wastes Management (Alabama) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

113

Missouri Hazardous Waste Management Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

114

Waste management handling in Benin City.  

E-Print Network (OSTI)

??The researcher was inspired by the topic Waste management handling due to the ugly situa-tion of waste being littered all over the city, which have (more)

Oseghale, Peter

2011-01-01T23:59:59.000Z

115

8-Waste treatment and disposal A. Responsibility for waste management  

E-Print Network (OSTI)

8- Waste treatment and disposal A. Responsibility for waste management 1. Each worker is responsible for correctly bagging and labeling his/her own waste. 2. A BSL3 technician will be responsible for transporting and autoclaving the waste. Waste will be autoclaved once or twice per day, depending on use

116

Waste Logic(TM): Decommissioning Waste Manager, Version 2.1 and Solid Waste Manager, Version 2.1  

Science Conference Proceedings (OSTI)

Waste Logic(TM) Decommissioning Waste Manager, Version 2.1: Rising program costs and a more competitive business environment have made solid waste management a major cost concern. Effective management of solid waste can reduce long range operating costs for a large nuclear plant by millions of dollars. To assist waste managers in maximizing potential cost savings, EPRI developed the Waste Logic Decommissioning Waste Manager(TM) computer code. It provides a comprehensive methodology for capturing and quan...

2003-03-03T23:59:59.000Z

117

SOLID WASTE MANAGEMENT PLAN  

E-Print Network (OSTI)

ACKNOWLEDGMENTS The Chelan County Public Works Department would like to thank the following organizations and individuals for their assistance in the development of this plan: ? Chelan Countys Solid Waste Council members, past and present, and the municipalities they represent. ? Chelan Countys Solid Waste Advisory Committee members, past and present, and the agencies and businesses they represented. ? the ChelanDouglas Health District staff. ? Washington Department of Ecology staff. Chelan County residents and businesses also contributed to this document through comments provided during public meetings and through various other channels. The Board of County Commissioners and the Public Works Department gratefully acknowledge this input by the

unknown authors

2007-01-01T23:59:59.000Z

118

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

119

Federal Energy Management Program: Energy Policy Act of 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 to someone by E-mail 2005 to someone by E-mail Share Federal Energy Management Program: Energy Policy Act of 2005 on Facebook Tweet about Federal Energy Management Program: Energy Policy Act of 2005 on Twitter Bookmark Federal Energy Management Program: Energy Policy Act of 2005 on Google Bookmark Federal Energy Management Program: Energy Policy Act of 2005 on Delicious Rank Federal Energy Management Program: Energy Policy Act of 2005 on Digg Find More places to share Federal Energy Management Program: Energy Policy Act of 2005 on AddThis.com... Requirements by Subject Requirements by Regulation National Energy Conservation Policy Act Executive Order 13514 Energy Independence & Security Act Executive Order 13423 Energy Policy Act of 2005 Executive Order 13221 Energy Policy Act of 1992

120

Hazardous Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Federal Energy Management Program: Energy Policy Act of 1992  

NLE Websites -- All DOE Office Websites (Extended Search)

1992 to someone by E-mail Share Federal Energy Management Program: Energy Policy Act of 1992 on Facebook Tweet about Federal Energy Management Program: Energy Policy Act of 1992 on...

122

Acting Biomass Program Manager Dr. Valerie Reed to Host Live...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced...

123

Federal Energy Management Program: Recovery Act Technical Assistance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Federal Energy Management Program: Recovery Act Technical Assistance Projects on Facebook Tweet about Federal Energy Management Program:...

124

ICDF Complex Operations Waste Management Plan  

SciTech Connect

This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

W.M. Heileson

2006-12-01T23:59:59.000Z

125

Radioactive Waste Management BasisApril 2006  

Science Conference Proceedings (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2011-08-31T23:59:59.000Z

126

Waste Management Productivity  

E-Print Network (OSTI)

This work is subject to copyright. Apart from any use as permitted under the Copyright Act 1968, the work may be reproduced in whole or in part for study or training purposes, subject to the inclusion of an acknowledgment of the source. Reproduction for commercial use or sale requires prior written permission from the Attorney-Generals Department. Requests and inquiries concerning reproduction and rights should be addressed to the

unknown authors

2006-01-01T23:59:59.000Z

127

Chapter 30 Waste Management: General Administrative Procedures...  

Open Energy Info (EERE)

or disposed of, or otherwise managed. Policy Contact Department Department for Environmental Protection Division Division of Waste Management Address 200 Fair Oaks Ln.,...

128

Hazardous Waste Management (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (Delaware) Hazardous Waste Management (Delaware) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

129

Hazardous Waste Management Implementation Inspection Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Director of the Office of ES&H Evaluations on (301) 903-5392. Subject: Hazardous Waste Management Inplementation Inspection Criteria, Approach, Evaluations Management Date:...

130

Feed Materials Production Center Waste Management Plan  

SciTech Connect

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-12-31T23:59:59.000Z

131

National Forest Management Act of 1976 | Open Energy Information  

Open Energy Info (EERE)

Forest Management Act of 1976 Forest Management Act of 1976 Jump to: navigation, search Statute Name National Forest Management Act of 1976 Year 1976 Url [[File:|160px|link=]] Description References Wikipedia[1] USFS Forest Management[2] The National Forest Management Act of 1976 is a federal law that governs the administration of national forests. This act requires the United States Forest Service to use a systematic and interdisciplinary approach to resource management in national forests. The USFS provides a full text of the Act here: Pub. L. 94-588 References ↑ "Wikipedia" ↑ "USFS Forest Management" Retrieved from "http://en.openei.org/w/index.php?title=National_Forest_Management_Act_of_1976&oldid=455235" Categories: Federal Environmental Statutes

132

Permit Fees for Hazardous Waste Material Management (Connecticut...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Material Management (Connecticut) Permit Fees for Hazardous Waste Material Management (Connecticut) Eligibility Agricultural Commercial Construction Fed. Government...

133

CRAD, Emergency Management - Los Alamos National Laboratory Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Emergency Management - Los Alamos National Laboratory Waste...

134

RS-NWPA [National Waste Policy Act]  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minning (OCRWM) Minning (OCRWM) I 586-4349 Ed Nugent DOE 586-3288 6. C k K T : F I C A T E O F A G E N C Y R E P R E S E N T A T I V E r - . . REQUEST FOR RECORDS DISPOSITION AUTHORITY (See tnstructions on reverse) GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE. WASHINGTON, DC 20408 i F ROha (AECnc? or rstcblishmcnt) a % - e ~ - - - Office of C i v i l f a n R a d i o a c t i v e Naste Mar -gement - 3 M I N O R S U B D l V l S l O N - - 6 N A M E O F P E R S O N W l T P W H O M T O C O N F E R I 5. TELEPHONE E X T . I hereby cert~fy that I am authorized to act for thls agency In ms.ter: perta~ning to the disposal of the aoency's record: that the records proposed for drsposal In this Request of ' 2 ' page(s) are not now needed for the business o f th agency or w ~ i l not be needed after ;he retention per~ods speclf~ed; and that written concurrence from the Gener:

135

Federal Energy Management Program: Recovery Act Project Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Stories to someone by E-mail Project Stories to someone by E-mail Share Federal Energy Management Program: Recovery Act Project Stories on Facebook Tweet about Federal Energy Management Program: Recovery Act Project Stories on Twitter Bookmark Federal Energy Management Program: Recovery Act Project Stories on Google Bookmark Federal Energy Management Program: Recovery Act Project Stories on Delicious Rank Federal Energy Management Program: Recovery Act Project Stories on Digg Find More places to share Federal Energy Management Program: Recovery Act Project Stories on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Technical Assistance Projects Project Stories Recovery Act Project Stories

136

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

137

Issuance of the Final Tank Closure and Waste Management Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issuance of the Final Tank Closure and Waste Management Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement Issuance of the Final Tank Closure and Waste Management Environmental Impact Statement December 5, 2012 - 12:00pm Addthis Media Contacts Carrie Meyer, DOE (509) 376-0810 Carrie_C_Meyer@orp.doe.gov Erika Holmes, Ecology (509) 372-7880 Erika.Holmes@ecy.wa.gov Richland, WA - The U.S. Department of Energy (DOE) is issuing its Final Tank Closure and Waste Management Environmental Impact Statement Hanford Site, Richland, Washington" (Final TC & WM EIS, DOE/EIS-0391), prepared in accordance with the National Environmental Policy Act (NEPA). The Environmental Protection Agency (EPA) and Washington State Department of Ecology are cooperating agencies on this Final EIS, which analyzes

138

Ground Water Management Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called

139

Disaster waste management: A review article  

SciTech Connect

Depending on their nature and severity, disasters can create large volumes of debris and waste. The waste can overwhelm existing solid waste management facilities and impact on other emergency response and recovery activities. If poorly managed, the waste can have significant environmental and public health impacts and can affect the overall recovery process. This paper presents a system overview of disaster waste management based on existing literature. The main literature available to date comprises disaster waste management plans or guidelines and isolated case studies. There is ample discussion on technical management options such as temporary storage sites, recycling, disposal, etc.; however, there is little or no guidance on how these various management options are selected post-disaster. The literature does not specifically address the impact or appropriateness of existing legislation, organisational structures and funding mechanisms on disaster waste management programmes, nor does it satisfactorily cover the social impact of disaster waste management programmes. It is envisaged that the discussion presented in this paper, and the literature gaps identified, will form a basis for future comprehensive and cohesive research on disaster waste management. In turn, research will lead to better preparedness and response to disaster waste management problems.

Brown, Charlotte, E-mail: charlotte.brown@pg.canterbury.ac.nz [University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Milke, Mark, E-mail: mark.milke@canterbury.ac.nz [University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Seville, Erica, E-mail: erica.seville@canterbury.ac.nz [University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

2011-06-15T23:59:59.000Z

140

Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation,OAS-RA-L-12-01  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Disposal and Recovery Act Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation INS-RA-L-12-01 December 2011 Department of Energy Washington, DC 20585 December 16, 2011 MEMORANDUM FOR THE MANAGER, OAK RIDGE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation" BACKGROUND The Department of Energy's (Department) expends billions of dollars to clean up contaminated sites and dispose of hazardous waste. The Department's Oak Ridge Office (ORO) is responsible for processing and disposing of the Transuranic (TRU) waste on the Oak Ridge Reservation (ORR), including approximately 3,500 cubic meters of legacy remote-handled (RH) and contact-

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Agricultural Waste Management System Component Design  

E-Print Network (OSTI)

Management Field Handbook 10­1(210-vi-AWMFH, rev. 1, July 1996) Chapter 10 Agricultural Waste Management..............................................................................................10­67 (b) Gravity flow pipes Waste Management Field Handbook 10­2 (210-vi-AWMFH, rev. 1, July 1996) 651.1006 Utilization 10­71 (a

Mukhtar, Saqib

142

Waste Management Quality Assurance Plan  

E-Print Network (OSTI)

Raya James Johnson Rad/Mixed Waste** Steve Bakhtiar Leadhazardous, radioactive, and mixed waste at the Hazardoustraining. Radioactive and mixed waste generators must take

Waste Management Group

2006-01-01T23:59:59.000Z

143

The Metropolitan Surface Water Management Act (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Metropolitan Surface Water Management Act (Minnesota) The Metropolitan Surface Water Management Act (Minnesota) The Metropolitan Surface Water Management Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Siting and Permitting The Metropolitan Surface Water Management Act aims to protect, preserve,

144

Celebrating Successes of Environmental Management Recovery Act Projects  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Environmental Management marked a milestone at the end of last month as they completed 84 American Recovery and Reinvestment Act-funded projects across America.

145

Savannah River Site Waste Management Program Plan, FY 1993. Revision 1  

SciTech Connect

The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

1993-06-01T23:59:59.000Z

146

Waste Management Quality Assurance Plan  

SciTech Connect

Lawrence Berkeley Laboratory`s Environment Department addresses its responsibilities through activities in a variety of areas. The need for a comprehensive management control system for these activities has been identified by the Department of Energy (DOE). The WM QA (Waste Management Quality Assurance) Plan is an integral part of a management system that provides controls necessary to ensure that the department`s activities are planned, performed, documented, and verified. This WM QA Plan defines the requirements of the WM QA program. These requirements are derived from DOE Order 5700.6C, Quality Assurance, the LBL Operating and Assurance Program Plan (OAP, LBL PUB-3111), and other environmental compliance documents applicable to WM activities. The requirements presented herein, as well as the procedures and methodologies that direct the implementation of these requirements, will undergo review and revisions as necessary. The provisions of this QA Plan and its implementing documents apply to quality-affecting activities performed by and for WM. It is also applicable to WM contractors, vendors, and other LBL organizations associated with WM activities, except where such contractors, vendors, or organizations are governed by their own WM-approved QA programs. References used in the preparation of this document are (1) ASME NQA-1-1989, (2) ANSI/ASQC E4 (Draft), (3) Waste Management Quality Assurance Implementing Management Plan (LBL PUB-5352, Rev. 1), (4) LBL Operating and Assurance Program Plan (OAP), LBL PUB-3111, 2/3/93. A list of terms and definitions used throughout this document is included as Appendix A.

Not Available

1993-11-30T23:59:59.000Z

147

Proceedings: Radioactive Low Level Waste Management Workshop  

Science Conference Proceedings (OSTI)

This report presents the proceedings of an EPRI workshop on low level waste management. The workshop was the fifth in a series to aid utility personnel in assessing technologies for decommissioning nuclear power plants. This workshop focused on specific aspects of low level waste management as they relate to nuclear plant decommissioning. Workshop information will help utilities assess benefits of waste management, select technologies for their individual projects, and reduce decommissioning costs.

2000-05-25T23:59:59.000Z

148

WEB RESOURCE: Radioactive Waste Management in Australia  

Science Conference Proceedings (OSTI)

May 8, 2007 ... A glossary of terms and public discussion papers on current and past projects are included. Citation: "Radioactive Waste Management in...

149

Hazardous Waste Management (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Michigan) Hazardous Waste Management (Michigan) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial Construction...

150

Waste Management Update by Frank Marcinowski  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DOE Environmental Management U.S. DOE Environmental Management Update on Waste Management (and other EM Mission Units) Frank Marcinowski Deputy Assistant Secretary for Waste Management ENVIRONMENTAL MANAGEMENT SITE-SPECIFIC ADVISORY BOARD CHAIRS MEETING APRIL 18-19, 2012 PADUCAH, KENTUCKY www.em.doe.gov 2  Compliance update  Recent program accomplishments  FY 12 waste management priorities  FY 13 waste management priorities  Strategic goals related to waste and materials disposition  Update on Blue Ribbon Commission Related Activities  Update on DOE 435.1 revision  Update on Asset Revitalization Initiative Discussion Outline www.em.doe.gov 3  Office of Site Restoration (EM-10) o Soil and Ground Remediation o D&D & Facility Engineering

151

Florida Coastal Management Act (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Coastal Management Act (Florida) Florida Coastal Management Act (Florida) Florida Coastal Management Act (Florida) < Back Eligibility Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Environmental Protection This Act is intended to provide for the development of natural, commercial, recreational, ecological, industrial, and aesthetic resources, including,

152

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

153

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

154

Negotiating equity for management of DOE wastes  

SciTech Connect

One important factor frustrating optimal management of Department of Energy (DOE)-complex wastes is the inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholder and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholder and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1994-09-01T23:59:59.000Z

155

Negotiating equity for management of DOE wastes  

SciTech Connect

One important factor frustrating optimal management of DOE-complex wastes is inability to use licensed and permitted facilities systematically. Achieving the goal of optimal use of DOE`s waste management facilities is politically problematic for two reasons. First, no locale wants to bear a disproportionate burden from DOE wastes. Second, the burden imposed by additional wastes transported from one site to another is difficult to characterize. To develop a viable framework for equitably distributing these burdens while achieving efficient use of all DOE waste management facilities, several implementation and equity issues must be addressed and resolved. This paper discusses stakeholders and equity issues and proposes a framework for joint research and action that could facilitate equity negotiations among stakeholders and move toward a more optimal use of DOE`s waste management capabilities.

Carnes, S.A.

1993-11-01T23:59:59.000Z

156

Nebraska Groundwater Management and Protection Act (Nebraska) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Groundwater Management and Protection Act (Nebraska) Nebraska Groundwater Management and Protection Act (Nebraska) Nebraska Groundwater Management and Protection Act (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This section defines broad policy goals concerning the utilization and management of groundwater, and encourages local implementation of these

157

Comprehensive Local Water Management Act (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Water Management Act (Minnesota) Local Water Management Act (Minnesota) Comprehensive Local Water Management Act (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Minnesota Program Type Environmental Regulations Each county is encouraged to develop and implement a local water management

158

Waste Management Facilities Cost Information Report  

Science Conference Proceedings (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

159

Hazardous waste management in the Texas construction industry  

E-Print Network (OSTI)

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations: specifically, the Resource Conservation and Recovery Act (RCRA) and the Texas Solid Waste Disposal Act (TSWDA). The study was needed because there is presently no knowledge of how well general contractors in Texas are complying with laws enacted to protect human health and the environment from the mismanagement of hazardous waste. The importance of this study is that it addresses the issue of whether regulatory compliance is a problem for general contractors in Texas and the construction industry in general. The implications for this stem from the potential that both environmental harm and enforcement activity could increase as a consequence . Using a combination of survey and archival design methods, the study derived two counts: (1) actual number of general contractors in Texas who generate regulated amounts of hazardous waste and observe regulatory requirements; and (2) estimated number of contractors in Texas who generate regulated amounts of hazardous waste. The comparison equates to one of "compilers" versus "should be complying." Dividing the count of compilers by the count of should-be compilers, equals the degree of regulatory compliance. Using a 95% confidence interval, the study observed that during 1990 only 1 out of 28 general contractors, generating regulated amounts of hazardous waste complied with regulatory requirements (a strong showing of noncompli-ance). In order to resolve the problem of non-compliance, the study recommends that related efforts be undertaken to: (a) expand this study, both in scope and detail to verify the problem identified; (b) improve industry understanding of waste management regulations; (c) promote observance of proper waste-management procedures; (d) summon government support for outreach programs aimed at improving waste management in the construction industry - in particular hazardous waste; (e) initiate further research to design solutions for hazardous-waste-management problems; and (f) implement hazardous-waste minimization and recovery practices in the construction industry.

