Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

New instruments for measuring landfill gases  

Science Journals Connector (OSTI)

New instruments for measuring landfill gases ... The legislation mandates that landfill operators monitor more than 1200 active sites for specific pollution products. ... According to Varian, the instrumentation systems can be adapted easily to meet landfill testing requirements that might be enacted in states other than California. ...

RUDY BAUM

1988-02-01T23:59:59.000Z

2

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network (OSTI)

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

3

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network (OSTI)

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

4

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities  

E-Print Network (OSTI)

Municipal Solid WasteMunicipal Solid Waste Landfills In CitiesLandfills In Cities ArunArun PurandarePurandare Eco Designs India Pvt. Ltd.Eco Designs India Pvt. Ltd. #12;What is a Landfill? A sanitary landfill refers to an engineered facility for the disposal of MSW designed and operated

Columbia University

5

Hydrogeological studies on the mechanical behavior of landfill gases and leachate of the Nanjido Landfill in Seoul, Korea  

Science Journals Connector (OSTI)

?The Nanjido Landfill is the largest uncontrolled landfill in Korea and it causes various kinds of environmental problems. Landfill gases and leachate are recognized as the most serious environmental problems ass...

K. K. Lee; Y. Y. Kim; H. W. Chang; S. Y. Chung

1997-06-01T23:59:59.000Z

6

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

7

domestic refuse landfill  

Science Journals Connector (OSTI)

domestic refuse landfill, domestic waste landfill, house waste landfill, house refuse landfill ? Hausmüllaufschüttung f

2014-08-01T23:59:59.000Z

8

Leachate Free Hazardous Waste Landfill  

Science Journals Connector (OSTI)

Experiences of the past few decades have shown that controlling leachate cannot be done by sealing only the landfill bed, but rather by sealing landfill top cover.

Dipl.Ing. Karl Rohrhofer; Dr.Techn. Fariar Kohzad

1990-01-01T23:59:59.000Z

9

Calcite precipitation in landfills: an essential product of waste stabilization  

Science Journals Connector (OSTI)

...and carbon dioxide observed for landfill gas do not reflect the amount of bicarbonate...reactions within the waste) and landfill gas. Both of these are potentially...Brief summaries of leachate and landfill gas compositions and their evolution...

D. A. C. Manning

10

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

11

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill  

Science Journals Connector (OSTI)

Characterization of Landfill Gas Composition at the Fresh Kills Municipal Solid-Waste Landfill ... The most common disposal method in the United States for municipal solid waste (MSW) is burial in landfills. ... Under the New Source Performance Standards and Emission Guidelines for MSW landfills, MSW operators are required to determine the nonmethane organic gas generation rate of their landfill through modeling and/or measurements. ...

Bart Eklund; Eric P. Anderson; Barry L. Walker; Don B. Burrows

1998-06-18T23:59:59.000Z

12

An impact analysis of landfill for waste disposal on climate change: Case study of ‘Sudokwon Landfill Site 2nd Landfill’ in Korea  

Science Journals Connector (OSTI)

The impact of waste landfill on climate change was analyzed by comparing...4 emission from landfill with the potential energy conversion. For this...4 were used against Sudokwon Landfill Site 2nd Landfill, which ...

Seung Kyu Chun; Young Shin Bae

2012-11-01T23:59:59.000Z

13

Biological Removal of Siloxanes from Landfill and Digester Gases  

E-Print Network (OSTI)

volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

14

Landfill  

Science Journals Connector (OSTI)

Landfill, also known as a dump (US) or a tip (UK), is a site for the disposal of waste materials by burial and is the oldest form of waste treatment . Historically, landfills have been one of the most common...

2008-01-01T23:59:59.000Z

15

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and  

E-Print Network (OSTI)

Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock Adair Cherokee Nation Landfill 918-696-5342 Canadian OEMA Landfill 405-262-0161 Call ahead Carter Southern Okla. Regional Disposal Landfill 580-226-1276 Comanche City of Lawton Landfill 580

Balasundaram, Balabhaskar "Baski"

16

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill  

E-Print Network (OSTI)

Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover:6 427 CE Database subject headings: Evapotranspiration; Coating; Landfills; Hazardous waste; Design

Zornberg, Jorge G.

17

EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07: Closure of Nonradioactive Dangerous Waste Landfill and 07: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington Summary This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA. Public Comment Opportunities None available at this time. Documents Available for Download August 26, 2011 EA-1707: Revised Draft Environmental Assessment Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington May 13, 2010 EA-1707: Draft Environmental Assessment

18

Landfill  

Science Journals Connector (OSTI)

The solid wastes and refuse disposed of by burial in pits constructed for the purpose, natural depressions, or abandoned quarries or other artificial excavations. Localities used in this way are called landfill s...

2008-01-01T23:59:59.000Z

19

Sandia National Laboratories: No More Green Waste in the Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

No More Green Waste in the Landfill No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by Sandia. The mulch is available to the Air Force and Sandia for landscaping uses. However, grass clippings, leaves, and other green waste were being disposed in the landfill. In an initiative to save time and trips by small trucks with trailers to the landfill carrying organic debris, two 30 cubic yard rolloffs were

20

landfill  

Science Journals Connector (OSTI)

landfill, landfill(ed) site, refuse dump, garbage dump ... depository, trash disposal site (US); sanitary landfill [Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung ...

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: No More Green Waste in the Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

22

A Multimedia Study of Hazardous Waste Landfill Gas Migration  

Science Journals Connector (OSTI)

Hazardous waste landfills pose uniquely challenging environmental problems which arise as a result of the chemical complexity of waste sites, their involvement of many environmental media, and their very size ...

Robert D. Stephens; Nancy B. Ball; Danny M. Mar

1986-01-01T23:59:59.000Z

23

Seismic Response Analysis of Municipal Solid Waste Landfill  

Science Journals Connector (OSTI)

According to the engineering practice of municipal solid waste landfill, the dynamic response of landfill based on the finite element method is implemented. The equivalent linearization method is used to consider the non-linear dynamic response characteristics. ... Keywords: Dynamic response, Ground motion input, Finite element method

Zhang Guodong; Li Yong; Jin Xing; Li Rongbin; Chen Fei

2009-10-01T23:59:59.000Z

24

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the  

E-Print Network (OSTI)

The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

25

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium Potential for Reducing Global Methane Emissions  

E-Print Network (OSTI)

Sardinia 2007, Eleventh International Waste Management and Landfill Symposium 1 Potential for Reducing Global Methane Emissions From Landfills, 2000-2030 E. MATTHEWS1 , N. J. THEMELIS2 1 NASA Goddard ~1200 Tg/yr (1 Tg = 1012 g), >70% of which is landfilled. Landfilling of waste contributes ~30-35 Tg

Columbia University

26

Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Reaches 15 Million Tons Disposed - Waste Disposal Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor Hanford Landfill Reaches 15 Million Tons Disposed - Waste Disposal Mark Shows Success Cleaning Up River Corridor July 9, 2013 - 12:00pm Addthis Media Contacts Cameron Hardy, DOE, (509) 376-5365 Cameron.Hardy@rl.doe.gov Mark McKenna, WCH, (509) 372-9032 media@wch-rcc.com RICHLAND, Wash. - The U.S. Department of Energy (DOE) and its contractors have disposed of 15 million tons of contaminated material at the Environmental Restoration Disposal Facility (ERDF) since the facility began operations in 1996. Removing contaminated material and providing for its safe disposal prevents contaminants from reaching the groundwater and the Columbia River. ERDF receives contaminated soil, demolition debris, and solid waste from

27

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2000-01-01T23:59:59.000Z

28

Aerobic landfill bioreactor  

DOE Patents (OSTI)

The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

Hudgins, Mark P (Aiken, SC); Bessette, Bernard J (Aiken, SC); March, John C (Winterville, GA); McComb, Scott T. (Andersonville, SC)

2002-01-01T23:59:59.000Z

29

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network (OSTI)

1 Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin on Waste Materials Recovery and Disposal who have invited me to address you today on landfill disamenities in New York State in the 1960's. We had many problems with polluting solid waste dumps, landfill fires

Columbia University

30

Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content  

Science Journals Connector (OSTI)

Abstract The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization.

Barbara Scaglia; Silvia Salati; Alessandra Di Gregorio; Alberto Carrera; Fulvia Tambone; Fabrizio Adani

2013-01-01T23:59:59.000Z

31

Turning waste into energy beats landfilling  

E-Print Network (OSTI)

, not incineration. Miller and others also refer to incineration as a source of dioxins, and they're right. But let's put things in perspective. In Sweden, which has 30 incineration plants, the total amount of dioxins that the landfills throughout Ontario and Michigan release fewer dioxins than that, he needs to hire better advisers

Columbia University

32

Zero landfill, zero waste: the greening of industry in Singapore  

Science Journals Connector (OSTI)

This paper reviews how a land-scarce city-state is trying to achieve its goals of zero landfill and zero waste through the greening of industry. The main challenges Singapore confronts in its solid waste management are an increasing volume of industrial waste generated, a shortage of land for landfills, and escalating costs of incineration plants. To green its industries, there has been a coordinated effort to develop a recycling industry and to initiate public-private partnerships that will advance environmental technologies. Case studies on the steel, construction, waste incineration, and the food retail industry illustrate the environmental progress that has been made. These cases show also the crucial role played by the government in accelerating the greening of industry by facilitating the formation of strategic collaborations among organisations, and by reconciling the twin objectives of sustainability and profitability.

Josephine Chinying Lang

2005-01-01T23:59:59.000Z

33

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills  

E-Print Network (OSTI)

Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption necessitates addition of kaolinite before being used as a landfill material. The valence of the salt solutions

Aydilek, Ahmet

34

Municipal solid waste degradation and landfill gas resources characteristics in self-recirculating sequencing batch bioreactor landfill  

Science Journals Connector (OSTI)

Based on the degradation characteristics of municipal solid waste (MSW) in China, the traditional anaerobic sequencing batch bioreactor landfill (ASBRL) was optimized, and an improved anaerobic sequencing batch b...

Xiao-zhi Zhou ???; Shu-xun Sang ???; Li-wen Cao ???

2012-12-01T23:59:59.000Z

35

Risk assessment of gaseous emissions from municipal solid waste landfill: case study Rafah landfill, Palestine  

Science Journals Connector (OSTI)

This article describes the risk assessment of gaseous emissions from the municipal solid waste at Rafah landfill, Palestine. In this study, Gas-Sim model was used to quantify the gaseous emissions from the landfill and the Land-Gem model was used to verify the results. Risk assessment of both carcinogens and non-carcinogens were performed. Two scenarios were conducted namely with plant uptake and without plant uptake. The scenario with plant uptake revealed that the risk to residents is acceptable for non-carcinogens (risk value 0.45 > 1.0), while the risk to residents is not acceptable for carcinogens (risk value 2.69 × 10?6 risk to residents is acceptable for non-carcinogens (risk value 0.42 > 1.0), while the risk to residents is acceptable for carcinogens (risk value 2.855 × 10?7 > 10?6).

Ahmad A. Foul; Mazen Abualtayef; Basel Qrenawi

2014-01-01T23:59:59.000Z

36

Long-term behavior of municipal solid waste landfills  

Science Journals Connector (OSTI)

A method is presented to predict the long-term behavior of element concentrations (non-metals and metals) in the leachate of a municipal solid waste (MSW) landfill. It is based on water flux and concentration measurements in leachates over one year, analysis of drilled cores from MSW landfills and leaching experiments with these samples. A mathematical model is developed to predict the further evolution of annual flux-weighted mean element concentrations in leachates after the “intensive reactor phase”, i.e. after the gas production has dropped to a very low level. The results show that the organic components are the most important substances to control until the leachate is compatible with the environment. This state of low emissions, the so-called “final storage quality”, will take many centuries to be achieved in a moderate climate.

H. Belevi; P. Baccini

1989-01-01T23:59:59.000Z

37

Landfill Gas Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies Landfill Gas Resources and Technologies October 7, 2013 - 9:27am Addthis Photo of a bulldozer on top of a large trash mound in a landfill with a cloudy sky in the backdrop. Methane and other gases produced from landfill decomposition can be leveraged for energy. This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector. Overview Landfill gases are a viable energy resource created during waste decomposition. Landfills are present in most communities. These resources can be tapped to generate heat and electricity. As organic waste decomposes, bio-gas is produced made up of roughly half methane, half carbon dioxide, and small amounts of non-methane organic

38

Overburden effects on waste compaction and leachate generation in municipal landfills  

E-Print Network (OSTI)

This thesis presents a model to predict the effects of overburden pressure on the formation of leachate within municipal solid waste landfills. In addition, it estimates the compaction and subsequent settlement that the waste will undergo due...

Mehevec, Adam Wade

2012-06-07T23:59:59.000Z

39

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE's radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. (Los Alamos National Lab., NM (United States)); Kent, J.S. (Air Force Academy, CO (United States). Dept. of Biology); Lane, L.J. (Department of Agriculture, Tucson, AZ (United States))

1993-01-01T23:59:59.000Z

40

Migration barrier covers for radioactive and mixed waste landfills  

SciTech Connect

Migration barrier cover technology will likely serve as the remediation alternative of choice for most of DOE`s radioactive and mixed waste landfills simply because human and ecological risks can be effectively managed without the use of more expensive alternatives. However, very little testing and evaluation has been done, either before or after installation, to monitor how effective they are in isolating waste or to develop data that can be used to evaluate model predictions of long term performance. Los Alamos National Laboratory has investigated the performance of a variety of landfill capping alternatives since 1981 using large field lysimeters to monitor the fate of precipitation falling on the cap surface. The objective of these studies is to provide the risk manager with a variety of field tested capping designs, of various complexities and costs, so that design alternatives can be matched to the need for hydrologic control at the site. Four different landfill cap designs, representing different complexities and costs, were constructed at Hill Air Force Base (AFB) in October and November, 1989. The designs were constructed in large lysimeters and instrumented to provide estimates of all components of water balance including precipitation, runoff (and soil erosion), infiltration, leachate production, evapotranspiration, and capillary/hydraulic barrier flow. The designs consisted of a typical soil cover to serve as a baseline, a modified EPA RCRA cover, and two versions of a Los Alamos design that contained erosion control measures, an improved vegetation cover to enhance evapotranspiration, and a capillary barrier to divert downward flow of soil water. A comprehensive summary of the Hill AFB demonstration will be available in October 1993, when the project is scheduled to terminate.

Hakonson, T.E.; Manies, K.L.; Warren, R.W.; Bostick, K.V.; Trujillo, G. [Los Alamos National Lab., NM (United States); Kent, J.S. [Air Force Academy, CO (United States). Dept. of Biology; Lane, L.J. [Department of Agriculture, Tucson, AZ (United States)

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Landfill; leachates, landfill gases  

Science Journals Connector (OSTI)

is a method of refuse disposal on land without creating nuisance to public health or safety by using the principles of engineering to confine refuse to the smallest practicable area, to reduce it to the sma...

Ming H. Wong

1999-01-01T23:59:59.000Z

42

Waste management health risk assessment: A case study of a solid waste landfill in South Italy  

SciTech Connect

An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

2010-08-15T23:59:59.000Z

43

EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

767: Construction and Experiment of an Industrial Solid Waste 767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant in Piketon, Ohio. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 25, 1995 EA-0767: Finding of No Significant Impact Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant October 25, 1995 EA-0767: Final Environmental Assessment

44

One?dimensional Seismic Analysis of a Solid?Waste Landfill  

Science Journals Connector (OSTI)

Analysis of the seismic performance of solid waste landfill follows generally the same procedures for the design of embankment dams even if the methods and safety requirements should be different. The characterization of waste properties for seismic design is difficult due the heterogeneity of the material requiring the procurement of large samples. The dynamic characteristics of solid waste materials play an important role on the seismic response of landfill and it also is important to assess the dynamic shear strengths of liner materials due the effect of inertial forces in the refuse mass. In the paper the numerical results of a dynamic analysis are reported and analysed to determine the reliability of the common practice of using 1D analysis to evaluate the seismic response of a municipal solid?waste landfill. Numerical results indicate that the seismic response of a landfill can vary significantly due to reasonable variations of waste properties fill heights site conditions and design rock motions.

Francesco Castelli; Valentina Lentini; Michele Maugeri

2008-01-01T23:59:59.000Z

45

Wasting Time : a leisure infrastructure for mega-landfill  

E-Print Network (OSTI)

Landfills are consolidating into fewer, taller, and more massive singular objects in the exurban landscape.This thesis looks at one instance in Virginia, the first regional landfill in the state to accept trash from New ...

Nguyen, Elizabeth M. (Elizabeth Margaret)

2007-01-01T23:59:59.000Z

46

Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill  

SciTech Connect

Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

Fruland, R.M.

1986-10-01T23:59:59.000Z

47

A new technique to monitor ground-water quality at municipal solid waste landfills  

E-Print Network (OSTI)

A NEW TECHNIQUE TO MONITOR GROUND-WATER EQUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 1989 Major Subject: Geology A NEW TECHNIIIUE TO MONITOR GROUND-WATER IIUALITY AT MUNICIPAL SOLID WASTE LANDFILLS A Thesis by STEVEN CHARLES HART Approved as to style and content by: Christo her C. Mathewson (Chair...

Hart, Steven Charles

2012-06-07T23:59:59.000Z

48

Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill  

Science Journals Connector (OSTI)

As circumstances of operating and maintenance activities for landfilling and composting in Tehran metropolis differ from those of cities in developed countries, it was concluded to have an environmental impact co...

M. A. Abduli; Abolghasem Naghib; Mansoor Yonesi…

2011-07-01T23:59:59.000Z

49

Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill  

SciTech Connect

This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

2002-02-27T23:59:59.000Z

50

Landfills a thing of the past in Germany where advanced waste management By Evridiki Bersi -Kathimerini  

E-Print Network (OSTI)

Landfills a thing of the past in Germany where advanced waste management rules By Evridiki Bersi but that day has already come in Germany. On June 1, 2005, Germany imposed a ban on traditional garbage dumps, replacing them with one of the most advanced waste-management systems in the world. In the 1970s, Germany

Columbia University

51

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW landfill disposal  

E-Print Network (OSTI)

CCA-Treated wood disposed in landfills and life-cycle trade-offs with waste-to-energy and MSW in waste-to-energy (WTE) facilities. In other countries, the predominant disposal option for wood, others have not, and the product continues to enter the waste stream from construction, demolition

Florida, University of

52

Modeling of leachate generation in municipal solid waste landfills  

E-Print Network (OSTI)

parameters specified by the user. Ultimately, this model will strive to replace the time the user requires to generate and fill a given landfill geometry with time spent running and evaluating trials to yield the best design....

Beck, James Bryan

2012-06-07T23:59:59.000Z

53

Data Summary of Municipal Solid Waste Management Alternatives. Volume VIII: Appendix F - Landfills  

SciTech Connect

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community's solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a transition'' document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

None

1992-10-01T23:59:59.000Z

54

Data summary of municipal solid waste management alternatives. Volume 8, Appendix F, Landfills  

SciTech Connect

While the preceding appendices have focused on the thermochemical approaches to managing municipal solid waste (MSW), this appendix and those that follow on composting and anaerobic digestion address more of the bioconversion process technologies. Landfilling is the historical baseline MSW management option central to every community`s solid waste management plan. It generally encompasses shredfills, balefills, landfill gas recovery, and landfill mining. While landfilling is virtually universal in use, it continues to undergo intense scrutiny by the public and regulators alike. Most recently, the US Environmental Protection Agency (EPA) issued its final rule on criteria for designing, operating, monitoring, and closing municipal solid waste landfills. While the Federal government has established nationwide standards and will assist the States in planning and developing their own practices, the States and local governments will carry out the actual planning and direct implementation. The States will also be authorized to devise programs to deal with their specific conditions and needs. While the main body of this appendix and corresponding research was originally prepared in July of 1991, references to the new RCRA Subtitle D, Part 258 EPA regulations have been included in this resubmission (908). By virtue of timing, this appendix is, necessarily, a ``transition`` document, combining basic landfill design and operation information as well as reference to new regulatory requirements. Given the speed with which landfill practices are and will be changing, the reader is encouraged to refer to Part 258 for additional details. As States set additional requirements and schedules and owners and operators of MSW landfills seek to comply, additional guidance and technical information, including case studies, will likely become available in the literature.

none,

1992-10-01T23:59:59.000Z

55

The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review  

Science Journals Connector (OSTI)

The novel concepts Enhanced Waste Management (EWM) and Enhanced Landfill Mining (ELFM) intend to place landfilling of waste in a sustainable context. The state of the technology is an important factor in determining the most suitable moment to valorize – either as materials (Waste-to-Product, WtP) or as energy (Waste-to-Energy, WtE) – certain landfill waste streams. The present paper reviews thermochemical technologies (incineration, gasification, pyrolysis, plasma technologies, combinations) for energetic valorization of calorific waste streams, with focus on municipal solid waste (MSW), possibly processed into refuse derived fuel (RDF). The potential and suitability of these thermochemical technologies for ELFM applications are discussed. From this review it is clear that process and waste have to be closely matched, and that some thermochemical processes succeed in recovering both materials and energy from waste. Plasma gasification/vitrification is a viable candidate for combined energy and material valorization, its technical feasibility for MSW/RDF applications (including excavated waste) has been proven on installations ranging from pilot to full scale. The continued advances that are being made in process control and process efficiency are expected to improve the commercial viability of these advanced thermochemical conversion technologies in the near future.

A. Bosmans; I. Vanderreydt; D. Geysen; L. Helsen

2013-01-01T23:59:59.000Z

56

Capping as an alternative for remediating radioactive and mixed waste landfills  

SciTech Connect

This report describes some of the regulatory and technical issues concerning the use of capping as a containment strategy for radioactive and hazardous waste. Capping alternatives for closure of landfills is not just an engineering problem, but rather involves complex physical, biological, and chemical processes requiring a multidisciplinary approach to develop designs that will work over the long haul and are cost-effective. Much of the information has been distilled from regulatory and guidance documents and a compilation of research activities on waste disposal, contaminant transport processes, and technology development for landfills that has been conducted over the last 21 years.

Hakonson, T.E. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Fishery and Wildlife Biology

1994-03-01T23:59:59.000Z

57

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

58

Evaluation of the hazardous waste landfill cap system design and clay layer thickness criteria of the Turkish Regulation on the Control of Hazardous Waste (RCHW) using the Hydrological Evaluation of Landfill Performance (HELP) model  

Science Journals Connector (OSTI)

The hazardous waste landfill design criteria of the Turkish Regulation on the Control of Hazardous Waste (RCHW) was evaluated in this study. In the first part of the study, Hydrologic Evaluation of Landfill Performance (HELP) model was used to determine the significance of different components of the hazardous waste landfill cap system as required by the Turkish RCHW. In the second part of the study, the top and bottom clay layer thickness requirement of the Turkish RCHW was evaluated by running the HELP model for different top/bottom clay different layer thicknesses and comparing the corresponding leachate amounts produced.

F. Yalcin Piskin; G.N. Demirer

2007-01-01T23:59:59.000Z

59

Town of Hague landfill reclamation study: Research ways to increase waste heating value and reduce waste volume. Final report  

SciTech Connect

Monitored composing was studied as a method for reducing the quantity of waste requiring disposed from a landfill reclamation project. After each of two re-screening steps, composted {open_quotes}soil{close_quotes} from a single long windrow of varying depths and moisture content was subjected to analytical testing to determine its suitability to remain as backfill in a reclaimed landfill site. The remaining uncomposted waste was combusted at a waste-to-energy facility to determine if Btu values were improved. Results indicate that a full-scale composting operation could result in a net decrease of approximately 11 percent in disposal costs. The Btu value of the reclaimed waste was calculated to be 4,500 to 5,000 Btu/lb. The feasibility of composting reclaimed waste at other landfill reclamation projects will depend upon site-specific technical and economic factors, including size and nature of the organic fraction of the waste mass, local processing costs, and the cost of waste disposal alternatives.

Salerni, E. [SSB Environmental Inc., Albany, NY (United States)

1997-01-01T23:59:59.000Z

60

Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

Lee, D.W.; Wang, J.C.; Kocher, D.C.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrologic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico  

SciTech Connect

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15 and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated waterflow datalogging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system.

Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

1993-06-01T23:59:59.000Z

62

Stabilisation of biodried municipal solid waste fine fraction in landfill bioreactor  

Science Journals Connector (OSTI)

The biodrying process of solid waste is a pre-treatment for the bio-stabilisation of the municipal solid waste. This study aims to investigate the fate of the municipal solid waste fine fraction (MSWFF) resulting from a biodrying treatment when disposed in landfills that are operated as bioreactors. Biodried MSWFF was apparently stable due to its low moisture content that slows down the microbial activity. The lab-scale anaerobic bioreactors demonstrated that a proper moisture content leads to a complete biodegradation of the organic matter contained in the biodried MSWFF. Using a pilot-scale landfill bioreactor (LBR), MSWFF stabilisation was achieved, suggesting that the leachate recirculation could be an effective approach to accomplish the anaerobic biodegradation and biostabilisation of biodried MSWFF after landfilling. The biostabilisation of the material resulting from the LBR treatment was confirmed using anaerobic and aerobic stability indices. All anaerobic and aerobic indices showed a stability increase of approximately 80% of the MSWFF after treatment in the LBR. The similar values of OD7 and BMP stability indices well agree with the relationship between the aerobic and anaerobic indices reported in literature.

Selene Grilli; Andrea Giordano; Alessandro Spagni

2012-01-01T23:59:59.000Z

63

EXPEDITING THE PATH TO CLOSURE THE CHEMICAL WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO  

SciTech Connect

The Chemical Waste Landfill (CWL) at Sandia National Laboratories, New Mexico (SNL/NM) is undergoing closure subject to the requirements of Subtitle C of RCRA. This paper identifies regulatory mechanisms that have and continue to expedite and simplify the closure of the CWL. These include (1) the Environmental Restoration (ER) Programmatic effort to achieve progress quickly with respect to the standard regulatory processes, which resulted in the performance of voluntary corrective measures at the CWL years in advance of the standard process schedule, (2) the management and disposal of CWL remediation wastes and materials according to the risks posed, and (3) the combination of multiple regulatory requirements into a single submittal.

Young, S.G.; Schofield, D.P.; Davis, M.J.; Methvin, R.; Mitchell, M.

2003-02-27T23:59:59.000Z

64

Landfill Bioreactors  

Science Journals Connector (OSTI)

Modern waste disposal has evolved from open dumping to the current practice of sanitary landfilling. Although this approach has proved to be a good alternative for preventing a variety of negative human healt...

Dr. J. Patrick A. Hettiaratchi PhD; PEng

2012-01-01T23:59:59.000Z

65

Closure of a mixed waste landfill: Lessons learned  

SciTech Connect

Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements.

Phifer, M.A.

1990-01-01T23:59:59.000Z

66

Closure of a mixed waste landfill: Lessons learned  

SciTech Connect

Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements.

Phifer, M.A.

1990-12-31T23:59:59.000Z

67

Evaluation of a sequential aerobicâ??anaerobic treatment of municipal solid waste in a bioreactor landfill  

Science Journals Connector (OSTI)

A sequential aerobic-anaerobic bioreactor landfill was operated and monitored over a period of 184 days. The bioreactor was filled with 120 kg of organic fraction of Municipal Solid Waste. Leachate recirculation was applied. The results showed rapid degradation of organic matter with rapid settlement during the aerobic period. The initial COD and BOD5 were reduced from 46,500 and 41,500 mg/L to 9000 and 6000 mg/L, respectively, within one month. The SO42? concentration, during the anaerobic period, was decreased from 1500 mg/L to 250 mg/L. The sequential treatment had positive effects on nitrification and denitrification efficiencies.

Aris Nikolaou; Apostolos Giannis; Evangelos Gidarakos

2011-01-01T23:59:59.000Z

68

Landfill Leachate Control  

Science Journals Connector (OSTI)

Leachate refers to the liquid, contaminated water, that results from the interaction between any water in a landfill, e.g., as the result of rainwater infiltration, and the waste emplaced in the landfill. Lea...

Dr. Haluk Akgün; Jaak J. K. Daemen

2012-01-01T23:59:59.000Z

69

Hydrologic evaluation of landfill performance (HELP) modeling in bioreactor landfill design and permitting  

Science Journals Connector (OSTI)

The practice of operating municipal solid waste landfills as bioreactor landfills has become more common over the past ... balance and flow is more critical in such landfills than in dry landfills, researchers ha...

Qiyong Xu; Hwidong Kim; Pradeep Jain…

2012-03-01T23:59:59.000Z

70

Microsoft Word - Final TTR Landfill Extension EA--December 2006...  

National Nuclear Security Administration (NNSA)

continue until the landfill is closed. Once the landfill reaches capacity, sources of air pollution associated with the landfill would no longer be present. Waste transport...

