Sample records for waste isolation pilot

  1. Independent Oversight Inspection, Waste Isolation Pilot Plant...

    Energy Savers [EERE]

    Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August...

  2. Oversight Reports - Waste Isolation Pilot Plant | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant - December 2007 Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant October 2, 2002 Independent Oversight...

  3. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to30/15Waste

  4. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Energy Savers [EERE]

    December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department...

  5. Enforcement Documents - Waste Isolation Pilot Plant | Department...

    Broader source: Energy.gov (indexed) [DOE]

    related to Quality Assurance Deficiencies associated with the Super High-Efficiency Neutron Counter Non-Destructive Assay System Refurbishment at the Waste Isolation Pilot Plant...

  6. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Energy Savers [EERE]

    December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

  7. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24,...

  8. EIS-0026: Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The Office of Environmental Restoration and Waste Management prepared this EIS for the Waste Isolation Pilot Plant.

  9. DOE/WIPP-12-3487 Waste Isolation Pilot Plant

    E-Print Network [OSTI]

    AND RECOVERY ACT AND SOLID WASTE DISPOSAL ACTDraft DOE/WIPP-12-3487 Waste Isolation Pilot Plant Biennial Environmental Compliance Report United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico

  10. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    E-Print Network [OSTI]

    Napp, Nils

    of Energy (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees Isolation Plan (Plan) for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant detailed proposal for the expedited closure of underground Hazardous Waste Disposal Unit (HWDU) Panel 6, so

  11. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  12. Independent Oversight Review, Waste Isolation Pilot Plant - November...

    Energy Savers [EERE]

    Safety and Security (HSS), conducted an independent review of the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) preparedness for severe natural phenomena...

  13. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  14. Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report- August 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant

  15. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  16. Waste Isolation Pilot Plant borehole data

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  17. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  18. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  19. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  20. Waste Isolation Pilot Plant: No-migration variance petition. Figures: Volume 8, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    This report is a compilation of engineering drawings concerned with seal arrangement at the Waste Isolation Pilot Plant (WIPP).

  1. The Waste Isolation Pilot Plant: An International Center of Excellence

    SciTech Connect (OSTI)

    Matthews, Mark

    2003-02-25T23:59:59.000Z

    The United States Department of Energy's Carlsbad Field Office (CBFO) is responsible for the successful management of transuranic radioactive waste (TRUW) in the United States. TRUW is a long-lived radioactive waste/material (LLRM). CBFO's responsibilities includes the operation of the Waste Isolation Pilot Plant (WIPP), which is a deep geologic repository for the safe disposal of U.S. defense-related TRUW and is located 42 kilometers (km) east of Carlsbad, New Mexico. WIPP is the only deep-geological disposal site for LLRM that is operating in the world today. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. As of February 2003, approximately 1500 shipments of waste have been safely transported to the WIPP, which has been operating since March 1999.

  2. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Westinghouse Electric Company Waste Isolation Division

    1999-09-29T23:59:59.000Z

    DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement the requirements of this program plan, are also referenced. The DOE regulates its own activities for radiation protection of the public under the authority of the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011). The effluent and environmental monitoring activities prescribed by DOE Order 5400.5 and the DOE/EH-0173T guidance manual are designed to ensure that DOE facilities implement standards and regulations to protect members of the public and the environment against undue risk from radiation. Effluent and environmental monitoring also provide 1999 Environmental Monitoring Plan DOE/WIPP 99-2194 the data necessary to demonstrate compliance with applicable environmental protection regulations. Other federal agencies, such as the U.S. Environmental Protection Agency (EPA), are empowered through specific legislation to regulate certain aspects of DOE activities potentially affecting public health and safety or the environment. Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards (43 FR 47707), requires the heads of executive agencies to ensure that all federal facilities and activities comply with applicable pollution control standards and to take all necessary actions for the prevention, control, and abatement of environmental pollution. Beyond statutory requirements, the DOE has established a general environmental protection policy. The Environmental Policy Statement (issued by then Secretary Herrington on January 8, 1986, and extended on January 7, 1987) describes the DOE's commitment to national environmental protection goals in that it conducts operations ''in an environmentally safe and sound manner . . . in compliance with the letter and spirit of applicable environmental statutes, regulations, and standards'' (DOE, 1986). This Environmental Policy Statement also states the DOE's commitment to ''good environmental management in all of its programs and at all of its facilities in order to correct existing environmental problems, to minimize risks to the environment or public health, and to anticipate and address pote

  3. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  4. Waste Isolation Pilot Plant (WIPP) fact sheet