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

160

Nuclear Waste Management. Semiannual progress report, October 1984-March 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

McElroy, J.L.; Powell, J.A. (comps.)

1985-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sound Project Management, Safe and Efficient Work Lead to Savings for More Recovery Act Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IDAHO FALLS, Idaho - Sound management practices and safe, efficient IDAHO FALLS, Idaho - Sound management practices and safe, efficient work have led to cost savings and rapid progress in the Idaho site's American Recovery and Reinvestment Act projects. The efficiencies have freed up $12 million for additional Cold War cleanup. That $12 million from the Recovery Act is being used to exhume targeted buried waste from a quarter-acre portion of a landfill called Pit 9 so it can be disposed permanently and safely. The additional cleanup, scheduled for completion in spring 2012, is part of the Idaho site's broader work to accelerate legacy waste removal in 5.69 acres of a disposal area, a cleanup project that protects the Snake River Plain Aquifer. Recovery Act workers with CH2M-WG Idaho, the Idaho site's main cleanup

162

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann.

1992-01-01T23:59:59.000Z

163

Hazardous waste management and pollution prevention  

SciTech Connect

The management of hazardous wastes is one of the most critical environmental issues that faces many developing countries. It is one of the areas where institutional control and treatment and disposal technology has not kept pace with economic development. This paper reviews the development of hazardous waste management methods over the past decades, and provides the information on the status and trends of hazardous waste management strategy in selected western nations. Several issues pertinent to hazardous waste management will be reviewed, including: (1) definition of hazard; (2) why are we concerned with hazardous wastes; (3) aspects of hazardous waste management system; and (4) prioritization of hazardous waste management options. Due to regulatory and economic pressure on hazardous waste management, pollution prevention has become a very important environmental strategy in many developed countries. In many developed countries, industry is increasingly considering such alternative approaches, and finding many opportunities for their cost effective implementation. This paper provides a review of the status and trends of pollution prevention in selected western nations.

Chiu, Shen-yann

1992-03-01T23:59:59.000Z

164

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year...

165

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

166

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

167

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

168

Solid Waste Management Program (South Dakota) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Solid Waste Management Program (South Dakota) Solid Waste Management Program (South Dakota) Eligibility Utility Fed....

169

Waste management facilities cost information for transuranic waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for managing transuranic waste. The report`s information on treatment and storage modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the U.S. Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biagi, C.

1995-06-01T23:59:59.000Z

170

Categorical Exclusion 4565, Waste Management Construction Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FornI FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is an attempt to cover the general activities that construction would perform in support of Waste Management activities. Work includes construction work performed in support of Waste Management Sustainability and Stewardship projects and programs to include: load waste into containers; open, manipulate containers; empty containers; decommission out-of-service equipment (includes removal of liquids, hazardous, and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls; operate wheeled and tracked equipment; general carpentry. Work will be performed on dirt, vegetated, graveled, or paved surfaces in

171

Waste management fiscal year 1998 progress report  

SciTech Connect

The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

1998-12-31T23:59:59.000Z

172

Flood Plain and Floodway Management Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation

173

Florida Environmental Land and Water Management Act (Florida) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) Florida Environmental Land and Water Management Act (Florida) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Siting and Permitting Provider Florida Department of Economic Opportunity

174

Estimating and understanding DOE waste management costs`  

SciTech Connect

This paper examines costs associated with cleaning up the US Department of Energy`s (DOE`s) nuclear facilities, with particular emphasis on the waste management program. Life-cycle waste management costs have been compiled and reported in the DOE Baseline Environmental Management Report (BEMR). Waste management costs are a critical issue for DOE because of the current budget constraints. The DOE sites are struggling to accomplish their environmental management objectives given funding scenarios that are well below anticipated waste management costs. Through the BEMR process, DOE has compiled complex-wide cleanup cost estimates and has begun analysis of these costs with respect to alternative waste management scenarios and policy strategies. From this analysis, DOE is attempting to identify the major cost drivers and prioritize environmental management activities to achieve maximum utilization of existing funding. This paper provides an overview of the methodology DOE has used to estimate and analyze some waste management costs, including the key data requirements and uncertainties.

Kang, J.S. [USDOE, Washington, DC (United States); Sherick, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1995-12-01T23:59:59.000Z

175

An overview of the sustainability of solid waste management at military installations  

E-Print Network (OSTI)

Arc Gasification. Sustainability of Solid Waste Management.waste collection. Sustainability of Solid Waste Managment.Energy Refinery. Sustainability of Solid Waste Management.

Borglin, S.

2010-01-01T23:59:59.000Z

176

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999  

Science Conference Proceedings (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

Bechtel Jacobs Company LLC

2000-03-01T23:59:59.000Z

177

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000  

Science Conference Proceedings (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

Bechtel Jacobs Company LLC

2001-03-01T23:59:59.000Z

178

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

179

Comprehensive Local Water Management Act (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

Each county is encouraged to develop and implement a local water management plan. This section sets the specifications that must be met by local plans. The status of county water plans is shown...

180

Tank waste remediation system configuration management plan  

SciTech Connect

The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.

Vann, J.M.

1998-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Boiler Chemical Cleaning Waste Management Manual  

Science Conference Proceedings (OSTI)

Chemical cleaning to remove tube deposits/oxides that occur during unit operation or scale during unit commissioning from conventional fossil plants and combined cycle plants with heat recovery steam generators (HRSGs) will result in the generation of a waste solution. The waste contains residual solvent and elevated levels of heavy metals (primarily iron and copper) in addition to rinse and passivation solutions. An earlier manual, Boiler Chemical Cleaning Wastes Management Manual (EPRI ...

2013-12-20T23:59:59.000Z

182

Summary - Environmental Management Waste Management Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Report Date: February 2008 ETR-11 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Environmental Management...

183

WASTE MANAGEMENT QUALIFICATION STANDARD REFERENCE GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualification Standard Qualification Standard Reference Guide August 2010 Waste Management This page is intentionally blank. Table of Contents iii LIST OF FIGURES ..................................................................................................................... iv LIST OF TABLES ........................................................................................................................ v ACRONYMS ................................................................................................................................ vi PURPOSE ...................................................................................................................................... 1 SCOPE ........................................................................................................................................... 1

184

Fossil energy waste management. Technology status report  

SciTech Connect

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

185

Design and Implementation of Waste Management Robots  

Science Conference Proceedings (OSTI)

Recently, there are many problems caused by global environment warming. The limited natural resources require efficient methods and systems for recycling and processing of the wastes for a better environment. One of the problems today is the processing ... Keywords: Waste Management, Robot, Compost, Sensor Technology

Keita Matsuo; Yuichi Ogata; Kouhei Umezaki; Evjola Spaho; Leonard Barolli

2012-03-01T23:59:59.000Z

186

Development of small and powdery waste management  

Science Conference Proceedings (OSTI)

The actual world is facing a dilemma: to have in present a great welfare without any care concerning the future and the natural environment or the acceptance of the opportunity cost generated by adopting clean, green technologies or of those which fundamentally ... Keywords: pollution, products, pulverous waste, recovery, siderurgy, waste management

Socalici Ana; Harau Carmen; Heput Teodor; Ardelean Erika

2012-03-01T23:59:59.000Z

187

Managing America`s solid waste  

Science Conference Proceedings (OSTI)

This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

Not Available

1998-03-02T23:59:59.000Z

188

Site-specific waste management instruction - radiological screening facility  

DOE Green Energy (OSTI)

This Site-Specific Waste Management Instruction provides guidance for managing waste generated from radiological sample screening operations conducted to support the Environmental Restoration Contractor`s activities. This document applies only to waste generated within the radiological screening facilities.

G. G. Hopkins

1997-12-31T23:59:59.000Z

189

Hazardous waste management in the Pacific basin  

Science Conference Proceedings (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

190

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG&G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG&G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

191

Buried waste integrated demonstration configuration management plan  

SciTech Connect

This document defines plans for the configuration management requirements for the Buried Waste Integrated Demonstration (BWID) Program. Since BWID is managed programmatically by the Waste Technology Development Department (WTDD), WTDD Program Directive (PD) 1.5 (Document Preparation, Review, Approval, Publication, Management and Change Control) is to be followed for all internal EG G Idaho, Inc., BWID programmatic documentation. BWID documentation generated by organizations external to EG G Idaho is not covered by this revision of the Configuration Management Plan (CMP), but will be addressed in subsequent revisions.

Cannon, P.G.

1992-02-01T23:59:59.000Z

192

Acting Assistant Secretary for DOE Office of Environmental Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acting Assistant Secretary for DOE Office of Environmental Acting Assistant Secretary for DOE Office of Environmental Management Visits Hanford - First Visit, Commemorates Completion of Major Recovery Act Project Acting Assistant Secretary for DOE Office of Environmental Management Visits Hanford - First Visit, Commemorates Completion of Major Recovery Act Project August 11, 2011 - 12:00pm Addthis Media Contact Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 Media visit requirements to be completed by 2 p.m. today: This visit requires badges and an RSVP by 2 p.m. today by email to tmbirch@wch-rcc.com at Washington Closure Hanford. You must include in your email (for badging purposes) your full name exactly as it appears on your driver's license, confirm you are a U.S. Citizen, your date of birth, as well as the name, address, and phone number of the company you are

193

Federal Energy Management Program: National Energy Conservation Policy Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conservation Policy Act Energy Conservation Policy Act The National Energy Conservation Policy Act (NECPA) serves as the underlying authority for Federal energy management goals and requirements. Signed into law in 1978, it is regularly updated and amended by subsequent laws and regulations. NECPA is the foundation of most current energy requirements. Because of this, it is essential that Federal agencies become well acquainted with the full text of the amended NECPA. National Energy Conservation Policy Act (NECPA) Fully-amended NECPA energy management requirements - Subchapter III, Federal Energy Initiative, Part B, Federal Energy Management, Sections 8251 through 8262k PDF . Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 04/28/2011

194

Directions in low-level radioactive waste management: A brief history of commercial low-level radioactive waste disposal  

SciTech Connect

This report presents a history of commercial low-level radioactive waste management in the United States, with emphasis on the history of six commercially operated low-level radioactive waste disposal facilities. The report includes a brief description of important steps that have been taken during the 1980s to ensure the safe disposal of low-level waste in the 1990s and beyond. These steps include the issuance of Title 10 Code of Federal Regulations Part 61, Licensing Requirements for the Land Disposal of Radioactive Waste, the Low-Level Radioactive Waste Policy Act of 1980, the Low-Level Radioactive Waste Policy Amendments Act of 1985, and steps taken by states and regional compacts to establish additional disposal sites. 42 refs., 13 figs., 1 tab.

Not Available

1990-10-01T23:59:59.000Z

195

Nuclear Waste Management using Electrometallurgical Technology - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Bookmark and Share The NE system engineering activities involve the conceptual design, through the manufacturing and qualification testing of the Mk-IV and Mk-V electrorefiner and the cathode processor. These first-of-a-kind large scale

196

System Engineering Design [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

System Engineering System Engineering Design Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology System Engineering Design Bookmark and Share Two major pieces of electrometallurgical process equipment are the Electrorefiner and the Cathode Processor. NE personnel have been involved in the conceptual design, final design, procurement, manufacture,

197

Mixed Waste Focus Area program management plan  

SciTech Connect

This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

Beitel, G.A.

1996-10-01T23:59:59.000Z

198

Coastal Public Lands Management Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) Coastal Public Lands Management Act (Texas) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Texas Program Type Siting and Permitting Provider Texas General Land Office The coastal public lands of the state are managed in accordance with the following principles: (a) The natural resources of the surface land, including their aesthetic value and their ability to support and nurture all types of marine life and wildlife, shall be preserved. (b) Preference

199

The Waste Management Quality Assurance Implementing Management Plan (QAIMP)  

E-Print Network (OSTI)

meeting applicable requirements of LBL, DOE, DOT, and otherDOE Orders, and waste management acceptance requirements ofwith the requirements of this QAIMP and DOE Order 1324.2A.

Albert editor, R.

2009-01-01T23:59:59.000Z

200

Drilling Waste Management Technology Identification Module  

NLE Websites -- All DOE Office Websites (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Innovative technologies for managing oil field waste.  

Science Conference Proceedings (OSTI)

Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

Veil, J. A.; Environmental Assessment

2003-09-01T23:59:59.000Z

202

The Department of Energy's Use of the Environmental Management Waste Management Facility at the Oak Ridge Reservation, IG-0883  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use of Use of the Environmental Management Waste Management Facility at the Oak Ridge Reservation DOE/IG-0883 April 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 9, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Use of the Environmental Management Waste Management Facility at the Oak Ridge Reservation" BACKGROUND The Environmental Management Waste Management Facility (EMWMF) is an above-ground waste disposal facility designed to meet the requirements of the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). The Oak Ridge Office of

203

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remediate and Restore Former Waste Sites, Help Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint More Documents & Publications 2011 ARRA Newsletters Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of

204

Energy aspects of solid waste management: Proceedings  

Science Conference Proceedings (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-01-01T23:59:59.000Z

205

Department of Energy - Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 en U.S. Department of Energy to Host 1 en U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal http://energy.gov/articles/us-department-energy-host-press-call-radioactive-waste-shipment-and-disposal waste-shipment-and-disposal" class="title-link">U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal

206

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 6, 2010 Agreement on New Commitments for Hanford Tank Waste Cleanup Sent to Federal Judge RICHLAND, Wash. - The U.S. Department of Energy and Washington State Department of...

207

Modelling integrated waste management system of the Czech Republic  

Science Conference Proceedings (OSTI)

The paper is devoted to environmental modelling, particularly modelling of Integrated Municipal Solid Waste Management Systems at the Czech Republic (IMSWMS). There are considered input macroeconomic variables (landfills fees, price of electricity, tax ... Keywords: environmental modelling, integrated waste management system, municipal solid waste, waste management modelling

Jiri Hrebicek; Jana Soukopova

2010-07-01T23:59:59.000Z

208

Environmental Restoration and Waste Management: Strategic plan  

Science Conference Proceedings (OSTI)

The Brookhaven National Laboratory (BNL) site is currently divided into five major areas, Operable Units (OUs), and several Areas of Concern (AOCs), which are the focus of investigation and clean-up. The primary environmental concern is groundwater contamination and a major emphasis of the restoration activities is focused on this medium. Each year, BNL generates 60 tons of hazardous waste and 7,000 to 8,000 cubic feet of radioactive waste that result from research activities. These wastes are collected at a central location, packaged and shipped off site for disposal. The operations for Hazardous and Radioactive Waste Management are conducted in compliance with EPA and DOE regulations. BNL has continued to actively pursue means by which these wastes may be minimized. Activities in both the remediation and waste management arenas are intimately connected with the future vision of BNL. The long-range goal for remediation in conjunction with vigorous monitoring of BNL`s activities is to restore the site and maintain strong environmental controls. The goals of the waste minimization program include activities to find environmentally safe alternatives to materials currently in use. By careful planning, BNL will minimize the amount of all waste, including sanitary, that is generated on site.

Not Available

1994-09-01T23:59:59.000Z

209

Federal Energy Management Program: Energy Policy Act of 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 2005 The Energy Policy Act of 2005 (EPAct 2005) established a number of energy management goals for Federal facilities and fleets. It also amended portions of the National Energy Conservation Policy Act (NECPA). EPAct 2005 sets Federal energy management requirements in several areas, including: Metering and Reporting Energy-Efficient Product Procurement Energy Savings Performance Contracts Building Performance Standards Renewables Energy Requirement Alternative Fuel Use This content is intended as a reference only. You should refer to the full text of EPAct 2005 for more details or other sections relevant to your work (PDF 3.2 MB). Download Acrobat Reader. Please note, the Energy Independence and Security Act of 2007 (EISA 2007) and Executive Order (E.O.) 13423 have been issued subsequent to the passage of EPAct 2005. These authorities update many of the energy management requirements of EPAct 2005.