71

Environmental factors influencing methanogenesis from refuse in landfill samples  

Science Journals Connector (OSTI)

Environmental factors influencing methanogenesis from refuse in landfill samples ... Biodegradability of Municipal Solid Waste Components in Laboratory-Scale Landfills ...

K. Rao Gurijala; Joseph M. Suflita

1993-06-01T23:59:59.000Z

72

Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill  

Science Journals Connector (OSTI)

Abstract The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007–2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream?s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007–2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010–2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox® showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program.

A. Melnyk; K. Kukli?ska; L. Wolska; J. Namie?nik

2014-01-01T23:59:59.000Z

73

Effects of residues from municipal solid waste landfill on corn yield and heavy metal content  

SciTech Connect

The effects of residues from municipal solid waste landfill, Khon Kaen Municipality, Thailand, on corn (Zea mays L.) yield and heavy metal content were studied. Field experiments with randomized complete block design with five treatments (0, 20, 40, 60 and 80% v/v of residues and soil) and four replications were carried out. Corn yield and heavy metal contents in corn grain were analyzed. Corn yield increased by 50, 72, 85 and 71% at 20, 40, 60 and 80% treatments as compared to the control, respectively. All heavy metals content, except cadmium, nickel and zinc, in corn grain were not significantly different from the control. Arsenic, cadmium and zinc in corn grain were strongly positively correlated with concentrations in soil. The heavy metal content in corn grain was within regulated limits for human consumption.

Prabpai, S. [Suphan Buri Campus Establishment Project, Kasetsart University, 50 U Floor, Administrative Building, Paholyothin Road, Jatujak, Bangkok 10900 (Thailand)], E-mail: s.prabpai@hotmail.com; Charerntanyarak, L. [Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: lertchai@kku.ac.th; Siri, B. [Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002 (Thailand)], E-mail: boonmee@kku.ac.th; Moore, M.R. [The University of Queensland, The National Research Center for Environmental Toxicology, 39 Kessels Road, Coopers Plans, Brisbane, Queensland 4108 (Australia)], E-mail: m.moore@uq.edu.au; Noller, Barry N. [The University of Queensland, Centre for Mined Land Rehabilitation, Brisbane, Queensland 4072 (Australia)], E-mail: b.noller@uq.edu.au

2009-08-15T23:59:59.000Z

74

Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill  

SciTech Connect

Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

1989-07-01T23:59:59.000Z

75

The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill  

SciTech Connect

The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during the excavation of the CWL. As part of the excavation process, soil is being separated from the buried debris using a 2-inch mechanical screen. After separation from the soil, debris items are further-segregated by matrix into the following categories: wood, scrap metal, concrete/aggregates, resins, compatible debris, intact chemical containers, radioactive and mixed waste, and high hazard items. One of the greatest sources of hazards throughout the excavation process is the removal of numerous intact chemical containers with unknown contents. A large portion of the excavated soil is contaminated with metals and/or solvents, Polychlorinated biphenyls (PCBs) are also known to be present. Most of the contaminated soils being excavated will be taken to the nearby Corrective Action Management Unit (CAMU) for treatment and management while a majority of the containers will be taken to the Hazardous Waste Management Facility or the Radioactive and Mixed Waste Management Facility for proper treatment and/or disposal at permitted offsite facilities.

KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

1999-11-23T23:59:59.000Z

76

Method of converting environmentally pollutant waste gases to methanol  

SciTech Connect

A continuous flow method is described of converting environmentally pollutant by-product gases emitted during the manufacture of silicon carbide to methanol comprising: (a) operating a plurality of batch furnaces of a silicon carbide manufacturing plant thereby producing silicon carbide and emitting by-product gases during the operation of the furnaces; (b) staggering the operation of the batch furnaces to achieve a continuous emission of the by-product gases; (c) continuously flowing the by-product gases as emitted from the batch furnaces directly to a methanol manufacturing plant; (d) cleansing the by-product gases of particulate matter, including removing the element sulfur from the by-product gases, as they are flowed to the methanol manufacturing plant, sufficiently for use of the by-product gases in producing methanol; and (e) immediately producing methanol from the by-product gases at the methanol manufacturing plant whereby the producing of silicon carbide is joined with the producing of methanol as a unified process.

Pfingstl, H.; Martyniuk, W.; Hennepin, A. Ill; McNally, T.; Myers, R.; Eberle, L.

1993-08-03T23:59:59.000Z

77

ADVANTAGES AND DISADVANTAGES TO OPERATING AN ON-SITE LABORATORY AT THE SANDIA NATIONAL LABORATORIES CHEMICAL WASTE LANDFILL  

SciTech Connect

During the excavation of the Sandia National Laboratories, New Mexico (SNL/NM) Chemical Waste Landfill (CWL), operations were realized by the presence of URS' (formerly known as United Research Services) On-site Mobile Laboratory (OSML) and the close proximity of the SNL/NM Environmental Restoration Chemical Laboratory (ERCL). The laboratory was located adjacent to the landfill in order to provide soil characterization, health and safety support, and waste management data. Although the cost of maintaining and operating an analytical laboratory can be higher than off-site analysis, there are many benefits to providing on site analytical services. This paper describes the synergies between the laboratory, as well as the advantages and disadvantages to having a laboratory on-site during the excavation of SNL/NM CWL.

Young, S.G.; Creech, M.N.

2003-02-27T23:59:59.000Z

78

Environmental Impacts of Landfill Bioreactorcells in Comparison to Former Landfill Techniques  

Science Journals Connector (OSTI)

Former and present landfill techniques at the Filbornaplant in Helsingborg, South ... the waste residue. The results showthat optimised landfill bioreactor-cells have a higherturn-over rate...

Michael Binder; Torleif Bramryd

2001-07-01T23:59:59.000Z

79

Landfill Gas Generation and Transport In Bioreactor Landfill  

Science Journals Connector (OSTI)

The activation gas and water flow each other in Bioreactor Landfill. Based on the porous media seepage and ... of water and waste components decomposition for describing landfill gas flow have been developed, and...

Qi-Lin Feng; Lei Liu; Qiang Xue; Ying Zhao

2010-01-01T23:59:59.000Z

80

5341 sanitary landfill [n] (1)  

Science Journals Connector (OSTI)

envir....(Process of controlled dumping [US]/tipping [UK] of industrial or domestic waste material on a landfill site by dumping/tipping in layers, each... sanitary landfill [US] 2 ...

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

If current capacity were to be expanded so that all of the non-recycled municipal solid waste that is currently sent to U.S. landfills each year could instead be converted to energy, we could generate enough electricity  

E-Print Network (OSTI)

so that we could convert our non-recycled waste to alternative energy instead of landfilling it, we-recycled waste into energy instead of landfilling it, we could reduce greenhouse gas (GHG) emissions by nearly our roads. The Power of Waste GARBAGE ENERGY REDUCES 123M TONS CO2 = 23M LESS CARS PLASTICS 5.7B

82

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

83

Acute and Genetic Toxicity of Municipal Landfill Leachate  

E-Print Network (OSTI)

Municipal solid waste (MSW) landfills have been found to contain many of the same hazardous constituents as found in hazardous waste landfills. Because of the large number of MSW landfills, these sites pose a serious environmental threat...

Brown, K.W.; Schrab, G.E.; Donnelly, K.C.

84

Full-Scale Practice of Ecologically Based Landfill of Municipal Solid Waste: to Accecelerate The Biological Conversion Inside Landfill and Cover Layers  

Science Journals Connector (OSTI)

The application of bioreactor landfill with leachate recirculation was usually confronted with ... leachate. A modified operation called “ecologically based landfill” was induced by recycling the pre-treated fres...

Pin-Jing He

2010-01-01T23:59:59.000Z

85

(sanitary) landfill  

Science Journals Connector (OSTI)

(sanitary) landfill, landfill(ed) site, refuse dump, garbage dump...Landfills may often release a toxic soup of...] ? Abfalldeponie f [Zur Endlagerung von Abfallstoffen oder von Industrieprodukten al...

2014-08-01T23:59:59.000Z

86

Low-Value Waste Gases as an Energy Source  

E-Print Network (OSTI)

designing new furnaces to use them. In addition, because of the difficulties in burning them and the chemical compounds that may be included in them, the potential pollutant emissions from these waste streams is also a significant consideration....

Waibel, R. T.

87

Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect

The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

2013-04-01T23:59:59.000Z

88

Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998  

SciTech Connect

The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

Masemore, S.; Piccot, S.

1998-08-01T23:59:59.000Z

89

FINAL ENVIRONMENTAL ASSESSMENT FOR REMOVAL ACTIONS AT THE TECHNICAL AREA III CLASSIFIED WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO - DOE/EA-1729  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINAL ENVIRONMENTAL ASSESSMENT FOR REMOVAL FINAL ENVIRONMENTAL ASSESSMENT FOR REMOVAL ACTIONS AT THE TECHNICAL AREA III CLASSIFIED WASTE LANDFILL, SANDIA NATIONAL LABORATORIES, NEW MEXICO DOE/EA-1729 August 2010 National Nuclear Security Administration Sandia Site Office P.O. Box 5400 Albuquerque, New Mexico 87185-5400 DOE/EA-1729: Environmental Assessment for Removal Actions at the Technical Area III August 2010 Classified Waste Landfill, Sandia National Laboratories, New Mexico i TABLE OF CONTENTS Section 1.0 PURPOSE AND NEED FOR AGENCY ACTION .................................................................... Page 1 1.1 Background .................................................................................................................................. 1

90

Removal of Hydrogen Sulfide from Landfill Gas Using a Solar Regenerable Adsorbent.  

E-Print Network (OSTI)

??Landfill gas is a complex mix of gases, containing methane, carbon dioxide, nitrogen and hydrogen sulfide, created by the action of microorganisms within the landfill.… (more)

Kalapala, Sreevani

2014-01-01T23:59:59.000Z

91

Biological production of acetic acid from waste gases with Clostridium ljungdahlii  

DOE Patents (OSTI)

A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

Gaddy, J.L.

1998-09-15T23:59:59.000Z

92

Overview of the Flammability of Gases Generated in Hanford Waste Tanks  

SciTech Connect

This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

2000-07-21T23:59:59.000Z

93

slag landfill  

Science Journals Connector (OSTI)

slag landfill [Context: the impacts of Cu 2+ emissions from the slag landfill to the groundwater were assessed to be...] ? Schlackendeponie f ...

2014-08-01T23:59:59.000Z

94

Renewable Energy 32 (2007) 12431257 Methane generation in landfills  

E-Print Network (OSTI)

. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million. All rights reserved. Keywords: Landfill gas; Renewable energy; Municipal solid waste; Biogas; Methane

Columbia University

95

Methods for reducing emissions of dioxins and furans in flue gases at plants burning solid domestic waste  

Science Journals Connector (OSTI)

Methods are discussed for reducing emissions of toxic chlorinated dibenzo-dioxins and dibenzo-furans in flue gases at plants which burn solid domestic waste. Results are presented from a study of ... number of th...

A. N. Tugov; V. F. Moskvichev; L. G. Fedorov…

2009-01-01T23:59:59.000Z

96

Methane Production Quantification and Energy Estimation for Bangalore Municipal Solid Waste  

Science Journals Connector (OSTI)

Landfills are considered as cornerstone of solid waste management. Landfill gas (LFG) and leachate are principal outputs ... from landfills. Methane, occupying significant volume of landfill gas, has considerable...

A. Kumar; R. Dand; P. Lakshmikanthan…

2014-01-01T23:59:59.000Z

97

Multiphase Modeling of Flow, Transport, and Biodegradation in a Mesoscale Landfill Bioreactor  

E-Print Network (OSTI)

1179. Popov, V. ; Power, H. Landfill emission of gases intoC.M. T2LBM Version 1.0: Landfill bioreactor model forand recovery from landfills, Ann Arbor Science Publishers,

Oldenburg, Curtis M.; Borglin, Sharon E.; Hazen, Terry C.

2002-01-01T23:59:59.000Z

98

Last spring, an Ohio waste slope collapsed, displacing 1.5 million cu yd of waste. Remedial measures can prevent similar failures at ~~grandfathered" landfills.  

E-Print Network (OSTI)

measures can prevent similar failures at ~~grandfathered" landfills. r I n the early morning hours of March of "grandfathered" landfill slopes. (Grandfathered landfills do not have an engineered liner system.) Because following case history are ap- plicable to the design, operation and expan- sion of many landfills. BEFORE

99

Modeling and simulation of landfill gas production from pretreated MSW landfill simulator  

Science Journals Connector (OSTI)

The cumulative landfill gas (LFG) production and its rate ... simulated for pretreated municipal solid waste (MSW) landfill using four models namely first order exponential ... . Considering the behavior of the p...

Rasool Bux Mahar; Abdul Razaque Sahito…

2014-04-01T23:59:59.000Z

100

Polycyclic aromatic hydrocarbons (PAH) in top soil, leachate and groundwater from Ruseifa solid waste landfill, Jordan  

Science Journals Connector (OSTI)

The distribution profiles and pathways of polynuclear aromatic hydrocarbons in the surroundings of Ruseifa landfill area in Jordan were investigated for surface sediments, leachate, and groundwater. The total concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in sediments ranged from 286 to 1704 ppm with an average value of 751 ppm. Meanwhile, concentrations of PAH in groundwater ranged between 7.1 and 12.6 ppm with an average value of 9.1 ppm. The PAH in leachate varied between 0.10 and 0.40 with an average value of 0.29 ppm. The overall PAH distribution profiles appeared to be similar for leachate and groundwater dominated by 2â??3 rings system molecules. While, the sediments profile was dominated by 4â??6 rings system molecules which indicated the loss of low molecular weight compounds of PAH and accumulation of higher molecular weight of PAH under prevailing semiarid and hot climatic conditions.

Anwar Jiries; Omar Rimawi; Jutta Lintelmann; Mufeed Batarseh

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cleanup Agreed on for Niagara Landfill  

Science Journals Connector (OSTI)

Cleanup Agreed on for Niagara Landfill ... The U.S., New York state, and Occidental Chemical finally have reached agreement on how to clean up toxic liquid wastes at the Hyde Park landfill in Niagara, N.Y. ... The cleanup program is a multifaceted scheme designed to remove and destroy the most concentrated of the hazardous liquids buried in the landfill. ...

LOIS EMBER

1985-12-16T23:59:59.000Z

102

Landfill Instability and Its Implications Operation, Construction, and Design  

E-Print Network (OSTI)

Landfill Instability and Its Implications for Operation, Construction, and Design By: W. Douglas landfill waste slide, a 300,000 cubic yard landfill failure involving a geosynthetic clay liner, and a 100,000 cubic yard landfill failure involving leachate recirculation. Other failures of lesser magnitude also

103

GeoChip-based Analysis of Groundwater Microbial Diversity in Norman Landfill  

E-Print Network (OSTI)

Diversity in Norman Landfill Zhenmei Lu 1,2 , Zhili He 2,4 ,projects/norlan / ABSTRACT The Norman Landfill is a closedmunicipal solid waste landfill located on an alluvium

Lu, Zhenmei

2010-01-01T23:59:59.000Z

104

(sanitary) landfill reclamation  

Science Journals Connector (OSTI)

(sanitary) landfill reclamation, reclamation of (sanitary) landfills [For industrial and commercial development] ? Deponielandgewinnung f, Kippenlandgewinnung

2014-08-01T23:59:59.000Z

105

Landfill reduction experience in The Netherlands  

Science Journals Connector (OSTI)

Abstract Modern waste legislation aims at resource efficiency and landfill reduction. This paper analyses more than 20 years of landfill reduction in the Netherlands. The combination of landfill regulations, landfill tax and landfill bans resulted in the desired landfill reduction, but also had negative effects. A fierce competition developed over the remaining waste to be landfilled. In 2013 the Dutch landfill industry generated €40 million of annual revenue, had €58 million annual costs and therefore incurred an annual loss of €18 million. It is not an attractive option to prematurely end business. There is a risk that Dutch landfill operators will not be able to fulfil the financial obligations for closure and aftercare. Contrary to the polluter pays principle the burden may end up with society. EU regulations prohibiting export of waste for disposal are in place. Strong differentials in landfill tax rate between nations have nevertheless resulted in transboundary shipment of waste and in non-compliance with the self-sufficiency and proximity principles. During the transformation from a disposal society to a recycling society, it is important to carefully plan required capacity and to guide the reorganisation of the landfill sector. At some point, it is no longer profitable to provide landfill services. It may be necessary for public organisations or the state to take responsibility for the continued operation of a ‘safety net’ in waste management. Regulations have created a financial incentive to pass on the burden of monitoring and controlling the impact of waste to future generations. To prevent this, it is necessary to revise regulations on aftercare and create incentives to actively stabilise landfills.

Heijo Scharff

2014-01-01T23:59:59.000Z

106

Characteristics of vegetation and its relationship with landfill gas in closed landfill  

Science Journals Connector (OSTI)

An investigation was carried out to elucidate landfill gas (LFG) and the vegetation characteristics in closed landfill. The results indicate that the stabilization process of the landfill is an important factor influencing the components of landfill gases. The coverage, height and species of vegetation increase with the closed time of landfill. Fourteen species were observed in the investigated cells, dominated by Phragmites australis, an invasive perennial plant. The concentrations of methane and carbon dioxide from vegetated cover soil were lower than those from non-vegetated cover soil.

Chai Xiaoli; Zhao Xin; Lou Ziyang; Takayuki Shimaoka; Hirofumi Nakayama; Cao Xianyan; Zhao Youcai

2011-01-01T23:59:59.000Z

107

BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark  

E-Print Network (OSTI)

BACK-ANALYSES OF LANDFILL SLOPE FAILURES Nejan Huvaj-Sarihan Timothy D. Stark University strength of MSW. The back-analysis of failed waste slopes in the Gnojna Grora landfill in Poland, Istanbul Landfill in Turkey, Hiriya Landfill in Israel, and Payatas Landfill in Philippines are presented

108

FRASER BASIN LANDFILL INVENTORY DOE FRAP 1997-19  

E-Print Network (OSTI)

-term sustainability of the Fraser River Basin. Inventories of point and non-point sources of pollution from both's WASTE database, Federal Indian Band Landfill investigations, and BC Environment's Municipal Landfill

109

Use of the time domain reflectrometry in hydraulic studies of multilayered landfill covers for closure of waste landfills at Los Alamos, New Mexico  

SciTech Connect

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing hydraulic and capillary engineered barriers. Seepage is being evaluated as a function of slope length for each plot, as well as interflow, runoff, and precipitation, using an automated water flow datalogging system that routinely collects hourly data. Soil water content within these 16 field plots has been routinely monitored four times a day since November 1991 using time domain reflectrometry techniques with an automated and multiplexed measurement system. Volumetric water content is measured with a pair of 60-cm-long waveguides at each of 212 locations. One set of waveguides was emplaced vertically in four locations in every soil layer to determine soil water inventory in each field plot. A second set of waveguides was emplaced horizontally in several soil layers to provide a more detailed picture of soil water dynamics close to soil layer interfaces. Field data is presented showing pulses of soil water moving through the soil and engineered barriers with high temporal and spatial resolution.

Nyhan, J.W.; Schofield, T.G.; Martin, C.E.

1994-04-01T23:59:59.000Z

110

Enhancing landfill gas recovery  

Science Journals Connector (OSTI)

The landfilling of municipal solid waste (MSW) may cause potential environmental impacts like global warming (GW), soil contaminations, and groundwater pollution. The degradation of MSW in anaerobic circumstances generates methane emissions, and can hence contribute the GW. As the GW is nowadays considered as one of the most serious environmental threats, the mitigation of methane emissions should obviously be aimed at on every landfill site where methane generation occurs. In this study, the treatment and utilization options for the generated LFG at case landfills which are located next to each other are examined. The yearly GHG emission balances are estimated for three different gas management scenarios. The first scenario is the combined heat and power (CHP) production with a gas engine. The second scenario is the combination of heat generation for the asphalt production process in the summer and district heat production by a water boiler in the winter. The third scenario is the LFG upgrading to biomethane. The estimation results illustrate that the LFG collection efficiency affects strongly on the magnitudes of GHG emissions. According to the results, the CHP production gives the highest GHG emission savings and is hence recommended as a gas utilization option for case landfills. Furthermore, aspects related to the case landfills' extraction are discussed.

Antti Niskanen; Hanna Värri; Jouni Havukainen; Ville Uusitalo; Mika Horttanainen

2013-01-01T23:59:59.000Z

111

Landfill Gas Sequestration in Kansas  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Road P.O. Box 880 Morgantown, WV 26505-0880 304-285-4132 Heino.beckert@netl.doe.gov David newell Principal Investigator Kansas Geological Survey 1930 Constant Avenue Lawrence, KS 66045 785-864-2183 dnewall@kgs.uk.edu LandfiLL Gas sequestration in Kansas Background Municipal solid waste landfills are the largest source of anthropogenic methane emissions in the United States, accounting for about 34 percent of these emissions in 2004. Most methane (CH 4 ) generated in landfills and open dumps by anaerobic decomposition of the organic material in solid-waste-disposal landfills is either vented to the atmosphere or converted to carbon dioxide (CO 2 ) by flaring. The gas consists of about 50 percent methane (CH 4 ), the primary component of natural gas, about 50 percent carbon dioxide (CO

112

Landfill Methane Project Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Project Development Handbook Landfill Methane Project Development Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Landfill Methane Project Development Handbook Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Biomass, - Landfill Gas Phase: Determine Baseline, Evaluate Options, Get Feedback Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/lmop/publications-tools/handbook.html Cost: Free References: Project Development Handbook[1] The handbook describes the process of implementing a waste-to-energy landfill gas project. Overview "Approximately 250 million tons of solid waste was generated in the United States in 2008 with 54 percent deposited in municipal solid waste (MSW)

113

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling  

Science Journals Connector (OSTI)

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for...

Yoojin Jung; Paul Imhoff; Stefan Finsterle

2011-10-01T23:59:59.000Z

114

(sanitary) landfill operator  

Science Journals Connector (OSTI)

(sanitary) landfill operator, Müllkippenbetreiber m, Mülldeponiebetreiber, Kippenbetreiber, Deponiebetreiber

2014-08-01T23:59:59.000Z

115

State bans dumping of chemicals in landfill  

Science Journals Connector (OSTI)

State bans dumping of chemicals in landfill ... California governor Edmund G. Brown Jr. has begun a program aimed at eliminating most hazardous-waste chemicals from landfills in that state—a goal that will be difficult and costly to achieve. ...

1981-10-26T23:59:59.000Z

116

"Maximum recycling of Material and Energy, Minimum of Landfilling"  

E-Print Network (OSTI)

in "Recycling". "Waste-to-Energy" is now defined as Recycling, when energy efficiency is > 0,65 Prevention Reuse Recycling and Waste-to Energy? #12;6 European Policies on Landfill Ban The EU Landfill Directive The amount Ban decided upon in 2000, in force in 2005. A very strong effect, with a strong increase of Waste-to-Energy

Columbia University

117

Landfill gas emission prediction using Voronoi diagrams and importance sampling  

Science Journals Connector (OSTI)

Municipal solid waste (MSW) landfills are among the nation's largest emitters of methane, a key greenhouse gas, and there is considerable interest in quantifying the surficial methane emissions from landfills. There are limitations in obtaining accurate ... Keywords: Air dispersion modeling, Delaunay tessellation, Kriging, Least squares, MSW landfill, Voronoi diagram

K. R. Mackie; C. D. Cooper

2009-10-01T23:59:59.000Z

118

1 INTRODUCTION The use of geosynthetics in modern landfills involves  

E-Print Network (OSTI)

1 INTRODUCTION The use of geosynthetics in modern landfills involves important roles because systems for landfills typically include both geosynthetics and earthen material components, (e-established components of the landfill industry. The state of the art on the use of geosynthetics in waste containment

Zornberg, Jorge G.

119

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING  

E-Print Network (OSTI)

LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING GEOSYTNTHETICS Virginia L. Wilson.L. Soderman and G.P. Raymond November 12, 1998 #12;LESSONS LEARNED FROM A LANDFILL SLOPE FAILURE INVOLVING slopes at waste containment facilities. The Geneva Landfill is located near Geneva, Ohio which

120

Stability Analysis for a Landfill Experiencing Elevated Temperatures Timothy D. Stark1  

E-Print Network (OSTI)

Stability Analysis for a Landfill Experiencing Elevated Temperatures Timothy D. Stark1 , F. ASCE, P and stability analyses for a municipal solid waste (MSW) landfill experiencing elevated temperatures due wastes can be disposed of in MSW landfills because this waste is not categorized as hazardous under 40

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Is converting landfill gas to energy the best option?  

Science Journals Connector (OSTI)

Is converting landfill gas to energy the best option? ... But when it comes to new discards, critics say that the hype over landfill-gas-to-energy(LFGTE) projects may have perverse outcomes, such as discouraging the diversion of organic waste from landfills and actually increasing the amount of methane being released. ... In the notice, EDF suggests that EPA tighten current controls, which require the capture and flaring of landfill gas at sites with more than 2.5 million metric tons of waste, by bringing regulation to smaller landfills and defining LFGTE projects as the best demonstrated technology (BDT). ...

Janet Pelley

2008-12-10T23:59:59.000Z

122

Landfill Leachate Treatment by Reverse Osmosis  

Science Journals Connector (OSTI)

Leachate from landfill sites represents a highly polluted waste water. It containes biodegradable compounds but also inorganic salts and trace recalcitrant pollutants. The reverse osmosis process with or without ...

B. Weber; F. Holz

1991-01-01T23:59:59.000Z

123

SUSTAINABILITY OPPORTUNITY Waste audits from campus buildings reveal that 30% of the trash Stanford sends to the landfill is  

E-Print Network (OSTI)

How To... SUSTAINABILITY OPPORTUNITY Waste audits from campus buildings reveal that 30 on campus have active composting programs. Interested buildings and departments can start a voluntary office;MORE INFORMATION SUSTAINABLE STANFORD'S WASTE REDUCTION EFFORTS http://sustainable

Straight, Aaron

124

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network (OSTI)

waste is also transported to landfill site near Shah Rukn-e-transportation of waste to landfill sites. For direct hauldispose off the waste at landfill site. Trolleys and dumpers

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

125

PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER QUALITY MODEL (RZWQM) AND  

E-Print Network (OSTI)

Abstract PREFERENTIAL FLOW THROUGH EARTHEN LANDFILL COVERS: FIELD EVALUATION OF ROOT ZONE WATER into the waste, earthen landfill covers are constructed once a landfill reaches its capacity. Formation earthen landfill covers during service. Most commonly used water balance models that are used

126

Perdido LF-Gase to Electricity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Perdido LF-Gase to Electricity Perdido LF-Gase to Electricity This presentation was given at the July 17, 2012, Community Renewable Energy Deployment webinar on successful landfill...

127

Field studies of engineered barriers for closure of low level radioactive waste landfills at Los Alamos, New Mexico, USA  

SciTech Connect

The Los Alamos National Laboratory examined water balance relationships for four different landfill cover designs containing engineered barriers. These field experiments were performed at Los Alamos, New Mexico, USA, in 1.0- by 10.0-m plots with downhill slopes of 5, 10, 15, and 25%. Field measurements of seepage, precipitation, interflow, runoff, and soil water content were collected in each of the 16 plots representing four slopes each with four cover designs: Conventional, EPA, Loam Capillary Barrier and Clay Loam Capillary Barrier. A seepage collection system was installed beneath each cover design to evaluate the influence of slope length on seepage using a series of four metal pans filled with medium gravel that were placed end-to-end in the bottom of each field plot. An automated water flow data logging system was used to collect hourly seepage, interflow and runoff data and consisted of 100 100-liter tanks, each of which was equipped with an ultrasonic liquid-level sensor and a motor-operated ball valve used to drain the tank. Soil water content was routinely monitored every six hours at each of 212 locations throughout the 16 plots with time domain reflectrometry (TDR) techniques using an automated and multiplexed measurement system. Field data is presented to show the effects of slope and slope length on the performance of each landfill cover design for the first 15 months of this field experiment.

Nyhan, J.W.; Langhorst, G.J.; Martin, C.E.; Martinez, J.L.; Schofield, T.G.

1993-05-01T23:59:59.000Z

128

Landfill stabilization focus area: Technology summary  

SciTech Connect

Landfills within the DOE Complex as of 1990 are estimated to contain 3 million cubic meters of buried waste. The DOE facilities where the waste is predominantly located are at Hanford, the Savannah River Site (SRS), the Idaho National Engineering Laboratory (INEL), the Los Alamos National Laboratory (LANL), the Oak Ridge Reservation (ORR), the Nevada Test Site (NTS), and the Rocky Flats Plant (RFP). Landfills include buried waste, whether on pads or in trenches, sumps, ponds, pits, cribs, heaps and piles, auger holes, caissons, and sanitary landfills. Approximately half of all DOE buried waste was disposed of before 1970. Disposal regulations at that time permitted the commingling of various types of waste (i.e., transuranic, low-level radioactive, hazardous). As a result, much of the buried waste throughout the DOE Complex is presently believed to be contaminated with both hazardous and radioactive materials. DOE buried waste typically includes transuranic-contaminated radioactive waste (TRU), low-level radioactive waste (LLW), hazardous waste per 40 CFR 26 1, greater-than-class-C waste per CFR 61 55 (GTCC), mixed TRU waste, and mixed LLW. The mission of the Landfill Stabilization Focus Area is to develop, demonstrate, and deliver safer,more cost-effective and efficient technologies which satisfy DOE site needs for the remediation and management of landfills. The LSFA is structured into five technology areas to meet the landfill remediation and management needs across the DOE complex. These technology areas are: assessment, retrieval, treatment, containment, and stabilization. Technical tasks in each of these areas are reviewed.