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Pursuant to the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (RCRA), as amended (42 USC 6901, et seq.), and the New Mexico Hazardous Waste Act (Section 74-4-1 et seq., NMSA 1978), Permit is issued to the owner and operator of the US DOE, WIPP site (hereafter called the Permittee(s)) to operate a hazardous waste storage facility consisting of a container storage unit (Waste Handling Building) and two Subpart X miscellaneous below-ground storage units (Bin Scale Test Rooms 1 and 3), all are located at the above location. The Permittee must comply with all terms and conditions of this Permit. This Permit consists of the conditions contained herein, including the attachments. Applicable regulations cited are the New Mexico Hazardous Waste Management Regulations, as amended 1992 (HWMR-7), the regulations that are in effect on the date of permit issuance. This Permit shall become effective upon issuance by the Secretary of the New Mexico Environment Department and shall be in effect for a period of ten (10) years from issuance. This Permit is also based on the assumption that all information contained in the Permit application and the administrative record is accurate and that the activity will be conducted as specified in the application and the administrative record. The Permit application consists of Revision 3, as well as associated attachments and clarifying information submitted on January 25, 1993, and May 17, 1993.

  5. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect (OSTI)

    Roy B. Evans, Ph.D.; Randall C. Morris, Ph.D.; Timothy D. Reynolds, Ph.D.; Ronald W. Warren; Westinghouse Waste Isolation Division

    2000-09-30T23:59:59.000Z

    The U.S. Department of Energy?s (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  6. Waste Isolation Pilot Plant Recovery Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivites WasteWaste

  7. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  8. The waste isolation pilot plant regulatory compliance program

    SciTech Connect (OSTI)

    Mewhinney, J.A. [U.S. Dept. of Energy, Carlsbad, NM (United States); Kehrman, R.F. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1996-06-01T23:59:59.000Z

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  9. Waste Isolation Pilot Plant | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus andWaste

  10. Waste Isolation Pilot Plant Recovery Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-073.99 4.22PrimaryWaste

  11. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20T23:59:59.000Z

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  12. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  13. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect (OSTI)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01T23:59:59.000Z

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  14. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect (OSTI)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01T23:59:59.000Z

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  15. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- January 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  16. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  17. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  18. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- February 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  19. Review of the Waste Isolation Pilot Plant Work Planning and Control...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Waste Isolation Pilot Plant Work Planning and Control Activities April 2013 Office of Safety and Emergency Management Evaluations Office of...

  20. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2000-12-01T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  1. Hydrologic studies for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Davies, P.B.

    1994-07-01T23:59:59.000Z

    The objective of this paper is to provide a general overview of hydrologic conditions at the Waste Isolation Pilot Plant (WIPP) by describing several key hydrologic studies that have been carried out as part of the site characterization program over the last 20 years. The paper is composed of three parts: background information about general objectives of the WIPP project; information about the geologic and hydrologic setting of the facility; and information about three aspects of the hydrologic system that are important to understanding the long-term performance of the WIPP facility. For additional detailed information, the reader is referred to the references cited in the text.

  2. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  3. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    SciTech Connect (OSTI)

    HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.; MARIETTA,MELVIN G.

    2000-05-22T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.

  4. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  5. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2003-09-17T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  6. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  7. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    1999-09-01T23:59:59.000Z

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

  8. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  9. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-03-31T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  10. A historical review of Waste Isolation Pilot Plant backfill development

    SciTech Connect (OSTI)

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05T23:59:59.000Z

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  11. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  12. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washinton TRU Solutions LLC

    2002-09-30T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  13. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-09-24T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  14. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

  15. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-12T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] §7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. §§6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. §§300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. §§2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. §§9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  16. Experimental program plan for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

  17. Groundwater monitoring at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01T23:59:59.000Z

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab.

  18. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    None

    2011-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  19. Waste Isolation Pilot Plant Status and Plans - 2012 - 12049

    SciTech Connect (OSTI)

    Nelson, Roger A.; Ziemianski, Edward J. [U.S. Department of Energy, Carlsbad, NM 88220 (United States)