210

Stormwater Management and Sediment Reduction Act (South Carolina) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Sediment Reduction Act (South Carolina) and Sediment Reduction Act (South Carolina) Stormwater Management and Sediment Reduction Act (South Carolina) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Environmental Regulations Provider South Carolina Department of Health and Environmental Control

211

Waste Management Program. Technical progress report, October-December 1982  

SciTech Connect

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, in situ storage or disposal, waste from development and characterization, process and equipment development, and low-level waste management are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1983-07-01T23:59:59.000Z

212

Waste Management Quality Assurance Plan  

E-Print Network (OSTI)

PROGRAM .4 Organizational Structure ..4 Management Quality Assurance Functions 5 Planning 5 2.0 PERSONNEL TRAINING AND

Waste Management Group

2006-01-01T23:59:59.000Z

213

Mathematical Models in Municipal Solid Waste Management  

E-Print Network (OSTI)

Two mathematical models developed as tools for solid waste planners in decisions concerning the overall management of solid waste in a municipality are described. The models have respectively been formulated as integer and mixed integer linear programming problems. The choice between the two models from the practical point of view depends on the user and the technology used. One user may prefer to measure the transportation costs in terms of costs per trip made from the waste source, in which case the first model is more appropriate. In this case we replace the coefficients of the decision variables in the objective function with the total cost per trip from the waste collection point. At the same time, instead of measuring the amount of waste using the number of trucks used multiplied by their capacities, continuous variables can be introduced to measure directly the amount of waste that goes to the plants and landfills. The integer linear problem is then transformed into a mixed integer problem that gives better total cost estimates and more precise waste amount measurements, but measuring transportation costs in terms of costs per trip. For instance, at the moment the first model is more relevant to the Ugandan situation, where the technology to measure waste as it is carried away from the waste sources is not available. Another user may prefer to measure the transportation costs in terms of costs per unit mass of

Michael K. Nganda

2007-01-01T23:59:59.000Z

214

Civilian radioactive waste management program plan. Revision 2  

SciTech Connect

This revision of the Civilian Radioactive Waste Management Program Plan describes the objectives of the Civilian Radioactive Waste management Program (Program) as prescribed by legislative mandate, and the technical achievements, schedule, and costs planned to complete these objectives. The Plan provides Program participants and stakeholders with an updated description of Program activities and milestones for fiscal years (FY) 1998 to 2003. It describes the steps the Program will undertake to provide a viability assessment of the Yucca Mountain site in 1998; prepare the Secretary of Energy`s site recommendation to the President in 2001, if the site is found to be suitable for development as a repository; and submit a license application to the Nuclear Regulatory Commission in 2002 for authorization to construct a repository. The Program`s ultimate challenge is to provide adequate assurance to society that an operating geologic repository at a specific site meets the required standards of safety. Chapter 1 describes the Program`s mission and vision, and summarizes the Program`s broad strategic objectives. Chapter 2 describes the Program`s approach to transform strategic objectives, strategies, and success measures to specific Program activities and milestones. Chapter 3 describes the activities and milestones currently projected by the Program for the next five years for the Yucca Mountain Site Characterization Project; the Waste Acceptance, Storage and Transportation Project; ad the Program Management Center. The appendices present information on the Nuclear Waste Policy Act of 1982, as amended, and the Energy Policy Act of 1992; the history of the Program; the Program`s organization chart; the Commission`s regulations, Disposal of High-Level Radioactive Wastes in geologic Repositories; and a glossary of terms.

1998-07-01T23:59:59.000Z

215

Management of Solid Waste (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) Management of Solid Waste (Oklahoma) < Back Eligibility Utility Agricultural Investor-Owned Utility Industrial Municipal/Public Utility Rural Electric Cooperative Program Info State Oklahoma Program Type Environmental Regulations Provider Oklahoma Department of Environmental Quality The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid waste and/or waste tires. The following solid waste disposal facilities require a solid waste permit prior to construction and/or operation: land disposal facilities; solid waste processing facilities, including: transfer stations; solid waste incinerators receiving waste from off-site sources; regulated medical waste

216

ICPP Waste Management Technology Development Program  

SciTech Connect

As a result of the decision to curtail reprocessing at the Idaho Chemical Processing Plant (ICPP), a Spent fuel and Waste Management Technology Development plan has been implemented to identify acceptable options for disposing of the (1) sodium-bearing liquid radioactive waste, (2) radioactive calcine, and (3) irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The plan was developed jointly by DOE and WINCO.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE, Washington, DC (United States)

1993-01-01T23:59:59.000Z

217

Secondary Waste Forms and Technetium Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secondary Waste Forms and Secondary Waste Forms and Technetium Management Joseph H. Westsik, Jr. Pacific Northwest National Laboratory EM HLW Corporate Board Meeting November 18, 2010 What are Secondary Wastes? Process condensates and scrubber and/or off-gas treatment liquids from the pretreatment and ILAW melter facilities at the Hanford WTP. Sent from WTP to the Effluent Treatment Facility (ETF) for treatment and disposal Treated liquid effluents under the ETF State Wastewater Discharge Permit Solidified liquid effluents under the Dangerous Waste Permit for disposal at the Integrated Disposal Facility (IDF) Solidification Treatment Unit to be added to ETF to provide capacity for WTP secondary liquid wastes 2 Evaporator Condensate Solution Evaporator Pretreatment Melter SBS/ WESP Secondary

218

Drilling Waste Management Fact Sheet: Land Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Land Application Land Application Fact Sheet - Land Application The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation, and is important enough to be described in its own fact sheet; other forms of bioremediation are described in a separate fact sheet. Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

219

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

220

Fifty years of federal radioactive waste management: Policies and practices  

SciTech Connect

This report provides a chronological history of policies and practices relating to the management of radioactive waste for which the US Atomic Energy Commission and its successor agencies, the Energy Research and Development Administration and the Department of Energy, have been responsible since the enactment of the Atomic Energy Act in 1946. The defense programs and capabilities that the Commission inherited in 1947 are briefly described. The Commission undertook a dramatic expansion nationwide of its physical facilities and program capabilities over the five years beginning in 1947. While the nuclear defense activities continued to be a major portion of the Atomic Energy Commission`s program, there was added in 1955 the Atoms for Peace program that spawned a multiplicity of peaceful use applications for nuclear energy, e.g., the civilian nuclear power program and its associated nuclear fuel cycle; a variety of industrial applications; and medical research, diagnostic, and therapeutic applications. All of these nuclear programs and activities generated large volumes of radioactive waste that had to be managed in a manner that was safe for the workers, the public, and the environment. The management of these materials, which varied significantly in their physical, chemical, and radiological characteristics, involved to varying degrees the following phases of the waste management system life cycle: waste characterization, storage, treatment, and disposal, with appropriate transportation linkages. One of the benefits of reviewing the history of the waste management program policies and practices if the opportunity it provides for identifying the lessons learned over the years. Examples are summarized at the end of the report and are listed in no particular order of importance.

Bradley, R.G.

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mr. John Kieling, Acting Chief Hazardous Waste Bureau Depa  

NLE Websites -- All DOE Office Websites (Extended Search)

for the upcoming federal fiscal year: * SR-RL-BCLDP.001 : A Remote Handled transuranic debris waste stream This remote-handled transuranic debris waste stream consists of organic...

222

Multiple system modelling of waste management  

Science Conference Proceedings (OSTI)

Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions have developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.

Eriksson, Ola, E-mail: ola.eriksson@hig.se [Profu i Goeteborg AB, Goetaforsliden 13 Nedre, SE 431 34 Moelndal (Sweden); Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle (Sweden); Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se [Profu i Goeteborg AB, Goetaforsliden 13 Nedre, SE 431 34 Moelndal (Sweden)

2011-12-15T23:59:59.000Z

223

Municipal solid-waste management in Istanbul  

SciTech Connect

Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

Kanat, Gurdal, E-mail: gkanat@gmail.co [Yildiz Teknik Universitesi Cevre Muh Bolumu, 34220 Davutpasa-Esenler, Istanbul (Turkey)

2010-08-15T23:59:59.000Z

224

Waste Logic Liquid Waste Manager (WL-LWM) Software, Version 2.0  

Science Conference Proceedings (OSTI)

In response to continuing industry efforts to reduce operating expenditures, EPRI developed the Waste Logic&trade: Liquid Waste Manager code to analyze costs associated with liquid waste processing and the disposition of its resultant solid waste. EPRI's Waste Logic: Liquid Waste Manager software for windows-based PC computers provides a detailed economic and performance view of liquid waste processing activities. The software will help nuclear utilities evaluate the costs associated with liquid radwaste...

2002-06-05T23:59:59.000Z

225

DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches Recovery Act Goal With Cleanup of All Legacy Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories May 3, 2012 - 12:00pm Addthis Media Contact Deb Gill, U.S. DOE Carlsbad Field Office, (575) 234-7270 CARLSBAD, N.M., May 3, 2012 -The U.S. Department of Energy (DOE) completed cleanup of the Cold War legacy transuranic (TRU) waste at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico when four shipments of remote-handled (RH) TRU waste from Sandia arrived at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M. for permanent disposal on May 2, 2012. The DOE Carlsbad Field Office (CBFO) reached one of its final milestones under the American Recovery and Reinvestment Act (ARRA) with the legacy TRU

226

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Workers Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act workers remediated and reseeded a densely contaminated 140- acre portion of that area after disposing of more than 370,000 tons of contaminated soil. Recovery Act workers employed by DOE contractor CH2M HILL Plateau Remediation Company have remediated 61 waste sites,

227

Federal Energy Management Program: Energy Policy Act of 1992  

NLE Websites -- All DOE Office Websites (Extended Search)

1992 1992 The Energy Policy Act of 1992 (EPAct 1992) amended the National Energy Conservation Policy Act (NECPA) and established several energy management goals. These requirements span the following topics: Definitions Water Conservation Federal Energy Efficiency Fund Utility Incentive Programs Financial Incentive Program Demonstration of New Technology General Services Administration Federal Buildings Fund Energy Savings Performance Contracts Energy Audit Teams Energy-Efficient Product Procurement United States Postal Service and Congressional Building Regulations Fleet Management This content is intended as a reference only. You should refer to the full text of EPAct 1992 for more details or other sections relevant to your work. Please note, the Energy Independence and Security Act of 2007 (EISA 2007), Executive Order (E.O.) 13423, and EPAct 2005 have been issued subsequent to the passage of EPAct 1992. These authorities update and/or supersede many of its requirements.

228

RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area C at the Hanford Site  

SciTech Connect

This document describes the groundwater monitoring plan for Waste Management Area C located in the 200 East Area of the DOE Hanford Site. This plan is required under Resource Conservation and Recovery Act of 1976 (RCRA).

Horton, Duane G.; Narbutovskih, Susan M.

2001-01-01T23:59:59.000Z

229

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2, 2012 August 2, 2012 Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant, specifically as it relates to the facility's "black cells." July 9, 2012 Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS),

230

Waste Management Program. Technical progress report, Aporil-June 1983  

Science Conference Proceedings (OSTI)

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1984-02-01T23:59:59.000Z

231

Solid Waste Rules (New Hampshire) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by the solid waste rules for authorizing construction, operation, and closure of solid waste management facilities. The act includes rules for waste-to-energy operations...

232

Nuclear waste management. Semiannual progress report, October 1982-March 1983  

SciTech Connect

This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

Chikalla, T.D.; Powell, J.A. (comps.)

1983-06-01T23:59:59.000Z

233

Environmental impact on municipal solid waste management system in Chaiyaphum  

Science Conference Proceedings (OSTI)

Continually increasing amount of municipal solid waste (MSW) and the limited capacity of the existing waste management system are serious problems that Chaiyaphum municipality must deal with. The optimal waste management system should be adopted. Explicit ... Keywords: decision making, environmental evaluation, life cycle assessment, municipal solid waste

S. Piyaphant; K. Prayong

2011-10-01T23:59:59.000Z

234

Plan for the management of radioactive waste, Savannah River Plant  

SciTech Connect

The following areas are covered in the Savannah River Plant's radioactive waste management plan: program administration; description of waste generating processes; waste management facilities; radioactive wastes stored; plans and budget projections; and description of decontamination and decommissioning . (LK)

1975-07-01T23:59:59.000Z

235

Integrated solid waste management of Minneapolis, Minnesota  

Science Conference Proceedings (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Minneapolis, Minnesota (Hennepin County) integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for municipal solid waste (MSW) management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM system.

NONE

1995-11-01T23:59:59.000Z

236

Waste Management's LNG Truck Fleet: Final Results  

DOE Green Energy (OSTI)

Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

2001-01-25T23:59:59.000Z

237

Waste management project technical baseline description  

SciTech Connect

A systems engineering approach has been taken to describe the technical baseline under which the Waste Management Project is currently operating. The document contains a mission analysis, function analysis, requirement analysis, interface definitions, alternative analysis, system definition, documentation requirements, implementation definitions, and discussion of uncertainties facing the Project.

Sederburg, J.P.

1997-08-13T23:59:59.000Z

238

High-level radioactive waste management alternatives  

SciTech Connect

A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)

1974-05-01T23:59:59.000Z

239

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

240

Solid Waste Disposal Resource Recovery Facilities Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes local governing bodies to form joint agencies to advance the collection, transfer, processing of solid waste, recovery of resources, and sales of recovered resources in...

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emergency Management Program Review at the Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ......

242

Tank Waste Remediation Systems (TWRS) Configuration Management Implementation Plan  

SciTech Connect

The Tank Waste Configuration Management (TWRS) Configuration Management Implementation Plan descibes the execution of the configuration management (CM) that the contractor uses to manage and integrate its programmatic and functional operations to perform work.

WEIR, W.R.

2000-12-18T23:59:59.000Z

243

Waste Material Management: Energy and materials for industry  

DOE Green Energy (OSTI)

This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

Not Available

1993-05-01T23:59:59.000Z

244

FAQS Qualification Card - Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Waste Management FAQS Qualification Card - Waste Management A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-WasteManagement.docx Description Waste Management Qualification Card More Documents & Publications FAQS Qualification Card - General Technical Base

245

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

246

Twelfth annual US DOE low-level waste management conference  

Science Conference Proceedings (OSTI)

The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

Not Available

1990-01-01T23:59:59.000Z

247

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

248

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE-WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE-West Valley Area Office

249

West Valley Demonstration Project Waste Management Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY April 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE P.O. BOX 191 WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Draft West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Daniel W. Sullivan Document Manager DOE West Valley Area Office

250

Environmental Management Waste Management Facility (EMWMF) at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Technical Review Report: Oak Ridge Reservation Independent Technical Review Report: Oak Ridge Reservation Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE; and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 1 February 2008 (v3.0) i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 2 3. LINE OF INQUIRY NO. 1 2 4. LINE OF INQUIRY NO. 2 4 4.1 Compaction Testing of Soil and Debris Mixtures 5 4.2 Final Cover Settlement 6 5. LINE OF INQUIRY NO. 3 7 6. SUMMARY OF RECOMMENDATIONS 8 7. ACKNOWLEDGEMENT 10 8. REFERENCES 10 FIGURES 12 1 1. INTRODUCTION The Environmental Management Waste Management Facility (EMWMF) is a land disposal

251

Municipal solid waste management in Beijing City  

Science Conference Proceedings (OSTI)

This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

Li Zhenshan [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5, Yi Heyuan Road, Haidian District, Beijing 100871 (China); Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China)], E-mail: lizhenshan@pku.edu.cn; Yang Lei [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5, Yi Heyuan Road, Haidian District, Beijing 100871 (China); Qu XiaoYan [Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055 (China); Sui Yumei [Department of Environmental Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5, Yi Heyuan Road, Haidian District, Beijing 100871 (China)

2009-09-15T23:59:59.000Z

252

Solid Waste Management (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut) Connecticut) Solid Waste Management (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental considerations;

253

Drilling Waste Management Fact Sheet: Bioremediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioremediation Bioremediation Fact Sheet - Bioremediation Bioremediation (also known as biological treatment or biotreatment) uses microorganisms (bacteria and fungi) to biologically degrade hydrocarbon-contaminated waste into nontoxic residues. The objective of biotreatment is to accelerate the natural decomposition process by controlling oxygen, temperature, moisture, and nutrient parameters. Land application is a form of bioremediation that is described in greater detail in a separate fact sheet. This fact sheet focuses on forms of bioremediation technology that take place in more intensively managed programs, such as composting, vermiculture, and bioreactors. McMillen et al. (2004) summarizes over ten years of experience in biotreating exploration and production wastes and offers ten lessons learned.

254

Unit costs of waste management operations  

SciTech Connect

This report provides estimates of generic costs for the management, disposal, and surveillance of various waste types, from the time they are generated to the end of their institutional control. Costs include monitoring and surveillance costs required after waste disposal. Available data on costs for the treatment, storage, disposal, and transportation of spent nuclear fuel and high-level radioactive, low-level radioactive, transuranic radioactive, hazardous, mixed (low-level radioactive plus hazardous), and sanitary wastes are presented. The costs cover all major elements that contribute to the total system life-cycle (i.e., ``cradle to grave``) cost for each waste type. This total cost is the sum of fixed and variable cost components. Variable costs are affected by operating rates and throughput capacities and vary in direct proportion to changes in the level of activity. Fixed costs remain constant regardless of changes in the amount of waste, operating rates, or throughput capacities. Key factors that influence cost, such as the size and throughput capacity of facilities, are identified. In many cases, ranges of values for the key variables are presented. For some waste types, the planned or estimated costs for storage and disposal, projected to the year 2000, are presented as graphics.

Kisieleski, W.E.; Folga, S.M.; Gillette, J.L.; Buehring, W.A.

1994-04-01T23:59:59.000Z

255

The High-Level Radioactive Waste Act (Manitoba, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Manitoba bars the storage of high-level radioactive wastes from spent nuclear fuel, not intended for research purposes, that was produced at a nuclear facility or in a nuclear reactor outside the...

256

Chapter 30 Waste Management: General Administrative Procedures (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 30 Waste Management: General Administrative Procedures Chapter 30 Waste Management: General Administrative Procedures (Kentucky) Chapter 30 Waste Management: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous

257

A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN  

Science Conference Proceedings (OSTI)

This paper is entitled ''A QUARTER CENTURY OF NUCLEAR WASTE MANAGEMENT IN JAPAN''. Since the first statement on the strategy for radioactive waste management in Japan was made by the Atomic Energy Commission (AEC) in 1976, a quarter century has passed, in which much experience has been accumulated both in technical and social domains. This paper looks back in this 25-year history of radioactive waste management in Japan by highlighting activities related to high-level radioactive waste (HLW) disposal.

Masuda, S.