NONE

1995-06-01T23:59:59.000Z

129

The world's largest landfill  

Science Journals Connector (OSTI)

The world's largest landfill ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ... GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer ...

Joseph M. Suflita; Charles P. Gerba; Robert K. Ham; Anna C. Palmisano; William L. Rathje; Joseph A. Robinson

1992-08-01T23:59:59.000Z

130

ISWA commitments on waste and climate ISWA General Secretariat  

E-Print Network (OSTI)

of renewable energy. Incineration and other thermal processes for waste-to-energy, landfill gas recovery

131

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1  

E-Print Network (OSTI)

REACTION AND COMBUSTION INDICATORS IN MSW LANDFILLS Jeffrey W. Martin1 ,P.G., R.S., Timothy D, Ohio. ABSTRACT Municipal Solid Waste (MSW) landfills may contain aluminum from residential, particularly aluminum production wastes, may react exothermically with liquid within a landfill and cause

132

Comparison of four composite landfill liner systems considering leakage rate and mass flux  

E-Print Network (OSTI)

Comparison of four composite landfill liner systems considering leakage rate and mass flux T, Seoul, Republic of Korea ABSTRACT: Performance of four different municipal solid waste landfill liner to evaluate the performance of municipal solid waste (MSW) landfill liner systems. A liner system that allows

133

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

Don Augenstein

1999-01-11T23:59:59.000Z

134

Agencies plan continued DOE landfill remediation  

NLE Websites -- All DOE Office Websites (Extended Search)

Agencies plan continued DOE landfill remediation Agencies plan continued DOE landfill remediation The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality and U.S. Environmental Protection Agency have released a planning document that specifies how DOE will continue to remediate a landfill containing hazardous and transuranic waste at DOE's Idaho Site located in eastern Idaho. The Phase 1 Remedial Design/Remedial Action Work Plan for Operable Unit 7-13/14 document was issued after the September 2008 Record of Decision (ROD) and implements the retrieval of targeted waste at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC). The SDA began receiving waste in 1952 and contains radioactive and chemical waste in approximately 35 acres of disposal pits, trenches and soil vaults.

135

The reduction of greenhouse gas emissions using various thermal systems in a landfill site  

Science Journals Connector (OSTI)

In this paper, the Greenhouse Gas (GHG) emissions from an uncontrolled landfill site filled with Municipal Solid Waste (MSW) are compared with those from controlled sites in which collected Landfill Gases (LFG) are utilised by various technologies. These technologies include flaring, conventional electricity generation technologies such as Internal Combustion Engine (ICE) and Gas Turbine (GT) and an emerging technology, Solid Oxide Fuel Cell (SOFC). The results show that SOFC is the best option for reducing the GHG emissions among the studied technologies. In the case when SOFC is used, GHG emissions from the controlled site are reduced by 63% compared to the uncontrolled site. This case has a specific lifetime GHG emission of 2.38 tonnes CO2 .eq/MWh when only electricity is produced and 1.12 tonnes CO2.eq/MWh for a cogeneration application.

C. Ozgur Colpan; Ibrahim Dincer; Feridun Hamdullahpur

2009-01-01T23:59:59.000Z

136

Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination  

E-Print Network (OSTI)

reductive dechlorination of PCE. Environ. Sci. Technol 2003,588. Kim, J. O. Gaseous TCE and PCE removal by an activatedTsotsis, T. T. Degradation of PCE in an anaerobic waste gas

Popat, Sudeep Chandrakant

2010-01-01T23:59:59.000Z

137

Methane Gas Utilization Project from Landfill at Ellery (NY)  

SciTech Connect

Landfill Gas to Electric Energy Generation and Transmission at Chautauqua County Landfill, Town of Ellery, New York. The goal of this project was to create a practical method with which the energy, of the landfill gas produced by the decomposing waste at the Chautauqua County Landfill, could be utilized. This goal was accomplished with the construction of a landfill gas to electric energy plant (originally 6.4MW and now 9.6MW) and the construction of an inter-connection power-line, from the power-plant to the nearest (5.5 miles) power-grid point.

Pantelis K. Panteli

2012-01-10T23:59:59.000Z

138

Methane production during the anaerobic decomposition of composted and raw organic refuse in simulated landfill cells  

E-Print Network (OSTI)

production from landfills if organic waste is composted prior to. The quantities and rates of methane production were measured from simulated landfill cells containing composted and raw simulated refuse. The refuse was composted in an open pile...

West, Margrit Evelyn

1995-01-01T23:59:59.000Z

139

E-Print Network 3.0 - air force landfill Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Driving Forces towards Materials... lack of Waste-to-Energy capacity. 12;9 Austria As Germany, but Ban in force already in 2002. Landfill... Landfill Ban in force already in...

140

Modeling the final phase of landfill gas generation from long-term observations  

Science Journals Connector (OSTI)

For waste management, methane emissions from landfills and their effect on climate change are of serious concern. Current models for biogas generation that focus on the economic use of the landfill gas are usuall...

Johannes Tintner; Manfred Kühleitner; Erwin Binner; Norbert Brunner…

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Landfill-Gas-to-Energy Projects:? Analysis of Net Private and Social Benefits  

Science Journals Connector (OSTI)

Under these standards, large landfills (that is, those with the potential to emit more than 50 Mg/year of nonmethane volatile organic compounds) have to collect and combust the landfill gas. ... Since the 1996 enact ment of the New Source Performance Standard and Emission Guidelines for Municipal Solid Waste Landfills, the Landfill Methane Outreach Program has become a tool to help landfills meet the new regulations. ... The costs of a collection system depend on different site factors, such as landfill depth, number of wells required, etc. Table 1 provides average collection system costs for landfills of three different sizes. ...

Paulina Jaramillo; H. Scott Matthews

2005-08-27T23:59:59.000Z

142

Landfill gas recovery  

Science Journals Connector (OSTI)

Landfill gas recovery ... However, by referring to landfills as dumps, the article creates a misimpression. ... The answers revolve around the relative emissions from composting facilities and landfills and the degree to which either finished compost or landfill gas is used beneficially. ...

Morton A. Barlaz

2009-04-29T23:59:59.000Z

143

Application of a NAPL partitioning interwell tracer test (PITT) to support DNAPL remediation at the Sandia National Laboratories/New Mexico chemical waste landfill  

SciTech Connect

Chlorinated solvents as dense non-aqueous phase liquid (DNAPL) are present at a large number of hazardous waste sites across the U.S. and world. DNAPL is difficult to detect in the subsurface, much less characterize to any degree of accuracy. Without proper site characterization, remedial decisions are often difficult to make and technically effective, cost-efficient remediations are even more difficult to obtain. A new non-aqueous phase liquid (NAPL) characterization technology that is superior to conventional technologies has been developed and applied at full-scale. This technology, referred to as the Partitioning Interwell Tracer Test (PITT), has been adopted from oil-field practices and tailored to environmental application in the vadose and saturated zones. A PITT has been applied for the first time at full-scale to characterize DNAPL in the vadose zone. The PITT was applied in December 1995 beneath two side-by-side organic disposal pits at Sandia National Laboratories/New Mexico (SNL/NM) RCRA Interim Status Chemical Waste Landfill (CWL), located in Albuquerque, New Mexico. DNAPL, consisting of a mixture of chlorinated solvents, aromatic hydrocarbons, and PCE oils, is known to exist in at least one of the two buried pits. The vadose zone PITT was conducted by injecting a slug of non-partitioning and NAPL-partitioning tracers into and through a zone of interest under a controlled forced gradient. The forced gradient was created by a balanced extraction of soil gas at a location 55 feet from the injector. The extracted gas stream was sampled over time to define tracer break-through curves. Soil gas sampling ports from multilevel monitoring installations were sampled to define break-through curves at specific locations and depths. Analytical instrumentation such as gas chromatographs and a photoacoustical analyzers operated autonomously, were used for tracer detection.

Studer, J.E. [INTERA Inc., Albuquerque, NM (United States); Mariner, P.; Jin, M. [INTERA Inc., Austin, TX (United States)] [and others

1996-05-01T23:59:59.000Z

144

Reverse osmosis module successfully treats landfill leachate  

SciTech Connect

By law, modern landfills are to be constructed with double liners to prevent contaminants from leaching into surface and ground water. Despite this design feature, however, both hazardous and non-hazardous compounds do leach from the waste disposed in landfills. The resulting contaminated water, or leachate, must be collected and treated. Rochem Environmental, Inc. (Houston, Texas) has developed a new membrane process, known as the Disc Tube{trademark} system, to remove a variety of contaminants from landfill leachate. 1 ref., 1 fig., 2 tabs.

NONE

1995-03-01T23:59:59.000Z

145

Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Abstract This paper reports on results of hot corrosion tests carried out on silicon–aluminide coatings developed for hot components of gas turbines burning biomass and waste derived fuel gases. The corrosion tests of the silicon–aluminide coatings, applied to superalloys IN738LC and CMSX-4, each consisted of five 100 h periods; at 700 °C for the type II tests and at 900 °C for the type I tests. Deposits of Cd + alkali and Pb + alkali were applied before each exposure. These deposits had been previously identified as being trace species produced from gasification of biomass containing fuels which after combustion had the potential to initiate hot corrosion in a gas turbine. Additionally, gases were supplied to the furnace to simulate the atmosphere anticipated post-combustion of these biomass derived fuel gases. Results of the type I hot corrosion tests showed that these novel coatings remained in the incubation stage for at least 300 h, after which some of the coating entered propagation. Mass change results for the first 100 h confirmed this early incubation stage. For the type II hot corrosion tests, differences occurred in oxidation and sulphidation rates between the two substrates; the incubation stages for CMSX-4 samples continued for all but the Cd + alkali high salt flux samples, whereas, for IN738LC, all samples exhibited consistent incubation rates. Following both the type I and type II corrosion tests, assessments using BSE/EDX results and XRD analysis confirmed that there has to be remnant coating, sufficient to grow a protective scale. In this study, the novel silicon–aluminide coating development was based on coating technology originally evolved for gas turbines burning natural gas and fossil fuel oils. So in this paper comparisons of performance have been made with three commercially available coatings; a CoCrAlY overlay, a platinum-aluminide diffusion, and triple layer nickel–aluminide/silicon–aluminide-diffusion coatings. These comparisons showed that the novel single-step silicon–aluminide coatings provide equal or superior type II hot corrosion resistance to the best of the commercial coatings.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

146

Landfill gas with hydrogen addition – A fuel for SI engines  

Science Journals Connector (OSTI)

The recent quest to replace fossil fuels with renewable and sustainable energy sources has increased interest on utilization of landfill and bio gases. It is further augmented due to environment concerns and global warming caused by burning of conventional fossil fuels, energy security concerns and high cost of crude oil, and renewable nature of these gases. The main portion of landfill gas or biogas is comprised of methane and carbon dioxide with some other gases in small proportions. Methane if released directly to the atmosphere causes about 21 times global warming effects than carbon dioxide. Thus landfill gas is generally flared, where the energy recovery is not in place in practice. Using landfill gas to generate energy not only encourages more efficient collection reducing emissions into the atmosphere but also generates revenues for operators and local governments. However, use of landfill gases for energy production is not always perceived as an attractive option because of some disadvantages. Thus it becomes necessary to address these disadvantages involved by studying landfill gases in a technological perspective and motivate utilization of landfill gas for future energy needs. This paper discussed landfill gas as a fuel for a spark ignition engine to produce power in an effective way. It has been shown that though the performance and combustion characteristics of the landfill gas fueled engine deteriorated in comparison with methane operation, increasing compression ratio and advancing spark timing improved the performance of the landfill gas operation in par with methane operation. The effects due to composition changes in the landfill gas were found more pronounced at lean and rich mixture operation than at stoichiometry. In addition, the effects of additions of hydrogen up to 30% in the landfill gas were studied. Addition of even small quantities of hydrogen such as 3–5% delivered better performance improvement particularly at the lean and rich limit operations and extended the operational limits. Additions of hydrogen also improved the combustion characteristics and reduced cyclic variations of landfill gas operations especially at the lean and rich mixtures.

S.O. Bade Shrestha; G. Narayanan

2008-01-01T23:59:59.000Z

147

DESIGN OF A FAILED LANDFILL SLOPE By: Timothy D. Stark, W. Douglas Evans-, and Paul E. Sherry'  

E-Print Network (OSTI)

DESIGN OF A FAILED LANDFILL SLOPE 1 ~) ~ ~ By: Timothy D. Stark, W. Douglas Evans-, and Paul E solid waste landfill in which lateral displacements of up to 900 ft (275 m) and vertical settlements municipal solid waste landfill occupies 135 acres (546 km 2 ) approximately 9 miles (15.3 km) n

148

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

149

Review and Status of Solid Waste Management Practices in Multan, Pakistan  

E-Print Network (OSTI)

of throwing waste in water bodies, burning it as annearby residents. Burning of the waste at landfills and in

Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

2006-01-01T23:59:59.000Z

150

E-Print Network 3.0 - assessing landfill performance Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and WTE waste management options... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Care has been taken to...

151

E-Print Network 3.0 - areas treating landfill Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference COMPARISON OF AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES Summary: .K. dioxins emissions have been reported in the fugitive gas emissions from landfills as well as...

152

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

153

Control of pollutants in flue gases and fuel gases  

E-Print Network (OSTI)

and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

Laughlin, Robert B.

154

Control of pollutants in flue gases and fuel gases  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . . 3-5 3.4 Emission

Zevenhoven, Ron

155

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

municipal solid wastelandfill gas” and waste gases fromin Israel, a solar and landfill gas demonstration in Canada,23. Solar-Powered Landfill Gas Conversion in Saskatoon,

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

156

Landfill site selection and landfill liner design for Ankara, Turkey  

Science Journals Connector (OSTI)

Considering the high population growth rate of Ankara, it is inevitable that landfill(s) will be required in the area ... scope of this study is to select alternative landfill sites for Ankara based on the growin...

Gözde P?nar Yal; Haluk Akgün

2013-11-01T23:59:59.000Z

157

Landfill Bioreactor Financial Analysis—Monterey Peninsula Landfill, Marina, California  

Science Journals Connector (OSTI)

The Monterey Peninsula Landfill, owned and operated by the Monterey Regional ... that is permitted under the State of California landfill regulations. In order to evaluate the potential...

S. Purdy; R. Shedden

2009-01-01T23:59:59.000Z

158

Vapor phase transport at a hillside landfill  

Science Journals Connector (OSTI)

...ambient density gradients. Post-landfill gas input reverses the direction of...landfill may explain observations of landfill gas found at depth. Post-landfill...of gas generation. Transport of landfill gas is shown to be dominated by diffusion...

P. H. Stauffer; N. D. Rosenberg

159

University of Washington Montlake Landfill Oversight Committee  

E-Print Network (OSTI)

University of Washington Montlake Landfill Oversight Committee Montlake Landfill Project Guide Department with the review and approval of the Montlake Landfill Oversight Committee. #12;Montlake Landfill ...................................................................................................................................3 Figure 1 ­ Approximate Boundaries of the Montlake Landfill

Wilcock, William

160

Landfill Gas Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of landfill gas energy resources and technologies supplemented by specific information to apply landfill gas energy within the Federal sector.

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Mechanics of biocell landfill settlements.  

E-Print Network (OSTI)

??Prediction of landfill gas generation and settlements are of concerns in design and maintenance of biocell landfills. Accurate settlement prediction is essential for design of… (more)

Hettiarachchi, Chamil Hiroshan

2005-01-01T23:59:59.000Z

162

Landfill Gas | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Incentives Retrieved from "http:en.openei.orgwindex.php?titleLandfillGas&oldid267173" Category: Articles with outstanding TODO tasks...

163

Monitoring of Gin Drinkers' Bay landfill, Hong Kong: I. Landfill gas on top of the landfill  

Science Journals Connector (OSTI)

The present study centered on the composition of landfill gas and its effects on soil and ... at the Gin Drinkers' Bay (GDB) landfill in Hong Kong This first part of ... the study was a whole-year monitoring of landfill

M. H. Wong; C. T. Yu

164

Carbonates and oxalates in sediments and landfill: monitors of death and decay in natural and artificial systems  

Science Journals Connector (OSTI)

...intermediate stage in the production of landfill gas and as a sink for ammonia as ammonium...waste are monitored by analysis of landfill gas and leachate. Gas compositional...years. Fig. 3. Evolution in landfill gas composition with time, showing...

DAVID A. C. MANNING

165

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

166

Energy and materials savings from gases and solid waste recovery in the iron and steel industry in Brazil: An industrial ecology approach  

SciTech Connect

This paper attempts to investigate, from an entropic point of view, the role of selected technologies in the production, transformation, consumption and release of energy and materials in the Iron and Steel Industry in Brazil. In a quantitative analysis, the potential for energy and materials savings with recovery of heat, gases and tar are evaluated for the Iron and Steel Industry in Brazil. The technologies for heat recovery of gases include Coke Dry Quenching (CDQ), applied only in one of the five Brazilian coke integrated steel plants, Top Gas Pressure Recovery Turbines (TPRT), recovery of Coke Oven Gas (COG), recovery of Blast Furnace Gas (BFG), recovery of BOF gas, recovery of tar, and thermal plant. Results indicate that, in a technical scenario, some 5.1 TWh of electricity can be generated if these technologies are applied to recover these remaining secondary fuels in the Iron and Steel Industry in Brazil, which is equivalent to some 45% of current total electricity consumption in the integrated plants in the country. Finally, solid waste control technologies, including options available for collection and treatment, are discussed. Estimates using the best practice methodology show that solid waste generation in the Iron and Steel Industry in Brazil reached approximately 18 million metric tons in 1994, of which 28% can be recirculated if the best practice available in the country is applied thoroughly.

Costa, M.M.; Schaeffer, R.

1997-07-01T23:59:59.000Z

167

Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste  

Science Journals Connector (OSTI)

For each country, the amount of waste burned (WB) is estimated using the general guidelines from section 5.3.2 in the 2006 IPCC Guidelines for National GHG Inventories:(4)(2)where P is the national population, Pfrac is the fraction of the population assumed to burn some of their waste, MSWP is the mass of annual per capita waste production, and Bfrac is the fraction of waste available to be burned that is actually burned. ... In urban areas, waste that is not collected is assumed to be burnable. ... Among the most important sources, open fires in agriculture/forests as well as open burning of wastes have been identified as the major sources of PCDD/PCDF. ...

Christine Wiedinmyer; Robert J. Yokelson; Brian K. Gullett

2014-07-14T23:59:59.000Z

168

Attenuation of Fluorocarbons Released from Foam Insulation in Landfills  

Science Journals Connector (OSTI)

Lyngby, Denmark, and Department of Civil and Environmental Engineering, Miyazaki University, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan ... The investigation was performed using organic household waste or refuse excavated from a landfill. ... A:? Organic waste collected from Danish households. ...

Charlotte Scheutz; Yutaka Dote; Anders M. Fredenslund; Hans Mosbæk; Peter Kjeldsen

2007-10-20T23:59:59.000Z

169

LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL  

SciTech Connect

The work described in this report, to demonstrate and advance this technology, has used two demonstration-scale cells of size (8000 metric tons [tonnes]), sufficient to replicate many heat and compaction characteristics of larger ''full-scale'' landfills. An enhanced demonstration cell has received moisture supplementation to field capacity. This is the maximum moisture waste can hold while still limiting liquid drainage rate to minimal and safely manageable levels. The enhanced landfill module was compared to a parallel control landfill module receiving no moisture additions. Gas recovery has continued for a period of over 4 years. It is quite encouraging that the enhanced cell methane recovery has been close to 10-fold that experienced with conventional landfills. This is the highest methane recovery rate per unit waste, and thus progress toward stabilization, documented anywhere for such a large waste mass. This high recovery rate is attributed to moisture, and elevated temperature attained inexpensively during startup. Economic analyses performed under Phase I of this NETL contract indicate ''greenhouse cost effectiveness'' to be excellent. Other benefits include substantial waste volume loss (over 30%) which translates to extended landfill life. Other environmental benefits include rapidly improved quality and stabilization (lowered pollutant levels) in liquid leachate which drains from the waste.

Don Augenstein

2001-02-01T23:59:59.000Z

170

The UK landfill tax and the landfill tax credit scheme: operational weaknesses  

Science Journals Connector (OSTI)

The UK Landfill Tax and the related Landfill Tax Credit Scheme have now been in operation since October 1996. There have been a number of reviews to assess its operation and effectiveness that have led to some minor amendments. However, there continue to be concerns about operational weaknesses of the tax and the credit scheme. In particular, there is the risk that the tax may be evaded and there are fears that a lack of transparency and independence may undermine the fundamental principles of the Landfill Tax Credit Scheme. Following a recent report, the Secretary of State for the Department of the Environment, Transport and the Regions has set up an inquiry. This paper looks at some of the specific concerns that have been raised and the implications for waste management.

John R. Morris; Adam D. Read

2001-01-01T23:59:59.000Z

171

Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications  

Energy.gov (U.S. Department of Energy (DOE))

Landfill gas (LFG), composed largely of methane and carbon dioxide, is used in over 450 operational projects in 43 states. These projects convert a large source of greenhouse gases into a fuel that...

172

Integration of the informal sector into municipal solid waste management in the Philippines - What does it need?  

SciTech Connect

The integration of the informal sector into municipal solid waste management is a challenge many developing countries face. In Iloilo City, Philippines around 220 tons of municipal solid waste are collected every day and disposed at a 10 ha large dumpsite. In order to improve the local waste management system the Local Government decided to develop a new Waste Management Center with integrated landfill. However, the proposed area is adjacent to the presently used dumpsite where more than 300 waste pickers dwell and depend on waste picking as their source of livelihood. The Local Government recognized the hidden threat imposed by the waste picker's presence for this development project and proposed various measures to integrate the informal sector into the municipal solid waste management (MSWM) program. As a key intervention a Waste Workers Association, called USWAG Calahunan Livelihood Association Inc. (UCLA) was initiated and registered as a formal business enterprise in May 2009. Up to date, UCLA counts 240 members who commit to follow certain rules and to work within a team that jointly recovers wasted materials. As a cooperative they are empowered to explore new livelihood options such as the recovery of Alternative Fuels for commercial (cement industry) and household use, production of compost and making of handicrafts out of used packages. These activities do not only provide alternative livelihood for them but also lessen the generation of leachate and Greenhouse Gases (GHG) emissions from waste disposal, whereby the life time of the proposed new sanitary landfill can be extended likewise.

Paul, Johannes G., E-mail: jp.aht.p3@gmail.com [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Arce-Jaque, Joan [GIZ-AHT Project Office SWM4LGUs, c/o DENR, Iloilo City (Philippines); Ravena, Neil; Villamor, Salome P. [General Service Office, City Government, Iloilo City (Philippines)

2012-11-15T23:59:59.000Z

173

THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)  

SciTech Connect

A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

Smith, W.; Feizollahi, F.

2002-02-25T23:59:59.000Z

174

Effects of a temporary HDPE cover on landfill gas emissions: Multiyear evaluation with the static chamber approach at an Italian landfill  

Science Journals Connector (OSTI)

According to the European Landfill Directive 1999/31/EC and the related Italian Legislation (“D. Lgs. No. 36/2003”), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO2, CH4 emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the “Fano” town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005–2009). For the entire multiyear monitoring period, the resulting CO2, CH4 emission rates varied on the whole up to about 13,100 g CO2 m?2 d?1 and 3800 g CH4 m?2 d?1, respectively. The elaboration of these landfill gas emission data collected at the “Fano” case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH4 emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site.

Bruno Capaccioni; Cristina Caramiello; Fabio Tatàno; Alessandro Viscione

2011-01-01T23:59:59.000Z

175

Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site  

SciTech Connect

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

1993-02-19T23:59:59.000Z

176

Evaluating fugacity models for trace components in landfill gas  

Science Journals Connector (OSTI)

A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95?300 ?g m?3; 43 ?g m?3) fell within measured ranges observed in gas from landfills (24?300–180?000 ?g m?3; 20–70 ?g m?3). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrations in landfill gas.

Sophie Shafi; Andrew Sweetman; Rupert L. Hough; Richard Smith; Alan Rosevear; Simon J.T. Pollard

2006-01-01T23:59:59.000Z

177

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES  

E-Print Network (OSTI)

SERVICE LIFE OF A LANDFILL LINER SYSTEM SUBJECTED TO ELEVATED TEMPERATURES Timothy D. Stark, Ph and possible publication in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste Management April 14-Engineered-Components-ServiceLife-Submission_2.pdf #12;2 SERVICE LIFE OF LANDFILL LINER SYSTEMS SUBJECTED TO ELEVATED1 TEMPERATURES2 Timothy D

178

DOE EM Landfill Workshop and Path Forward - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: Teleconference: 2. DOE EM Landfill Workshop & Path Forward Office of Groundwater and Soil Remediation US Department of Energy July 2009 Slides prepared by CRESP DOE EM Landfill Workshop 2 Objective: - Discuss findings & recommendations from ITR visits to DOE facilities - Identify technology gaps and needs to advance EM disposal practice of the future. - Obtain input from experts within and outside of DOE. Panels: Waste subsidence: prediction and impacts Waste forecasting: predicting volumes and WACs Final covers: long-term performance and monitoring Liners: role and need Workshop Approach and Structure * Objective: - Discuss each issue - Evaluate the merits of each issue - Create a prioritized list of technologies needs for Office of

179

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

180

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of a landfill model to prioritize design and operating objectives  

Science Journals Connector (OSTI)

The application of scientifically based decision making tools to help address solid waste management issues dates back to the early 1960s. Researchers continue to use operations research tools to help optimize landfill

K. V. H. Ohman; J. P. A Hettiaratchi…

2007-12-01T23:59:59.000Z

182

Hazardous Waste Management System-General (Ohio)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

183

Solid Waste Regulations (Nova Scotia, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Nova Scotia Environment administers waste management for the province. Regulations include specific rules and standards for landfills, establish a Resource Recovery Fund, and guidelines for...

184

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment Studyreatment Studyreatment Studyreatment Study continued on p  

E-Print Network (OSTI)

Update on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate TUpdate on Hilo Landfill Leachate Treatment Studyreatment, the County of Hawaii is considering an expansion of the South Hilo Sanitary Landfill (SHSL

185

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bygas and simulated landfill gas as a fuel source. This

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

186

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES  

E-Print Network (OSTI)

GEOSYNTHETIC REINFORCEMENT IN LANDFILL DESIGN: US PERSPECTIVES Jorge G. Zornberg1 , M. ASCE Abstract: Geosynthetic reinforcement in landfill applications in the US has involved conventional reinforced soil structures and veneer stabilization with reinforcements placed along the landfill slope

Zornberg, Jorge G.

187

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATIONengine that runs on landfill gas. The project team led bynatural gas and simulated landfill gas as a fuel source.

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

188

EM SSAB ITR Landfill Assessment Project Lessons Learned Presentation - July 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Teleconference: Teleconference: 1. DOE EM ITR Landfill Assessment Project: Lessons Learned Craig H. Benson, PhD, PE CRESP July 2009 1 Independent Technical Review Team * Craig H. Benson, PhD, PE - University of Wisconsin-Madison: waste containment systems, civil engineering, geotechnical engineering. * William H. Albright, PhD - Desert Research Institute, Reno, Nevada: waste containment systems, hydrology, regulatory interactions. * David P. Ray, PE - US Army Corps of Engineers, Omaha, NB: waste containment systems, civil engineering, geotechnical engineering. * John Smegal - Legin Group, Washington, DC: economics, management. 2 * Mixed-waste landfill authorized by EPA and Washington State DoE for disposal of

189

Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills  

Science Journals Connector (OSTI)

Abstract Methane emission from landfill gas emission (LandGEM) model was validated through the results of laboratory scale biochemical methane potential assay. Results showed that LandGEM model over estimates methane (CH4) emissions; and the true CH4 potential of waste depends on the level of segregation. Based on these findings, correction factors were developed to estimate CH4 emission using LandGEM model especially where the level of segregation is negligible or does not exist. The correction factors obtained from the study were 0.94, 0.13 and 0.74 for food waste, mixed un-segregated municipal solid waste (MSW) and vegetable wastes, respectively.