    2012-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP), a deep geologic repository for safe disposal of long-lived transuranic radioactive waste related to the nation's defense, is completing its 12. year of operations. WIPP's mission includes coordination of all Department of Energy (DOE) sites to prepare, package and characterize transuranic (TRU) waste for final shipment and emplacement in WIPP. Five of the 10 disposal panels planned have been filled and sealed from ventilation. Additional small quantity sites have been de-inventoried by consolidating their waste through the certified characterization line at the Idaho National Laboratory (INL). New emplacement methods for RH waste in shielded containers are being considered for disposal by WIPP's regulatory authorities. A new large Type B shipping package, was added to the WIPP transportation fleet, and facility modifications to the WIPP waste unloading and emplacement processes for large containers were completed in 2011. Shipments from the Savannah River site in these new large rectangular packages began in August 2011. Licensing efforts are proceeding for a new criticality control over-pack container that will allow almost twice the fissile content to be shipped than previously. This will reduce the number and cost of shipments of Special Nuclear Material (SNM) declared as waste. Modifications to WIPP regulatory requirements for the disposal footprint and disposal unit closure systems are in progress. These, and other developments, make for exciting times at WIPP. This paper provides an up-to-date look at the many aspects of America's only deep geologic long-lived radioactive waste repository, which is completing its 12. year of operations. A record year of safe and compliant shipments to WIPP tops the list of accomplishments in 2011. Four more small quantity sites were de-inventoried by consolidating their waste through the certified characterization line at INL in 2011. A new Type B shipping package, the TRUPACT-III has been added to the transportation fleet, and large waste boxes are being shipped from SRS without the need for repackaging. New emplacement methods for remote-handled waste in shielded containers are undergoing regulatory review. WIPP plans to license a new criticality control payload container that will allow almost twice the fissile content to be shipped than previously, thereby reducing the number and cost of shipments of SNM declared as waste. Other regulatory modifications planned in 2012 include approval of a design change that would replace the disposal concept for panels 9 and 10 from using the common access drifts (the 'mains') with a new footprint south of panels 4 and 5. DOE also plans to change the panel closure design set forth in its certification by EPA and the HWFP by the NMED. The panel closure design change will be a rule making under EPA's procedures and a class 3 permit modification request under NMED procedures. Plans for achieving 90% of legacy TRU waste retrieval and emplacement in WIPP by 2015 have been developed. Key to the success of this so-called 90/15 plan is adequate funding, both for WIPP operations, as well as for TRU retrieval programs at the generator sites. (authors)

  20. Performance Assessment Updates for Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Performance Assessment Updates for Waste Isolation...

  1. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Office of Environmental Management (EM)

    Secretary Mark Whitney today visited the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., where he became the first non-WIPP employee to tour the underground facility...

  2. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01T23:59:59.000Z

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  3. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-08-01T23:59:59.000Z

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.

  4. Radioactive and nonradioactive waste intended for disposal at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    SANCHEZ,LAWRENCE C.; DREZ,P.E.; RATH,JONATHAN S.; TRELLUE,H.R.

    2000-05-19T23:59:59.000Z

    Transuranic (TRU) waste generated by the handling of plutonium in research on or production of US nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m{sup 3} of TRU waste, corresponding to 168,485 m{sup 3} of contact-handled (CH-) TRU waste and 7,079 m{sup 3} of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e., legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, the closure time for the repository. These wastes were produced at 27 US Department of Energy (DOE) sites in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by Sandia National Laboratories/New Mexico (SNL/NM).

  5. A Dynamic Waste Isolation Pilot Plant Performance Assessment Tool - 12490

    SciTech Connect (OSTI)

    Scopatz, Anthony M.; March, Jonathan; Weckesser, Warren; Jones, Eric [Enthought Inc, Austin, Texas, 78701 (United States); Lee, Moo; Camphouse, Chris [Sandia National Laboratories, Carlsbad, NM, 88220 (United States)

    2012-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment (PA) methodology comprises a toolbox used to demonstrate regulatory compliance of the repository after facility closure. The PA framework rests upon an extensive suite of computational codes. In some cases, significant alteration of code inputs is a tedious and difficult task. Due to the nature of the application for which they are used, PA codes used in support of WIPP regulatory compliance demonstration must satisfy stringent quality assurance requirements. Consequently, many of the coding practices used during original code development are still implemented today. A more efficient workflow configuration has the potential to alleviate difficulties associated with extensive code input modifications. Here, this potential is assessed via an implementation of a more flexible scientific workflow system for a subset of the codes used in WIPP PA. The scientific workflow approach taken here for a dynamic PA system enables users from disparate backgrounds to dramatically shorten the time between hypothesis and analysis by decreasing the amount of a priori knowledge, from a range of disciplines, needed to execute the code. Having smaller iteration times allows for more ideas to be tested and explored, which leads to safer and more optimized systems. Note that these high-level, dynamic tools are intended only for initial scoping studies on the personal computer of a researcher. Full, regulatory compliance calculations may occur only within a qualified computing environment. However, the WIPP PA tools here may guide future research and indicate regions of the analysis space that are worth further study. This next generation of PA software provides the ability to perform scoping investigations of repository performance quickly and easily, and has an accessible and useful interface to a variety of users, such as fuel cycle systems designers, domain experts such as repository modelers, and policy makers. The purview of this project allows for many opportunities for future work. Foremost among these is the desire to implement the full BRAGFLO suite within the workflow. This will entail porting or wrapping Genmesh, Matset, LHS, and ICSet within Python. Moreover, unifying the two GUIs into a single driver application would be a natural next step. Once the BRAGFLO suite is completed, other portions of WIPP PA could be implemented with corresponding and inter-operable work-flows. Likely first candidates for this are those codes that are similarly computationally intensive, such as the one used to generate complementary cumulative distribution functions used to demonstrate regulatory compliance (code CCDFGF). (authors)