2002-02-25T23:59:59.000Z

258

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

259

Integrated solid waste management of Seattle, Washington  

SciTech Connect

The subject document reports the results of an in-depth investigation of the fiscal year 1992 cost of the City of Seattle, Washington, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. Actual data from records kept by participants is reported in this document. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for MSW management professionals who are interested in the actual costs and energy consumption for a one-year period, of an operating IMSWM systems.

1995-11-01T23:59:59.000Z

260

Office of Civilian Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RW-0583 RW-0583 QA:N/A Office of Civilian Radioactive Waste Management EVALUATION OF TECHNICAL IMPACT ON THE YUCCA MOUNTAIN PROJECT TECHNICAL BASIS RESULTING FROM ISSUES RAISED BY EMAILS OF FORMER PROJECT PARTICIPANTS February 2006 This page intentionally left blank. Table of Contents Executive Summary .............................................................................................................v 1. Introduction..............................................................................................................1 1.1 Background ....................................................................................................1 1.2 Role of the USGS in Yucca Mountain Work.................................................2

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches Recovery Act Goal for Waste Cleanup Ahead of Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal July 26, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Andre_L_Armstrong@rl.gov 509-376-6773 Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 RICHLAND, Wash. - Today, the Department of Energy Hanford Site announced it reached a cleanup goal more than two months ahead of schedule at the Hanford Site in southeast Washington State. Supported by funding from the American Recovery and Reinvestment Act, workers retrieved containers of contaminated material from storage buildings and underground storage trenches and prepared them for treatment

262

Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reaches Recovery Act Goal for Waste Cleanup Ahead of Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal July 26, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Andre_L_Armstrong@rl.gov 509-376-6773 Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 RICHLAND, Wash. - Today, the Department of Energy Hanford Site announced it reached a cleanup goal more than two months ahead of schedule at the Hanford Site in southeast Washington State. Supported by funding from the American Recovery and Reinvestment Act, workers retrieved containers of contaminated material from storage buildings and underground storage trenches and prepared them for treatment

263

ACTING DIRECTOR OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 FROM : ACTING DIRECTOR OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Fiscal Year's (FY) 2011 and 2012 Balanced Scorecard Guidance for Federal Sites and Contractor Purchasing Organizations The Balanced Scorecard (BSe) performance management methodology continues to provide the Office of Procurement and Assistance Management (OPAM) with valuable insight into the health of the procurement function at the Department's Federal procurement offices and the purchasing organizations of its major site and facility contractors. This memorandum forwards BSC guidance regarding FY 2011 reporting and FY 2012 core measures. FY 2011 Federal BSC Reports shall be forwarded to Eileen McGlinn, MA-621 Field Assistance and Oversight Division , no later than December 2, 2011. FY 2011 Contractor

264

CRAD, Hazardous Waste Management - December 4, 2007 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 CRAD, Hazardous Waste Management - December 4, 2007 December 4, 2007 Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30) Line management ensures that the requirements for generating, storing, treating, transporting, and disposing of hazardous waste, universal waste, and used oil, established under 40 CFR Subchapter I, applicable permits, and DOE requirements have been effectively implemented for federal and contractor employees, including subcontractors. Written programs and plans are in place and updated when conditions or requirements change. Employees have been properly trained for the wastes they handle. Documentation of waste characterizations, manifests, land disposal restrictions,

265

EIS-0217: Savannah River Site Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17: Savannah River Site Waste Management 17: Savannah River Site Waste Management EIS-0217: Savannah River Site Waste Management Summary This EIS evaluates the potential environmental impacts and costs of storing, treating, and/or disposing of liquid high-level radioactive, low-level radioactive, hazardous, mixed (radioactive and hazardous), and transuranic wastes at SRS. Public Comment Opportunities None available at this time. Documents Available for Download June 28, 2001 EIS-0217: Amended Record of Decision Savannah River Site Waste Management, Savannah River Operations Office, Aiken, South Carolina May 19, 1997 EIS-0217: Supplemental Record of Decision Savannah River Site Waste Management May 19, 1997 EIS-0217: Supplemental Record of Decision Savannah River Site Waste Management, Savannah River Operations Office,

266

Huizenga Kicks Off Waste Management Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Huizenga Kicks Off Waste Management Conference Huizenga Kicks Off Waste Management Conference Huizenga Kicks Off Waste Management Conference February 25, 2013 - 12:00pm Addthis EM Senior Advisor Dave Huizenga speaks during the plenary session of the Waste Management Conference in Phoenix today. EM Senior Advisor Dave Huizenga speaks during the plenary session of the Waste Management Conference in Phoenix today. WM Symposia Board Chairman James Gallagher, left to right, U.S. Nuclear Regulatory Commission Member William Ostendorff, Natural Resources Canada Uranium & Radioactive Waste Division Director Dave McCauley, EM Senior Advisor Dave Huizenga and WM Symposia Board Member Fred Sheil gather for a photo at the Waste Management Conference. WM Symposia Board Chairman James Gallagher, left to right, U.S. Nuclear

267

Radioactive and mixed waste management plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility  

SciTech Connect

This Radioactive and Mixed Waste Management Plan for the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory is written to meet the requirements for an annual report of radioactive and mixed waste management activities outlined in DOE Order 5820.2A. Radioactive and mixed waste management activities during FY 1994 listed here include principal regulatory and environmental issues and the degree to which planned activities were accomplished.

NONE

1995-01-01T23:59:59.000Z

268

Resource Conservation and Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Conservation and Recovery Act (RCRA) Resource Conservation and Recovery Act (RCRA) In 1965 the Solid Waste Disposal Act [Public Law (Pub. L.) 89-72] was enacted to improve solid waste disposal methods. It was amended in 1970 by the Resource Recovery Act (Pub. L. 91-512), which provided the Environmental Protection Agency (EPA) with funding for resource recovery programs. However, that Act had little impact on the management and ultimate disposal of hazardous waste. In 1976 Congress enacted the Resource Conservation and Recovery Act (RCRA, Pub. L. 94-580). RCRA established a system for managing non-hazardous and hazardous solid wastes in an environmentally sound manner. Specifically, it provides for the management of hazardous wastes from the point of origin to the point of final disposal (i.e., "cradle to grave"). RCRA also promotes resource recovery and waste minimization.

269

Management of offshore wastes in the United States.  

SciTech Connect

During the process of finding and producing oil and gas in the offshore environment operators generate a variety of liquid and solid wastes. Some of these wastes are directly related to exploration and production activities (e.g., drilling wastes, produced water, treatment workover, and completion fluids) while other types of wastes are associated with human occupation of the offshore platforms (e.g., sanitary and domestic wastes, trash). Still other types of wastes can be considered generic industrial wastes (e.g., scrap metal and wood, wastes paints and chemicals, sand blasting residues). Finally, the offshore platforms themselves can be considered waste materials when their useful life span has been reached. Generally, offshore wastes are managed in one of three ways--onsite discharge, injection, or transportation to shore. This paper describes the regulatory requirements imposed by the government and the approaches used by offshore operators to manage and dispose of wastes in the US.

Veil, J. A.

1998-10-22T23:59:59.000Z

270

Federal Land Policy and Management Act of 1976 | Open Energy Information  

Open Energy Info (EERE)

Land Policy and Management Act of 1976 Land Policy and Management Act of 1976 Jump to: navigation, search Statute Name Federal Land Policy and Management Act of 1976 Year 1976 Url Landpolicy1976.jpg Description FLPMA, also called the BLM Organic Act, consolidated and articulated BLM management responsibilities and delegated many management responsibilities pertaining to federal land from the Secretary of the Interior to the Director of the BLM, including oversight of oil and gas leases. References Federal Land Policy and Management Act of 1976[1] The Federal Land Policy and Management Act of 1976 (43 U.S.C. §1701 et seq.) - FLPMA, also called the BLM Organic Act, consolidated and articulated BLM management responsibilities and delegated many management responsibilities pertaining to federal land from the Secretary of the

271

Integrated solid waste management of Springfield, Massachusetts  

Science Conference Proceedings (OSTI)

The subject document reports the results of an in-depth investigation of the fiscal year 1993 cost of the city of Springfield, Massachusetts, integrated municipal solid waste management (IMSWM) system, the energy consumed to operate the system, and the environmental performance requirements for each of the system`s waste-processing and disposal facilities. The document reports actual data from records kept by participants. Every effort was made to minimize the use of assumptions, and no attempt is made to interpret the data reported. Analytical approaches are documented so that interested analysts may perform manipulation or further analysis of the data. As such, the report is a reference document for Municipal Solid Waste management professionals who are interested in the actual costs and energy consumption, for a 1-year period, of an operating IMSWM system. The report is organized into two main parts. The first part is the executive summary and case study portion of the report. The executive summary provides a basic description of the study area and selected economic and energy information. Within the case study are detailed descriptions of each component operating during the study period; the quantities of solid waste collected, processed, and marketed within the study boundaries; the cost of managing MSW in Springfield; an energy usage analysis; a review of federal, state, and local environmental requirement compliance; a reference section; and a glossary of terms. The second part of the report focuses on a more detailed discourse on the above topics. In addition, the methodology used to determine the economic costs and energy consumption of the system components is found in the second portion of this report. The methodology created for this project will be helpful for those professionals who wish to break out the costs of their own integrated systems.

NONE

1995-11-01T23:59:59.000Z

272

Calcium spray dryer waste management: Design guidelines: Final report  

SciTech Connect

Calcium spray drying is a commercially available and applied technology used to control SO/sub 2/ emissions. This process is rapidly gaining utility acceptance. Because physical and chemical properties of wastes generated by calcium spray drying differ from those of conventional coal combustion by-products (fly ash and scrubber sludge) typical waste management practices may need to be altered. This report presents technical guidelines for designing and operating a calcium spray drying waste management system. Waste transfer, storage, pretreatment/conditioning, transport and disposal are addressed. The report briefly describes eighteen existing or planned calcium spray drying waste management systems. Results of waste property tests conducted as part of this study, and test data from other studies are reported and compared. Conceptual designs of both new and retrofit calcium spray drying waste management systems also are presented to demonstrate the economic impact of spray drying on waste management. Parametric cost sensitivity analyses illustrate the impact of significant design parameters on waste management costs. Existing calcium spray drying waste management experiences, as well as spray drying waste property data provided the basis for guideline development. Because existing calcium spray drying facilities burn low sulfur coal, this report is considered applicable only to calcium spray drying wastes produced from low sulfur coal. At this time, calcium spray drying is not expected to be feasible for high sulfur coal applications.

1987-09-01T23:59:59.000Z

273

Office of Environmental Management Taps Small Business for Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Management Taps Small Business for Waste Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract August 29, 2012 - 4:54pm Addthis A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization This week, Celeritex, LLC landed a contract worth up to $17.8 million with the Office of Environmental Management, having demonstrated through a competetive process that this small business is up to the task of securing and isolating defense-generated Transuranic waste.

274

Clean Cities: National Clean Fleets Partner: Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for Waste Management. WM's fleet of nearly 1,700 CNG and liquefied natural gas (LNG) vehicles is the largest in the North American waste industry. In 2012, natural gas...

275

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PURPOSE PURPOSE The U.S. Department of Energv SUMRY (DOE) has Dreuared this environmental impact -. . . statement (EIS) to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant (SRP) in Aiken, South Carolina. This EIS, which is both programmatic and project-specific, has been prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act (NEPA) of 1969, as amended. It is intended to support broad decisions on future actions on SRP waste management activities and to provide project- related environmental input and support for project-specific decisions on pro- ceeding with cleanup activities at existing waste sites in the R- and F-Areas, establishing new waste

276

High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management  

SciTech Connect

This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic ({approx}47%), wood ({approx}38%) and asbestos transite ({approx}14%). The remaining {approx}1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the asbestos, was volume reduced via a private contract mechanism established by BJC. After volume reduction, the waste was packaged for rail shipment. This large waste management project successfully met cost and schedule goals.

Pudelek, R. E.; Gilbert, W. C.

2002-02-26T23:59:59.000Z

277

Integrated Waste Services Association National Solid Wastes Management Association  

E-Print Network (OSTI)

Can Help Meet Our Energy Needs October 5, 2006 - WASHINGTON, DC--A broad coalition of government-244-4700 Evan Von Leer, SWANA 240-494-2252 John Varrasi, ASME 212-591-8158 Don't Waste Waste! Waste-Based Energy and utilization of energy produced from waste, or waste-based energy (WBE). The United States Conference of Mayors

Columbia University

278

Introduction to waste management University guidance on particular types of waste are available on the Health  

E-Print Network (OSTI)

Introduction to waste management University guidance on particular types of waste are available on the Health and Safety services website and for general and office waste on the Estate Services website. This guidance is designed to work alongside school/service guidelines. - general office waste and recycling http

Haase, Markus

279

Waste in a land of plenty -Solid waste generation and management  

E-Print Network (OSTI)

Waste in a land of plenty - Solid waste generation and management in the US The US generates the highest amount of waste per person in the world and continues to rely on landfilling at the expense of recycling and waste-to- energy, according to the latest in an annual series of national surveys on municipal

Columbia University

280

Hazardous Waste Management (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

treatment and storage of such waste. It also mentions the availability of tax credits for waste facilities. Energy recovery from the destruction of a hazardous waste may be...

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year 2008 Civilian Radioactive Waste Management Fee Adequacy Letter Report presents an evaluation of the adequacy of the one mill per kilowatt-hour fee paid by commercial nuclear power generators for the permanent disposal of their spent nuclear fuel by the Government. This evaluation recommends no fee change. CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT More Documents & Publications FY 2007 Fee Adequacy, Pub 2008 Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report January 16, 2013 Secretarial Determination of the Adequacy of the Nuclear

282

Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 29, 2011 August 29, 2011 IDAHO FALLS, Idaho - American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste - each weighing up to 15 tons - to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from the Recovery Act, the final shipment of the containers from the Materials and Fuels Com- plex recently arrived at the Idaho Nuclear Technology and Engineering Center (INTEC). Each of the containers moved to INTEC is shielded and specially designed and fabricated for highly radioactive waste. Once at INTEC, the containers are cut open, emptied, and repackaged. After the waste is removed and put in casks, it is shipped to the Waste Isolation Pilot

283

Waste Management Program. Technical progress report, July-December, 1984  

Science Conference Proceedings (OSTI)

This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement.

None

1986-10-01T23:59:59.000Z

284

Solid waste management challenges for cities in developing countries  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Stakeholders. Black-Right-Pointing-Pointer Factors affecting performance waste management systems. Black-Right-Pointing-Pointer Questionnaire as Annex for waste management baseline assessment. - Abstract: Solid waste management is a challenge for the cities' authorities in developing countries mainly due to the increasing generation of waste, the burden posed on the municipal budget as a result of the high costs associated to its management, the lack of understanding over a diversity of factors that affect the different stages of waste management and linkages necessary to enable the entire handling system functioning. An analysis of literature on the work done and reported mainly in publications from 2005 to 2011, related to waste management in developing countries, showed that few articles give quantitative information. The analysis was conducted in two of the major scientific journals, Waste Management Journal and Waste Management and Research. The objective of this research was to determine the stakeholders' action/behavior that have a role in the waste management process and to analyze influential factors on the system, in more than thirty urban areas in 22 developing countries in 4 continents. A combination of methods was used in this study in order to assess the stakeholders and the factors influencing the performance of waste management in the cities. Data was collected from scientific literature, existing data bases, observations made during visits to urban areas, structured interviews with relevant professionals, exercises provided to participants in workshops and a questionnaire applied to stakeholders. Descriptive and inferential statistic methods were used to draw conclusions. The outcomes of the research are a comprehensive list of stakeholders that are relevant in the waste management systems and a set of factors that reveal the most important causes for the systems' failure. The information provided is very useful when planning, changing or implementing waste management systems in cities.

Abarca Guerrero, Lilliana, E-mail: l.abarca.guerrero@tue.nl [Built Environment Department, Eindhoven University of Technology, Den Dolech, 25612 AZ Eindhoven (Netherlands); Maas, Ger, E-mail: g.j.maas@tue.nl [Built Environment Department, Eindhoven University of Technology, Den Dolech, 25612 AZ Eindhoven (Netherlands); Hogland, William, E-mail: william.hogland@lnu.se [School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar (Sweden)

2013-01-15T23:59:59.000Z

285

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and...

286

Rules and Regulations Pertaining to the Management of Wastes (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pertaining to the Management of Wastes Pertaining to the Management of Wastes (Nebraska) Rules and Regulations Pertaining to the Management of Wastes (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Environmental Quality These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to waste management permits and licenses,

287

Hazardous Waste Management System-General (Ohio) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System-General (Ohio) Hazardous Waste Management System-General (Ohio) Eligibility Agricultural Industrial Investor-Owned Utility Local Government MunicipalPublic Utility Rural...

288

DC Hazardous Waste Management (District of Columbia) | Open Energy...  

Open Energy Info (EERE)

District of Columbia Applies to Municipality District of Columbia Name DC Hazardous Waste Management (District of Columbia) Policy Type Environmental Regulations Affected...

289

Office of Environmental Management Taps Small Business for Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract...

290

Inspection of Emergency Management at the Waste Isolation Pilot...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy August 2002 Volume II INDEPENDENT OVERSIGHT INSPECTION OF EMERGENCY MANAGEMENT AT THE WASTE ISOLATION PILOT PLANT Volume II August 2002 i INDEPENDENT OVERSIGHT...

291

Biomass Gasification: An Alternative Solution to Animal Waste Management.  

E-Print Network (OSTI)

??The overall goal of this research was to evaluate gasification of animal waste as an alternative manure management strategy, from the standpoints of syngas production (more)

Wu, Hanjing

2013-01-01T23:59:59.000Z

292

DOE O 435.1 Chg 1, Radioactive Waste Management  

Directives, Delegations, and Requirements

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public ...