Avick Sil; Sunil Kumar; Jonathan W.C. Wong

2014-01-01T23:59:59.000Z

190

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer LFG emissions are measured at an abandoned landfill with highly organic waste. Black-Right-Pointing-Pointer Mean headspace and vent emissions are 0.240 and 0.074 l CH{sub 4}/m{sup 2} hr, respectively. Black-Right-Pointing-Pointer At sites with high food waste content, LFG generation drops rapidly after site closure. Black-Right-Pointing-Pointer The viability of LFG recovery for CDMs in developing countries is doubtful. - Abstract: This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH{sub 4} flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 {+-} 0.014, 0.224 {+-} 0.012 and 0.237 {+-} 0.008 l CH{sub 4}/m{sup 2} hr, respectively, compared to an arithmetic mean of 0.24 l/m{sup 2} hr. The flux values are within the reported range for closed landfills (0.06-0.89 l/m{sup 2} hr), and lower than the reported range for active landfills (0.42-2.46 l/m{sup 2} hr). Simulation results matched field measurements for low methane generation potential (L{sub 0}) values in the range of 19.8-102.6 m{sup 3}/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

El-Fadel, Mutasem, E-mail: mfadel@aub.edu.lb [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon); Abi-Esber, Layale; Salhab, Samer [Department of Civil and Environmental Engineering, American University of Beirut (Lebanon)

2012-11-15T23:59:59.000Z

191

Radioactive material in the West Lake Landfill: Summary report  

SciTech Connect

The West Lake Landfill is located near the city of St. Louis in Bridgeton, St. Louis County, Missouri. The site has been used since 1962 for disposing of municipal refuse, industrial solid and liquid wastes, and construction demolition debris. This report summarizes the circumstances of the radioactive material in the West Lake Landfill. The radioactive material resulted from the processing of uranium ores and the subsequent by the AEC of processing residues. Primary emphasis is on the radiological environmental aspects as they relate to potential disposition of the material. It is concluded that remedial action is called for. 8 refs., 2 figs., 1 tab.

none,

1988-06-01T23:59:59.000Z

192

Emission assessment at the Burj Hammoud inactive municipal landfill: Viability of landfill gas recovery under the clean development mechanism  

Science Journals Connector (OSTI)

This paper examines landfill gas (LFG) emissions at a large inactive waste disposal site to evaluate the viability of investment in LFG recovery through the clean development mechanism (CDM) initiative. For this purpose, field measurements of LFG emissions were conducted and the data were processed by geospatial interpolation to estimate an equivalent site emission rate which was used to calibrate and apply two LFG prediction models to forecast LFG emissions at the site. The mean CH4 flux values calculated through tessellation, inverse distance weighing and kriging were 0.188 ± 0.014, 0.224 ± 0.012 and 0.237 ± 0.008 l CH4/m2 hr, respectively, compared to an arithmetic mean of 0.24 l/m2 hr. The flux values are within the reported range for closed landfills (0.06–0.89 l/m2 hr), and lower than the reported range for active landfills (0.42–2.46 l/m2 hr). Simulation results matched field measurements for low methane generation potential (L0) values in the range of 19.8–102.6 m3/ton of waste. LFG generation dropped rapidly to half its peak level only 4 yrs after landfill closure limiting the sustainability of LFG recovery systems in similar contexts and raising into doubt promoted CDM initiatives for similar waste.

Mutasem El-Fadel; Layale Abi-Esber; Samer Salhab

2012-01-01T23:59:59.000Z

193

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

194

Capture and Utilisation of Landfill Gas  

E-Print Network (OSTI)

about 955 landfills that recovered biogas. The largest number of such landfills were in the USA landfills in Denmark that in total captured 5,800Nm3 of biogas per hour, equivalent to 276.4MW of contained #12;Biomass US DATA ON GENERATION OF BIOGAS AT LANDFILLS Eileen Berenyi, a Research Associate of EEC

Columbia University

195

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND  

E-Print Network (OSTI)

LATERAL LANDFILL GAS MIGRATION: CHARACTERIZATION AND PRELIMINARY MODELING RESULTS O.BOUR*, E,UniversitéLaval, Sainte-Foy, Canada SUMMARY: Lateral landfill gas migration occurs in the surroundings of a MSW landfill complementary physical measures were used to build a conceptual model of lateral landfill gas migration

Boyer, Edmond

196

7.4 Landfill Methane Utilization  

Energy.gov (U.S. Department of Energy (DOE))

A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

197

IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL  

E-Print Network (OSTI)

#12;IMPACT ASSESSMENT OF THE OLD QUESNEL LANDFILL FINAL REPORT DOE FRAP 1995-05 Prepared for List of Figures Site Location/Legal Boundary Old Quesnel Landfill .....................................2 Schematic of Source Pathway Receptor Model at Old Quesnel Landfill .......4 Landfill Extent

198

Thermal conversion of municipal solid waste via hydrothermal carbonization: Comparison of carbonization products to products from current waste management techniques  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Hydrothermal carbonization (HTC) is a novel thermal conversion process. Black-Right-Pointing-Pointer HTC converts wastes into value-added resources. Black-Right-Pointing-Pointer Carbonization integrates majority of carbon into solid-phase. Black-Right-Pointing-Pointer Carbonization results in a hydrochar with high energy density. Black-Right-Pointing-Pointer Using hydrochar as an energy source may be beneficial. - Abstract: Hydrothermal carbonization (HTC) is a novel thermal conversion process that may be a viable means for managing solid waste streams while minimizing greenhouse gas production and producing residual material with intrinsic value. HTC is a wet, relatively low temperature (180-350 Degree-Sign C) thermal conversion process that has been shown to convert biomass to a carbonaceous residue referred to as hydrochar. Results from batch experiments indicate HTC of representative waste materials is feasible, and results in the majority of carbon (45-75% of the initially present carbon) remaining within the hydrochar. Gas production during the batch experiments suggests that longer reaction periods may be desirable to maximize the production of energy-favorable products. If using the hydrochar for applications in which the carbon will remain stored, results suggest that the gaseous products from HTC result in fewer g CO{sub 2}-equivalent emissions than the gases associated with landfilling, composting, and incineration. When considering the use of hydrochar as a solid fuel, more energy can be derived from the hydrochar than from the gases resulting from waste degradation during landfilling and anaerobic digestion, and from incineration of food waste. Carbon emissions resulting from the use of the hydrochar as a fuel source are smaller than those associated with incineration, suggesting HTC may serve as an environmentally beneficial alternative to incineration. The type and extent of environmental benefits derived from HTC will be dependent on hydrochar use/the purpose for HTC (e.g., energy generation or carbon storage).

Lu Xiaowei; Jordan, Beth [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Berge, Nicole D., E-mail: berge@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

2012-07-15T23:59:59.000Z

199

Effects of adding wash tower effluent to Ano Liossia landfill to enhance bioreaction c by Olympia Galenianou.  

E-Print Network (OSTI)

A theoretical study was performed on the effects of adding sulfate-rich wash tower effluent from the Athens hospital waste incinerator to the Ano Liossia landfill of Athens. The method of mass balance was used to examine ...

Galenianou, Olympia

2006-01-01T23:59:59.000Z

200

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Public health assessment for Kentwood Landfill, Kentwood, Kent County, Michigan, Region 5. Cerclis No. MID000260281. Final report  

SciTech Connect

The Kentwood Landfill site encompasses approximately 72 acres and was operated as a licensed landfill prior to 1976. It accepted domestic and industrial waste including unidentified hazardous wastes from heavy manufacturing and refining. Shallow ground water and leachate from the landfill are contaminated with heavy metals and organic compounds. On numerous occasions, leachate has been observed seeping out of the landfill and entering Plaster Creek. While significant exposure does not appear to have occurred or to be presently occurring, the Kentwood Landfill poses a public health hazard because of possible future exposures to contaminants. Nearby residents' ground water supplies could become contaminated should the contaminant plume shift or new wells be drilled into the plume. A lesser hazard is that trespassers could come into direct contact with contaminated surface materials on the site.

Not Available

1994-01-18T23:59:59.000Z

202

Powering Microturbines With Landfill Gas, October 2002 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7.4 Landfill Methane Utilization CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy for Landfills and Wastewater Treatment Plants:...

203

RCWMD Badlands Landfill Gas Project Biomass Facility | Open Energy...  

Open Energy Info (EERE)

RCWMD Badlands Landfill Gas Project Biomass Facility Jump to: navigation, search Name RCWMD Badlands Landfill Gas Project Biomass Facility Facility RCWMD Badlands Landfill Gas...

204

Penrose Landfill Gas Conversion LLC | Open Energy Information  

Open Energy Info (EERE)

Penrose Landfill Gas Conversion LLC Place: Los Angeles, California Product: Owner of landfill gas plant. References: Penrose Landfill Gas Conversion LLC1 This article is a stub....

205

Winnebago County Landfill Gas Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Winnebago County Landfill Gas Biomass Facility Facility Winnebago County Landfill Gas Sector Biomass Facility Type Landfill Gas Location Winnebago County, Wisconsin Coordinates...

206

Landfill Cover Revegetation at the Rocky Flats Environmental...  

Energy Savers (EERE)

Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover Revegetation at the Rocky Flats Environmental Technology Site Landfill Cover...

207

HMDC Kingsland Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

HMDC Kingsland Landfill Biomass Facility Jump to: navigation, search Name HMDC Kingsland Landfill Biomass Facility Facility HMDC Kingsland Landfill Sector Biomass Facility Type...

208

Occupational Safety at Landfill Sites - Hazards and Pollution Due to Landfill Gas  

Science Journals Connector (OSTI)

Landfill gas is formed on a large scale ... of methane gas which escapes every year from landfill sites in the Federal Republic of Germany ... about 2.5 million standard cubic metres. Landfill gas (LFG) with its ...

Volkmar Wilhelm

1993-01-01T23:59:59.000Z

209

Renewable LNG: Update on the World's Largest Landfill Gas to LNG Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

LNG LNG Update on the world's largest landfill gas to LNG plant Mike McGowan Head of Government Affairs Linde NA, Inc. June 12, 2012 $18.3 billion global sales A leading gases and engineering company Linde North America Profile $2.3 billion in gases sales revenue in North America in 2011 5,000 employees throughout the U.S., Canada and the Caribbean Supplier of compressed and cryogenic gases and technology Atmospheric gases - oxygen, nitrogen, argon Helium LNG and LPG Hydrogen Rare gases Plant engineering and supply LNG Petrochemicals Natural gas processing Atmospheric gases 3 Linde's alternative fuels portfolio Green hydrogen production - Magog, Quebec Renewable liquefied natural gas production - Altamont, CA Biogas fueling, LNG import terminal - Sweden

210

Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation.  

E-Print Network (OSTI)

??Development of Biochar-Amended Landfill Cover for Landfill Gas Mitigation Poupak Yaghoubi Department of Civil Engineering University of Illinois at Chicago Chicago, Illinois (2011) Dissertation Chairperson:… (more)

Yaghoubi, Poupak

2012-01-01T23:59:59.000Z

211

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network (OSTI)

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

212

Recirculation of municipal landfill leachate  

E-Print Network (OSTI)

RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKO4ISKI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject...: Civil Engineering RECIRCULATION OF MUNICIPAL LANDFILL LEACHATE A Thesis by BRIAN JUDE PINKOWSKI Approved as to style and content by: Charles P. Giammona (Chair of Committee) Roy . Harm, (Member) Kirk W. Brown (Member) Donald A. Maxwel...

Pinkowski, Brian Jude

2012-06-07T23:59:59.000Z

213

Livingston Parish Landfill Methane Recovery Project (Feasibility Study)  

SciTech Connect

The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

White, Steven

2012-11-15T23:59:59.000Z

214

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects July 17, 2012, Webinar: Landfill Gas-to-Energy Projects This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia County, Florida. Download the presentations below, watch the webinar (WMV 112 MB) or view the text version. Find more CommRE webinars. Prairie View RDF Gas to Energy Facility: A Public/Private Partnership Will County partnered with Waste Management, using a portion of the county's DOE Energy Efficiency and Conservation Block Grant (EECBG) funding, to develop the Prairie View Recycling and Disposal Facility. A gas purchase agreement was executed in 2010 and the facility became operational

215

T2LBM Version 1.0: Landfill bioreactor model for TOUGH2  

E-Print Network (OSTI)

7 2. LANDFILL BIODEGRADATIONof methanogenic activities in a landfill bioreactor treatingmethane production from landfill bioreactor, J. Env. Eng. ,

Oldenburg, Curtis M.

2001-01-01T23:59:59.000Z

216

Nitrous Oxide Emissions from a Municipal Landfill  

Science Journals Connector (OSTI)

Nitrous Oxide Emissions from a Municipal Landfill ... Due to the small area of landfills as compared to other land-use classes, the total N2O emissions from landfills are estimated to be of minor importance for the total emissions from Finland. ...

Janne Rinne; Mari Pihlatie; Annalea Lohila; Tea Thum; Mika Aurela; Juha-Pekka Tuovinen; Tuomas Laurila; Timo Vesala

2005-09-21T23:59:59.000Z

217

Landfill Gas | OpenEI  

Open Energy Info (EERE)

Landfill Gas Landfill Gas Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes annual renewable energy generation and capacity by region (9 regions in England, plus Wales, Scotland and Northern Ireland). Data available 2003 to 2009. Data is included in the DECC Energy Trends: September 2010 Report (available: http://www.decc.gov.uk/assets/decc/Statistics/publications/trends/558-tr...) Source UK Department of Energy and Climate Change (DECC) Date Released September 30th, 2010 (4 years ago) Date Updated Unknown Keywords Energy Generation Hydro Landfill Gas Other Biofuels Renewable Energy Consumption Sewage Gas wind Data application/zip icon 2 Excel files, 1 for generation, 1 for capacity (zip, 24.9 KiB) Quality Metrics Level of Review Peer Reviewed

218

DETECTION OF ALUMINUM WASTE REACTIONS AND WASTE FIRES Jeffrey W. Martin, M.S., P.G., R.S.  

E-Print Network (OSTI)

-review and possible publication in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste October 24, 2011 #12;[i combustion of the surrounding solid waste. The landfill liner and explosive gas extraction and leachate

219

Bioreactor Landfill Research and Demonstration Project Northern Oaks Landfill, Harrison, MI  

SciTech Connect

A bioreactor landfill cell with 1.2-acre footprint was constructed, filled, operated, and monitored at Northern Oaks Recycling and Disposal Facility (NORDF) at Harrison, MI. With a filled volume of 74,239 cubic yards, the cell contained approximately 35,317 tons of municipal solid waste (MSW) and 20,777 tons of cover soil. It was laid on the slope of an existing cell but separated by a geosynthetic membrane liner. After the cell reached a design height of 60 feet, it was covered with a geosynthetic membrane cap. A three-dimensional monitoring system to collect data at 48 different locations was designed and installed during the construction phase of the bioreactor cell. Each location had a cluster of monitoring devices consisting of a probe to monitor moisture and temperature, a leachate collection basin, and a gas sampling port. An increase in moisture content of the MSW in the bioreactor cell was achieved by pumping leachate collected on-site from various other cells, as well as recirculation of leachate from the bioreactor landfill cell itself. Three types of leachate injection systems were evaluated in this bioreactor cell for their efficacy to distribute pumped leachate uniformly: a leachate injection pipe buried in a 6-ft wide horizontal stone mound, a 15-ft wide geocomposite drainage layer, and a 60-ft wide geocomposite drainage layer. All leachate injection systems were installed on top of the compacted waste surface. The distribution of water and resulting MSW moisture content throughout the bioreactor cell was found to be similar for the three designs. Water coming into and leaving the cell (leachate pumped in, precipitation, snow, evaporation, and collected leachate) was monitored in order to carry out a water balance. Using a leachate injection rate of 26 – 30 gal/yard3, the average moisture content increased from 25% to 35% (wet based) over the period of this study. One of the key aspects of this bioreactor landfill study was to evaluate bioreactor start up and performance in locations with colder climate. For lifts filled during the summer months, methane generation started within three months after completion of the lift. For lifts filled in winter months, very little methane production occurred even eight months after filling. The temperature data indicated that subzero or slightly above zero (oC) temperatures persisted for unusually long periods (more than six months) in the lifts filled during winter months. This was likely due to the high thermal insulation capability of the MSW and the low level of biological activity during start up. This observation indicates that bioreactor landfills located in cold climate and filled during winter months may require mechanisms to increase temperature and initiate biodegradation. Thus, besides moisture, temperature may be the next important factor controlling the biological decomposition in anaerobic bioreactor landfills. Spatial and temporal characterization of leachate samples indicated the presence of low levels of commonly used volatile organic compounds (including acetone, methyl ethyl ketone, methyl isobutyl ketone, and toluene) and metals (including arsenic, chromium, and zinc). Changes and leachate and gaseous sample characteristics correlated with enhanced biological activity and increase in temperature. Continued monitoring of this bioreactor landfill cell is expected to yield critical data needed for start up, design, and operation of this emerging process.

Zhao, Xiando; Voice, Thomas; and Hashsham, Syed A.

2006-08-29T23:59:59.000Z

220

Performance evaluation of synthetically lined landfills  

SciTech Connect

Landfill design and performance standards for new facilities frequently require the use of geomembrane composite and double liners. Performance data from synthetically lined landfill sites have not been widely available. This report presents data obtained by monitoring three recently constructed synthetically lined landfill sites. Quantities of leachate removed by the primary and secondary collection systems from these landfills were tabulated. The data show that properly designed and constructed synthetic landfill liners provide effective containment of leachate. The environmental protection provided by synthetic liners is equivalent or superior to that of typical clay-lined facilities.

Maule, J. [Champion International Corp., Norway, MI (United States); Lowe, R.K. [STS Consultants Ltd., Green Bay, WI (United States); McCulloch, J.L. [Cross Pointe Paper Co., Park Falls, WI (United States)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Emissions inventories for MSW landfills under Title V  

SciTech Connect

In the past, many states were either not concerned with, or unaware that, municipal solid waste landfills (MSWLFs) were potential sources of regulated air pollutants. This philosophy is rapidly changing, in part due to US EPA policy documents concerning (and defining) fugitive and non-fugitive emissions from MSWLFs, the attention given to the newly released New Source Performance Standards and a recent lawsuit that gained national notoriety involving landfill air emissions and air permitting applicability issues. Most states now recognize that MSWLFs are sources of regulated air pollutants and are subject to permitting requirements (and pollutant emission fees) as other industries; i.e., state-level minor- and major-source operating permit programs, and the 1990 Clean Air Act Amendments Title V Operating Permits Program (Title V).

Vogt, W.G. [SCS Engineers, Reston, VA (United States); Peyser, T.R. [SCS Engineers, Birmingham, AL (United States); Hamilton, S.M. [SCS Engineers, Tampa, FL (United States)

1996-05-01T23:59:59.000Z

222

Waste Toolkit A-Z Food waste (recycling on-site)  

E-Print Network (OSTI)

Waste Toolkit A-Z Food waste (recycling on-site) How can I recycle food waste on-site? Recycling to be recycled. While this is better than sending waste to landfill, there is a more sustainable way to recycle and parks. See examples of Tidy Planet's customers recycling on-site: www.tidyplanet.co.uk/our-news Short

Melham, Tom

223

Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases  

Science Journals Connector (OSTI)

We have developed a gas-turbine cogeneration system that makes effective use of the calorific value of the volatile organic compound (VOC) gases exhausted during production processes at a manufacturing plant. The system utilizes the high-temperature exhaust-gas from the regenerative thermal oxidizer (RTO) which is used for incinerating VOC gases. The high-temperature exhaust gas is employed to resuperheat the steam injected into the gasturbine. The steam-injection temperature raised in this way increases the heat input, resulting in the improved efficiency of the gas-turbine. Based on the actual operation of the system, we obtained the following results: • Operation with the steam-injection temperature at 300 °C (45 °C resuperheated from 255 °C) increased the efficiency of the gasturbine by 0.7%. • The system can enhance the efficiency by 1.3% when the steam-injection temperature is elevated to 340 °C (85 °C resuperheated). In this case, up to 6.6 million yen of the total energy cost and 400 tons of carbon dioxide (CO2) emissions can be reduced annually. • A gas-turbine cogeneration and RTO system can reduce energy consumption by 23% and CO2 emission by 30.1% at the plant.

Masaaki Bannai; Akira Houkabe; Masahiko Furukawa; Takao Kashiwagi; Atsushi Akisawa; Takuya Yoshida; Hiroyuki Yamada

2006-01-01T23:59:59.000Z

224

Metropolitan Landfill Abatement Act (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

A fee is imposed on operators of mixed municipal solid waste disposal facilities corresponding to the amount of waste taken in. Waste residue from recycling facilities or resource recovery...

225

WESTLAKE LANDFILL EPA Region 7 03/29/2012 City: Bridgeton  

E-Print Network (OSTI)

was quarried on the site. Beginning in 1962, portions of the property were used for landfilling of municipal solid waste and construction debris. Two areas became radiologically contaminated in 1973 when soils. An adjacent property has also been impacted by erosional migration of radiologically-contaminated material

226

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among  

E-Print Network (OSTI)

Reconsidering Municipal Solid Waste as a Renewable Energy Feedstock July 2009 For many years, opposition to the use of municipal solid waste (MSW) as an energy resource has been nearly universal among of technologies can be used to create energy from MSW: · Landfill Gas Capture -- Waste in landfills naturally

Columbia University

227

Indicating landfill stabilization state by using leachate property from Laogang Refuse Landfill  

Science Journals Connector (OSTI)

Variation and evolution process of leachate can be applied as a reference for landfill stabilization phase. In this work, leachates ... with different ages were collected from Laogang Refuse Landfill, and charact...

Ziyang Lou; Xiaoli Chai; Youcai Zhao…

2014-06-01T23:59:59.000Z

228

Global methane emissions from landfills: New methodology and annual estimates 19801996  

E-Print Network (OSTI)

Change: Instruments and techniques; KEYWORDS: landfill, landfill gas, methane emissions, methanotrophy

229

Electrochemical treatment of landfill leachate  

Science Journals Connector (OSTI)

Electrochemical methods can offer an elegant contribution towards environmental control as electrons provide a means of removing pollutants by redox reactions. In the process of electrochemical oxidation the main aim has been to convert oxidisable species into carbon dioxide. Leachate originating in landfills is complex wastewater that could exert high environmental impact. This study aims to treat the landfill leachate in order to meet the inland disposal standards. The removal of pollutants was studied with different anode materials in electrochemical process. The treatment of leachate by electrochemical oxidation was carried out in a batch electrolytic parallel plate reactor. The electrochemical process was carried out separately with stainless steel as cathode and anode materials aluminium and titanium/platinum electrodes. The effects of the operating factors such as current density, reaction time, chloride ion concentration, additional electrolyte such as sulphuric acid that influence the removal of pollutant from leachate electrochemically were studied.

C. Ramprasad; A. Navaneetha Gopalakrishnan

2012-01-01T23:59:59.000Z

230

Chlorofluorocarbons as tracers of landfill leachate in surface and groundwater  

Science Journals Connector (OSTI)

...considerably lower concentrations in landfill gas. CFCs and CCl4 in leachate may...all groundwater, leachate and landfill gas samples were taken on 6 April 2004...at the central site facility. Landfill gas was sampled by attaching a thick...

A. E. Foley; T. C. Atkinson; Y. Zhao

231

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...the uncontrolled migration of landfill gas G. M. Williams 1 N. Aitkenhead...Environment, 1989. The Control of Landfill Gas. HMSO, London. Doelle, H...1988. Trace constituents in landfill gas. Gas Research Institute. Frost...

G. M. Williams; N. Aitkenhead

232

Gravity data as a tool for landfill study  

Science Journals Connector (OSTI)

This paper shows the potential of gravity data to map a buried landfill bottom topography. To this end, a ... gravity inversion method is presented for estimating the landfill’s bottom depths at discrete points a...

João B. C. Silva; Wlamir A. Teixeira; Valéria C. F. Barbosa

2009-04-01T23:59:59.000Z

233

Landfill Gas Formation, Recovery and Emission in The Netherlands  

Science Journals Connector (OSTI)

Landfills are one of the main sources of methane in The Netherlands. Methane emissions from landfills are estimated to be about 180–580 ... at a total of 760–1730 ktonnes. Landfill gas recovery and utilization is...

Hans Oonk

1994-01-01T23:59:59.000Z

234

Operating limit evaluation for disposal of uranium enrichment plant wastes  

SciTech Connect

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

Lee, D.W.; Kocher, D.C.; Wang, J.C.

1996-02-01T23:59:59.000Z

235

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Natural Gas Nitric Oxide/Nitrogen Dioxide Neal Road LandfillThe methane, nitrogen and carbon dioxide concentrations ofmethane, 30% nitrogen and 30% carbon dioxide. The recorded

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

236

Federal Energy Management Program: Landfill Gas Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Landfill Gas Landfill Gas Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Landfill Gas Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Landfill Gas Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Google Bookmark Federal Energy Management Program: Landfill Gas Resources and Technologies on Delicious Rank Federal Energy Management Program: Landfill Gas Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Landfill Gas Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

237

Byxbee Park Sanitary Landfill Biomass Facility | Open Energy...  

Open Energy Info (EERE)

Facility Facility Byxbee Park Sanitary Landfill Sector Biomass Facility Type Landfill Gas Location Santa Clara County, California Coordinates 37.2938907, -121.7195459...

238

DOE - Office of Legacy Management -- West Lake Landfill - MO...  

Office of Legacy Management (LM)

Lake Landfill - MO 05 FUSRAP Considered Sites Site: West Lake Landfill (MO.05) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

239

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Two Large Landfill Projects BroadRock Renewables, LLC built two high efficiency electricity generating facilities that utilize landfill gas in California and Rhode Island. The...

240

Monitoring the Performance of an Alternative Landfill Cover at...  

Office of Environmental Management (EM)

Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Monitoring the Performance of an Alternative Landfill Cover...

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

242

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

243

Community Renewable Energy Success Stories: Landfill Gas-to-Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stories: Landfill Gas-to-Energy Projects Webinar (text version) Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version) Below is the text...

244

Models for Hydrologic Design of Evapotranspiration Landfill Covers  

Science Journals Connector (OSTI)

Models for Hydrologic Design of Evapotranspiration Landfill Covers ... The focus of the HELP model is on the man-made features of landfills. ...

Victor L. Hauser; Dianna M. Gimon; James V. Bonta; Terry A. Howell; Robert W. Malone; Jimmy R. Williams

2005-08-05T23:59:59.000Z

245

Briefing: DOE EM Landfill Workshop & Path Forward | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Landfill Workshop & Path Forward Briefing: DOE EM Landfill Workshop & Path Forward By: Office of Groundwater and Soil Remediation Where: SSAB Teleconference 2 Subject: DOE EM...

246

Briefing: Summary and Recommendations of EM Landfill Workshop...  

Office of Environmental Management (EM)

Briefing: Summary and Recommendations of EM Landfill Workshop Briefing: Summary and Recommendations of EM Landfill Workshop The briefing is an independent technical review report...

247

DOE - Office of Legacy Management -- Woburn Landfill - MA 07  

Office of Legacy Management (LM)

Woburn Landfill - MA 07 FUSRAP Considered Sites Site: Woburn Landfill (MA.07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name:...

248

Leaching of cadmium from pigmented plastics in a landfill site  

Science Journals Connector (OSTI)

Leaching of cadmium from pigmented plastics in a landfill site ... Plastics ending up in soil or landfill environment will eventually be degraded. ...

David C. Wilson; Peter J. Young; Brinley C. Hudson; Grant. Baldwin

1982-09-01T23:59:59.000Z

249

Full Scale Bioreactor Landfill for Carbon Sequestration and Greenhouse Emission Control  

SciTech Connect

The Yolo County Department of Planning and Public Works constructed a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective was to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes of air. The first phase of the project entailed the construction of a 12-acre module that contained a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells were highly instrumented to monitor bioreactor performance. Liquid addition commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The current project status and preliminary monitoring results are summarized in this report.

Ramin Yazdani; Jeff Kieffer; Kathy Sananikone; Don Augenstein

2005-03-30T23:59:59.000Z

250

Zero Waste, Renewable Energy & Environmental  

E-Print Network (OSTI)

· Dioxins & Furans · The `State of Waste' in the US · WTE Technologies · Thermal Recycling ­ Turnkey dangerous wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans

Columbia University

251

Separation of polar gases from nonpolar gases  

DOE Patents (OSTI)

Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

Kulprathipanja, S.; Kulkarni, S.S.

1986-08-26T23:59:59.000Z

252

Separation of polar gases from nonpolar gases  

DOE Patents (OSTI)

Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

1986-01-01T23:59:59.000Z

253

Revaluing waste in New York City : planning for small-scale compost  

E-Print Network (OSTI)

One-third of the municipal solid waste stream is organic material that, when processed in landfills, produces methane, a highly potent greenhouse gas. Composting is a proven strategy for organic waste management, which ...