1999-07-09T23:59:59.000Z

293

EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington |  

NLE Websites -- All DOE Office Websites (Extended Search)

391: Hanford Tank Closure and Waste Management, Richland, 391: Hanford Tank Closure and Waste Management, Richland, Washington EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington Summary This EIS evaluates the environmental impacts for the following three key areas: (1) retrieval, treatment, and disposal of waste from 149 single-shell tanks (SSTs) and 28 double-shell tanks and closure of the SST system, (2) decommissioning of the Fast Flux Test Facility, a nuclear test reactor, and (3) disposal of Hanford's waste and other DOE sites' low-level and mixed low-level radioactive waste. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 13, 2013 EIS-0391: Record of Decision Final Tank Closure and Waste Management Environmental Impact Statement for

294

Technologies for environmental cleanup: Toxic and hazardous waste management  

SciTech Connect

This is the second in a series of EUROCOURSES conducted under the title, ``Technologies for Environmental Cleanup.`` To date, the series consist of the following courses: 1992, soils and groundwater; 1993, Toxic and Hazardous Waste Management. The 1993 course focuses on recent technological developments in the United States and Europe in the areas of waste management policies and regulations, characterization and monitoring of waste, waste minimization and recycling strategies, thermal treatment technologies, photolytic degradation processes, bioremediation processes, medical waste treatment, waste stabilization processes, catalytic organic destruction technologies, risk analyses, and data bases and information networks. It is intended that this course ill serve as a resource of state-of-the-art technologies and methodologies for the environmental protection manager involved in decisions concerning the management of toxic and hazardous waste.

Ragaini, R.C.

1993-12-01T23:59:59.000Z

295

Waste management system alternatives for treatment of wastes from spent fuel reprocessing  

SciTech Connect

This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

1986-09-01T23:59:59.000Z

296

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

Science Conference Proceedings (OSTI)

In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

297

Waste Management Programmatic Environmental Impact Statement (WM PEIS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision Waste Management Programmatic Environmental Impact Statement (WM PEIS) Reports and Records of Decision The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing more than 2 million cubic meters of radioactive wastes from past, present, and future DOE activities. The WM PEIS will assist the U.S. Department of Energy (DOE) in improving the efficiency and reliability of management of its current and anticipated volumes of radioactive and hazardous wastes and will help DOE continue to comply with applicable laws and regulations and protect workers, public health and safety, and the environment. The WM PEIS

298

Municipal solid waste management in Malaysia: Practices and challenges  

Science Conference Proceedings (OSTI)

Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

Manaf, Latifah Abd [Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)], E-mail: latifah@env.upm.my; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd [Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

2009-11-15T23:59:59.000Z

299

International nuclear waste management fact book  

Science Conference Proceedings (OSTI)

The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

Abrahms, C W; Patridge, M D; Widrig, J E

1995-11-01T23:59:59.000Z

300

Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs  

Science Conference Proceedings (OSTI)

The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Waste Determination and Section 3116 of the 2005 National Defense Authorization Act - HQ Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Level Waste Corporate Board Level Waste Corporate Board Section 3116 A H d t P ti A Headquarters Perspective Martin J. Letourneau Chair, Low-Level Waste Disposal Facility Federal Review Group , p y p March 5, 2008 safety performance cleanup closure M E Environmental Management Environmental Management Section 3116 vs. DOE Order 435.1 * From a technical perspective, the criteria are essentially identical y * Both paths provide a methodology to treat and manage waste incidental to reprocessing as non-HLW * Section 3116 can only be applied in the states of South Carolina and Idaho * For consistency all future WIR Evaluations will be * For consistency, all future WIR Evaluations will be modeled after the Section 3116 process * One key difference is the regulatory responsibility of One key difference is the regulatory responsibility of

302

Integrating waste management with Job Hazard analysis  

Science Conference Proceedings (OSTI)

The web-based Automated Job Hazard Analysis (AJHA) system is a tool designed to help capture and communicate the results of the hazard review and mitigation process for specific work activities. In Fluor Hanford's day-to-day work planning and execution process, AJHA has become the focal point for integrating Integrated Safety Management (ISM) through industrial health and safety principles; environmental safety measures; and involvement by workers, subject-matter experts and management. This paper illustrates how AJHA has become a key element in involving waste-management and environmental-control professionals in planning and executing work. To support implementing requirements for waste management and environmental compliance within the core function and guiding principles of an integrated safety management system (ISMS), Fluor Hanford has developed the a computer-based application called the 'Automated Job Hazard Analysis' (AJHA), into the work management process. This web-based software tool helps integrate the knowledge of site workers, subject-matter experts, and safety principles and requirements established in standards, and regulations. AJHA facilitates a process of work site review, hazard identification, analysis, and the determination of specific work controls. The AJHA application provides a well-organized job hazard analysis report including training and staffing requirements, prerequisite actions, notifications, and specific work controls listed for each sub-task determined for the job. AJHA lists common hazards addressed in the U.S. Occupational, Safety, and Health Administration (OSHA) federal codes; and State regulations such as the Washington Industrial Safety and Health Administration (WISHA). AJHA also lists extraordinary hazards that are unique to a particular industry sector, such as radiological hazards and waste management. The work-planning team evaluates the scope of work and reviews the work site to identify potential hazards. Hazards relevant to the work activity being analyzed are selected from the listing provided in AJHA. The work team can also enter one-time hazards unique to the work activity. Because AJHA is web based, it can be taken into the field during site walk-downs using wireless or cell- phone technologies. Once hazards are selected, AJHA automatically lists mandatory and optional controls, based on the referenced codes and good work practices. The hazards selected may also require that additional specific analysis be performed, focusing on the unique characteristics of the job being analyzed. For example, the physical characteristics, packaging, handling, and disposal requirements for a specific waste type. The work team then evaluates the identified hazards and related controls and adds details as needed for the specific work activity being analyzed. The selection of relevant hazards also triggers required reviews by subject-matter experts (SMEs) and the on-line completion of necessary forms and permits. The details of the hazard analysis are reviewed on line or in a work- team group setting. SME approvals are entered on-line and are published in the job hazard analysis report. (authors)

NONE

2007-07-01T23:59:59.000Z

303

CRAD, Emergency Management - Los Alamos National Laboratory Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management - Los Alamos National Laboratory Waste Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Emergency Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Emergency Management - Los Alamos National Laboratory Waste

304

CRAD, Management - Los Alamos National Laboratory Waste Characterization,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Management - Los Alamos National Laboratory Waste CRAD, Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Management - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Los Alamos National Laboratory Waste Characterization,

305

Sandia National Laboratories, California Waste Management Program annual report.  

SciTech Connect

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2010-02-01T23:59:59.000Z

306

Fifteenth annual U.S. Department of Energy low-level radioactive waste management conference: Agenda and abstracts  

SciTech Connect

The goal of the conference was to give the opportunity to identify and discuss low-level radioactive waste management issues, share lessons learned, and hear about some of the latest advances in technology. Abstracts of the presentations are arranged into the following topical sections: (1) Performance Management Track: Performance assessment perspectives; Site characterization; Modeling and performance assessment; and Remediation; (2) Technical Track: Strategic planning; Tools and options; Characterization and validation; Treatment updates; Technology development; and Storage; (3) Institutional Track: Orders and regulatory issues; Waste management options; Legal, economic, and social issues; Public involvement; Siting process; and Low-level radioactive waste policy amendment acts.

NONE

1993-12-31T23:59:59.000Z

307

Solid industrial wastes and their management in Asegra (Granada, Spain)  

Science Conference Proceedings (OSTI)

ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both the type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.

Casares, M.L. [Department of Civil Engineering, E.T.S. I.C.C.P., University of Granada (Spain), Campus Universitario de Fuentenueva s/n, 18071 Granada (Spain); Ulierte, N. [Department of Civil Engineering, E.T.S. I.C.C.P., University of Granada (Spain), Campus Universitario de Fuentenueva s/n, 18071 Granada (Spain); Mataran, A. [Area of Urban and Regional Planning, University of Granada (Spain), Laboratorio de Urbanistica y Ordenacion del Territorio, Campus Universitario de Fuentenueva s/n, 18071 Granada (Spain); Ramos, A. [Department of Civil Engineering, E.T.S. I.C.C.P., University of Granada (Spain), Campus Universitario de Fuentenueva s/n, 18071 Granada (Spain); Zamorano, M. [Department of Civil Engineering, E.T.S. I.C.C.P., University of Granada (Spain), Campus Universitario de Fuentenueva s/n, 18071 Granada (Spain)]. E-mail: zamorano@ugr.es

2005-07-01T23:59:59.000Z

308

Influence of assumptions about household waste composition in waste management LCAs  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

2013-01-15T23:59:59.000Z

309

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

310

Hazardous Waste Management (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Hazardous Waste Management (North Dakota) Hazardous Waste Management (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and treatment as

311

DC Hazardous Waste Management (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) DC Hazardous Waste Management (District of Columbia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces

312

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

Washington TRU Solutions LLC

2001-02-25T23:59:59.000Z

313

Waste management activities and carbon emissions in Africa  

Science Conference Proceedings (OSTI)

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2011-01-15T23:59:59.000Z

314

Waste Form Performance Modeling [Nuclear Waste Management using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

315

Fuzzy parametric programming model for multi-objective integrated solid waste management under uncertainty  

Science Conference Proceedings (OSTI)

Solid waste management is increasingly becoming a challenging task for the municipal authorities due to increasing waste quantities, changing waste composition, decreasing land availability for waste disposal sites and increasing awareness about the ... Keywords: Fuzzy parametric programming, Integrated solid waste management system, Long term planning, Multi-objective and multi-period planning, Solid waste management

Amitabh Kumar Srivastava; Arvind K. Nema

2012-04-01T23:59:59.000Z

316

The Mixed Waste Management Facility. Preliminary design review  

Science Conference Proceedings (OSTI)

This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

NONE

1995-12-31T23:59:59.000Z

317

DOE Awards Management and Operating Contract for DOE's Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management and Operating Contract for DOE's Waste Management and Operating Contract for DOE's Waste Isolation Pilot Plant DOE Awards Management and Operating Contract for DOE's Waste Isolation Pilot Plant April 20, 2012 - 12:00pm Addthis Media Contacts Bill Taylor Environmental Management Consolidated Business Center (803) 952-8564 Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) announced today that Nuclear Waste Partnership LLC (members comprised of URS Energy & Construction, Inc., of Boise, Idaho, and Babcock & Wilcox Technical Services Group, Inc., of Lynchburg, Virginia, and Major Subcontractor, AREVA Federal Services LLC, of Bethesda, Maryland) has been awarded a $1.3 billion contract for management and operating (M&O) at DOE's Waste

318

Materials Science of Nuclear Waste Management I  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Separation of the nuclear waste stream into actinides and fission products offers new opportunities for development of ceramic waste forms.

319

DC Hazardous Waste Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

320

Study of investigation-derived waste management options. Master's thesis  

Science Conference Proceedings (OSTI)

USAF is dedicated to the clean up of past releases of hazardous substances at its bases under the Installation Restoration Program (IRP) . Clean up decisions are based upon data produced from investigations. Large amounts of waste may be derived from investigations. Investigation-derived waste (IDW), especially that with a hazardous component, may pose significant health protection and regulatory compliance problems if neglected. This study identifies the status and the need for improvement of IDW management to avoid those problems. Information on the background of IDW management was collected through a review of environmental laws, waste management regulations, and existing guidance. Practical IDW management information was gleaned from conversations with iRP managers at twelve USAF bases around the country. This study revealed that IDW management needs improvement. All bases acknowledged IDW concerns and have adopted various methods to deal with them. However, current methods appear to rely more upon expediency rather than permanence. This study showed that critical protection and compliance issues are being overlooked. Development of specific IDW management guidance may better assure that critical issues are addressed. Waste minimization, Waste management, Environmental management, Nonhazardous wastes, Hazardous material, Solid wastes.

Mountain, B.C.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Federal Oil and Gas Royalty Management Act of 1982 | Open Energy  

Open Energy Info (EERE)

of 1982 of 1982 Jump to: navigation, search Statute Name Federal Oil and Gas Royalty Management Act of 1982 Year 1982 Url RoyaltyAct.jpg Description The Royalty Management Act affirmed the authority of the Secretary of the Interior to administer and enforce all rules and regulations governing oil and gas leases on Federal or Indian Land References Federal Oil and Gas Royalty Management Act of 1982[1] The Federal Oil and Gas Royalty Management Act of 1982 (30 U.S.C. § 1701 et seq.) - The Royalty Management Act affirmed the authority of the Secretary of the Interior to administer and enforce all rules and regulations governing oil and gas leases on Federal or Indian Land, and established a policy aimed at developing a comprehensive system to manage royalties derived from leased oil and gas operations. Typically, oil and

322

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste  

E-Print Network (OSTI)

Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead a material must be considered a hazardous chemical waste by using the Radiological-Chemical

Ford, James

323

Improvements in Container Management of Transuranic and Low-Level Radioactive Waste Stored at the Central Waste Complex at Hanford  

Science Conference Proceedings (OSTI)

The Central Waste Complex (CWC) is the interim storage facility for Resource Conservation and Recovery Act (RCRA) mixed waste, transuranic waste, transuranic mixed waste, low-level and low-level mixed radioactive waste at the Department of Energy's (DOE's) Hanford Site. The majority of the waste stored at the facility is retrieved from the low-level burial grounds in the 200 West Area at the Site, with minor quantities of newly generated waste from on-site and offsite waste generators. The CWC comprises 18 storage buildings that house 13,000 containers. Each waste container within the facility is scanned into its location by building, module, tier and position and the information is stored in a site-wide database. As waste is retrieved from the burial grounds, a preliminary non-destructive assay is performed to determine if the waste is transuranic (TRU) or low-level waste (LLW) and subsequently shipped to the CWC. In general, the TRU and LLW waste containers are stored in separate locations within the CWC, but the final disposition of each waste container is not known upon receipt. The final disposition of each waste container is determined by the appropriate program as process knowledge is applied and characterization data becomes available. Waste containers are stored within the CWC based on their physical chemical and radiological hazards. Further segregation within each building is done by container size (55-gallon, 85-gallon, Standard Waste Box) and waste stream. Due to this waste storage scheme, assembling waste containers for shipment out of the CWC has been time consuming and labor intensive. Qualitatively, the ratio of containers moved to containers in the outgoing shipment has been excessively high, which correlates to additional worker exposure, shipment delays, and operational inefficiencies. These inefficiencies impacted the LLW Program's ability to meet commitments established by the Tri-Party Agreement, an agreement between the State of Washington, the Department of Energy, and the Environmental Protection Agency. These commitments require waste containers to be shipped off site for disposal and/or treatment within a certain time frame. Because the program was struggling to meet production demands, the Production and Planning group was tasked with developing a method to assist the LLW Program in fulfilling its requirements. Using existing databases for container management, a single electronic spreadsheet was created to visually map every waste container within the CWC. The file displays the exact location (e.g., building, module, tier, position) of each container in a format that replicates the actual layout in the facility. In addition, each container was placed into a queue defined by the LLW and TRU waste management programs. The queues were developed based on characterization requirements, treatment type and location, and potential final disposition. This visual aid allows the user to select containers from similar queues and view their location within the facility. The user selects containers in a centralized location, rather than random locations, to expedite shipments out of the facility. This increases efficiency for generating the shipments, as well as decreasing worker exposure and container handling time when gathering containers for shipment by reducing movements of waste containers. As the containers are collected for shipment, the remaining containers are segregated by queue, which further reduces future container movements. (authors)

Uytioco, E. [Fluor Government Group, Richland, WA (United States); Baynes, P.A.; Bailey, K.B.; McKenney, D.E. [Fluor Hanford, Inc., Richland WA (United States)

2008-07-01T23:59:59.000Z

324

Waste management/waste certification plan for the Oak Ridge National Laboratory Environmental Restoration Program  

Science Conference Proceedings (OSTI)

This Waste Management/Waste Certification (C) Plan, written for the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL), outlines the criteria and methodologies to be used in the management of waste generated during ORNL ER field activities. Other agreed upon methods may be used in the management of waste with consultation with ER and Waste Management Organization. The intent of this plan is to provide information for the minimization, handling, and disposal of waste generated by ER activities. This plan contains provisions for the safe and effective management of waste consistent with the U.S. Environmental Protection Agency`s (EPA`s) guidance. Components of this plan have been designed to protect the environment and the health and safety of workers and the public. It, therefore, stresses that investigation derived waste (IDW) and other waste be managed to ensure that (1) all efforts be made to minimize the amount of waste generated; (2) costs associated with sampling storage, analysis, transportation, and disposal are minimized; (3) the potential for public and worker exposure is not increased; and (4) additional contaminated areas are not created.

Clark, C. Jr.; Hunt-Davenport, L.D.; Cofer, G.H.

1995-03-01T23:59:59.000Z

325

Inspection of Emergency Management at the Waste Isolation Pilot Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emergency Management at the Waste Isolation Pilot Emergency Management at the Waste Isolation Pilot Plant - Volume II, August 2002 Inspection of Emergency Management at the Waste Isolation Pilot Plant - Volume II, August 2002 The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health and emergency management programs at the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP emergency management program. The results of the review of the WIPP environment, safety, and

326

Waste Management Plan for the Lower East Fork Poplar Creek Remedial Action Project Oak Ridge, Tennessee  

SciTech Connect

The Lower East Fork Poplar Creek (LEFPC) Remedial Action project will remove mercury-contaminated soils from the floodplain of LEFPC, dispose of these soils at the Y-12 Landfill V, and restore the affected floodplain upon completion of remediation activities. This effort will be conducted in accordance with the Record of Decision (ROD) for LEFPC as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) action. The Waste Management Plan addresses management and disposition of all wastes generated during the remedial action for the LEFPC Project Most of the solid wastes will be considered to be sanitary or construction/demolition wastes and will be disposed of at existing Y-12 facilities for those types of waste. Some small amounts of hazardous waste are anticipated, and the possibility of low- level or mixed waste exists (greater than 35 pCi/g), although these are not expected. Liquid wastes will be generated which will be sanitary in nature and which will be capable of being disposed 0214 of at the Oak Ridge Sewage Treatment Plant.

1996-08-01T23:59:59.000Z

327

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

328

Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee  

DOE Green Energy (OSTI)

In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).

Bechtel Jacobs, Raymer J.E.

2008-06-12T23:59:59.000Z

329

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

330

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

331

The Management of Post-Recovery Act Workforce Transition at Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Post-Recovery Act Workforce Transition at Office of Environmental Management Sites OAS-RA-12-06 February 2012 Department of Energy Washington, DC 20585 February 22,...

332

Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste  

SciTech Connect

This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

NONE

1994-12-31T23:59:59.000Z

333

MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

WEST LD

2011-01-13T23:59:59.000Z

334

Household solid waste characteristics and management in Chittagong, Bangladesh  

Science Conference Proceedings (OSTI)

Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

2008-07-01T23:59:59.000Z

335

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

336

Hazardous Waste Management (North Carolina) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

337

Office of Civilian Radioactive Waste Management annual report to Congress  

SciTech Connect

This seventh Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM) describes activities and expenditures of the Office during fiscal years (FY) 1989 and 1990. In November 1989, OCRWM is responsible for disposing of the Nation`s spent nuclear fuel and high-level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. To direct the implementation of its mission, OCRWM has established the following objectives: (1) Safe and timely disposal: to establish as soon as practicable the ability to dispose of radioactive waste in a geologic repository licensed by the NRC. (2) Timely and adequate waste acceptance: to begin the operation of the waste management system as soon as practicable in order to obtain the system development and operational benefits that have been identified for the MRS facility. (3) Schedule confidence: to establish confidence in the schedule for waste acceptance and disposal such that the management of radioactive waste is not an obstacle to the nuclear energy option. (4) System flexibility: to ensure that the program has the flexibility necessary for adapting to future circumstances while fulfilling established commitments. To achieve these objectives, OCRWM is developing a waste management system consisting of a geologic repository for permanent disposed deep beneath the surface of the earth, a facility for MRS, and a system for transporting the waste.

1990-12-01T23:59:59.000Z

338

Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonhazardous Solid Waste Management Regulations and Criteria Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type Environmental Regulations

339

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parts 370-376: Hazardous Waste Parts 370-376: Hazardous Waste Management System (New York) Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Safety and Operational Guidelines Provider NY Department of Environmental Conservation These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators, transporters, as well as treatment, storage and disposal facilities. The regulations also define specific types

340

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES  

E-Print Network (OSTI)

MANAGEMENT, OPERATION, AND MAINTENANCE SYSTEMS FOR WASTE FACILITIES DONALD H. GRAHAM Operations. The discussion will focus on the management, operation, and maintenance systems nec essary to support long maintenance management pro gram (j) cost accounting and a record keeping system to provide timely, accurate

Columbia University

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

1991 annual report on low-level radioactive waste management progress  

Science Conference Proceedings (OSTI)

This report summarizes the progress during 1991 of States and compact regions in establishing new low-level radioactive waste disposal capacity. It has been prepared in response to requirements in Section 7 (b) of Title I of Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985 (the Act). By the end of 1991, 9 compact regions (totaling 42 States) were functioning with plans to establish low-level radioactive waste disposal facilities: Appalachian, Central, Central Midwest, Midwest, Northeast, Northwest, Rocky Mountain, Southeast, and Southwestern. Also planning to construct disposal facilities, but unaffiliated with a compact region, are Maine, Massachusetts, New York, Texas, and Vermont. The District of Columbia, New Hampshire, Puerto Rico, Rhode Island and Michigan are unaffiliated with a compact region and do not plan to construct a disposal facility. Michigan was the host State for the Midwest compact region until July 1991 when the Midwest Interstate Compact Commission revoked Michigan's membership. Only the Central, Central Midwest, and Southwestern compact regions met the January 1, 1992, milestone in the Act to submit a complete disposal license application. None of the States or compact regions project meeting the January 1, 1993, milestone to have an operational low-level radioactive waste disposal facility. Also summarized are significant events that occurred in low-level radioactive waste management in 1991 and early 1992, including the 1992 United States Supreme Court decision in New York v. United States in which New York challenged the constitutionality of the Act, particularly the take-title'' provision. Summary information is also provided on the volume of low-level radioactive waste received for disposal in 1991 by commercially operated low-level radioactive waste disposal facilities.

Not Available

1992-11-01T23:59:59.000Z

342

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

Science Conference Proceedings (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

343

Waste Management Magazine Highlights Nevada National Security Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Magazine Highlights Nevada National Security Site Management Magazine Highlights Nevada National Security Site Waste Management Magazine Highlights Nevada National Security Site March 28, 2013 - 12:00pm Addthis A worker at NNSS handles large, high-powered batteries called radioisotope thermoelectric generators (RTGs), which are discussed in the recent article on the NNSS in RadWaste Solutions magazine. Like most low-level waste, RTGs disposed of at the NNSS were handled without any special equipment or clothing because of the relatively low dose rate levels. A worker at NNSS handles large, high-powered batteries called radioisotope thermoelectric generators (RTGs), which are discussed in the recent article on the NNSS in RadWaste Solutions magazine. Like most low-level waste, RTGs disposed of at the NNSS were handled without any special equipment or

344

Management Activities for Retrieved and Newly Generated Transuranic Wastes Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 WL 253648 (F.R.) 8 WL 253648 (F.R.) NOTICES DEPARTMENT OF ENERGY Finding of No Significant Impact; Transuranic Waste Management Activities at the Savannah River Plant, Aiken, SC Tuesday, August 30, 1988 *33172 AGENCY: Department of Energy. ACTION: Finding of No Significant Impact. SUMMARY: The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -0315, for transuranic (TRU) waste management activities at DOE's Savannah River Plant (SRP), including the construction and operation of a new TRU Waste Processing Facility. Based on analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact

345

Inspection of Environment, Safety, and Health Management at the Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environment, Safety, and Health Management at the Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002 The Secretary of Energy's Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP ES&H programs. The results of the review of the WIPP emergency management program are

346

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

347

Hospital waste management and toxicity evaluation: A case study  

SciTech Connect

Hospital waste management is an imperative environmental and public safety issue, due to the waste's infectious and hazardous character. This paper examines the existing waste strategy of a typical hospital in Greece with a bed capacity of 400-600. The segregation, collection, packaging, storage, transportation and disposal of waste were monitored and the observed problematic areas documented. The concentrations of BOD, COD and heavy metals were measured in the wastewater the hospital generated. The wastewater's toxicity was also investigated. During the study, omissions and negligence were observed at every stage of the waste management system, particularly with regard to the treatment of infectious waste. Inappropriate collection and transportation procedures for infectious waste, which jeopardized the safety of staff and patients, were recorded. However, inappropriate segregation practices were the dominant problem, which led to increased quantities of generated infectious waste and hence higher costs for their disposal. Infectious waste production was estimated using two different methods: one by weighing the incinerated waste (880 kg day{sup -1}) and the other by estimating the number of waste bags produced each day (650 kg day{sup -1}). Furthermore, measurements of the EC{sub 50} parameter in wastewater samples revealed an increased toxicity in all samples. In addition, hazardous organic compounds were detected in wastewater samples using a gas chromatograph/mass spectrograph. Proposals recommending the application of a comprehensive hospital waste management system are presented that will ensure that any potential risks hospital wastes pose to public health and to the environment are minimized.

Tsakona, M.; Anagnostopoulou, E. [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineers, Technical University of Crete, GR-73100 Polytechnioupolis, Chania, Crete (Greece); Gidarakos, E. [Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineers, Technical University of Crete, GR-73100 Polytechnioupolis, Chania, Crete (Greece)], E-mail: gidarako@mred.tuc.gr

2007-07-01T23:59:59.000Z

348

DOE methods for evaluating environmental and waste management samples.  

SciTech Connect

DOE Methods for Evaluating Environmental and Waste Management Samples (DOE Methods) provides applicable methods in use by. the US Department of Energy (DOE) laboratories for sampling and analyzing constituents of waste and environmental samples. The development of DOE Methods is supported by the Laboratory Management Division (LMD) of the DOE. This document contains chapters and methods that are proposed for use in evaluating components of DOE environmental and waste management samples. DOE Methods is a resource intended to support sampling and analytical activities that will aid in defining the type and breadth of contamination and thus determine the extent of environmental restoration or waste management actions needed, as defined by the DOE, the US Environmental Protection Agency (EPA), or others.

Goheen, S C; McCulloch, M; Thomas, B L; Riley, R G; Sklarew, D S; Mong, G M; Fadeff, S K [eds.; Pacific Northwest Lab., Richland, WA (United States)

1994-04-01T23:59:59.000Z

349

STATEMENT OF CONSIDERATIONS REQUEST BY WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC. WASTE MANAGEMENT ENVIRONMENTAL SERVICES, INC. FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER EG&G IDAHO, INC. SUBCONTRACT NO. EGG-C93-170221, W(A)-93-005, CH-0757 Under this subcontract, Waste Management Environmental Services, Inc. (WMES) will demonstrate key technical features of its proposed Idaho National Engineering Laboratory (INEL) Pit-9 remediation program. Pit-9 is an area in the Radioactive Waste Management Complex at the INEL containing radioactive and hazardous materials in the form of toxic metals and organic materials, including plutonium and americium. Specifically, the subject subcontract is directed toward a Proof-of-Process (POP) demonstration program intended to provide EG&G Idaho, Inc. (EG&G) with additional information that it will use in the

350

State Solid Waste Management and Resource Recovery Plan (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The State supports the "good management of solid waste and the conservation of natural resources through the promotion or development of systems to collect, separate, reclaim, recycle, and dispose...

351

Emergency Management Program Review at the Waste Isolation Pilot Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Waste Isolation Pilot Plant Emergency Management Program Review at the May 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 6 Hazards Survey and Hazards Assessments .................................. 6 Program Plans, Procedures, and Responder Performance ........ 9 Training, Drills, and Exercises ..................................................... 13 Emergency Public Information and Offsite Response Interfaces ....................................................................................... 15 Feedback and Continuous Improvement Process

352

Experimental Evaluation of a Waste Management Robot System  

Science Conference Proceedings (OSTI)

Recently, there are many problems caused by global environment warming. The limited natural resources require efficient methods and systems for recycling and processing of the wastes for a better environment. One of the problems today is the processing ... Keywords: Waste Management, Robot, Compost, Sensor Technology

Keita Matsuo; Kouhei Umezaki; Evjola Spaho; Leonard Barolli; Jiro Iwashige; Makoto Takizawa

2012-07-01T23:59:59.000Z

353

West Valley Demonstration Project High-Level Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DRAFT_19507_1 DRAFT_19507_1 High-Level Waste Management Bryan Bower, DOE Director - WVDP DOE High-Level Waste Corporate Board Meeting Savannah River Site April 1, 2008 West Valley Demonstration Project West Valley Demonstration Project DRAFT_19507_2 West Valley High-Level Waste To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed. To solidify the radioactive material from approximately 600,000 gallons of high-level radioactive waste into a durable, high-quality glass, both a pretreatment system to remove salts and sulfates from the waste and a vitrification system/process were designed.

354

Summary report. Low-level radioactive waste management activities in the states and compacts. Volume 4, No. 2  

Science Conference Proceedings (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-08-01T23:59:59.000Z

355

Summary report, low-level radioactive waste management activities in the states and compacts. Vol. 4. No. 1  

Science Conference Proceedings (OSTI)

`Low-Level Radioactive Waste Management Activities in the States and Compacts` is a supplement to `LLW Notes` and is distributed periodically by Afton Associates, Inc. to state, compact and federal officials that receive `LLW Notes`. The Low-Level Radioactive Waste Forum (LLW Forum) is an association of state and compact representatives, appointed by governors and compact commissions, established to facilitate state and compact implementation of the Low- Level Radioactive Waste Policy Act of 1980 and the Low-Level Radioactive Waste Policy Amendments Act of 1985 and to promote the objectives of low-level radioactive waste regional compacts. The LLW Forum provides an opportunity for state and compact officials to share information with one another and to exchange views with officials of federal agencies and other interested parties.

NONE

1996-01-01T23:59:59.000Z

356

Decommissioning Low Level Waste Management and Reduction Guide  

Science Conference Proceedings (OSTI)

Nuclear plants undertaking decommissioning projects find that costs of low-level waste (LLW) management are a substantial portion of the total cost. To assist the industry in planning and optimizing their decommissioning radwaste management practices, EPRI developed a guide with more than 75 areas of guidance and an extensive lessons learned section. Using this report will aid utilities in successfully planning, executing, and disposing of low-level wastes during a decommissioning project.

1999-09-17T23:59:59.000Z

357

In situ redox manipulation treatability test -- waste management plan  

DOE Green Energy (OSTI)

This Waste Management Plan provides guidance for the management of waste generated from groundwater well installations in the 100-HR-3 Operable Unit. The well installations are necessary to implement the In Situ Redox Manipulation Treatability Test to determine methods for in situ remedial efforts to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

A. J. Knepp

1997-12-31T23:59:59.000Z

358

Environment, Environmental Restoration, and Waste Management Field Organization Directory  

SciTech Connect

This directory was developed by the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231) from an outgrowth of the Departments efforts to identify and establish the regulatory response lead persons in the Field Organizations. The directory was developed for intemal EH-231 use to identify both the DOE and DOE contractor Field Organizations in the Environment, Environmental Restoration and Waste Management areas. The Field Organization directory is divided into three substantive sections: (1) Environment; (2) Environmental Restoration; and (3) Waste Management which are organized to correspond to the management hierarchy at each Field Organization. The information provided includes the facility name and address, individual managers name, and telephone/fax numbers.

Not Available

1993-07-01T23:59:59.000Z

359

Technology transfer in hazardous waste management  

SciTech Connect

Hazardous waste is a growing problem in all parts of the world. Industrialized countries have had to deal with the treatment and disposal of hazardous wastes for many years. The newly industrializing countries of the world are now faced with immediate problems of waste handling. The developing nations of the world are looking at increasing quantities of hazardous waste generation as they move toward higher levels of industrialization. Available data are included on hazardous waste generation in Asia and the Pacific as a function of Gross Domestic Product (GDP). Although there are many inconsistencies in the data (inconsistent hazardous waste definitions, inconsistent reporting of wastes, etc.) there is definite indication that a growing economy tends to lead toward larger quantities of hazardous waste generation. In developing countries the industrial sector is growing at a faster rate than in the industrialized countries. In 1965 industry accounted for 29% of GDP in the developing countries of the world. In 1987 this had grown to 37% of GDP. In contrast, industry accounted for 40% of GDP in 1965 in industrialized countries and dropped to 35% in 1987. This growth in industrial activity in the developing countries brings an increase in the need to handle hazardous wastes. Although hazardous wastes are ubiquitous, the control of hazardous wastes varies. The number of regulatory options used by various countries in Asia and the Pacific to control wastes are included. It is evident that the industrialized countries, with a longer history of having to deal with hazardous wastes, have found the need to use more mechanisms to control them. 2 refs., 2 figs.

Drucker, H.

1989-01-01T23:59:59.000Z

360

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

Washington TRU Solutions LLC

2002-02-14T23:59:59.000Z

362

WIPP Facility Work Plan for Solid Waste Management Units  

Science Conference Proceedings (OSTI)

This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMEDs guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

Washington TRU Solutions LLC

2000-02-25T23:59:59.000Z

363

Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3  

Science Conference Proceedings (OSTI)

This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

Not Available

1993-03-01T23:59:59.000Z

364

Secondary Waste Forms and Technetium Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 18, 2010 What are Secondary Wastes? Process condensates and scrubber andor off-gas treatment liquids from the pretreatment and ILAW melter facilities at the Hanford WTP....

365

WISCONSIN WASTE CHARACTERIZATION & MANAGEMENT STUDY UPDATE 2000  

E-Print Network (OSTI)

Printed on Recycled Paper CLIENTS\\WISCONSIN\\KC011629.doc 7.31.02 81501TABLE OF CONTENTS CHAPTER 1- SOLID WASTE GENERATION....................................................................................1-1

Prepared For

2002-01-01T23:59:59.000Z

366

Management and Technology Overview of Electronic Wastes  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... The current paper reviewed the recycling process for waste PWB materials, including mechanical recycling, combustion for energy recovery...

367

Solid waste management and health effects.  

E-Print Network (OSTI)

?? This report investigates possible health effects due to improper disposal of waste and the awareness within a community. The aim was also to investigate (more)

Selin, Emma

2013-01-01T23:59:59.000Z

368

Overview of Electronics Waste Management in India  

Science Conference Proceedings (OSTI)

Leaching Toxicity of Pb and Ba Containing in Cathode Ray Tube Glasses by SEP -TCLP Mechanical Recycling of Electronic Wastes for Materials Recovery.