Neilson, Sarah (Sarah Jane)

2009-01-01T23:59:59.000Z

254

Life cycle analysis of waste management options for EBI in Quebec  

E-Print Network (OSTI)

Quebec has issued a mandate requiring all waste management facilities to ban the landfilling of organic waste by 2020. EBI is considering Anaerobic Digestion as one of its alternative options, but is uncertain if it is the ...

Wilson, Jaclyn D

2014-01-01T23:59:59.000Z

255

Carbon dioxide removal and capture for landfill gas up-grading  

Science Journals Connector (OSTI)

Within the frame of an EC financially supported project - LIFE05 ENV/IT/000874 GHERL (Greenhouse Effect Reduction from Landfill)–a pilot plant was set up in order to demonstrate the feasibility of applying chemical absorption to remove carbon dioxide from landfill gas. After proper upgrading - basically removal of carbon dioxide, hydrogen sulphide, ammonia and other trace gas compound–the gas might be fed into the distribution grid for natural gas or used as vehicle fuel, replacing a fossil fuel thus saving natural resources and carbon dioxide emissions. Several experiences in Europe have been carried out concerning the landfill gas - and biogas from anaerobic digestion - quality up-grading through CO2 removal, but in all of them carbon dioxide was vented to the atmosphere after separation, without any direct benefit in terms of greenhouse gases reduction. With respect to those previous experiences, in this work the attention was focused on CO2 removal from landfill gas with an effective capture process, capable of removing carbon dioxide from atmosphere, through a globally carbon negative process. In particular, processes capable of producing final solid products were investigated, with the aim of obtaining as output solid compounds which can be either used in the chemical industry or disposed off. The adopted absorption process is based on using aqueous solutions of potassium hydroxide, with the final aim of producing potassium carbonate. Potassium carbonate is a product which has several applications in the chemical industry if obtained with adequate quality. It can be sold as a pulverised solid, or in aqueous solution. Several tests were carried out at the pilot plant, which was located at a landfill site, in order to feed it with a fraction of the on-site collected landfill gas. The results of the experimental campaign are reported, explained and commented in the paper. Also a discussion on economic issues is presented.

Lidia Lombardia; Andrea Corti; Ennio Carnevale; Renato Baciocchi; Daniela Zingaretti

2011-01-01T23:59:59.000Z

256

Colton Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Colton Landfill Biomass Facility Colton Landfill Biomass Facility Jump to: navigation, search Name Colton Landfill Biomass Facility Facility Colton Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Girvin Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Girvin Landfill Biomass Facility Girvin Landfill Biomass Facility Jump to: navigation, search Name Girvin Landfill Biomass Facility Facility Girvin Landfill Sector Biomass Facility Type Landfill Gas Location Duval County, Florida Coordinates 30.3500511°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.3500511,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Acme Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Acme Landfill Biomass Facility Facility Acme Landfill Sector Biomass Facility Type Landfill Gas Location Contra Costa County, California Coordinates 37.8534093°, -121.9017954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.8534093,"lon":-121.9017954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

BKK Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

BKK Landfill Biomass Facility BKK Landfill Biomass Facility Jump to: navigation, search Name BKK Landfill Biomass Facility Facility BKK Landfill Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Dane County Landfill | Open Energy Information  

Open Energy Info (EERE)

Dane County Landfill Dane County Landfill Jump to: navigation, search Name Dane County Landfill Facility Dane County Landfill #2 Rodefeld Sector Biomass Facility Type Landfill Gas Location Dane County, Wisconsin Coordinates 43.0186073°, -89.5497632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0186073,"lon":-89.5497632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Westchester Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Westchester Landfill Biomass Facility Facility Westchester Landfill Sector Biomass Facility Type Landfill Gas Location Cook County, Illinois Coordinates 41.7376587°, -87.697554° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7376587,"lon":-87.697554,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Kiefer Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Kiefer Landfill Biomass Facility Kiefer Landfill Biomass Facility Jump to: navigation, search Name Kiefer Landfill Biomass Facility Facility Kiefer Landfill Sector Biomass Facility Type Landfill Gas Location Sacramento County, California Coordinates 38.47467°, -121.3541631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.47467,"lon":-121.3541631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Milliken Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Milliken Landfill Biomass Facility Milliken Landfill Biomass Facility Jump to: navigation, search Name Milliken Landfill Biomass Facility Facility Milliken Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Quantification of greenhouse gas emissions from waste management processes for municipalities - A comparative review focusing on Africa  

SciTech Connect

The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind.

Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa); Trois, Cristina [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban (South Africa)

2011-07-15T23:59:59.000Z

265

The dependence of the methylation of mercury on the landfill stabilization process and implications for the landfill management  

Science Journals Connector (OSTI)

Abstract Mercury species and other chemical characteristics of the leachate from anaerobic and semi-aerobic landfills were analyzed to investigate the factors that control mercury methylation during the landfill stabilization process. At the early landfill stage, the total mercury (THg) and the monomethyl mercury (MMHg) released rapidly and significantly, the \\{THg\\} concentration of the semi-aerobic landfill leachate was obviously higher than that of the anaerobic landfill leachate, while compared with the semi-aerobic landfill, the \\{MMHg\\} concentration in the anaerobic landfill was higher. As the landfill time increased, both of \\{THg\\} and \\{MMHg\\} concentration decreased quickly, the \\{THg\\} concentration in the anaerobic landfill was much higher than that in semi-aerobic landfill, while the \\{MMHg\\} concentration in the anaerobic landfill was lower than that in the semi-aerobic landfill. Generally, the concentrations of dimethyl mercury (DMHg) in the anaerobic landfill leachate were slightly higher than in the semi-aerobic landfill leachate during the stabilization process. A significant positive correlation was found between the \\{DMHg\\} concentrations and the pH value in anaerobic landfill leachate, but this correlation was opposite in the semi-aerobic landfill. The oxidative–reductive potential (ORP) condition was found to be the controlling factor of the methylation process during the early stage. However, the chemical characteristics, especially the TOC concentration, appeared to be the dominant factor affecting the methylation process as the landfill time increased.

Xiaoli Chai; Yongxia Hao; Zhonggen Li; Wei Zhu; Wentao Zhao

2015-01-01T23:59:59.000Z

266

Forecast and Control Methods of Landfill Emission Gas to Atmosphere  

Science Journals Connector (OSTI)

The main component of landfill gas is CH4, its release is a potential hazard to the environment. To understand the gas law and landfill gas production are the prerequisite for effective control of landfill gas. This paper selects three kinds of typical ... Keywords: Landfill gas, German model, IPCC model, Marticorena dynamic model

Wang Qi; Yang Meihua; Wang Jie

2011-02-01T23:59:59.000Z

267

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

268

andradionuclide mixed wastes: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam -> Electr. & Heat Av 50 Range 47-80 Landfill Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Biomass Energy Plants...

269

1st International Conference on Final Sinks, September 23-25, 2010 Vienna, Austria From Sanitary to Sustainable Landfilling  

E-Print Network (OSTI)

of VOCs in Biogas from Solid Waste Disposal Sites Torleif Bramryd (SE) Impact of Sustainable Landfilling: Results of Lysimeter Test Fields in Bavaria (Germany) 15:40 - 16:00 Coffee Break 16:00 - 17:40 Session G, Complexity and Biogas Risk Assessment Roland Weber (DE) Persistent

Szmolyan, Peter

270

Summary of the landfill remediation problems and technology needs of the Oak Ridge Reservation Environmental Restoration Programs  

SciTech Connect

This report discusses the following topics: brief description of the Oak Ridge Reservation Environmental Restoration Program; descriptions of representative waste burials at each site; ongoing, planned, or potential remediation; known or anticipated remediation problems; potential applications for robotics in the remediation of Oak Ridge Reservation landfills.

Not Available

1991-01-01T23:59:59.000Z

271

Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily  

SciTech Connect

Methane and carbon dioxide are formed in landfills as wastes degrade. Molecule-for-molecule, methane is about 20 times more potent than carbon dioxide at trapping heat in the earth's atmosphere, and thus, it is the methane emissions from landfills that are scrutinized. For example, if emissions composed of 60% methane and 40% carbon dioxide were changed to a mix that was 40% methane and 60% carbon dioxide, a 30% reduction in the landfill's global warming potential would result. A 10% methane, 90% carbon dioxide ratio will result in a 75% reduction in global warming potential compared to the baseline. Gas collection from a closed landfill can reduce emissions, and it is sometimes combined with a biocover, an engineered system where methane oxidizing bacteria living in a medium such as compost, convert landfill methane to carbon dioxide and water. Although methane oxidizing bacteria merely convert one greenhouse gas (methane) to another (carbon dioxide), this conversion can offer significant reductions in the overall greenhouse gas contribution, or global warming potential, associated with the landfill. What has not been addressed to date is the fact that methane can also escape from a landfill when the active cell is being filled with waste. Federal regulations require that newly deposited solid waste to be covered daily with a 6 in layer of soil or an alternative daily cover (ADC), such as a canvas tarp. The aim of this study was to assess the feasibility of immobilizing methane oxidizing bacteria into a tarp-like matrix that could be used for alternative daily cover at open landfill cells to prevent methane emissions. A unique method of isolating methanotrophs from landfill cover soil was used to create a liquid culture of mixed methanotrophs. A variety of prospective immobilization techniques were used to affix the bacteria in a tarp-like matrix. Both gel encapsulation of methanotrophs and gels with liquid cores containing methanotrophs were readily made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

Helene Hilger; James Oliver; Jean Bogner; David Jones

2009-03-31T23:59:59.000Z

272

Influence assessment of landfill gas pumping  

Science Journals Connector (OSTI)

Changes in CH4 gas concentrations arising in a landfill as a consequence of a number of gas extraction pumping rates, are characterized. The field-monitored results indicate a fairly free flow of gas through the ...

Edward A. McBean; Anthony J. Crutcher; Frank A. Rovers

1984-04-01T23:59:59.000Z

273

Landfill Gas: From Rubbish to Resource  

Science Journals Connector (OSTI)

The prospects of using landfill gas (LFG) as a high-grade fuel...Kyoto Protocols, and energy prices, are discussed. Adsorption cycles suggested in the late 1980s by Sircar and co-workers for treating LFG are revi...

Kent S. Knaebel; Herbert E. Reinhold

2003-03-01T23:59:59.000Z

274

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network (OSTI)

Journal of Engineering for Gas Turbines and Power, 121:569-operations with natural gas: Fuel composition implications,”USA ICEF2006-1578 LANDFILL GAS FUELED HCCI DEMONSTRATION

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

275

Landfill Closure and Reuse of Land  

Science Journals Connector (OSTI)

This section examines the sustainable reuse of existing landfill sites . Sustainability is examined in the context of the existing regulatory authority of the United States Environmental Protection Agency (US...

Dr. Joseph J. Lifrieri Ph.D; PE; CPG…

2012-01-01T23:59:59.000Z

276

Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Landfills Convert Landfills Convert Biogas Into Renewable Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Google Bookmark Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Delicious Rank Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Landfills Convert Biogas Into Renewable Natural Gas on AddThis.com... May 25, 2013 Landfills Convert Biogas Into Renewable Natural Gas

277

Solid Waste Management (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Waste Management (Indiana) Solid Waste Management (Indiana) Solid Waste Management (Indiana) < Back Eligibility Agricultural Commercial Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Indiana Program Type Environmental Regulations Provider Association of Indiana Solid Wastes Districts Inc. The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of Environmental Management and the Indiana Solid Waste Management Board are tasked with planning and adopting rules and regulations governing solid waste management practices. Provisions pertaining to landfill management and expansion, permitting,

278

Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

Sri Shalini, S., E-mail: srishalini10@gmail.com [Centre for Environmental Studies, Anna University, Chennai (India); Joseph, Kurian, E-mail: kuttiani@gmail.com [Centre for Environmental Studies, Anna University, Chennai (India)

2012-12-15T23:59:59.000Z

279

Municipal Solid Waste Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

280

Municipal Solid Waste Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

E-Print Network 3.0 - acid waste forms Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans... discussion of waste incineration. Today we know: PCDDF are...

282

E-Print Network 3.0 - annual dangerous waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans... Zero Waste, Renewable Energy & Environmental Stewardship - Connecting...

283

Strongly interacting Fermi gases  

E-Print Network (OSTI)

Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision ...

Bakr, W.

284

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

285

Using landfill gas for energy: Projects that pay  

SciTech Connect

Pending Environmental Protection Agency regulations will require 500 to 700 landfills to control gas emissions resulting from decomposing garbage. Conversion of landfill gas to energy not only meets regulations, but also creates energy and revenue for local governments.

NONE

1995-02-01T23:59:59.000Z

286

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned...  

Energy Savers (EERE)

Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned Briefing: DOE EM ITR Landfill Assessment Project Lessons Learned By: Craig H. Benson, PhD, PE Where: EM SSAB...

287

Waste-to-Energy 25 Years Later: Technology with a Past, Present  

E-Print Network (OSTI)

solution Quite a Ride: UpsQuite a Ride: Ups MacArthur Resource Recovery Facility Islip, New York #12; Waste-to-energy Falls, New York #12; European Union: waste-to- energy preferable to landfills European Union directives and Consulting Federation of New York Solid Waste Associations Solid Waste/Recycling Conference Federation of New

Columbia University

288

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C{sub 1}C{sub 4} hydrocarbons; the C{sub 5}-C{sub 10} normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

289

Soil gas investigations at the Sanitary Landfill  

SciTech Connect

A soil gas survey was performed at the 740-G Sanitary Landfill of Savannah River Plant during December, 1990. The survey monitored the presence and distribution of the C[sub 1]C[sub 4] hydrocarbons; the C[sub 5]-C[sub 10] normal paraffins; the aromatic hydrocarbons, BTXE; selected chlorinated hydrocarbons; and mercury. Significant levels of several of these contaminants were found associated with the burial site. In the northern area of the Landfill, methane concentrations ranged up to 63% of the soil gas and were consistently high on the western side of the access road. To the east of the access road in the northern and southern area high concentrations of methane were encountered but were not consistently high. Methane, the species found in highest concentration in the landfill, was generated in the landfill as the result of biological oxidation of cellulose and other organics to carbon dioxide followed by reduction of the carbon dioxide to methane. Distributions of other species are the result of burials in the landfill of solvents or other materials.

Wyatt, D.E.; Pirkle, R.J.; Masdea, D.J.

1992-07-01T23:59:59.000Z

290

Pilot scale evaluation of the BABIU process – Upgrading of landfill gas or biogas with the use of MSWI bottom ash  

Science Journals Connector (OSTI)

Abstract Biogas or landfill gas can be converted to a high-grade gas rich in methane with the use of municipal solid waste incineration bottom ash as a reactant for fixation of CO2 and H2S. In order to verify results previously obtained at a laboratory scale with 65–90 kg of bottom ash (BA), several test runs were performed at a pilot scale, using 500–1000 kg of bottom ash and up to 9.2 N m3/h real landfill gas from a landfill in the Tuscany region (Italy). The input flow rate was altered. The best process performance was observed at a input flow rate of 3.7 N m3/(h tBA). At this flow rate, the removal efficiencies for H2S were approximately 99.5–99%.

P. Mostbauer; L. Lombardi; T. Olivieri; S. Lenz

2014-01-01T23:59:59.000Z

291

Diversity and activity of methanotrophs in landfill cover soils with and without landfill gas recovery systems  

Science Journals Connector (OSTI)

Abstract Aerobic CH4 oxidation plays an important role in mitigating CH4 release from landfills to the atmosphere. Therefore, in this study, oxidation activity and community of methanotrophs were investigated in a subtropical landfill. Among the three sites investigated, the highest CH4 concentration was detected in the landfill cover soil of the site (A) without a landfill gas (LFG) recovery system, although the refuse in the site had been deposited for a longer time (?14–15 years) compared to the other two sites (?6–11 years) where a LFG recovery system was applied. In April and September, the higher CH4 flux was detected in site A with 72.4 and 51.7 g m?2 d?1, respectively, compared to the other sites. The abundance of methanotrophs assessed by quantification of pmoA varied with location and season. A linear relationship was observed between the abundance of methanotrophs and CH4 concentrations in the landfill cover soils (R = 0.827, P < 0.001). The key factors influencing the methanotrophic diversity in the landfill cover soils were pH, the water content and the CH4 concentration in the soil, of which pH was the most important factor. Type I methanotrophs, including Methylococcus, Methylosarcina, Methylomicrobium and Methylobacter, and type II methanotrophs (Methylocystis) were all detected in the landfill cover soils, with Methylocystis and Methylosarcina being the dominant genera. Methylocystis was abundant in the slightly acidic landfill cover soil, especially in September, and represented more than 89% of the total terminal-restriction fragment abundance. These findings indicated that the LFG recovery system, as well as physical and chemical parameters, affected the diversity and activity of methanotrophs in landfill cover soils.

Yao Su; Xuan Zhang; Fang-Fang Xia; Qi-Qi Zhang; Jiao-Yan Kong; Jing Wang; Ruo He

2014-01-01T23:59:59.000Z

292

Evaluation of air injection and extraction tests in a landfill site in Korea: implications for landfill management  

Science Journals Connector (OSTI)

Air extraction and injection were evaluated for extracting hazardous landfill gas and enhancing degradation of organic materials in a landfill in Korea. From the pilot and full ... pressure radius of influence wa...

J. Lee; C. Lee; K. Lee

2002-11-01T23:59:59.000Z

293

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS  

E-Print Network (OSTI)

DETERMINATION OF GUIDANCE VALUES FOR CLOSED LANDFILL GAS EMISSIONS O. BOUR*, S. BERGER**, C Gambetta, 74 000 Annecy SUMMARY: In order to promote active landfill gas collection and treatment or natural attenuation, it is necessary to identify trigger values concerning landfill gas emissions

Boyer, Edmond

294

Anaerobic Methane Oxidation in a Landfill-Leachate Plume  

E-Print Network (OSTI)

Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I Landfill, OK, provides an excellent natural laboratory for the study of anaerobicprocessesimpactinglandfill enrichment indicated that 80-90% of the original landfill methane was oxidized over the 210-m transect. First

Grossman, Ethan L.

295

ORIGINAL PAPER The conservation value of restored landfill sites  

E-Print Network (OSTI)

ORIGINAL PAPER The conservation value of restored landfill sites in the East Midlands, UK landfill sites. However, this potential largely remains unexplored. In this study, birds were counted using point sampling on nine restored landfill sites in the East Midlands region of the UK during 2007

Northampton, University of

296

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg  

E-Print Network (OSTI)

Geosynthetics in Landfills Prepared by M. Bouazza and J. Zornberg Geosynthetics are extensively used in the design of both base and cover liner systems of landfill facilities. This includes that can be used as an infiltration/hydraulic barrier; · geopipes, which can be used in landfill

Zornberg, Jorge G.

297

Review Paper/ Biogeochemical Evolution of a Landfill Leachate  

E-Print Network (OSTI)

Review Paper/ Biogeochemical Evolution of a Landfill Leachate Plume, Norman, Oklahoma by I Abstract Leachate from municipal landfills can create groundwater contaminant plumes that may last in the configuration of redox zones downgradient from the Norman Landfill were studied for more than a decade

298

Fixed bed downdraft gasification of paper industry wastes  

Science Journals Connector (OSTI)

The two main wastes generated from secondary fibre paper mills are rejects (composed mainly of plastics and fibres) and de-inking sludge, both of which are evolved from the pulping process during paper manufacture. The current practice for the disposal of these wastes is either by land-spreading or land-filling. This work explores the gasification of blends of pre-conditioned rejects and de-inking sludge pellets with mixed wood chips in an Imbert type fixed bed downdraft gasifier with a maximum feeding capacity of 10 kg/h. The producer gases evolved would generate combined heat and power (CHP) in an internal combustion engine. The results show that as much as 80 wt.% of a brown paper mill’s rejects (consisting of 20 wt.% mixed plastics and 80 wt.% paper fibres) could be successfully gasified in a blend with 20 wt.% mixed wood chips. The producer gas composition was 16.24% H2, 23.34% CO, 12.71% CO2 5.21% CH4 and 42.49% N2 (v/v%) with a higher heating value of 7.3 MJ/Nm3. After the removal of tar and water condensate the producer gas was of sufficient calorific value and flow rate to power a 10 kWe gas engine. Some blends using rejects from other mill types were not successful, and the limiting factor was usually the agglomeration of plastics present within the fuel.

M. Ouadi; J.G. Brammer; M. Kay; A. Hornung

2013-01-01T23:59:59.000Z

299

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

300

Converter waste disposal study  

SciTech Connect

The importance of waste management and disposal issues to the converting and print industries is demonstrated by the high response rate to a survey of US and Canadian converters and printers. The 30-item questionnaire measured the impact of reuse, recycling, source reduction, incineration, and landfilling on incoming raw-material packaging, process scrap, and waste inks, coatings, and adhesives. The results indicate that significant amounts of incoming packaging materials are reused in-house or through supplier take-back programs. However, there is very little reuse of excess raw materials and process scrap, suggesting the need for greater source reduction within these facilities as the regulatory climate becomes increasingly restrictive.

Schultz, R.B. (RBS Technologies, Inc., Skokie, IL (United States))

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Suitability of Hydrologic Evaluation of Landfill Performance (HELP) model of the US Environmental Protection Agency for the simulation of the water balance of landfill cover systems  

Science Journals Connector (OSTI)

?Cover systems are widely used to safeguard landfills and contaminated sites. The evaluation of the ... water balance is crucial for the design of landfill covers. The Hydrologic Evaluation of Landfill Performanc...

K. Berger; S. Melchior; G. Miehlich

1996-12-01T23:59:59.000Z

302

The Emissions of Major Aromatic Voc as Landfill Gas from Urban Landfill Sites in Korea  

Science Journals Connector (OSTI)

In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five...?1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of n...

Ki-Hyun Kim; Sung Ok Baek; Ye-Jin Choi…

2006-07-01T23:59:59.000Z

303

Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells  

Science Journals Connector (OSTI)

The potential use of landfill gas as feeding fuel for the so-called molten carbonate fuel cells (MCFC) imposes the need for new upgrading technologies in order to meet the much tougher feed gas specifications of this type of fuel cells in comparison to gas engines. Nevertheless, MCFC has slightly lower purity demands than low temperature fuel cells. This paper outlines the idea of a new catalytic purification process for landfill gas conditioning, which may be supposed to be more competitive than state-of-the-art technologies and summarises some lab-scale results. This catalytic process transforms harmful landfill gas minor compounds into products that can be easily removed from the gas stream by a subsequent adsorption step. The optimal process temperature was found to be in the range 250–400 °C. After a catalyst screening, two materials were identified, which have the ability to remove all harmful minor compounds from landfill gas. The first material was a commercial alumina that showed a high activity towards the removal of organic silicon compounds. The alumina protects both a subsequent catalyst for the removal of other organic minor compounds and the fuel cell. Due to gradual deactivation caused by silica deposition, the activated alumina needs to be periodically replaced. The second material was a commercial V2O5/TiO2-based catalyst that exhibited a high activity for the total oxidation of a broad spectrum of other harmful organic minor compounds into a simpler compound class “acid gases (HCl, HF and SO2)”, which can be easily removed by absorption with, e.g. alkalised alumina. The encouraging results obtained allow the scale-up of this LFG conditioning process to test it under real LFG conditions.

W. Urban; H. Lohmann; J.I. Salazar Gómez

2009-01-01T23:59:59.000Z

304

Franklin County Sanitary Landfill - Landfill Gas (LFG) to Liquefied Natural Gas (LNG) - Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FRANKLIN COUNTY SANITARY FRANKLIN COUNTY SANITARY LANDFILL - LANDFILL GAS (LFG) TO LIQUEFIED NATURAL GAS (LNG) - PROJECT January/February 2005 Prepared for: National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 Table of Contents Page BACKGROUND AND INTRODUCTION .......................................................................................1 SUMMARY OF EFFORT PERFORMED ......................................................................................2 Task 2B.1 - Literature Search and Contacts Made...................................................................2 Task 2B.2 - LFG Resource/Resource Collection System - Project Phase One.......................3 Conclusion.................................................................................................................................5

305

Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Natural Gas Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Twitter Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Google Bookmark Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Delicious Rank Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Digg Find More places to share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on AddThis.com... April 13, 2013

306

Determination of operating limits for radionuclides for a proposed landfill at Paducah Gaseous Diffusion Plant  

SciTech Connect

The operating limits for radionuclides in sanitary and industrial wastes were determined for a proposed landfill at the Paducah Gaseous Diffusion Plant (PGDP), Kentucky. These limits, which may be very small but nonzero, are not mandated by law or regulation but are needed for rational operation. The approach was based on analyses of the potential contamination of groundwater at the plant boundary and the potential exposure to radioactivity of an intruder at the landfill after closure. The groundwater analysis includes (1) a source model describing the disposal of waste and the release of radionuclides from waste to the groundwater, (2) site-specific groundwater flow and contaminant transport calculations, and (3) calculations of operating limits from the dose limit and conversion factors. The intruder analysis includes pathways through ingestion of contaminated vegetables and soil, external exposure to contaminated soil, and inhalation of suspended activity from contaminated soil particles. In both analyses, a limit on annual effective dose equivalent of 4 mrem (0.04 mSv) was adopted. The intended application of the results is to refine the radiological monitoring standards employed by the PGDP Health Physics personnel to determine what constitutes radioactive wastes, with concurrence of the Commonwealth of Kentucky.

Wang, J.C.; Lee, D.W.; Ketelle, R.H.; Lee, R.R.; Kocher, D.C.

1994-05-24T23:59:59.000Z

307

Behavior of Engineered Nanoparticles in Landfill Leachate  

Science Journals Connector (OSTI)

This research sought to understand the behavior of engineered nanoparticles in landfill leachate by examining the interactions between nanoparticles and leachate components. The primary foci of this paper are the effects of ZnO, TiO2, and Ag nanoparticles ...

Stephanie C. Bolyard; Debra R. Reinhart; Swadeshmukul Santra

2013-06-25T23:59:59.000Z

308

Summary of research on waste minimization studies by Japan Waste Research Foundation (JWRF)  

SciTech Connect

Japan is trying to provide a qualitatively better environment and the treatment of incinerator gas emissions is an indispensable part of pollution prevention programs. Therefore, a large part of incinerator wastes will be disposed of in landfills for municipal solid waste, and volume reduction and stabilization are major items on the technology agenda. For these reasons, the purpose of this research is waste minimization, namely reducing the volume of wastes that must be disposed of in landfills. This is being done by studying ways to use heat treatment to reduce the volume of incinerator ash, to develop technology for the effective use of treated material and to render fly ash and fused salts harmless. In addition, the author seeks to establish more advanced municipal solid waste treatment systems that reduce (slim) waste by using space efficiently and recovering metals in incinerator residue and fly ash for recycling.

Nabeshima, Yoshiro [Tamagawa Univ., Machida City, Tokyo (Japan)] [Tamagawa Univ., Machida City, Tokyo (Japan)

1996-12-31T23:59:59.000Z

309

Landfill cover performance monitoring using time domain reflectometry  

SciTech Connect

Time domain reflectometry (TDR) systems were installed to monitor soil moisture in two newly constructed landfill covers at the Idaho National Engineering and Environmental Laboratory. Each TDR system includes four vertical arrays with each array consisting of four TDR probes located at depths of 15, 30, 45, and 60 cm. The deepest probes at 60 cm were installed beneath a compacted soil layer to analyze infiltration through the compacted layer. Based on the TDR data, infiltration through the two covers between March and October, 1997 ranged from less than measurable to 1.5 cm. However, due to a prohibition on penetrating the buried waste and resulting limits on probe placement depths, deeper percolation was not evaluated. Some of the advantages found in the application of TDR for infiltration monitoring at this site are the relative low cost and rugged nature of the equipment. Also, of particular importance, the ability to collect frequent moisture measurements allows the capture and evaluation of soil moisture changes resulting from episodic precipitation events. Disadvantages include the inability to install the probes into the waste, difficulties in interpretation of infiltration during freeze/thaw periods, and some excessive noise in the data.

Neher, E.R.; Cotten, G.B. [Parsons Infrastructure & Technology Group, Inc., Idaho Falls, ID (United States); McElroy, D. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

1998-03-01T23:59:59.000Z

310

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2006-04-01T23:59:59.000Z

311

Evaluating electronic waste recycling systems : the influence of physical architecture on system performance  

E-Print Network (OSTI)

Many different forms of electronic waste recycling systems now exist worldwide, and the amount of related legislation continues to increase. Numerous approaches have been proposed including landfill bans, extended producer ...

Fredholm, Susan (Susan A.)