369

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

370

Solid Waste Management (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

South Dakota) South Dakota) Solid Waste Management (South Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Department of Environment and Natural Resources This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling programs

371

Safety Analysis, Hazard and Risk Evaluations [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Analysis, Hazard Safety Analysis, Hazard and Risk Evaluations Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Safety Analysis, Hazard and Risk Evaluations Bookmark and Share NE Division personnel had a key role in the creation of the FCF Final Safety Analysis Report (FSAR), FCF Technical Safety Requirements (TSR)

372

Systems and Components Development Expertise [Nuclear Waste Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems and Components Systems and Components Development Expertise Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Systems and Components Development Expertise Bookmark and Share Electrorefiner The electrorefiner: an apparatus used for electrometallurgical treatment of spent nuclear fuel to facilitate storage and ultimate disposal. Click on

373

Assessment of public perception of radioactive waste management in Korea.  

Science Conference Proceedings (OSTI)

The essential characteristics of the issue of radioactive waste management can be conceptualized as complex, with a variety of facets and uncertainty. These characteristics tend to cause people to perceive the issue of radioactive waste management as a 'risk'. This study was initiated in response to a desire to understand the perceptions of risk that the Korean public holds towards radioactive waste and the relevant policies and policy-making processes. The study further attempts to identify the factors influencing risk perceptions and the relationships between risk perception and social acceptance.

Trone, Janis R.; Cho, SeongKyung (Myongji University, Korea); Whang, Jooho (Kyung Hee University, Korea); Lee, Moo Yul

2011-11-01T23:59:59.000Z

374

Solid Waste Management Policy and Programs (Minnesota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy and Programs (Minnesota) Policy and Programs (Minnesota) Solid Waste Management Policy and Programs (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse environmental impacts, encourage

375

Phase 1 RCRA Facility Investigation and Corrective Measures Study Work Plan for Single Shell Tank Waste Management Areas  

SciTech Connect

This document is the master work plan for the Resource Conservation and Recovery Act of 1976 (RCRA) for single-shell tank (SST) farms at the Hanford Site. Evidence indicates that releases at four of the seven SST waste management areas have impacted.

ROGERS, P.M.

2000-06-01T23:59:59.000Z

376

Environmental Management American Recovery & Reinvestment Act (ARRA) Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE))

EM has compiled many valuable lessons learned from the American Recovery and Reinvestment Act Program. Here are a few examples: Use a phased approached to the release of funding based on...

377

Reportable Nuclide Criteria for ORNL Waste Management Activities - 13005  

SciTech Connect

The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed a reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of this criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration.

McDowell, Kip [ORNL; Forrester, Tim [ORNL; Saunders, Mark Edward [ORNL

2013-01-01T23:59:59.000Z

378

System for decision analysis support on complex waste management issues  

SciTech Connect

A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs, or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.

Shropshire, D.E.

1997-10-01T23:59:59.000Z

379

Waste Isolation Pilot Plant Groundwater Protection Management Program Plan  

SciTech Connect

The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

Washington Regulatory and Environmental Services

2005-07-01T23:59:59.000Z

380

Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project  

SciTech Connect

Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

382

Northwest Interstate Compact on Low-Level Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Institutional Nonprofit Program Info Start Date 1981 State Alaska Program Type Siting and Permitting Provider Northwest Interstate Compact The Northwest Interstate Compact on Low-Level Radioactive Waste Management, enacted in 1981, was ratified by Congress in 1985. The Compact is a cooperative effort of the party states to protect their citizens, and maintain and enhance economic viability, while sharing the responsibilities

383

Managing low-level radioactive wastes: a proposed approach  

SciTech Connect

In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document.

Peel, J.W.; Levin, G.B.

1980-01-01T23:59:59.000Z

384

Waste Management Facilities cost information for mixed low-level waste. Revision 1  

Science Conference Proceedings (OSTI)

This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

Shropshire, D.; Sherick, M.; Biadgi, C.

1995-06-01T23:59:59.000Z

385

Investigation-Derived Waste Management Plan. Revision 2  

SciTech Connect

SRS has implemented a comprehensive environmental program to maintain compliance with environmental regulations and mitigate impacts to the environment. One element of the environmental program is the investigation of inactive waste units. Environmental Investigation-Derived Waste (IDW). IDW may include purge water , soil cuttings, drilling fluids, well pumping test and development water, decontamination solutions, contaminated equipment, and personal protection equipment (PPE). In cases where investigations confirm the presence of contamination and the IDW contains waste constituents in concentrations high enough to be of environmental or health concern, special management procedures are warranted. This IDW Management Plan describes specific SRS initiatives for IDW management. The goal is the development of a plan for prudent management of IDW from environmental investigations that is protective of human health and the environment.

Molen, G.

1995-05-24T23:59:59.000Z

386

Liquid low level waste management expert system  

SciTech Connect

An expert system has been developed as part of a new initiative for the Oak Ridge National Laboratory (ORNL) systems analysis program. This expert system will aid in prioritizing radioactive waste streams for treatment and disposal by evaluating the severity and treatability of the problem, as well as the final waste form. The objectives of the expert system development included: (1) collecting information on process treatment technologies for liquid low-level waste (LLLW) that can be incorporated in the knowledge base of the expert system, and (2) producing a prototype that suggests processes and disposal technologies for the ORNL LLLW system. 4 refs., 9 figs.

Ferrada, J.J.; Abraham, T.J. (Oak Ridge National Lab., TN (United States)); Jackson, J.R. (Southwest Baptist Univ., Bolivar, MO (USA))

1991-01-01T23:59:59.000Z

387

Optimising waste management performance - The key to successful decommissioning  

SciTech Connect

Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

Keep, Matthew [Entec UK Limited. 17 Angel Gate. City Road. London EC1V 2SH (United Kingdom)

2007-07-01T23:59:59.000Z

388

Radioactive Waste Management, Inspection Criteria; Approach,...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

include the applicable elements identified in the specific waste-type chapters of DOE M 435.1-1; and be developed using the graded approach process? Has a process been...

389

Drilling Waste Management Fact Sheet: Thermal Treatment  

NLE Websites -- All DOE Office Websites (Extended Search)

range from 75 to 150ton (Bansal and Sugiarto 1999). Many factors can impact treatment costs, including oil and moisture content of the waste, particle size distribution of the...

390

Flexible and robust strategies for waste management in Sweden  

SciTech Connect

Treatment of solid waste continues to be on the political agenda. Waste disposal issues are often viewed from an environmental perspective, but economic and social aspects also need to be considered when deciding on waste strategies and policy instruments. The aim of this paper is to suggest flexible and robust strategies for waste management in Sweden, and to discuss different policy instruments. Emphasis is on environmental aspects, but social and economic aspects are also considered. The results show that most waste treatment methods have a role to play in a robust and flexible integrated waste management system, and that the waste hierarchy is valid as a rule of thumb from an environmental perspective. A review of social aspects shows that there is a general willingness among people to source separate wastes. A package of policy instruments can include landfill tax, an incineration tax which is differentiated with respect to the content of fossil fuels and a weight based incineration tax, as well as support to the use of biogas and recycled materials.

Finnveden, Goeran [Division of Environmental Strategies Research - fms, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)], E-mail: goran.finnveden@infra.kth.se; Bjoerklund, Anna [Division of Environmental Strategies Research - fms, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Reich, Marcus Carlsson [Swedish Environmental Protection Agency, SE-106 48 Stockholm (Sweden); Eriksson, Ola [Technology and Built Environment, University of Gaevle, SE-801 76 Gaevle (Sweden); Soerbom, Adrienne [Department of Sociology, Stockholm University, SE-106 91 Stockholm (Sweden)

2007-07-01T23:59:59.000Z

391

Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acting Biomass Program Manager Dr. Valerie Reed to Host Live Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels Acting Biomass Program Manager Dr. Valerie Reed to Host Live Twitter Q&A on Advanced Biofuels December 16, 2011 - 10:27am Addthis Washington, D.C. - On Friday, December 16th, the Energy Department (@energy) will be hosting a live Twitter Q&A on biofuels with Dr. Valerie Reed, Acting Manager of the Biomass Program. Dr. Reed holds a Ph. D. in Biochemistry from Georgetown University. In addition to her programmatic activities, Valerie is a founding member of the Metabolic Engineering Working Group, which is an interagency effort to advance metabolic engineering technologies for industrial, agricultural and human needs. She also co-chairs the Interagency Working Group on Conversion

392

Pollution prevention opportunity assessment: Foundation of pollution prevention for waste management  

SciTech Connect

The objective of this paper is to promote the Pollution Prevention Opportunity Assessment (PPOA) technique as a fundamental of pollution prevention for waste management. All key elements of an effective PPOA program are presented. These key elements include impacts of environmental laws on pollution prevention, PPOA concepts and overview, waste minimization opportunities assessment, reporting and monitoring waste minimization progress, and PPOA program implementation. As environmental laws evolve the focus is shifting from end-of-pipe pollution control to front-end source reduction. Waste minimization was mistakenly interpreted to mean the reduction of hazardous waste after generation in the past. The Pollution Prevention Act of 1990 has clearly defined its requirement on resource reduction. Waste reduction can be viewed as a criterion to assess all industrial processes and operations. The fundamental approach of PPOA focuses on a mass balance concept. This concept deals with tracking of chemicals from the point of purchase, through storage, utilization in the process, and waste generation at the end of process. In other words, PPOA is a technique to analyze this input/output process. By applying PPOA techniques, the framework of applicable compliance requirements to the current operation process is established. Furthermore, documentation of PPOA itself can meet as documentation requirements for environmental compliance. In general, the PPOA process consists of two phases. The first phase involves input and output process description and waste characterization. The second phase is an opportunities assessment for waste minimization from input/output waste characterization. These two phases are explained in detail in the paper.

Damewood, R.W.

1994-03-24T23:59:59.000Z

393

Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part C, Waste Management  

SciTech Connect

This report documents site remediation at ORNL, including ORNL site characterization technologies, waste management and robotics and automation of the laboratory for waste processing and analysis.

1993-09-01T23:59:59.000Z

394

Ceramic transactions: Environmental and waste management issues in the ceramic industry II. Volume 45  

SciTech Connect

A symposium on environmental and waste management issues in the ceramic industry was held in Indianapolis in April, 1994. The second is this series, the symposium is an expansion of the established series Nuclear Waste Management. The volume documents a number of papers presented at the symposium that are especially relevant to the field of radioactive waste processing. The four main areas covered are: Waste Management/Environmental Solution Using Ceramics; Modeling and Mechanisms of Waste Form Dissolution; Properties and Characterization of Wastes and Waste Forms; and Processing of Hazardous Materials and Nuclear Wastes. The volume focuses on research, pilot plants, and operating facilities involved with the vitrification of radioactive wastes (all types).

Bickford, D.; Bates, S.; Jain, V.; Smith, G. [eds.

1994-12-31T23:59:59.000Z

395

Civilian Radioactive Waste Management System Requirements Document...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management System Requirements Document More Documents & Publications Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 FY 2007 Total...

396

Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2  

SciTech Connect

The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

Jacobsen, P.H.

1997-09-23T23:59:59.000Z

397

Nuclear waste management. Quarterly progress report, January-March, 1981  

SciTech Connect

Reports and summaries are provided for the following programs: high-level waste process development; alternative waste forms; nuclear waste materials characterization center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; NWVP off-gas analysis; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; verification instrument development; mobility of organic complexes of radionuclide in soils; low-level waste generation reduction handbook; waste management system studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology program; high-level waste form preparation; development of backfill materials; development of structural engineered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent fuel and pool component integrity program; analysis of postulated criticality events in a storage array of spent LWR fuel; asphalt emulsion sealing of uranium mill tailings; liner evaluation for uranium mill tailings; multilayer barriers for sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and revegetation of inactive uranium tailings sites.

Chikalla, T.D.; Powell, J.A. (comp.)

1981-06-01T23:59:59.000Z

398

Idaho Chemical Processing Plant Spent Fuel and Waste Management Technology Development Program Plan  

SciTech Connect

The Department of Energy (DOE) has received spent nuclear fuel (SNF) at the Idaho Chemical Processing Plant (ICPP) for interim storage and reprocessing since 1953. Reprocessing of SNF has resulted in an existing inventory of 1.5 million gallons of radioactive sodium-bearing liquid waste and 3800 cubic meters (m{sup 3}) of calcine, in addition to the 768 metric tons (MT) of SNF and various other fuel materials in inventory. To date, the major activity of the ICPP has been the reprocessing of SNF to recover fissile uranium; however, recent changes in world events have diminished the demand to recover and recycle this material. As a result, DOE has discontinued reprocessing SNF for uranium recovery, making the need to properly manage and dispose of these and future materials a high priority. In accordance with the Nuclear Waste Policy Act (NWPA) of 1982, as amended, disposal of SNF and high-level waste (HLW) is planned for a geological repository. Preparation of SNF, HLW, and other radioactive wastes for disposal may include mechanical, physical, and/or chemical processes. This plan outlines the program strategy of the ICPP Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) to develop and demonstrate the technology required to ensure that SNF and radioactive waste will properly stored and prepared for final disposal. Program elements in support of acceptable interim storage and waste minimization include: developing and implementing improved radioactive waste treatment technologies; identifying and implementing enhanced decontamination and decommissioning techniques; developing radioactive scrap metal (RSM) recycle capabilities; and developing and implementing improved technologies for the interim storage of SNF.

1993-09-01T23:59:59.000Z

399

Fuel cycle and waste management demonstration in the IFR Program  

Science Conference Proceedings (OSTI)

Argonne's National Laboratory's Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. (Argonne National Lab., Idaho Falls, ID (United States)); Laidler, J.J.; Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

400

Fuel cycle and waste management demonstration in the IFR Program  

SciTech Connect

Argonne`s National Laboratory`s Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Laidler, J.J.; Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States)

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

402

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Els-o120 Els-o120 Final Environmental Impact Statement I Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina of Energy 1 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy ACTIVITY: Final Environmental Impact Statement, Waste Management I TC Activities for Groundwater Protection at the Savannah River Plant, Aiken, South Carolina. CONTACT: ABSTRACT: Additional information concerning this Statement can be obtained from: Mr. S. R. Wright Director, Environmental Division U.S. Department of Energy Savannah River Operations Office Post Office Box A Aiken, South Carolina 29802 (803) 725-3957 I TC For general information on the Department of Energy qs EIS process contact: Office of the Assistant Secretary for Environment, Safety, and Health U.S. Department of Energy Attn: Ms. Carol Bergstrom (EH-25) Acting Director, Office of

403

Optimization of the Waste Management for Construction Projects Using Simulation  

E-Print Network (OSTI)

Growth in construction activities increases the amount of construction waste generated. Recycling of construction waste is an important component of environmentally responsible construction, as it reduces the amount of waste directed to landfills. In addition, it enhances the resource recovery for future construction work. A model is presented in this paper to predict waste generation rates, as well as to determine the economic advantages of recycling at construction sites. A future advanced version of the model can be applied to any construction site to: determine the amount of daily waste generation, resource and time requirement for sorting and transporting of recyclables. The model, therefore, is a valuable tool for construction managers interested in asserting the viability of recycling projects.

E. Ycesan; C. -h. Chen; J. L. Snowdon; J. M. Charnes; Mala Chandrakanthi; Patrick Hettiaratchi

2002-01-01T23:59:59.000Z

404

ICPP waste management technology development program  

SciTech Connect

A program has been implemented at the Idaho Chemical Processing Plant (ICPP) to identify technologies for disposing of sodium-bearing liquid radioactive waste, radioactive calcine, and irradiated spent fuel stored at the Idaho National Engineering Laboratory (INEL). The sodium bearing waste and calcine, have resulted from ICPP reprocessing operations conducted since 1953. The irradiated spent fuel consists of various fuel compositions and ranges from complete fuel elements to fuel pieces for which no reprocessing flowsheet had been identified. The program includes a very strong systems analysis program to assure complete consideration of all issues (technical, economic, safety, environmental, etc.) affecting final disposal of the waste and spent fuel. A major goal of the program is to assure the final implementation is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Hogg, G.W.; Olson, A.L.; Knecht, D.A. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); Bonkoski, M.J. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

1993-06-01T23:59:59.000Z

405

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect

Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

1991-04-01T23:59:59.000Z

406

Los Alamos Waste Management Cost Estimation Model; Final report: Documentation of waste management process, development of Cost Estimation Model, and model reference manual  

Science Conference Proceedings (OSTI)

This final report completes the Los Alamos Waste Management Cost Estimation Project, and includes the documentation of the waste management processes at Los Alamos National Laboratory (LANL) for hazardous, mixed, low-level radioactive solid and transuranic waste, development of the cost estimation model and a user reference manual. The ultimate goal of this effort was to develop an estimate of the life cycle costs for the aforementioned waste types. The Cost Estimation Model is a tool that can be used to calculate the costs of waste management at LANL for the aforementioned waste types, under several different scenarios. Each waste category at LANL is managed in a separate fashion, according to Department of Energy requirements and state and federal regulations. The cost of the waste management process for each waste category has not previously been well documented. In particular, the costs associated with the handling, treatment and storage of the waste have not been well understood. It is anticipated that greater knowledge of these costs will encourage waste generators at the Laboratory to apply waste minimization techniques to current operations. Expected benefits of waste minimization are a reduction in waste volume, decrease in liability and lower waste management costs.

Matysiak, L.M.; Burns, M.L.

1994-03-01T23:59:59.000Z

407

A Short History of Waste Management at the Hanford Site  

Science Conference Proceedings (OSTI)

"The worlds first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanfords last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanfords only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book Hanford: A Conversation about Nuclear Waste and Cleanup.(1) "

Gephart, Roy E.

2010-03-31T23:59:59.000Z

408

Hazardous Waste Management Regulations (Mississippi) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulations (Mississippi) Regulations (Mississippi) Hazardous Waste Management Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the Mississippi Department of Environmental Quality requires that each generator of greater than 220

409

Radioactive Waste Management, Inspection Criteria; Approach,...  

NLE Websites -- All DOE Office Websites (Extended Search)

systems and practices used by field organizations in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of performance in...