2008-01-01T23:59:59.000Z

312

EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

313

Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

314

DOE - Office of Legacy Management -- Shpack Landfill - MA 06  

Office of Legacy Management (LM)

Shpack Landfill - MA 06 Shpack Landfill - MA 06 FUSRAP Considered Sites Shpack Landfill, NY Alternate Name(s): Attleboro, MA Metals and Controls Site Norton Landfill area MA.06-2 MA.06-3 Location: 68 Union Road, Norton, Massachusetts MA.06-2 Historical Operations: No AEC activities were conducted on site. Contamination was suspected from disposal of materials containing uranium and zirconium ash. MA.06-2 MA.06-3 Eligibility Determination: Eligible MA.06-1 Radiological Survey(s): Assessment Surveys MA.06-4 MA.06-5 MA.06-6 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. MA.06-7 MA.06-8 USACE Website Long-term Care Requirements: To be determined upon completion. Also see Documents Related to Shpack Landfill, NY MA.06-1 - DOE Memorandum; Meyers to Hart; Subject: Shpack Landfill,

315

Growth and biomass of Populus irrigated with landfill leachate  

Science Journals Connector (OSTI)

Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control) (N, P, K) during the 2005 and 2006 growing seasons and test for differences in tree height, diameter, volume, and biomass of leaves, stems, branches, and roots. The trees were grown at the Oneida County Landfill located 6 km west of Rhinelander, Wisconsin, USA (45.6°N, 89.4°W). Eight clones belonging to four genomic groups were tested: NC13460, NC14018 [(Populus trichocarpa Torr. & Gray × Populus deltoides Bartr. ex Marsh) × P. deltoides ‘BC1’]; NC14104, NC14106, DM115 (P. deltoides × Populus maximowiczii A. Henry ‘DM’); DN5 (P. deltoides × Populus nigra L. ‘DN’); NM2, NM6 (P. nigra × P. maximowiczii ‘NM’). The survival rate for each of the irrigation treatments was 78%. The total aboveground biomass ranged from 0.51 to 2.50 Mg ha?1, with a mean of 1.57 Mg ha?1. The treatment × clone interaction was not significant for tree diameter, total volume, dry mass of the stump or basal roots, or root mass fraction (P > 0.05). However, the treatment × clone interaction was significant for height, total tree dry mass, aboveground dry mass, belowground dry mass, and dry mass of the leaves, stems + branches (woody), and lateral roots (P < 0.05). There was broad clonal variation within the BC1 and DM genomic groups, with genotypes performing differently for treatments. In contrast, the performance of the NM and DN genomic groups was relatively stable across treatments, with clonal response to irrigation being similar regardless of treatment. Nevertheless, selection at the clone level also was important. For example, NC14104 consistently performed better when irrigated with leachate compared with water, while NC14018 responded better to water than leachate. Overall, these data will serve as a basis for researchers and resource managers making decisions about future leachate remediation projects.

Jill A. Zalesny; Ronald S. Zalesny Jr.; David R. Coyle; Richard B. Hall

2007-01-01T23:59:59.000Z

316

Request for Qualifications for Sacramento Landfill  

Energy.gov (U.S. Department of Energy (DOE))

This Request for Qualifications (RFQ) solicits experienced companies to design, permit, finance, build, and operate a solar photovoltaic farm (SPV Farm) on the City of Sacramento’s 28th Street Landfill. Respondents to this RFQ must demonstrate experience and capacity to design, permit, finance, build, and operate a SPV Farm that generates electricity that can be sold for electrical use through a power-purchase agreement. Submittals must be prepared and delivered in accordance with the requirements set forth in this document.

317

The influence of air inflow on CH4 composition ratio in landfill gas  

Science Journals Connector (OSTI)

When landfill gas is collected, air inflow into the landfill...4 productivity. The decline of CH4 content in landfill gas (LFG) negatively affects energy projects. We...2 was an effective indicator of air inflow ...

Seung-Kyu Chun

2014-02-01T23:59:59.000Z

318

Migration of landfill gas and its control by grouting—a case history  

Science Journals Connector (OSTI)

...research-article Article Migration of landfill gas and its control by grouting-a...London. Parker, A. 1981. Landfill gas problems-case histories. Proceedings of Landfill Gas Symposium, UK AERE Harwell. Rees...

J. G. Raybould; D. J. Anderson

319

Hydrogeological Environmental Assessment of Sanitary Landfill Project at Jammu City, India  

E-Print Network (OSTI)

DRASTIC Method The prepared landfill project is supposed toAssessment of Sanitary Landfill Project at Jammu City, Indiaimpact of a proposed landfill facility for the city of Jammu

Nagar, Bharat Bhushan; Mirza, Umar Karim

2002-01-01T23:59:59.000Z

320

Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference  

E-Print Network (OSTI)

Enhanced Landfill Mining Symposium EEC/WTERT Participation at ELFM Conference of Enhanced Landfill Mining. Held at the Greenville (Center of Cleantech of old landfills, each containing valuable resources that are untapped

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Subsurface characterization of groundwater contaminated by landfill leachate using microbial community profile  

E-Print Network (OSTI)

Subsurface characterization of groundwater contaminated by landfill leachate using microbial from groundwater monitoring wells located within and around an aquifer contaminated with landfill. In this landfill leachate application, the weighted SOM assembles the microbial community data from monitoring

Vermont, University of

322

Recovering energy from biogas emission: the case of Mariana Mantovana landfill (Italy)  

Science Journals Connector (OSTI)

This paper deals with the analytic rating of the economic investment in an energy recovery plant for municipal waste, in relation to the estimate of its capability to exploit biogas production transformation, and sale of electricity production, and the Green Certificates. The approach entails the assessment of potential scenarios of biogas flare coming from its production forecasts, according to different models: the LandGEM Model and the stoichiometric model describing the degradation of the organic fraction. The proposed approach has been applied to the landfill in Mariana Mantovana (MN), and has show positive trends, highlighting the advantages of this investment.

Massimo Bertolini; Maurizio Bevilacqua

2007-01-01T23:59:59.000Z

323

Meteorological parameters as an important factor on the energy recovery of landfill gas in landfills  

Science Journals Connector (OSTI)

The effect of meteorological factors on the composition and the energy recovery of the landfill gas (LFG) were evaluated in this study. Landfill gas data consisting of methane carbon dioxide and oxygen content as well as LFG temperature were collected from April 2009 to March 2010 along with meteorological data. The data set were first used to visualize the similarity by using self-organizing maps and to calculate correlation factors. Then the data was used with ANN to further analyze the impacts of meteorological factors. In both analysis it is seen that the most important meteorological parameter effective on LFG energy content is soil temperatures. Furthermore ANN was found to be successful in explaining variations of methane content and temperature of LFG with correlation coefficients of 0.706 and 0.984 respectively. ANN was proved itself to be a useful tool for estimating energy recovery of the landfill gas.

?brahim Uyanik; Bestamin Özkaya; Selami Demir; Mehmet Çakmakci

2012-01-01T23:59:59.000Z

324

Feasibility study: utilization of landfill gas for a vehicle fuel system, Rossman's landfill, Clackamas County, Oregon  

SciTech Connect

In 1978, a landfill operator in Oregon became interested in the technical and economic feasibility of recovering the methane generated in the landfill for the refueling of vehicles. DOE awarded a grant for a site-specific feasibility study of this concept. This study investigated the expected methane yield and the development of a conceptual gas-gathering system; gas processing, compressing, and storage systems; and methane-fueled vehicle systems. Cost estimates were made for each area of study. The results of the study are presented. Reasoning that gasoline prices will continue to rise and that approximately 18,000 vehicles in the US have been converted to operate on methane, a project is proposed to use this landfill as a demonstration site to produce and process methane and to fuel a fleet (50 to 400) vehicles with the gas produced in order to obtain performance and economic data on the systems used from gas collection through vehicle operation. (LCL)

None

1981-01-01T23:59:59.000Z

325

UNFCCC-Consolidated baseline and monitoring methodology for landfill...  

Open Energy Info (EERE)

TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities AgencyCompany Organization: United Nations Framework Convention on...

326

Tapping Landfill Gas to Provide Significant Energy Savings and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Case Study, 2013 BroadRock Renewables LLC, in collaboration with DCO Energy, operates combined cycle electric generating plants at the Central Landfill in Johnston, Rhode...

327

Landfill Gas Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Using methane in these applications helps keep it out of the atmosphere, reducing air pollution. Federal Application Before conducting an assessment or deploying landfill...

328

Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)  

SciTech Connect

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will concentrate on geophysical surveys to confirm the presence or absence of disposed waste within a CAS and verify the boundaries of disposal areas; penetrate disposal feature covers via excavation and/or drilling; perform geodetic surveys; and be used to collect both soil and environmental samples for laboratory analyses. Phase II will deal only with those CASs where a contaminant of concern has been identified. This phase will involve the collection of additional soil and/or environmental samples for laboratory analyses. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

IT Corporation, Las Vegas, NV

2002-05-28T23:59:59.000Z

329

Industrial landfill affects on fish communities at Indiana Dunes National Lakeshore (INDU)  

SciTech Connect

INDU, an urban park near the third largest metropolitan area in the US, provides access to over two million visitors per year. The Grand Calumet River/Indiana Harbor Ship Canal is the only Area of Concern (AOC) with all 14 designated uses impaired. The Grand Calumet Lagoons are the former mouth of the Grand Calumet River and form part of the western boundary of INDU, adjacent to Gary, IN. An industrial landfill (slag and other industrial waste) forms the westernmost boundary of the lagoon and a dunal pond. A least-impacted lagoon and a pond lying across a dune ridge were compared to sites adjacent to the landfill. Fish communities censused from twelve sites during the summer of 1994 were analyzed for several community metrics including species richness and composition, trophic structure, and community and individual health. A modified headwater Index of Biotic Integrity (IBI) was utilized to evaluate lacustrine community health. Results include the first record of the Iowa darter (Etheostoma exile) found in northwest Indiana. Examination of the fish community found the least impacted lagoon to contain Erimyzon sucetta, Esox americanus, and Lepomis gulosus. The landfill lagoon lacked these species, with the exception of fewer L. gulosus, while Pimephales notatus was found at all sites in the impacted lake but not at all in the least impacted lagoon. Statistically significant differences in species diversity and IBI can be attributed to landfill proximity. Whole fish analyses of a benthic omnivore (Cyprinus carpio) revealed PAH levels near 1 mg/kg of total PAH in several fish analyzed.

Stewart, P.M. [National Biological Service, Porter, IN (United States); Simon, T.P. [Environmental Protection Agency, Chicago, IL (United States)

1995-12-31T23:59:59.000Z

330

Landfill gas upgrading with pilot-scale water scrubber: Performance assessment with absorption water recycling  

Science Journals Connector (OSTI)

A pilot-scale counter current absorption process for upgrading municipal solid waste (MSW) landfill gas to produce vehicle fuel was studied using absorption, desorption and drying units and water as an absorbent. Continuous water recycling was used without adding new water to the system. The process parameters were defined by a previous study made with this pilot system. The effect of pressure (20–25 bar), temperature (10–25 °C) and water flow speed (5.5–11 l/min) on the upgrading performance, trace compounds (siloxanes, halogenated compounds) and water quality were investigated. Raw landfill gas flow was kept constant at 7.41 Nm3/h. Methane (CH4) and carbon dioxide (CO2) contents in the product gas were 86–90% and 4.5–8.0% with all studied pressures and temperatures. The remaining fraction in product gas was nitrogen (N2) (from 1% to 7%). Organic silicon compounds (siloxanes) were reduced by 16.6% and halogenated compounds similarly by 90.1% by water absorption. From studied process parameters, only water flow speed affected the removal of siloxanes and halogen compounds. The absorbent water pH was between 4.4–4.9, sulphide concentration between 0.1–1.0 mg/l and carbonate concentration between 500–1000 mg/l. The product gas drying system reduced the siloxane concentration by 99.1% and halogenated compounds by 99.9% compared to the raw landfill gas. In conclusion, the pilot-scale gas upgrading process studied appears to be able to produce gas with high energy content (approx 86–90% methane) using a closed water circulation system. When using a standard gas drying system, all trace compounds can be removed by over 99% compared to raw landfill gas.

J. Läntelä; S. Rasi; J. Lehtinen; J. Rintala

2012-01-01T23:59:59.000Z

331

E-Print Network 3.0 - annual landfill gas Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

gas emissions and potential aqueous... Transfer Stations (MTS); Life Cycle Assessment (LCA); Landfill Gas (LFG): Geographic Wormation Systems (GIS... . Landfills generate gas...

332

E-Print Network 3.0 - annual international landfill Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

-end of lifetime average collection efficiencies for international greenhouse gas (GHG) inventories for landfills... t h e U . S i THE IMPORTANCE OF LANDFILL GAS CAPTURE AND...

333

E-Print Network 3.0 - ardeer landfill scotland Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

...28 Are there risks associated with landfilling of air pollution control residues... . 79% went to landfill sites, 21% to ash processors to make into...

334

A renewable energy plan for the Oak Grove Sanitary Landfill In Winder, Georgia.  

E-Print Network (OSTI)

??Oak Grove Sanitary Landfill in Winder, Georgia is already refining its landfill gas (LFG) and sending it through the natural gas pipeline. This is more… (more)

Hambrick, Tracy L.

2011-01-01T23:59:59.000Z

335

Passive drainage and biofiltration of landfill gas: behaviour and performance in a temperate climate.  

E-Print Network (OSTI)

??Microbial oxidation of methane has attracted interest as an alternative process for treating landfill gas emissions. Approaches have included enhanced landfill cover layers and biocovers,… (more)

Dever, Stuart Anthony

2009-01-01T23:59:59.000Z

336

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-19T23:59:59.000Z

337

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-13T23:59:59.000Z

338

Analysis of Changes in Landfill Gas Output and the Economic Potential for Development of a Landfill Gas Control Prototype.  

E-Print Network (OSTI)

??The relationship between changes in local atmospheric conditions and the performance of the landfill gas collection system installed at the Rockingham County (NC) municipal solid… (more)

Harrill, David Justin

2014-01-01T23:59:59.000Z

339

The Microbial Community of Landfill Soils and the Influence of Landfill Gas on Soil Recovery and Revegetation  

Science Journals Connector (OSTI)

An extensive database for soil microbiological and physicochemical conditions has been established from samples taken from restored landfill sites in South East England. The sites...

Sharon D. Wigfull; Paul Birch

1990-01-01T23:59:59.000Z

340

Daily Gazette, Schenectady NY Letters to the Editor for Thursday, July 10, 2008 Nothing to fear, and much to gain, from waste-to-energy  

E-Print Network (OSTI)

, and much to gain, from waste-to-energy Schenectady is one of those misguided cities that sends its municipal solid wastes to distant landfills, costing much money, wasting valuable energy and increasing global warming and pollution of our environment. Waste-to-energy (WTE) is safe. I advised the Israel

Columbia University

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Solid Waste Policies (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policies (Iowa) Policies (Iowa) Solid Waste Policies (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are required to establish and operate a comprehensive solid waste reduction program. These regulations discuss land application of processed wastes as well as requirements for sanitary landfills and for groundwater monitoring near land disposal sites

342

Field Performance of Three Compacted Clay Landfill Covers  

SciTech Connect

A study was conducted at sites in subtropical Georgia, seasonal and humid Iowa, and arid southeastern California to evaluate the field hydrology of compacted clay covers for final closure of landfills.Water balance of the covers was monitored with large (10 by 20 m), instrumented drainage lysimeters for 2 to 4 yr. Initial drainage at the Iowa and California sites was ,32 mm yr21 (i.e., unit gradient flow for a hydraulic conductivity of 1027 cm s21, the regulatory standard for the clay barriers in this study); initial drainage rate at the Georgia site was about 80 mm yr21. The drainage rate at all sites increased by factors ranging from 100 to 750 during the monitoring periods and in each case the drainage rate exceeded 32 mm yr21 by the end of the monitoring period. The drainage rates developed a rapid response to precipitation events, suggesting that increases in drainage rate were the result of preferential flow. Although no direct observations of preferential flow paths were made, field measurements of water content and temperature at all three sites suggested that desiccation or freeze–thaw cycling probably resulted in formation of preferential flow paths through the barrier layers. Data from all three sites showed the effectiveness of all three covers as hydraulic barriers diminished during the 2 to 4 yr monitoring period, which was short compared with the required design life (often 30 yr) of most waste containment facilities.

Albright, William H.; Benson, Craig H.; Gee, Glendon W.; Abichou, Tarek; Tyler, Scott W.; Rock, Steven

2006-11-01T23:59:59.000Z

343

ICDF Complex Waste Profile and Verification Sample Guidance  

SciTech Connect

This guidance document will assist waste generators who characterize waste streams destined for disposal at the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) Complex. The purpose of this document is to develop a conservative but appropriate way to (1) characterize waste for entry into the ICDF; (2) ensure compliance with the waste acceptance criteria; and (3) facilitate disposal at the ICDF landfill or evaporation pond. In addition, this document will establish the waste verification process used by ICDF personnel to ensure that untreated waste meets applicable ICDF acceptance limits

W. M. Heileson

2006-10-01T23:59:59.000Z

344

Waste2Energy Holdings | Open Energy Information  

Open Energy Info (EERE)

Holdings Holdings Jump to: navigation, search Name Waste2Energy Holdings Place Greenville, South Carolina Zip 29609 Sector Biomass, Renewable Energy Product The Waste2Energy Holdings is a supplier of proprietary gasification technology designed to convert municipal solid waste, biomass and other solid waste streams traditionally destined for landfill into clean renewable energy. References Waste2Energy Holdings[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Waste2Energy Holdings is a company located in Greenville, South Carolina . References ↑ "Waste2Energy Holdings" Retrieved from "http://en.openei.org/w/index.php?title=Waste2Energy_Holdings&oldid=352938

345

Adsorption characteristics of siloxanes in landfill gas by the adsorption equilibrium test  

SciTech Connect

Highlights: • Equilibrium test was attempted to evaluate adsorption characteristics of siloxane. • L2 had higher removal efficiency in carbon compared to noncarbon adsorbents. • Total adsorption capacity of siloxane was 300 mg/g by coal activated carbon. • Adsorption characteristics rely on size of siloxane molecule and adsorbent pore. • Conversion of siloxane was caused by adsorption of noncarbon adsorbents. - Abstract: Due to the increase in energy cost by constantly high oil prices and the obligation to reduce greenhouse effect gases, landfill gas is frequently used as an alternative energy source for producing heat and electricity. Most of landfill gas utility facilities, however, are experiencing problems controlling siloxanes from landfill gas as their catalytic oxidizers are becoming fouled by silicon dioxide dust. To evaluate adsorption characteristics of siloxanes, an adsorption equilibrium test was conducted and parameters in the Freundlich and Langmuir isotherms were analyzed. Coconut activated carbon (CA1), coal activated carbon (CA2), impregnated activated carbon (CA3), silicagel (NCA1), and activated alumina (NCA2) were used for the adsorption of the mixed siloxane which contained hexamethyldisiloxane (L2), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5). L2 had higher removal efficiency in noncarbon adsorbents compared to carbon adsorbents. The application of Langmuir and Freundlich adsorption isotherm demonstrated that coconut based CA1 and CA3 provided higher adsorption capacity on L2. And CA2 and NCA1 provided higher adsorption capacity on D4 and D5. Based on the experimental results, L2, D4, and D5 were converted by adsorption and desorption in noncarbon adsorbents. Adsorption affinity of siloxane is considered to be affect by the pore size distribution of the adsorbents and by the molecular size of each siloxane.

Nam, Sangchul; Namkoong, Wan [Department of Environmental Engineering, Konkuk University, Hwayang-Dong, Gwangjin-Gu, Seoul 143-701 (Korea, Republic of); Kang, Jeong-Hee; Park, Jin-Kyu [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of); Lee, Namhoon, E-mail: nhlee@anyang.ac.kr [Department of Environmental Engineering, Anyang University, Anyang 5-Dong, Manan-Gu, Anyang-Si, Gyeonggi-Do 430-714 (Korea, Republic of)

2013-10-15T23:59:59.000Z

346

Agricultural Biomass and Landfill Diversion Incentive (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This law provides a grant of a minimum $20 per bone-dry ton of qualified agricultural biomass, forest wood waste, urban wood waste, co-firing biomass, or storm-generated biomass that is provided to...

347

Health assessment for Ludlow Landfill National Priorities List (NPL) site, Clayville, Oneida County, New York, Region 2. CERCLIS No. NYD013468939. Final report  

SciTech Connect

The Ludlow Landfill is a National Priorities List site located in Clayville, Oneida County, New York. The landfill was in operation for over 20 years and was closed February 15, 1988. At the time of its closure only municipal refuse was being accepted for disposal, but in the past, some industrial wastes were deposited in the landfill. The primary contaminants found at the site are polychlorinated biphenyls (PCBs) and volatile organic compounds. Off-site migration of contaminants can occur via ground water, surface water, and suspended sediments. Potential adverse effects on public health could occur if PCBs or other site-related chemicals migrated off-site in ground water and contaminated downgradient potable-well supplies. Human exposure to PCB-contaminated soils in the wetlands or the consumption of biota from the wetlands are also pathways of potential public health concern.

Not Available

1988-08-25T23:59:59.000Z

348

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network (OSTI)

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

349

Studying the advisability of using gas-turbine unit waste gases for heating feed water in a steam turbine installation with a type T-110/120-12.8 turbine  

Science Journals Connector (OSTI)

Results of calculation studying of a possibility of topping of a steam-turbine unit (STU) with a type T-110/120-12.8 turbine of the Urals Turbine Works (UTZ) by a gas-turbine unit (GTU) of 25-MW capacity the wast...

A. D. Trukhnii; G. D. Barinberg; Yu. A. Rusetskii

2006-02-01T23:59:59.000Z

350

Lopez Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Lopez Landfill Gas Utilization Project Biomass Facility Lopez Landfill Gas Utilization Project Biomass Facility Jump to: navigation, search Name Lopez Landfill Gas Utilization Project Biomass Facility Facility Lopez Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas  

Open Energy Info (EERE)

UNFCCC-Consolidated baseline and monitoring methodology for landfill gas UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities Agency/Company /Organization: United Nations Framework Convention on Climate Change (UNFCCC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, - Landfill Gas Topics: Baseline projection, GHG inventory Resource Type: Guide/manual Website: cdm.unfccc.int/public_inputs/meth/acm0001/index.html Cost: Free Language: English References: UNFCCC-Consolidated baseline and monitoring methodology for landfill gas project activities[1] This article is a stub. You can help OpenEI by expanding it. References

352

I 95 Landfill Phase II Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Phase II Biomass Facility Landfill Phase II Biomass Facility Jump to: navigation, search Name I 95 Landfill Phase II Biomass Facility Facility I 95 Landfill Phase II Sector Biomass Facility Type Landfill Gas Location Fairfax County, Virginia Coordinates 38.9085472°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9085472,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Balefill Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Balefill Landfill Gas Utilization Proj Biomass Facility Balefill Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Balefill Landfill Gas Utilization Proj Biomass Facility Facility Balefill Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Bergen County, New Jersey Coordinates 40.9262762°, -74.07701° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9262762,"lon":-74.07701,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Prima Desheha Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Prima Desheha Landfill Biomass Facility Prima Desheha Landfill Biomass Facility Jump to: navigation, search Name Prima Desheha Landfill Biomass Facility Facility Prima Desheha Landfill Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Olinda Landfill Gas Recovery Plant Biomass Facility | Open Energy  

Open Energy Info (EERE)

Olinda Landfill Gas Recovery Plant Biomass Facility Olinda Landfill Gas Recovery Plant Biomass Facility Jump to: navigation, search Name Olinda Landfill Gas Recovery Plant Biomass Facility Facility Olinda Landfill Gas Recovery Plant Sector Biomass Facility Type Landfill Gas Location Orange County, California Coordinates 33.7174708°, -117.8311428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7174708,"lon":-117.8311428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

356

Four Hills Nashua Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Four Hills Nashua Landfill Biomass Facility Four Hills Nashua Landfill Biomass Facility Jump to: navigation, search Name Four Hills Nashua Landfill Biomass Facility Facility Four Hills Nashua Landfill Sector Biomass Facility Type Landfill Gas Location Hillsborough County, New Hampshire Coordinates 42.8334794°, -71.6673352° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8334794,"lon":-71.6673352,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Spadra Landfill Gas to Energy Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Spadra Landfill Gas to Energy Biomass Facility Spadra Landfill Gas to Energy Biomass Facility Jump to: navigation, search Name Spadra Landfill Gas to Energy Biomass Facility Facility Spadra Landfill Gas to Energy Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Hartford Landfill Gas Utilization Proj Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hartford Landfill Gas Utilization Proj Biomass Facility Hartford Landfill Gas Utilization Proj Biomass Facility Jump to: navigation, search Name Hartford Landfill Gas Utilization Proj Biomass Facility Facility Hartford Landfill Gas Utilization Proj Sector Biomass Facility Type Landfill Gas Location Hartford County, Connecticut Coordinates 41.7924343°, -72.8042797° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7924343,"lon":-72.8042797,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

DOE - Office of Legacy Management -- Pfohl Brothers Landfill - NY 66  

Office of Legacy Management (LM)

Pfohl Brothers Landfill - NY 66 Pfohl Brothers Landfill - NY 66 FUSRAP Considered Sites Site: Pfohl Brothers Landfill (NY.66 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Five-Year Review Report Pfohl Brothers Landfill Superfund Site Erie County Town of Cheektowaga, New York EPA REGION 2 Congressional District(s): 30 Erie Cheektowaga NPL LISTING HISTORY Documents Related to Pfohl Brothers Landfill Historical documents may contain links which are no longer valid or to outside sources. LM can not attest to the accuracy of information provided by these links. Please see the Leaving LM Website page for more details.

360

Ocean County Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

County Landfill Biomass Facility County Landfill Biomass Facility Jump to: navigation, search Name Ocean County Landfill Biomass Facility Facility Ocean County Landfill Sector Biomass Facility Type Landfill Gas Location Ocean County, New Jersey Coordinates 39.9652553°, -74.3118212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9652553,"lon":-74.3118212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Cuyahoga Regional Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Cuyahoga Regional Landfill Biomass Facility Facility Cuyahoga Regional Landfill Sector Biomass Facility Type Landfill Gas Location Cuyahoga County, Ohio Coordinates 41.7048247°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7048247,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Miramar Landfill Metro Biosolids Center Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miramar Landfill Metro Biosolids Center Biomass Facility Miramar Landfill Metro Biosolids Center Biomass Facility Jump to: navigation, search Name Miramar Landfill Metro Biosolids Center Biomass Facility Facility Miramar Landfill Metro Biosolids Center Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Mid Valley Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Biomass Facility Landfill Biomass Facility Jump to: navigation, search Name Mid Valley Landfill Biomass Facility Facility Mid Valley Landfill Sector Biomass Facility Type Landfill Gas Location San Bernardino County, California Coordinates 34.9592083°, -116.419389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9592083,"lon":-116.419389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Woodland Landfill Gas Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Landfill Gas Recovery Biomass Facility Landfill Gas Recovery Biomass Facility Jump to: navigation, search Name Woodland Landfill Gas Recovery Biomass Facility Facility Woodland Landfill Gas Recovery Sector Biomass Facility Type Landfill Gas Location Kane County, Illinois Coordinates 41.987884°, -88.4016041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.987884,"lon":-88.4016041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Pearl Hollow Landfil Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pearl Hollow Landfil Biomass Facility Pearl Hollow Landfil Biomass Facility Jump to: navigation, search Name Pearl Hollow Landfil Biomass Facility Facility Pearl Hollow Landfil Sector Biomass Facility Type Landfill Gas Location Hardin County, Kentucky Coordinates 37.6565708°, -86.0121573° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6565708,"lon":-86.0121573,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Municipal landfill leachate treatment by SBBGR technology  

Science Journals Connector (OSTI)

The paper reports the results of a laboratory-scale investigation aimed at evaluating the performance of a periodic biofilter with granular biomass (SBBGR) for treating leachate coming from a mature municipal landfill. The results show that the SBBGR was able to remove roughly 80% of COD in leachate. The remaining 20% of COD were, therefore, presumably owing to the presence in the leachate of recalcitrant compounds. Ammonia removal efficiency was low because of the presence of high salinity and inhibitory compounds in the investigated leachate. The process was characterised by very low sludge production (lower than 0.02 kg TSS/kg CODremoved).