410

Hazardous Waste Management Implementation Inspection Criteria...  

NLE Websites -- All DOE Office Websites (Extended Search)

and practices used by field orgailizatioils in implementing Integrated Safety Management and to provide clear, concise, and independent evaluations of perfomlance in...

411

Data summary of municipal solid waste management alternatives  

Science Conference Proceedings (OSTI)

This report provides data for use in evaluating the proven technologies and combinations of technologies that might be considered for managing municipal solid waste (MSW). It covers five major methods for MSW management in common use today: Landfilling; Mass combustion for energy recovery; Production of refuse-derived fuel (RDF); Collection/separation of recyclables; and Composting. It also provides information on three MSW management technologies that are not widely used at present: Anaerobic digestion; Cofiring of MSW with coal; and Gasification/pyrolysis. To the extent possible with available reliable data, the report presents information for each proven MSW technology on: Net energy balances; Environmental releases; and Economics. In addition to data about individual operations, the report presents net energy balances and inventories of environmental releases from selected combined MSW management strategies that use two or more separate operations. The scope of the report extends from the waste's origin (defined as the point at which the waste is set out for collection), through transportation and processing operations, to its final disposition (e.g., recycling and remanufacturing, combustion, or landfilling operations). Data for all operations are presented on a consistent basis: one (1) ton of municipal (i.e., residential, commercial, and institutional) waste at the collection point. Selection of an MSW management plan may be influenced by many factors, in addition to the technical performance and economics of each option.

Not Available

1992-10-01T23:59:59.000Z

412

Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

Bell, J.T.; Haas, P.A.; Rudolph, J.C.

1993-12-01T23:59:59.000Z

413

Interim report: Waste management facilities cost information for mixed low-level waste  

SciTech Connect

This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

Feizollahi, F.; Shropshire, D.

1994-03-01T23:59:59.000Z

414

Greening academia: Developing sustainable waste management at Higher Education Institutions  

Science Conference Proceedings (OSTI)

Higher Education Institutions (HEIs) are often the size of small municipalities. Worldwide, the higher education (HE) sector has expanded phenomenally; for example, since the 1960s, the United Kingdom (UK) HE system has expanded sixfold to >2.4 million students. As a consequence, the overall production of waste at HEIs throughout the world is very large and presents significant challenges as the associated legislative, economic and environmental pressures can be difficult to control and manage. This paper critically reviews why sustainable waste management has become a key issue for the worldwide HE sector to address and describes some of the benefits, barriers, practical and logistical problems. As a practical illustration of some of the issues and problems, the four-phase waste management strategy developed over 15 years by one of the largest universities in Southern England - the University of Southampton (UoS) - is outlined as a case study. The UoS is committed to protecting the environment by developing practices that are safe, sustainable and environmentally friendly and has developed a practical, staged approach to manage waste in an increasingly sustainable fashion. At each stage, the approach taken to the development of infrastructure (I), service provision (S) and behavior change (B) is explained, taking into account the Political, Economic, Social, Technological, Legal and Environmental (PESTLE) factors. Signposts to lessons learned, good practice and useful resources that other institutions - both nationally and internationally - can access are provided. As a result of the strategy developed at the UoS, from 2004 to 2008 waste costs fell by around Pounds 125k and a recycling rate of 72% was achieved. The holistic approach taken - recognizing the PESTLE factors and the importance of a concerted ISB approach - provides a realistic, successful and practical example for other institutions wishing to effectively and sustainably manage their waste.

Zhang, N. [School of Civil Engineering and the Environment, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Williams, I.D., E-mail: idw@soton.ac.uk [School of Civil Engineering and the Environment, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Kemp, S. [School of Civil Engineering and the Environment, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom); Smith, N.F. [Estates and Facilities Management, University of Southampton, University Rd., Highfield, Southampton, Hampshire SO17 1BJ (United Kingdom)

2011-07-15T23:59:59.000Z

415

Management plan -- Multi-Function Waste Tank Facility. Revision 1  

SciTech Connect

This Westinghouse Hanford Company (WHC) Multi-Function Waste Tank Facility (MWTF) Management Plan provides guidance for execution WHC MWTF Project activities related to design, procurement, construction, testing, and turnover. This Management Plan provides a discussion of organizational responsibilities, work planning, project management systems, quality assurance (QA), regulatory compliance, personnel qualifications and training, and testing and evaluations. Classified by the US Department of Energy (DOE) as a major systems acquisition (MSA), the MWTF mission is to provide a safe, cost-effective, and environmentally sound method for interim storage of Hanford Site high-level wastes. This Management Plan provides policy guidance and direction to the Project Office for execution of the project activities.

Fritz, R.L.

1995-01-11T23:59:59.000Z

416

Quantifying uncertainty in LCA-modelling of waste management systems  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Uncertainty in LCA-modelling of waste management is significant. Black-Right-Pointing-Pointer Model, scenario and parameter uncertainties contribute. Black-Right-Pointing-Pointer Sequential procedure for quantifying uncertainty is proposed. Black-Right-Pointing-Pointer Application of procedure is illustrated by a case-study. - Abstract: Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.

Clavreul, Julie, E-mail: julc@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Guyonnet, Dominique [BRGM, ENAG BRGM-School, BP 6009, 3 Avenue C. Guillemin, 45060 Orleans Cedex (France); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2012-12-15T23:59:59.000Z

417

Radioactive Waste Management Complex Wide Review | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on the effectiveness and workability of DOE Order 435.1 and its associated Manual and Guides as the Office of Environmental Management (EM) moves forward in updating the Order to...

418

E-waste management in Botswana.  

E-Print Network (OSTI)

?? Electr(on)ic equipments possess parts and components with high economic value and environmental peril which prompts a potential need to assess the EEEs management at (more)

Taye, Mesfin

2011-01-01T23:59:59.000Z

419

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982  

Energy.gov (U.S. Department of Energy (DOE))

Recommendation by the Secretary of Energy Regarding the Suitability of the Yucca Mountain Site for a Repository Under the Nuclear Waste Policy Act of 1982

420

Mass Tracking System Software [Nuclear Waste Management using  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Tracking System Mass Tracking System Software Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Waste Management using Electrometallurgical Technology Mass Tracking System Software Bookmark and Share The NE Division has developed a computer-based Mass Tracking (MTG) system, which is used at the Idaho National Laboratory Fuel Conditioning Facility (FCF) to maintain a real-time accounting of the inventory of containers and

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solid Waste Management and Land Protection (North Dakota) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Land Protection (North Dakota) and Land Protection (North Dakota) Solid Waste Management and Land Protection (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Siting and Permitting The policy of the State of North Dakota is to encourage and provide for environmentally acceptable and economical solid waste management practices, and the Department of Health may promulgate regulations related to waste

422

Implementation of Industrial Assessment Center Energy and Waste Management Recommendations  

E-Print Network (OSTI)

The Industrial Assessment Center at Texas A&M University is funded by the U.S. Department of Energy and involves students in the analysis of nearby Texas manufacturers. Through these analyses, the Industrial Assessment Center determines means by which the industries may reduce their energy consumption and waste production to reduce production costs. The energy conservation and waste reduction projects are studied by the students and formally presented in a technical report detailing the associated costs and savings. The report is sent to the company which then is responsible for the implementation of the projects, including funding. Case studies of three successful assessments are provided, and were chosen due to management cooperation and the implementation of a diverse group of energy conservation and waste management recommendations.

King, J. D.; Eggebrecht, J. A.; Heffington, W. M.

1997-04-01T23:59:59.000Z

423

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

424

Transportation functions of the Civilian Radioactive Waste Management System  

SciTech Connect

Within the framework of Public Law 97.425 and provisions specified in the Code of Federal Regulations, Title 10 Part 961, the US Department of Energy has the responsibility to accept and transport spent fuel and high-level waste from various organizations which have entered into a contract with the federal government in a manner that protects the health and safety of the public and workers. In implementing these requirements, the Office of Civilian Radioactive Waste Management (OCRWM) has, among other things, supported the identification of functions that must be performed by a transportation system (TS) that will accept the waste for transport to a federal facility for storage and/or disposal. This document, through the application of system engineering principles, identifies the functions that must be performed to transport waste under this law.

Shappert, L.B. (ed.); Attaway, C.R.; Pope, R.B. (Oak Ridge National Lab., TN (United States)); Best, R.E.; Danese, F.L. (Science Applications International Corp., Oak Ridge, TN (United States)); Dixon, L.D. (Dixon (L.D.), Martinez, GA (United States)); Jones, R.H. (Jones (R.H.), Los Gatos, CA (United States)); Klimas, M.J. (USDOE Chicago Operations Office, Argonne, IL (United States)); Peterson, R.W

1992-03-01T23:59:59.000Z

425

Management of low-level radioactive wastes around the world  

SciTech Connect

This paper reviews the status of various practices used throughout the world for managing low-level radioactive wastes. Most of the information in this review was obtained through the DOE-sponsored International Program Support Office (IPSO) activities at Pacific Northwest Laboratory (PNL) at Richland, Washington. The objective of IPSO is to collect, evaluate, and disseminate information on international waste management and nuclear fuel cycle activities. The center's sources of information vary widely and include the proceedings of international symposia, papers presented at technical society meetings, published topical reports, foreign trip reports, and the news media. Periodically, the information is published in topical reports. Much of the information contained in this report was presented at the Fifth Annual Participants' Information Meeting sponsored by DOE's Low-Level Waste Management Program Office at Denver, Colorado, in September of 1983. Subsequent to that presentation, the information has been updated, particularly with information provided by Dr. P. Colombo of Brookhaven National Laboratory who corresponded with low-level waste management specialists in many countries. The practices reviewed in this paper generally represent actual operations. However, major R and D activities, along with future plans, are also discussed. 98 refs., 6 tabls.

Lakey, L.T.; Harmon, K.M.; Colombo, P.

1985-04-01T23:59:59.000Z

426

The environmental effect and waste management of computer manufacturing  

Science Conference Proceedings (OSTI)

The main goal of this paper is to discuss the waste management issues that arise in the manufacturing of computers. First, we will consider the main resources required to build the components of these computers. Then, we will present the processes that ...

Mohamad R. Neilforoshan

2003-12-01T23:59:59.000Z

427

Data summary of municipal solid waste management alternatives  

Science Conference Proceedings (OSTI)

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

428

The mixed waste management facility, FY95 plan  

SciTech Connect

This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

Streit, R.

1994-12-01T23:59:59.000Z

429

Waste management plan for Hanford spent nuclear fuel characterization activities  

SciTech Connect

A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

1994-10-17T23:59:59.000Z

430

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B  

SciTech Connect

Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

1994-06-01T23:59:59.000Z

431

Transuranic Solid Waste Management Programs. Progress report, July-- December 1974  

SciTech Connect

Progress is reported for three transuranic solid waste management programs funded at the Los Alamos Scientific Laboratory by the Energy Research and Development Administration Division of Waste Management and Transportation. Under the Transuranic Waste Research and Development Program, a completed evaluation of stainless steel drums showed that although the material has superior corrosion-resistant properties, its higher cost makes a thorough investigation of other container systems mandatory. A program to investigate more economical, nonmetallic containers is proposed. Preliminary fire tests in mild steel drums have been completed with fire propagation not appearing to be a problem unless container integrity is lost. Investigation of the corrosion of mild steel drums and the evaluation of potential corrosion inhibitors, in a variety of humid environments, continues. Experimental results of both laboratory and field investigations on radiolysis of transuranic elements in hydrogenous waste are discussed. Progress in the development of instrumentation for monitoring and segregating low-level wastes is described. New plans and developments for the Transuranic-Contaminated Solid Waste Treatment Development Facility are presented. The current focus is on a comparison of all alternative waste reduction systems toward a relative Figure of Merit with universal application. Drawings, flowsheets, and building layouts are included, and the proposed incinerator device is detailed. The release mechanisms, inter- and intraregional transport mechanisms, and exhumation studies relevant to the Evaluation of Transuranic-Contaminated Radioactive Waste Disposal Areas Program are defined and analyzed. A detailed description is given of the formulation of the computer simulation scheme for the intraregional biological transport model. (auth)

1975-10-01T23:59:59.000Z

432

Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

L. Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

433

Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

Science Conference Proceedings (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Not Listed

2011-09-01T23:59:59.000Z

434

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

435

Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

436

Long-term management of high-level radioactive waste (HLW) and...  

NLE Websites -- All DOE Office Websites (Extended Search)

HLW is the highly radioactive material resulting from the reprocessing of SNF. Under the Nuclear Waste Policy Act of 1982, the federal government is responsible for the disposal...

437

Feed Materials Production Center waste management plan (Revision to NLCO-1100, R. 6)  

Science Conference Proceedings (OSTI)

In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF/sub 2/, slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program.

Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

1986-10-15T23:59:59.000Z

438

West Valley Demonstration Project Waste Management Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VALLEY DEMONSTRATION PROJECT WEST VALLEY DEMONSTRATION PROJECT WASTE MANAGEMENT ENVIRONMENTAL IMPACT STATEMENT FINAL SUMMARY December 2003 Prepared by: U.S. Department of Energy West Valley Area Office West Valley, NY DOE/EIS - 0337F For general questions or to request a copy of this EIS, please contact: DANIEL W. SULLIVAN, DOCUMENT MANAGER DOE WEST VALLEY AREA OFFICE 10282 Rock Springs Road WEST VALLEY, NY 14171-0191 1-800-633-5280 COVER SHEET Lead Agency: U.S. Department of Energy Title: Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York. Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National

439

National briefing summaries: Nuclear fuel cycle and waste management  

SciTech Connect

The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

1988-12-01T23:59:59.000Z

440

Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites  

Science Conference Proceedings (OSTI)

Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

NSTec Environmental Management

2009-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "waste management act" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Management of the Hanford water table and waste management implications  

SciTech Connect

The geology and hydrology of the Hanford Reservation are reviewed, with emphasis on ground water flow, to identify those areas that should be restricted from unconditional release due to radionuclide cortamination or radioactive waste storage as well as those areas that would have no hydrological restrictions. The effects of the discharge of large quantities of cooling water from the radiochemical plants on ground water flow were also evaluated. (CH)

Tomlinson, R.E.; Isaacson, R.E.; Brown, D.J.; Veatch, M.D.

1970-09-21T23:59:59.000Z

442

Nevada Test Site 2007 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect

This report is a compilation of the groundwater sampling results from three monitoring wells located near the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), Nye County, Nevada, for calendar year 2007. The NTS is an approximately 3,561 square kilometer (1,375 square mile) restricted-access federal installation located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada (Figure 1). Pilot wells UE5PW-1, UE5PW-2, and UE5PW-3 are used to monitor the groundwater at the Area 5 RWMS (Figure 2). In addition to groundwater monitoring results, this report includes information regarding site hydrogeology, well construction, sample collection, and meteorological data measured at the Area 5 RWMS. The disposal of low-level radioactive waste and mixed low-level radioactive waste at the Area 5 RWMS is regulated by U.S. Department of Energy (DOE) Order 435.1, 'Radioactive Waste Management'. The disposal of mixed low-level radioactive waste is also regulated by the state of Nevada under the Resource Conservation and Recovery Act (RCRA) regulation Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities' (CFR, 1999). The format of this report was requested by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 12, 1997. The appearance and arrangement of this document have been modified slightly since that date to provide additional information and to facilitate the readability of the document. The objective of this report is to satisfy any Area 5 RWMS reporting agreements between DOE and NDEP.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

443

3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II  

Science Conference Proceedings (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

Cole, C.M. Sr.

2001-04-17T23:59:59.000Z

444

Cost effective waste management through composting in Africa  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

Couth, R. [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

2012-12-15T23:59:59.000Z

445

High-level waste management technology program plan  

Science Conference Proceedings (OSTI)

The purpose of this plan is to document the integrated technology program plan for the Savannah River Site (SRS) High-Level Waste (HLW) Management System. The mission of the SRS HLW System is to receive and store SRS high-level wastes in a see and environmentally sound, and to convert these wastes into forms suitable for final disposal. These final disposal forms are borosilicate glass to be sent to the Federal Repository, Saltstone grout to be disposed of on site, and treated waste water to be released to the environment via a permitted outfall. Thus, the technology development activities described herein are those activities required to enable successful accomplishment of this mission. The technology program is based on specific needs of the SRS HLW System and organized following the systems engineering level 3 functions. Technology needs for each level 3 function are listed as reference, enhancements, and alternatives. Finally, FY-95 funding, deliverables, and schedules are s in Chapter IV with details on the specific tasks that are funded in FY-95 provided in Appendix A. The information in this report represents the vision of activities as defined at the beginning of the fiscal year. Depending on emergent issues, funding changes, and other factors, programs and milestones may be adjusted during the fiscal year. The FY-95 SRS HLW technology program strongly emphasizes startup support for the Defense Waste Processing Facility and In-Tank Precipitation. Closure of technical issues associated with these operations has been given highest priority. Consequently, efforts on longer term enhancements and alternatives are receiving minimal funding. However, High-Level Waste Management is committed to participation in the national Radioactive Waste Tank Remediation Technology Focus Area. 4 refs., 5 figs., 9 tabs.

Harmon, H.D.

1995-01-01T23:59:59.000Z

446

Energy implications of integrated solid waste management systems. Final report  

DOE Green Energy (OSTI)

This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

1994-07-01T23:59:59.000Z

447

LCA comparison of container systems in municipal solid waste management  

Science Conference Proceedings (OSTI)

The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

Rives, Jesus, E-mail: Jesus.Rives@uab.ca [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain); Rieradevall, Joan; Gabarrell, Xavier [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain); Department of Chemical Engineering, Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain)

2010-06-15T23:59:59.000Z