Claudio Di Iaconi; Guido Del Moro; Michele Pagano; Roberto Ramadori

2009-01-01T23:59:59.000Z

368

Federal Energy Management Program: Greenhouse Gases  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gases Greenhouse Gases to someone by E-mail Share Federal Energy Management Program: Greenhouse Gases on Facebook Tweet about Federal Energy Management Program: Greenhouse Gases on Twitter Bookmark Federal Energy Management Program: Greenhouse Gases on Google Bookmark Federal Energy Management Program: Greenhouse Gases on Delicious Rank Federal Energy Management Program: Greenhouse Gases on Digg Find More places to share Federal Energy Management Program: Greenhouse Gases on AddThis.com... Sustainable Buildings & Campuses Operations & Maintenance Greenhouse Gases Basics Federal Requirements Guidance & Reporting Inventories & Performance Mitigation Planning Resources Contacts Water Efficiency Data Center Energy Efficiency Industrial Facilities Sustainable Federal Fleets

369

Covanta Announces Contracts for Lee County, Florida Waste-to-Energy Facility Wednesday February 8, 3:51 pm ET  

E-Print Network (OSTI)

Covanta Announces Contracts for Lee County, Florida Waste-to-Energy Facility Expansion Wednesday the construction of a 636 TPD (ton per day) capacity expansion to Lee County's 1,200 TPD waste-to-energy facility includes recycling, composting, waste-to- energy and landfilling. Covanta's service agreement, which

Columbia University

370

Voluntary Reporting of Greenhouse Gases  

Reports and Publications (EIA)

The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

2011-01-01T23:59:59.000Z

371

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

372

LANDFILL-GAS-TO-ENERGY PROJECTS: AN ANALYSIS OF NET PRIVATE AND SOCIAL BENEFITS  

E-Print Network (OSTI)

Materials Table A1: Model Results for West Lake Landfill WEST LAKE IC Engine Gas Turbine Steam Turbine Landfill WEST COUNTY IC Engine Gas Turbine Steam Turbine Average Landfill Gas Generation (mmcf/yr) 1,075 1,735 $1,250 Table A3: Model Results for Modern Landfill MODERN IC Engine Gas Turbine Steam Turbine Average

Jaramillo, Paulina

373

Numerical Simulation of the Radius of Influence for Landfill Gas Wells  

Science Journals Connector (OSTI)

...of the Radius of Influence for Landfill Gas Wells Harold Vigneault a * * Corresponding...used to quantify the efficiency of landfill gas recovery wells for unlined landfills...Results will help with the design of landfill gas recovery systems. In North America...

Harold Vigneault; René Lefebvre; Miroslav Nastev

374

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill  

Science Journals Connector (OSTI)

Micrometeorological Measurements of Methane and Carbon Dioxide Fluxes at a Municipal Landfill ... Of the global anthropogenic CH4 emissions, more than 10% originates from landfills (1). ... Landfills are the largest source of anthropogenic CH4 emissions to the atm. in the US; however, few measurements of whole landfill CH4 emissions have been reported. ...

Annalea Lohila; Tuomas Laurila; Juha-Pekka Tuovinen; Mika Aurela; Juha Hatakka; Tea Thum; Mari Pihlatie; Janne Rinne; Timo Vesala

2007-03-15T23:59:59.000Z

375

Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1  

E-Print Network (OSTI)

1 Development of a Wireless Sensor Network for Monitoring a Bioreactor Landfill Asis Nasipuri,1 treatment and disposal costs of leachate, and increasing landfill capacity. Such aerobic decomposition engineered containment structures i.e. landfilling. The goal of a conventional landfill (typically referred

Nasipuri, Asis

376

Bulletin of Entomological Research (1999) 89, 493498 493 Fly populations associated with landfill  

E-Print Network (OSTI)

Bulletin of Entomological Research (1999) 89, 493­498 493 Fly populations associated with landfill at the following sites in Hampshire, UK during August to November 1998: a landfill and composting site (Paulsgrove), a site adjacent to this landfill (Port Solent), a site with no landfill nearby (Gosport

377

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15T23:59:59.000Z

378

Appendix B Landfill Inspection Forms and Survey Data  

Office of Legacy Management (LM)

B B Landfill Inspection Forms and Survey Data This page intentionally left blank This page intentionally left blank Original Landfill January 2012 Monthly Inspection-Attachment 1 The monthly inspection of the OLF was completed on January 30. The Rocky Flats Site only received .15 inches of precipitation during the month of January. The cover was dry at the time of the inspection. The slump in the East Perimeter Channel (EPC) remained unchanged. Berm locations that were re-graded during the OLF Maintenance 2011 Project remained in good condition. Vegetation on the landfill cover including the seep areas remains dormant. OLF Cover Lower OLF Cover Facing East Upper OLF Cover Facing East

379

US EPA Landfill Methane Outreach Program | Open Energy Information  

Open Energy Info (EERE)

Landfill Methane Outreach Program Landfill Methane Outreach Program Jump to: navigation, search Name US EPA Landfill Methane Outreach Program Agency/Company /Organization United States Environmental Protection Agency Sector Energy, Land Focus Area Biomass Topics Policies/deployment programs, Resource assessment, Background analysis Resource Type Software/modeling tools, Workshop Website http://www.epa.gov/lmop/intern Country China, Ecuador, Mexico, Philippines, Thailand, Ukraine, Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama Eastern Asia, South America, Central America, South-Eastern Asia, South-Eastern Asia, Eastern Europe, Central America, Central America, Central America, Central America, Central America, Central America, Central America References LMOP[1]

380

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Impact of using high-density polyethylene geomembrane layer as landfill intermediate cover on landfill gas extraction  

Science Journals Connector (OSTI)

Clay is widely used as a traditional cover material for landfills. As clay becomes increasingly costly and scarce, and it also reduces the storage capacity of landfills, alternative materials with low hydraulic conductivity are employed. In developing countries such as China, landfill gas (LFG) is usually extracted for utilization during filling stage, therefore, the intermediate covering system is an important part in a landfill. In this study, a field test of LFG extraction was implemented under the condition of using high-density polyethylene (HDPE) geomembrane layer as the only intermediate cover on the landfill. Results showed that after welding the HDPE geomembranes together to form a whole airtight layer upon a larger area of landfill, the gas flow in the general pipe increased 25% comparing with the design that the HDPE geomembranes were not welded together, which means that the gas extraction ability improved. However as the heat isolation capacity of the HDPE geomembrane layer is low, the gas generation ability of a shallow landfill is likely to be weakened in cold weather. Although using HDPE geomembrane layer as intermediate cover is acceptable in practice, the management and maintenance of it needs to be investigated in order to guarantee its effective operation for a long term.

Zezhi Chen; Huijuan Gong; Mengqun Zhang; Weili Wu; Yu Liu; Jin Feng

2011-01-01T23:59:59.000Z

382

Greenhouse Gases | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gases Greenhouse Gases Greenhouse Gases October 7, 2013 - 9:59am Addthis Executive Order 13514 requires Federal agencies to inventory and manage greenhouse gas (GHG) emissions to meet Federal goals and mitigate climate change. Basics: Read an overview of greenhouse gases. Federal Requirements: Look up requirements for agency greenhouse gas management as outlined in Federal initiatives and executive orders. Guidance and Reporting: Find guidance documents and resources for greenhouse gas accounting and reporting. GHG Inventories and Performance: See detailed comprehensive GHG inventories by Federal agency and progress toward achieving Scope 1 and 2 GHG and Scope 3 GHG reduction targets. Mitigation Planning: Learn how Federal agencies can cost-effectively meet their GHG reduction goals.

383

Degenerate quantum gases of strontium  

E-Print Network (OSTI)

Degenerate quantum gases of alkaline-earth-like elements open new opportunities in research areas ranging from molecular physics to the study of strongly correlated systems. These experiments exploit the rich electronic structure of these elements, which is markedly different from the one of other species for which quantum degeneracy has been attained. Specifically, alkaline-earth-like atoms, such as strontium, feature metastable triplet states, narrow intercombination lines, and a non-magnetic, closed-shell ground state. This review covers the creation of quantum degenerate gases of strontium and the first experiments performed with this new system. It focuses on laser-cooling and evaporation schemes, which enable the creation of Bose-Einstein condensates and degenerate Fermi gases of all strontium isotopes, and shows how they are used for the investigation of optical Feshbach resonances, the study of degenerate gases loaded into an optical lattice, as well as the coherent creation of Sr_2 molecules.

Stellmer, Simon; Killian, Thomas C

2013-01-01T23:59:59.000Z

384

Turning greenhouse gases into gold  

NLE Websites -- All DOE Office Websites (Extended Search)

gases, with carbon dioxide (CO2) often accused of being the primary instigator of global climate change. As a result, numerous efforts are under way to find ways to prevent,...

385

ARM - What are Greenhouse Gases?  

NLE Websites -- All DOE Office Websites (Extended Search)

radiative forcing (which means they enhance global warming). Many of these gases are naturally occurring and are essential to life on earth by providing a blanket for marine and...

386

Greenhouse Gases and Emissions Trading  

Science Journals Connector (OSTI)

Atmospheric concentrations of carbon dioxide and other greenhouse gases have grown rapidly since the beginning of this century. Unless emissions are controlled, the world could face rapid climate changes, incl...

Alice LeBlanc; Daniel J. Dudek

1993-01-01T23:59:59.000Z

387

Radioactive Waste Radioactive Waste  

E-Print Network (OSTI)

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

388

Final closure cover for a Hanford radioactive mixed waste disposal facility  

SciTech Connect

This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

Johnson, K.D.

1996-02-06T23:59:59.000Z

389

Use of Waste Materials from the Production of Synthetic Rubber for Preparing Aluminosilicate Ceramics  

Science Journals Connector (OSTI)

An aluminum-silicon-chromium powder (ASC) extracted from waste gases in synthetic rubber production is used as an addition to kaolin-...

V. N. Antsiferov; T. S. Golodnova; S. E. Porozova…

2002-09-01T23:59:59.000Z

390

Removal and determination of trimethylsilanol from the landfill gas  

Science Journals Connector (OSTI)

The removal and determination of trimethylsilanol (TMSOH) in landfill gas has been studied before and after the special E3000-ITC System. The system works according to principle of temperature swing. The performance of TMSOH and humidity removal was 20% and more than 90%, respectively. The six of active carbons and impinger method were tested on the full-scale landfill in Poland for TMSOH and siloxanes determination. The extraction method and absorption in acetone were used. The concentration of TMSOH and siloxanes were found in range from 23.6 to 29.2 mg/m3 and from 18.0 to 38.9 mg/m3, respectively. The content of TMSOH in biogas originating from landfill was 41% out of all siloxanes. Moreover, the used system is alternative to other existing technique of landfill gas purification.

Grzegorz Piechota; Manfred Hagmann; Roman Buczkowski

2012-01-01T23:59:59.000Z

391

Effects of landfill gas on subtropical woody plants  

Science Journals Connector (OSTI)

An account is given of the influence of landfill gas on tree growth in the field at...Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea gluti...

G. Y. S. Chan; M. H. Wong; B. A. Whitton

392

Bioenergy recovery from landfill gas: A case study in China  

Science Journals Connector (OSTI)

Landfill gas (LFG) utilization which means a synergy...3/h and the methane concentration was above 90%. The process and optimization of the pilot-scale test were also reported in the paper. The product gas was of...

Wei Wang; Yuxiang Luo; Zhou Deng

2009-03-01T23:59:59.000Z

393

http://ndep.nv.gov/bwm/landfill.htm  

National Nuclear Security Administration (NNSA)

Story County Ely Landfill City of Ely Operating - Class I & III Permitted City of Ely White Pine County White Pine Energy Station (WPES) Class III disposal site White Pine County...

394

July 17, 2012, Webinar: Landfill Gas-to-Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

This webinar, held July 17, 2012, provided information on the challenges and benefits of developing successful community landfill gas-to-energy projects in Will County, Illinois, and Escambia...

395

The landfill gas activity of the IEA bioenergy agreement  

Science Journals Connector (OSTI)

Landfill gas (LFG) is a renewable source of useful energy. Its world wide annual energy potential is in the range of a few hundred TWh. Today it is only marginally exploited. LFG is also an important contributor to the atmospheres CH4-content, it can be estimated to contribute about 25% of the methane coming from anthropogenic sources. In comparison to many other sources of methane emissions such as peat bogs, rice paddies, termites and sheep, landfills can be considered to be point sources, i.e. they are stationary and of limited extension. For this reason landfill gas (LFG) utilisation is one of the most cost effective ways to combat the greenhouse effect. The aim of the IEA activity on LFG is to promote information exchange and co-operation between national programmes in order to promote the proliferation of landfill gas utilisation. During the period 1992–1994 the LFG activity has had six participating countries: Canada, Denmark, Norway, The Netherlands, Sweden, UK and USA. In the past three-year period, the activity has been mainly directed towards establishing networks and obtaining an over-view of data related to LFG in the member countries. Numerous contacts have been established and perhaps of most importance for the future of the activity are the links towards organisations involved in the development of landfill technology, such as ISWA and SWANA. The gathering and evaluation of data within the LFG area from the member countries has resulted in a number of documents that are to be published within the near future. These documents cover information on LFG utilisation, landfill research, landfill gas potentials, landfill emission assessment and also non-technical barriers to LFG utilisation.

A Lagerkvist

1995-01-01T23:59:59.000Z

396

How does landfill leachate affect the chemical processes in a lake system downgradient from a landfill site?  

Science Journals Connector (OSTI)

A field study on the geochemical properties of a chemically-stressed limnic environment was performed in Lake Silbersee, which receives leachate water of high inorganic loading from an upgradient landfill site. T...

Thomas Striebel; Wolfgang Schäfer; Stefan Peiffer

1991-01-01T23:59:59.000Z

397

Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary  

SciTech Connect

A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

NONE

1997-02-01T23:59:59.000Z

398

Case study of landfill leachate recirculation using small-diameter vertical wells  

Science Journals Connector (OSTI)

Abstract A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m3 of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6 × 10?8 to 3.6 × 10?6 m3 s?1 per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5 × 10?6 to 4.2 × 10?4 m s?1. The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p < 0.025) decomposition.

Pradeep Jain; Jae Hac Ko; Dinesh Kumar; Jon Powell; Hwidong Kim; Lizmarie Maldonado; Timothy Townsend; Debra R. Reinhart

2014-01-01T23:59:59.000Z

399

Review of state of the art methods for measuring water in landfills  

SciTech Connect

In recent years several types of sensors and measurement techniques have been developed for measuring the moisture content, water saturation, or the volumetric water content of landfilled wastes. In this work, we review several of the most promising techniques. The basic principles behind each technique are discussed and field applications of the techniques are presented, including cost estimates. For several sensors, previously unpublished data are given. Neutron probes, electrical resistivity (impedance) sensors, time domain reflectometry (TDR) sensors, and the partitioning gas tracer technique (PGTT) were field tested with results compared to gravimetric measurements or estimates of the volumetric water content or moisture content. Neutron probes were not able to accurately measure the volumetric water content, but could track changes in moisture conditions. Electrical resistivity and TDR sensors tended to provide biased estimates, with instrument-determined moisture contents larger than independent estimates. While the PGTT resulted in relatively accurate measurements, electrical resistivity and TDR sensors provide more rapid results and are better suited for tracking infiltration fronts. Fiber optic sensors and electrical resistivity tomography hold promise for measuring water distributions in situ, particularly during infiltration events, but have not been tested with independent measurements to quantify their accuracy. Additional work is recommended to advance the development of some of these instruments and to acquire an improved understanding of liquid movement in landfills by application of the most promising techniques in the field.

Imhoff, Paul T. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)], E-mail: imhoff@udel.edu; Reinhart, Debra R. [Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Englund, Marja [Fortum Service Ltd., P.O. Box 10, FIN-00048, Fortum (Finland); Guerin, Roger [Universite Pierre et Marie Curie-Paris 6, UMR 7619 Sisyphe, case courrier 105, 4 place Jussieu, 75252 Paris cedex 05 (France); Gawande, Nitin [Department of Civil and Environmental Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Han, Byunghyun [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Jonnalagadda, Sreeram; Townsend, Timothy G. [Civil and Environmental Engineering Sciences Department, Gainesville, FL 32609 (United States); Yazdani, Ramin [Planning, Resources, and Public Works Department, Division of Integrated Waste Management, 292 West Beamer Street, Woodland, CA 95695 (United States)

2007-07-01T23:59:59.000Z

400

Energy aspects of solid waste management: Proceedings  

SciTech Connect

The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of landfill gas production and emissions in a MSW large-scale Experimental Cell in Brazil  

Science Journals Connector (OSTI)

Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE – Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4–5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.

Felipe Jucá Maciel; José Fernando Thomé Jucá

2011-01-01T23:59:59.000Z

402

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

403

Data summary of municipal solid waste management alternatives  

SciTech Connect

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

Not Available

1992-10-01T23:59:59.000Z

404

5th International Landfills Conference -Sardinia'95, Cagliari, 1995 DEVELOPMENT AND VALIDATION OF A METHOD FOR MEASURING BIOGAS  

E-Print Network (OSTI)

OF A METHOD FOR MEASURING BIOGAS EMISSIONS USING A DYNAMIC CHAMBER Zbigniew POKRYSZKA, Christian TAUZIEDE biogas flow, designing a dynamic flux chamber. Preliminary bench tests revealed the necessity of defining gas releases. A mixture of gases (known as biogas) is produced from organic waste, and consists mainly

Paris-Sud XI, Université de

405

In situ containment and stabilization of buried waste  

SciTech Connect

The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

1992-11-01T23:59:59.000Z

406

The reduction of packaging waste  

SciTech Connect

Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

1994-04-01T23:59:59.000Z

407

Climate VISION: Greenhouse Gases Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Greenhouse Gases, Global Climate Change, and Energy Emissions of Greenhouse Gases in the United States 2001 [1605(a)] This report, required by Section 1605(a) of the Energy Policy Act of 1992, provides estimates of U.S. emissions of greenhouse gases, as well as information on the methods used to develop the estimates. The estimates are based on activity data and applied emissions factors, not on measured or metered emissions monitoring. Available Energy Footprints Industry NAICS* All Manufacturing Alumina & Aluminum 3313 Cement 327310 Chemicals 325 Fabricated Metals 332 Food and Beverages 311, 312 Forest Products 321, 322 Foundries 3315 Glass & Glass Products, Fiber Glass 3272, 3296 Iron & Steel Mills 331111 Machinery & Equipment 333, 334, 335, 336

408

Toolbox Safety Talk Waste Anesthetic Gas (WAG)  

E-Print Network (OSTI)

Toolbox Safety Talk Waste Anesthetic Gas (WAG) Environmental Health & Safety Facilities Safety-in sheet to Environmental Health & Safety for recordkeeping. Anesthetic gas and vapors that leak into the surrounding room during medical or research procedures are considered waste anesthetic gas (WAG). These gases

Pawlowski, Wojtek

409

Waste-gas C02 feeds algae  

Science Journals Connector (OSTI)

Waste-gas C02 feeds algae ... The new scheme calls for algae found growing on highly alkaline shallow ponds in Central Africa to metabolize carbon dioxide in waste gases to produce highprotein food. ... IFF has been studying the blue-green algae since the beginning of 1963. ...

1966-07-18T23:59:59.000Z

410

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

411

Emerging technologies in hazardous waste management  

SciTech Connect

The meeting was divided into two parts: Waste water management technologies and Soils, residues, and recycle techniques. Technologies included: photocatalytic oxidation; water treatment with hydrogen peroxide; ultraviolet destruction of pollutants; biodegradation; adsorption; affinity dialysis; and proton transfer. Other papers described evaluation of land treatment techniques; mobility of toxic metals in landfills; sorptive behavior in soils; artificial reef construction; and treatment and disposal options for radioactive metals (technetium 99, strontium, and plutonium). Papers have been processed separately for inclusion on the data base.

Tedder, D.W.; Pohland, F.G. (eds.)

1990-01-01T23:59:59.000Z

412

The application of a mathematical model of sustainability to the results of an environmental impact assessment of the Russeifa landfill, Jordan  

Science Journals Connector (OSTI)

The question of whether landfills are or could be sustainable is somewhat unanswered within the sphere of waste management. This is partly due to two key issues: the ambiguities concerning what is sustainability?; and how to effectively assess the potential or actual sustainability of a landfill? It has been argued in the literature that this is a difficult task, however it is not impossible. This paper consequently presents the application of a mathematical model of sustainability to the results obtained for the environmental impact assessment (EIA) of the Russeifa landfill in Jordan using the rapid impact assessment matrix (RIAM) methodology. This paper demonstrates the methodology necessary to apply the model to the RIAM evaluation made at the time of assessment with respect to potential mitigation options. A determination of the level and nature of sustainability (if appropriate) for the project options were obtained for the Russeifa landfill. The results indicated that all of project options evaluated could be considered as unsustainable. This paper concludes by stating that the application of the model to the RIAM analysis offers a potential mechanism in evaluating sustainability through the use of a common and increasingly regarded technique of EIA.

Jason Phillips

2012-01-01T23:59:59.000Z

413

Investigating and Using Biomass Gases  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students will be introduced to biomass gasification and will generate their own biomass gases. Students generate these everyday on their own and find it quite amusing, but this time they’ll do it by heating wood pellets or wood splints in a test tube. They will collect the resulting gases and use the gas to roast a marshmallow. Students will also evaluate which biomass fuel is the best according to their own criteria or by examining the volume of gas produced by each type of fuel.

414

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Calculator For Solid Waste IGES GHG Calculator For Solid Waste Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary Name: IGES GHG Calculator For Solid Waste Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Complexity/Ease of Use: Simple Cost: Free Related Tools Energy Development Index (EDI) Harmonized Emissions Analysis Tool (HEAT) Electricity Markets Analysis (EMA) Model ... further results A simple spreadsheet model for calculating greenhouse gas emissions from existing waste management practices (transportation, composting, anaerobic digestion, mechanical biological treatment, recycling, landfilling) in

415

Co-processing of agricultural and biomass waste with coal  

SciTech Connect

A major thrust of our research program is the use of waste materials as co-liquefaction agents for the first-stage conversion of coal to liquid fuels. By fulfilling one or more of the roles of an expensive solvent in the direct coal liquefaction (DCL) process, the waste material is disposed off ex-landfill, and may improve the overall economics of DCL. Work in our group has concentrated on co-liquefaction with waste rubber tires, some results from which are presented elsewhere in these Preprints. In this paper, we report on preliminary results with agricultural and biomass-type waste as co-liquefaction agents.

Stiller, A.H.; Dadyburjor, D.B.; Wann, Ji-Perng [West Virginia Univ., Morgantown, WV (United States)] [and others

1995-12-31T23:59:59.000Z

416

Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions  

SciTech Connect

Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions. These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.

Abichou, Tarek, E-mail: abichou@eng.fsu.edu [Florida State University, Tallahassee, FL 32311 (United States); Mahieu, Koenraad; Chanton, Jeff [Florida State University, Tallahassee, FL 32311 (United States); Romdhane, Mehrez; Mansouri, Imane [Unite de Recherche M.A.C.S., Ecole Nationale d'Ingenieurs de Gabes, Route de Medenine, 6029 Gabes (Tunisia)

2011-05-15T23:59:59.000Z

417

EM Landfill Workshop Report - November 21, 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TABLE OF CONTENTS EXECUTIVE SUMMARY 1 INTRODUCTION 3 SESSION A: SETTLEMENT 4 SESSION B: LINERS 5 SESSION C: FORECASTING 6 SESSION D: COVERS 7 RECOMMENDATIONS 8 ACKNOWLEDGEMENT 10 
 
 1
 EXECUTIVE SUMMARY On 7-8 October 2008, a workshop was conducted by the US Department of Energy (DOE) to discuss four technological issues relevant to nearly all sites in the DOE complex: * Waste subsidence and its impact on the long-term effectiveness of final covers over low-level radioactive waste (LLRW) disposal sites. * The impact of waste forecasting and characterization on the required size and operation of LLRW disposal facilities. * Long-term performance of final covers on LLRW disposal sites, given the 1000-yr life expectancy period.

418

Effects of biodrying process on municipal solid waste properties  

Science Journals Connector (OSTI)

In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14 d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779 ± 2,074 kJ kg?1 wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290 g kg?1 VS), reduced of about 28% the total producible biogas.

F. Tambone; B. Scaglia; S. Scotti; F. Adani

2011-01-01T23:59:59.000Z

419

Influence of Landfill Gas on the Microdistribution of Grass Establishment Through Natural Colonization  

Science Journals Connector (OSTI)

Many revegetated landfills have poor cover including bare areas where plants do not grow. This study, on the Bisasar Road Landfill site in South Africa, assessed grass species preferences to microhabitat condi...

Douglas H. Trotter; John A. Cooke

2005-03-01T23:59:59.000Z

420

Slippage solution of gas pressure distribution in process of landfill gas seepage  

Science Journals Connector (OSTI)

A mathematical model of landfill gas migration was established under presumption of the ... a large impact on gas pressure distribution. Landfill gas pressure and pressure gradient considering slippage effect...

Qiang Xue; Xia-ting Feng; Bing Liang

2005-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Toxic oxide deposits from the combustion of landfill gas and biogas  

Science Journals Connector (OSTI)

Oxide deposits found in combustion systems of landfill gas fired power stations contain relatively high concentrations ... They are selectively transported as part of the landfill gas into the gas-burning devices...

Dietmar Glindemann; Peter Morgenstern…

1996-06-01T23:59:59.000Z

422

Landfill Methane Oxidation Across Climate Types in the U.S.  

Science Journals Connector (OSTI)

Methane oxidation in landfill covers was determined by stable isotope analyses over 37 seasonal sampling events at 20 landfills with intermediate covers over four years. Values were calculated two ways: by assuming no isotopic fractionation during gas ...

Jeffrey Chanton; Tarek Abichou; Claire Langford; Gary Hater; Roger Green; Doug Goldsmith; Nathan Swan

2010-12-06T23:59:59.000Z

423

Clean Gases for Gas Chromatography  

Science Journals Connector (OSTI)

......to purchase such clean gases. Even research grades...no maintenance, at the cost of 500 watts of electrical...Exploration and Production Research Division, Hous...hour. The maintenance cost of the cold trap is only...displaces the contaminated gas which has passed into......

B. Osborne Prescott; Harold L. Wise

1966-02-01T23:59:59.000Z

424

Tapping Landfill Gas to Provide Significant Energy Savings and Greenhouse Gas Reductions- Case Study, 2013  

Energy.gov (U.S. Department of Energy (DOE))

Case study overviewing two large landfill projects in California and Rhode Island funded by the Recovery Act

425

11. GEOELECTRICAL CHARACTERIZATION OF COVERED LANDFILL SITES: A PROCESS-ORIENTED MODEL AND  

E-Print Network (OSTI)

in disused quarries or special purpose-built structures but not all past landfill operations were adequately

Meju, Max

426

Waste tire recycling by pyrolysis  

SciTech Connect

This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

427

The role of waste-to-energy in integrated waste management: A life cycle assessment perspective  

SciTech Connect

Municipal Solid Waste (MSW) management has become a major issue in terms of environmental impacts. It has become the focus of local, state and federal regulations, which generally tend to promote the reduce/re-use/recycle/incinerate/landfill environmental hierarchy. At the same time, the Waste Industry capital requirements have increased in order of magnitude since the beginning of the 80`s. The driving forces of further capital requirements for the Waste Management Industry will be the impact of public policies set today and goals set by politicians. Therefore, it appears extremely important for the Waste Industry to correctly analyze and forecast the real environmental and financial costs of waste management practices in order to: discuss with the local, state and federal agencies on more rational grounds; forecast the right investments in new technologies (recycling networks and plants, incinerators with heat recovery, modern landfill). The aim of this paper is to provide an example of a Life Cycle Assessment (LCA) project in the waste management field that raised surprising issues on otherwise unchallenged waste management practices.

Besnainou, J. [Ecobalance, Rockville, MD (United States)

1996-12-31T23:59:59.000Z

428

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate  

E-Print Network (OSTI)

Nitrogen removal via nitrite in a sequencing batch reactor treating sanitary landfill leachate, for the automation of a bench-scale SBR treating leachate generated in old landfills. Attention was given 20­30% due to the low biodegradability of organic matter in the leach- ate from old landfills

429

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills  

E-Print Network (OSTI)

Beneficial Use of Shredded Tires as Drainage Material in Cover Systems for Abandoned Landfills in cover systems for abandoned landfills. The research study included extensive laboratory testing and field demonstration at an abandoned landfill in Carlinville, Ill. Laboratory testing was conducted using

430

Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system  

E-Print Network (OSTI)

Geosynthetics International, 2010, 17, No.3 Design of a landfill final cover system T. D. Stark containment, Strength, Stability, Shearbox test, Failure, Final cover system, Landfill REFERENCE: Stark, T. D. & Newman, E. J. (20 I0). Design of a landfill final cover systcm. Geosynthetics [ntemational17, No.3, 124

431

Upgrading of Landfill Gas by Membranes — Experiences with Operating a Pilot Plant  

Science Journals Connector (OSTI)

In the last years the interest in using landfill gas as an energy source has risen ... has been constructed on the premises of a landfill dump in Neuss. In a two-stage-process, landfill gas is upgraded in order t...

R. Rautenbach; K. Welsch

1990-01-01T23:59:59.000Z

432

Application of Bayesian inference methods to inverse modeling for contaminant source identification at Gloucester Landfill, Canada  

E-Print Network (OSTI)

identification at Gloucester Landfill, Canada Anna M. Michalak and Peter K. Kitanidis Department of Civil plume at the Gloucester landfill site in Ontario, Canada. This work constitutes the first application]. In this paper, we infer the 1,4-dioxane release history from the Gloucester landfill in Ontario, Canada, based

Michalak, Anna M.

433

Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy  

E-Print Network (OSTI)

1 Clogging Potential of Tire Shred-Drainage Layer in Landfill Cover Systems Krishna R. Reddy of shredded scrap tire drainage layers in landfill covers. Laboratory clogging tests were conducted using soil to 50 cm. The soil layer consisted of silty clay that is commonly used as cover soil in landfill cover

434

Albany Landfill Gas Utilization Project Biomass Facility | Open Energy  

Open Energy Info (EERE)

Utilization Project Biomass Facility Utilization Project Biomass Facility Jump to: navigation, search Name Albany Landfill Gas Utilization Project Biomass Facility Facility Albany Landfill Gas Utilization Project Sector Biomass Facility Type Landfill Gas Location Albany County, New York Coordinates 42.5756797°, -73.9359821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5756797,"lon":-73.9359821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

List of Landfill Gas Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 377 Landfill Gas Incentives. CSV (rows 1 - 377) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric

436

Sanitary Landfill groundwater monitoring report. First quarter 1993  

SciTech Connect

This report contains analytical data for samples taken during first quarter 1993 from wells of the LFW series located at the Sanitary Landfill at the Savannah River Site. The data are submitted in reference to the Sanitary Landfill Operating Permit (DWP-087A). The report presents monitoring results that equaled or exceeded the Safe Drinking Water Act final Primary Drinking Water Standards (PDWS) or screening levels, established by the US Environmental Protection Agency, the South Carolina final Primary Drinking Water Standards for lead or the SRS flagging criteria.

Not Available

1993-05-01T23:59:59.000Z

437

Parameters for landfill-liner leak-rate model  

E-Print Network (OSTI)

PARAMETERS FOR LANDFILL-LINER LEAK-RATE MODEL A Thesis by STEVEN CARLTON BAHRT Submitted to the Graduate College of Texas ASM University i n partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1985 Major... Subject: Civil Engineering PARAMETERS FOR LANDFILL-LINER LEAK-RATE MODEL A Thesis by STEVEN CARLTON BAHRT Approved as to style and content by: Rob nt Lytto (Co-Cha' man of C mmittee) ayne Dunl p (Member) Kink W. Brown (Co-Chairman of Committee...

Bahrt, Steven Carlton

2012-06-07T23:59:59.000Z

438

Model to aid the design of composite landfill liners  

E-Print Network (OSTI)

MODEL TO AID THE DESI(iN OF COMPOSITE LANDFILL LINERS A Thesis by KIFAYATHULLA MOHAMMED Submitted to the School of Graduate Studies Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1993... Major Subject: Safety Engineering MODEL TO AID THE DESIGN OF COMPOSITE LANDFILL LINERS A Thesis by Kifayathulla Mohammed Approved as to style and content by: Kevin J. Mclnnes (Co-chairman of Committee) Richard P. Kon n (Member John P. Wagner...

Mohammed, Kifayathulla

2012-06-07T23:59:59.000Z

439

Industrial Gases as a Vehicle for Competitiveness  

E-Print Network (OSTI)

the diversity and options available to enable cost savings and environmentally driven process improvements. Industrial gases have come of age during the last fifteen years. Engineers and scientists have looked beyond the paradigms of their operations...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

Dale, J. R.

440

Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria  

SciTech Connect

The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

W. Mahlon Heileson

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

VI.5 Recycling of plastic waste, rubber waste and end-of-life cars in Germany  

Science Journals Connector (OSTI)

Publisher Summary Among different types of consumer waste in Germany, plastic waste, rubber waste, and end-of-life cars are closely intertwined. Processing techniques applied to these types of consumer waste are identical in many cases. This chapter outlines these similarities and discusses each type of consumer waste. The regulations for plastic waste recycling only apply to private households. Regulations are limited to packaging waste with the ordinance on packaging waste being the legal provision. The recycling of packaging remnants from production or defective production units is partially organized by producers themselves. Energy recovery of plastic packaging is limited to combined heat and power stations. Packaging waste that cannot be submitted to mechanical recycling is usually treated by the means of feedstock recycling. The treatment of plastic waste comprises fragmentation, sizing, sorting, washing and drying, agglomeration, and granulation. Rubber waste is unsuitable for deposition at landfill sites because of poor compressibility, resilient surfaces, extremely long rotting time, and forming of cavities with air inclusion. An increased utilization of rubber waste in the production of new tires depends directly on the quality of the vulcanization process.

Peter Dreher; Martin Faulstich; Gabriele Weber-Blaschke; Burkhard Berninger; Uwe Keilhammer

2004-01-01T23:59:59.000Z

442

Value from shredder waste: Ongoing limitations in the UK  

Science Journals Connector (OSTI)

Shredder residue is the residue from the shredding of end-of-life vehicles and white goods, after removal of the main metals. Approximately 850,000 tonnes of shredder waste is produced in the UK each year, and historically sent to landfill. Due to European legislation such as the End-of-Life Vehicle (ELV) Directive and the Landfill Directive there is pressure to minimise this waste through recycling and recovery. In this paper, primary data are presented showing that 40% of materials are potentially recoverable in the coarser fraction of UK automotive shredder residue (>30 mm). Barriers to such recycling are discussed in the context of several recent drivers, including this waste's possible reclassification as hazardous. The lack of full and timely implementation of the ELV Directive in the UK has made it an ineffective driver, and it is now unlikely that its 2006 recycling targets will be met as intended.

O.T. Forton; M.K. Harder; N.R. Moles

2006-01-01T23:59:59.000Z

443

Waste-to-Energy Evaluation: U.S. Virgin Islands  

SciTech Connect

This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

Davis, J.; Hasse, S.; Warren, A.

2011-08-01T23:59:59.000Z

444

Greenhouse Gases Converted to Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Greenhouse Gases Converted to Fuel Greenhouse Gases Converted to Fuel carbon-conversion-fig-1.jpg Key Challenges: An important strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it to fuels and chemicals. Although researchers working toward that goal demonstrated in 1992 such a reaction in the lab, a key outstanding scientific challenge was explaining the details of how the reaction took place - its "mechanism." Why it Matters: An important potential strategy for reducing global CO2 emissions calls for capturing the greenhouse gas and converting it electrochemically to fuels and chemicals. Accomplishments: Computation to explain how carbon dioxide can be converted to small organic molecules with little energy input. The

445

Illinois Solid Waste Management Act (Illinois) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) Illinois Solid Waste Management Act (Illinois) < Back Eligibility Agricultural Commercial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Illinois Program Type Environmental Regulations Provider Illinois EPA It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid waste planning and management. In furtherance of those aims, while recognizing that landfills will continue to be necessary, this Act establishes the following waste management hierarchy, in descending order of preference, as State policy: volume reduction at the source; recycling and reuse; combustion

446

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

SciTech Connect

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

447

Lessons from Loscoe: the uncontrolled migration of landfill gas  

Science Journals Connector (OSTI)

...was considered of fundamental importance in determining...making the situation safe, even though in...with coal mining operations. In 1983 smells...central heating boiler had been ignited...different landfill operation and completion scenarios...how to improve the operation and engineering...

G. M. Williams; N. Aitkenhead

448

Story Road Landfill Solar Site Evaluation: San Jose  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the findings of a solar site evaluation conducted at the Story Road Landfill (Site) in the City of San Jose, California (City). This evaluation was conducted as part of a larger study to assess solar potential at multiple public facilities within the City.

449

Engineering/design of a co-generation waste-to-energy facility  

SciTech Connect

Five hundred fifteen thousand tons of Municipal Solid Waste (MSW) is being generated every day in America. At present 68% of this trash is dumped into landfill operations. As the amount of garbage is increasing daily, the amount of land reserved for landfills is diminishing rapidly. With the sentiment of the public that you produce it, you keep it, the import-export of waste between the counties and states for the landfills, no longer appears to be feasible, especially when combined with expensive disposal costs. One method of reducing the quantity of waste sent to landfills is through the use of waste-to-energy facilities - the technology of resource recovery - the technology of today INCINERATION. All cogeneration projects are not alike. This paper examines several aspects of the electrical system of a particular municipal solid waste-to-energy project at Charleston, S.C. which includes plant auxiliary loads as well as a utility interconnection through a step-up transformer.

Bajaj, K.S.; Virgilio, R.J. (Foster Wheeler USA Corp., Clinton, NJ (United States))

1992-01-01T23:59:59.000Z

450

Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

2012-05-15T23:59:59.000Z

451

Purifying rotary kiln waste gases in chamotte burning  

Science Journals Connector (OSTI)

A study of the operation of electric filters connected to rotary kilns for burning clay into chamotte showed that to increase the dust extraction efficiency it is necessary: with dust concentrations in the gas...

Yu. I. Chander; S. Z. Belinskii; L. G. Borisovskii

452

Conserving Energy by Recovering Heat from Hot Waste Gases  

E-Print Network (OSTI)

,000 $24,000 $13,200 $37,200 10MM 3.10MM 28,000 120,000 28,000 15,400 43,400 " 15Ml1 4.65MM 32,000 180,000 32,000 17,600 49,600 20HM 6.20MH 40,000 240,000 40,000 22,000 62,000 25H1'1 7.75H1'1 48,000 300,000 48,000 26,400 74,400 301'11'1 9...,000 60,000 $ 120,000 240,000 360,000 480,000 600,000 720,000 840,000 $24,000 28,000 32,000 40,000 48,000 54,000 60,000 $13,200 15,400 17,600 22,000 26,400 29,700 33,000 $37,200 43,400 49,600 6'2,000 74,400 83,700 93,000 2...

Magnuson, E. E.

1979-01-01T23:59:59.000Z

453

UBC Social Ecological Economic Development Studies (SEEDS) Student Report Comparison of End of Life Options for Waste Paper Towel at the University of British  

E-Print Network (OSTI)

Options for Waste Paper Towel at the University of British Columbia Brendan Deere, Qifeng Yang, Nazani of End of Life Options for Waste Paper Towel at the University of British Columbia Brendan Deere , Qifeng In this paper, three paper towel disposal options were evaluated ­ landfill, compost and gasification (Nexterra

454

Passive drainage and biofiltration of landfill gas: Results of Australian field trial  

Science Journals Connector (OSTI)

A field scale trial was undertaken at a landfill site in Sydney, Australia (2004–2008), to investigate passive drainage and biofiltration of landfill gas as a means of managing landfill gas emissions from low to moderate gas generation landfill sites. The objective of the trial was to evaluate the effectiveness of a passive landfill gas drainage and biofiltration system at treating landfill gas under field conditions, and to identify and evaluate the factors that affect the behaviour and performance of the system. The trial results showed that passively aerated biofilters operating in a temperate climate can effectively oxidise methane in landfill gas, and demonstrated that maximum methane oxidation efficiencies greater than 90% and average oxidation efficiencies greater than 50% were achieved over the 4 years of operation. The trial results also showed that landfill gas loading was the primary factor that determined the behaviour and performance of the passively aerated biofilters. The landfill gas loading rate was found to control the diffusion of atmospheric oxygen into the biofilter media, limiting the microbial methane oxidation process. The temperature and moisture conditions within the biofilter were found to be affected by local climatic conditions and were also found to affect the behaviour and performance of the biofilter, but to a lesser degree than the landfill gas loading.

Stuart A. Dever; Gareth E. Swarbrick; Richard M. Stuetz

2011-01-01T23:59:59.000Z

455

The Viscosity of Compressed Gases  

Science Journals Connector (OSTI)

New data and a new theory for the viscosity of compressed gases are presented. Data for nitrogen, hydrogen and a mixture of these gases are given, in the calculation of which, the "end effects" are not neglected as has been done in the past. Previous viscosity data are of doubtful validity owing to neglect of this factor. The theory is based on an analogy between the kinetic pressure and viscosity of a gas and is derived using an equation of state of the Lorentz type. Allowance is made for the difference between the viscosity and compressibility covolumes. The theory is substantiated experimentally and further confirmed by the recalculation of other data on the variation of Reynolds' criterion with the pressure, which is here shown to be constant. The mixture data offer a direct opportunity of comparing the Lorentz and linear rules for the calculation of the covolume of a mixture from the covolumes of the components and such comparison indicates that the Lorentz rule is not to be preferred. The substantiation of the new theory is the first direct proof of the validity of the separate treatment of the kinetic and cohesive pressures in the equation of state.

James H. Boyd; Jr.

1930-05-15T23:59:59.000Z

456

UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) |  

Open Energy Info (EERE)

403 403 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288403 Varnish cache server UK Energy Statistics: Renewables and Waste, Commodity Balances (2010) Dataset Summary Description Annual commodity balances (supply, consumption) for renewables and waste in the UK from 1998 to 2009. Published as part of the Digest of UK energy statistics (DUKES), by the UK Department of Energy & Climate Change (DECC). Waste includes: wood waste, farm waste, sewage gas, landfill gas, waste and tyres. Renewables includes: wood, plant-based biomass, geothermal and active solar heat, hydro, wind, wave and tidal, and liquid biofuels. These data were used to produce Tables 7.1 to 7.3 in the Digest of United Kingdom Energy Statistics 2010 (available: http://decc.gov.uk/assets/decc/Statistics/publications/dukes/348-dukes-2...).

457

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to energy as a very important "trick" that can have a positive environmental impact. Usually, these seasonal items including hay, pumpkins, candy, and leaves, are thrown away and sent to landfills. From there, the MSW decomposes and eventually turns into methane-a harmful

458

ARM - Lesson Plans: Dissolved Gases in Water  

NLE Websites -- All DOE Office Websites (Extended Search)

released into the air, additional CO2 Would intensify an already-problematic greenhouse effect. Preparation Demonstrate that water contains invisible gases. Collect and cover...

459

CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A  

E-Print Network (OSTI)

Recovered Fuel) as a fuel in both cement kilns and power plants, dedicated Biomass Energy Plants (BEP; BEP ­ Biomass Energy Plants; LFG ­ Landfill Gas; WtE ­ Waste-to-Energy 1 Excluding agricultural is considered biomass, thus a renewable energy source. Summary of the overall development of Renewable Energy

460

Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography  

SciTech Connect

This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography  

SciTech Connect

This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

none,

1992-10-01T23:59:59.000Z

462

Cornell Waste Management Institute Program Work Team 1 Managing Organic Residuals  

E-Print Network (OSTI)

on all landfill and incinerator waste. Five dollars would be charged to the facility for every ton://www.nypsc.org) describes Framework Principles for Product Stewardship. · Other "types" of operations include pyrolysis and gasification plants. DEC is looking at these facilities to help insure they

Wang, Z. Jane

463

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

464

The use of kaolinite/zeolite mixtures for landfill liners  

Science Journals Connector (OSTI)

The use of kaolinite/zeolite mixtures as alternative landfill materials has been studied. The ratios of kaolinite/zeolite used were K/Z = 0.1, K/Z = 0.2 and K/Z = 0.3. To determine the geotechnical and physicochemical properties of the mixtures, their optimum moisture content, which provides the best compression out in the field, was determined by a compaction test. Also, tests for unconfined compression strength, hydraulic conductivity and consolidation were carried out. As a result, the optimum mixture was found to be K/Z = 0.2. To test the effect of contaminants, this optimum mixture was contaminated with Na, Ca, Pb, and Cu, and tests of the specific gravity, liquid and plastic limits, unconfined compression strength, consolidation, pH, and electrical conductivity were performed. It is concluded that the K/Z = 0.20 mixture has high absorption capacity and can be used in the landfill liner materials.

Yucel Guney; Savas Koparel

2005-01-01T23:59:59.000Z

465

Evaluation of three geophysical methods to locate undocumented landfills  

E-Print Network (OSTI)

is to investigate the ability of these two techniques and ground penetrating radar to define undocumented landfill boundaries. Terrain conductivity senses the contrast in the electrical conductivity between filled and undisturbed areas. A proton precession... operating continuously for 20 years determined that electrical conductivity techniques work well in thick deposits of area fill and poorly or not at all on thin trench fill areas. Furthermore, length of burial time does not correlate with strength...

Brand, Stephen Gardner

2012-06-07T23:59:59.000Z

466

In situ containment and stabilization of buried waste. Annual report FY 1992  

SciTech Connect

The objective of the project was to develop, demonstrate and implement advanced grouting materials for the in-situ installation of impermeable, durable subsurface barriers and caps around waste sites and for the in-situ stabilization of contaminated soils. Specifically, the work was aimed at remediation of the Chemical Waste (CWL) and Mixed Waste Landfills (MWL) at Sandia National Laboratories (SNL) as part of the Mixed Waste Landfill Integrated Demonstration (MWLID). This report documents this project, which was conducted in two subtasks. These were (1) Capping and Barrier Grouts, and (2) In-situ Stabilization of Contaminated Soils. Subtask 1 examined materials and placement methods for in-situ containment of contaminated sites by subsurface barriers and surface caps. In Subtask 2 materials and techniques were evaluated for in-situ chemical stabilization of chromium in soil.

Allan, M.L.; Kukacka, L.E.; Heiser, J.H.

1992-11-01T23:59:59.000Z

467

Waste Segregation Based on Derived Clearance Levels  

SciTech Connect

This paper describes the methodology and results of a radiological modeling in support of an application to release very low level radiologically contaminated waste from regulatory control and allow its haulage and disposal in a hazardous waste landfill. The Canadian regulatory body responsible for licensing operations involving nuclear materials (the Canadian Nuclear Safety Commission), has not yet formally defined clearance levels for free release of low level radiologically contaminated waste. The IAEA clearance levels have been derived for certain situations and receptor characteristics, which might be too conservative for an actual case. A site-specific pathways analysis was therefore completed to define conditional clearance levels using the concept of de minimis dose limit. Derived Conditional Clearance Levels were calculated for each radionuclide based on the maximally exposed hypothetical individuals to determine whether each waste stream can be 'cleared' from regulatory controls. The results showed that haulage of the waste from the station to the haulage/processing facility and transportation of waste or sludge from the haulage/processing facility to the disposal facility, handling of the waste or sludge at the haulage/processing facility, and incineration and/or disposal of waste or sludge at the disposal facility would not expose the workers to doses above 0.1 {mu}Sv/yr., which is less than the de minimis dose limit of 10 {mu}Sv/yr. (authors)

Garisto, N.C.; Parhizgari, Z. [SENES Consultants Limited, Richmond Hill, ON (United States)

2008-07-01T23:59:59.000Z

468

488-4D ASH LANDFILL CLOSURE CAP HELP MODELING  

SciTech Connect

At the request of Area Completion Projects (ACP) in support of the 488-4D Landfill closure, the Savannah River National Laboratory (SRNL) has performed Hydrologic Evaluation of Landfill Performance (HELP) modeling of the planned 488-4D Ash Landfill closure cap to ensure that the South Carolina Department of Health and Environmental Control (SCDHEC) limit of no more than 12 inches of head on top of the barrier layer (saturated hydraulic conductivity of no more than 1.0E-05 cm/s) in association with a 25-year, 24-hour storm event is not projected to be exceeded. Based upon Weber 1998 a 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches. The results of the HELP modeling indicate that the greatest peak daily head on top of the barrier layer (i.e. geosynthetic clay liner (GCL) or high density polyethylene (HDPE) geomembrane) for any of the runs made was 0.079 inches associated with a peak daily precipitation of 6.16 inches. This is well below the SCDHEC limit of 12 inches.

Phifer, M.

2014-11-17T23:59:59.000Z

469

Granular gases under extreme driving  

E-Print Network (OSTI)

We study inelastic gases in two dimensions using event-driven molecular dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady-state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

W. Kang; J. Machta; E. Ben-Naim

2010-02-04T23:59:59.000Z

470

Tandem microwave waste remediation and decontamination system  

DOE Patents (OSTI)

The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

1999-01-01T23:59:59.000Z

471

Medical waste treatment and decontamination system  

DOE Patents (OSTI)

The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

472

Effect of Hydrogen Sulfide in Landfill Gas on Anode Poisoning of Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

??The world is facing an energy crisis and there is an immediate need to find a sustainable source of energy. Landfill gas has the potential… (more)

Khan, Feroze

2012-01-01T23:59:59.000Z

473

An Empirical Analysis of Gas Well Design and Pumping Tests for Retrofitting Landfill Gas Collection.  

E-Print Network (OSTI)

??Retrofitting a landfill with a gas collection system is an expensive and time consuming endeavor. Such an undertaking usually consists of longer-term extraction testing programs… (more)

Stevens, Derek

2013-01-01T23:59:59.000Z

474

Sorption model of trichloroethylene (TCE) and benezene in municipal landfill materials.  

E-Print Network (OSTI)

??This research is intended to establish a mathematical model describing the mass transfer of trace gas in landfill. Experimental data used for calibration were reported… (more)

Chuang, Yuh-Lin

2012-01-01T23:59:59.000Z

475

Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects Webinar (text version)  

Office of Energy Efficiency and Renewable Energy (EERE)

Below is the text version of the Webinar titled "Community Renewable Energy Success Stories: Landfill Gas-to-Energy Projects," originally presented on July 17, 2012.

476

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

477

THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION  

E-Print Network (OSTI)

, heat and mass transfer, drying, pyrolysis, combustion of pyrolysis gases, combustion and gasificationTHERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION Y. ME´ NARD, A Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes

Boyer, Edmond

478

Waste tire recycling by pyrolysis  

SciTech Connect

This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

Not Available

1992-10-01T23:59:59.000Z

479

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

480

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste landfill gases" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Perdido LF-Gase to Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E E S S O N S L E A R N E D : C H A L L E N G E S A N D S U C C E S S E S Perdido LF-Gas to Electricity Escambia County, Florida Background ï‚— Perdido LF Gas-to-Energy Project (1997-2008) ï‚¡ Direct Use by Paper Mill (IP) ï‚¡ LFG piped from Perdido Landfill to IP Direct Use of LFG ï‚— Landfill Gas fueled IP boiler ï‚— Project developed and managed by 3 rd party vendor ï‚— Vendor managed the gas wellfield ï‚— County received minimum compensation from vendor for Gas Rights ï‚— Vendor received compensation from IP for fuel used Project Issues ï‚— Demand for LFG at IP for fuel fell off ï‚— LFG compliance at Perdido LF not a priority for vendor ï‚— Surface and boundary emissions increased ï‚— Vendor reluctant to implement additional control measures ï‚— Contract grey areas Rebirth of LFG Beneficial Reuse

482

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Doubles Solid Waste Reduction Rate in Fiscal Year 2013 Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M. - EM's Waste Isolation Pilot Plant (WIPP) almost doubled its solid waste reduction rate from 15.5 percent in fiscal year 2012 to 33 percent in fiscal year 2013 through programs that diverted WIPP's wood waste from the municipal landfill by reusing, repurposing or recycling.

483

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 WIPP Doubles Solid Waste Reduction Rate in Fiscal Year 2013 December 5, 2013 - 12:00pm Addthis WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP’s wood waste diversion program. WIPP environmental and operations personnel gather next to pallets that will be provided to the local community as part of WIPP's wood waste diversion program. CARLSBAD, N.M. - EM's Waste Isolation Pilot Plant (WIPP) almost doubled its solid waste reduction rate from 15.5 percent in fiscal year 2012 to 33 percent in fiscal year 2013 through programs that diverted WIPP's wood waste from the municipal landfill by reusing, repurposing or recycling.

484

Pumpkin Power: Turning Food Waste into Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy Pumpkin Power: Turning Food Waste into Energy November 1, 2013 - 1:28pm Addthis Pumpkin Power: Turning Food Waste into Energy Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? 1.4 billion pounds of pumpkins are produced in the U.S. each year, many of which end up in landfills or compost piles after Halloween. Oakland's EBMUD collects food waste and uses microbes to convert it into methane gas that is burned to generate electricity. The Energy Department is helping to fund the development of integrated biorefineries, industrial centers dedicated to converting plant material into biofuels and other products. To commemorate National Energy Action Month, we're featuring some scarily

485

Waste management policy revisions: lessons learned from the Katrina disaster  

Science Journals Connector (OSTI)

The main objective of this paper is to identify debris and waste management policies that need to be changed based on the lessons learned from Hurricane Katrina. Policy issues addressed include fragmented jurisdictional problems, issues related to types of debris, burning of house hold debris, wood infestation with Formosan termites and banning of yard wastes from landfills. Current practices and trends in the building material waste management following disasters are examined from a building life cycle standpoint or cradle to cradle concept. Completing the proper planning before the disaster is critical. Having a plan in place can allow for maximum, integrated recycling, resource optimisation, waste reduction and deconstruction. Examination of the waste management hierarchy and life cycle management of material is used to improve the understanding of reuse and recycle opportunities. Based on the lessons learnt from Hurricane Katrina proposed changes in debris management policy following natural disasters.

William E. Roper

2008-01-01T23:59:59.000Z

486

Vitrification of organics-containing wastes  

DOE Patents (OSTI)

A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.

Bickford, D.F.

1995-01-01T23:59:59.000Z

487

Zero Waste Program 2011 Recycling Benefits  

E-Print Network (OSTI)

Rutgers Zero Waste Program 2011 Recycling Benefits Through WM's Recycling Program, our company saved energy and reduced Greenhouse Gases through recycling. Recycling uses less energy, preserves from recycled material than from virgin, raw material. RESOURCE SAVINGS 4203 Metric Tons (MTCO2E

Delgado, Mauricio

488

Process for removal of ammonia and acid gases from contaminated waters  

DOE Patents (OSTI)

Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

King, C.J.; Mackenzie, P.D.

1982-09-03T23:59:59.000Z

489

Process for removal of ammonia and acid gases from contaminated waters  

DOE Patents (OSTI)

Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

King, C. Judson (Kensington, CA); MacKenzie, Patricia D. (Berkeley, CA)

1985-01-01T23:59:59.000Z

490

Raman Spectra of Polyatomic Gases  

Science Journals Connector (OSTI)

Raman spectra of gaseous CO2, N2O, NH3, CH4 and C2H4 have been photographed using the line ?2536 of mercury as the exciting radiation. Vibrational transitions have been observed in all the gases investigated, and rotational transitions in the cases of NH3 and CH4. For the frequency shifts due to the vibrational transitions, the following numerical values (in cm-1) have been found: CO2: 1264.5; 1285.1; 1387.7; 1408.4.CH4: 2914.8; 3022.1; 3071.5.N2O: 1281.8C2H4: 1342.4; 1623.3; 2880.1; 3019.3; 3240.3; 3272.3.NH3: 3333.6  Raman spectra of liquid NH3 have been photographed and found to give the two frequency shifts: 3298.4 and 3214.5. In the case of gaseous NH3, pure rotational transitions lead to a moment of inertia having the value I0=2.79×10-40. In the case of methane, the positive and negative branches of the 3022.1 band lead to the value I0=5.17×10-40. The relations between these data and infra-red absorption data are discussed.

R. G. Dickinson, R. T. Dillon, and F. Rasetti

1929-08-15T23:59:59.000Z

491

An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors  

SciTech Connect

This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

Townsend, Aaron K., E-mail: aarontownsend@utexas.edu [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States); Webber, Michael E. [Department of Mechanical Engineering, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

2012-07-15T23:59:59.000Z

492

Thermal Pretreatment For TRU Waste Sorting  

SciTech Connect

Japan Atomic Energy Agency conducted a study on thermal treatment of TRU waste to develop a removal technology for materials that are forbidden for disposal. The thermal pretreatment in which hot nitrogen and/or air is introduced to the waste is a process of removing combustibles, liquids, and low melting point metals from PVC wrapped TRU waste. In this study, thermal pretreatment of simulated waste was conducted using a desktop thermal treatment vessel and a laboratory scale thermal pretreatment system. Combustibles and low melting point metals are effectively separated from wastes by choosing appropriate temperature of flowing gases. Combustibles such as papers, PVC, oil, etc. were removed and low melting point metals such as zinc, lead, and aluminum were separated from the simulated waste by the thermal pretreatment. (authors)

Sasaki, T.; Aoyama, Y.; Miyamoto, Y.; Yamaguchi, H. [Japan Atomic Energy Agency, Tokai-mura, Ibaraki (Japan)

2008-07-01T23:59:59.000Z

493

Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million...  

Annual Energy Outlook 2012 (EIA)

Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

494

EIA-Voluntary Reporting of Greenhouse Gases Program - What are...  

U.S. Energy Information Administration (EIA) Indexed Site

gases such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride). The Greenhouse Effect Concentrations of several important greenhouse gases have increased by about 33...

495

Numerical Early Warning Model Research of Landfill Gas Permeation and Diffusion Considering Flow-Temperature Coupling  

Science Journals Connector (OSTI)

Based on seepage mechanics in porous medium gas and heat transfer theory, numerical early warning model is established, which is on quantitative description of migration and release of landfill gas and penetration and diffusion of energy, and dynamic ... Keywords: component, landfill gas, flow-temperature coupling, gas pressure and temperature distribution, numerical early warning model

Xue Qiang; Feng Xia-ting; Ma Shi-jin; Zhou Xiao-jun

2009-10-01T23:59:59.000Z