  6. DOE/WIPP-10-2171 Waste Isolation Pilot Plant

    E-Print Network [OSTI]

    Department of Energy Carlsbad Field Office Carlsbad, New Mexico September 2010 #12;2 #12;Waste Isolation................................................................................ 32 6.1.1 Title I, Air Pollution Prevention and Control ................................ 33 6 with the Permit Conditions .................................... 43 7.0 FEDERAL WATER POLLUTION CONTROL ACT OF 1972

  7. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  8. Waste Isolation Pilot Plant 2005 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-13T23:59:59.000Z

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated disposal rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel of seven rooms has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. One of the main attributes of salt, as a rock formation in which to isolate radioactive waste, is the ability of the salt to creep, that is, to deform continuously over time. Excavations into which the waste-filled drums are placed will close eventually, flowing around the drums and sealing them within the formation.

  9. Waste Isolation Pilot Plant 2003 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-09-03T23:59:59.000Z

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management, defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated storage rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. Salt under pressure is relatively plastic, and mine openings will be allowed to creep closed for final disposal, encapsulating and isolating the waste.

  10. Robust Solution to Difficult Hydrogen Issues When Shipping Transuranic Waste to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Countiss, S. S.; Basabilvazo, G. T.; Moody, D. C. III; Lott, S. A.; Pickerell, M.; Baca, T.; CH2M Hill; Tujague, S.; Svetlik, H.; Hannah, T.

    2003-02-27T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) has been open, receiving, and disposing of transuranic (TRU) waste since March 26, 1999. The majority of the waste has a path forward for shipment to and disposal at the WIPP, but there are about two percent (2%) or approximately 3,020 cubic meters (m{sup 3}) of the volume of TRU waste (high wattage TRU waste) that is not shippable because of gas generation limits set by the U.S. Nuclear Regulatory Commission (NRC). This waste includes plutonium-238 waste, solidified organic waste, and other high plutonium-239 wastes. Flammable gases are potentially generated during transport of TRU waste by the radiolysis of hydrogenous materials and therefore, the concentration at the end of the shipping period must be predicted. Two options are currently available to TRU waste sites for solving this problem: (1) gas generation testing on each drum, and (2) waste form modification by repackaging and/or treatment. Repackaging some of the high wattage waste may require up to 20:1 drum increase to meet the gas generation limits of less than five percent (5%) hydrogen in the inner most layer of confinement (the layer closest to the waste). (This is the limit set by the NRC.) These options increase waste handling and transportation risks and there are high costs and potential worker exposure associated with repackaging this high-wattage TRU waste. The U.S. Department of Energy (DOE)'s Carlsbad Field Office (CBFO) is pursuing a twofold approach to develop a shipping path for these wastes. They are: regulatory change and technology development. For the regulatory change, a more detailed knowledge of the high wattage waste (e.g., void volumes, gas generation potential of specific chemical constituents) may allow refinement of the current assumptions in the gas generation model for Safety Analysis Reports for Packaging for Contact-Handled (CH) TRU waste. For technology development, one of the options being pursued is the use of a robust container, the ARROW-PAK{trademark} System. (1) The ARROW-PAK{trademark} is a macroencapsulation treatment technology, developed by Boh Environmental, LLC, New Orleans, Louisiana. This technology has been designed to withstand any unexpected hydrogen deflagration (i.e. no consequence) and other benefits such as criticality control.

  11. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01T23:59:59.000Z

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  12. DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The Department of Energy (DOE) today awarded a grant for an estimated $1.6 million to the New Mexico Environment Department (NMED). The five-year grant funds an agreement for NMED to conduct non-regulatory environmental oversight and monitoring to evaluate activities conducted at DOE’s Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  13. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    SciTech Connect (OSTI)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01T23:59:59.000Z

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  14. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  15. Potential for long-term isolation by the Waste Isolation Pilot Plant disposal system

    SciTech Connect (OSTI)

    Bertram-Howery, S.G. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA))

    1990-06-01T23:59:59.000Z

    The US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) must comply with EPA regulation 40 CFR Part 191, Subpart B, which sets environmental standards for radioactive waste disposal. The regulation, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (hereafter referred to as the Standard), was vacated in 1987 by a Federal Court of Appeals and is underground revision. By agreement with the Sate of New Mexico, the WIPP project is evaluating compliance with the Standard as promulgated, in 1985 until a new regulation is available. This report summarizes the early-1990 status of Sandia National Laboratories' (SNL) understanding of the Project's ability to achieve compliance. The report reviews the qualitative and quantitative requirements for compliance, and identifies unknowns complicating performance assessment. It discusses in relatively nontechnical terms the approaches to resolving those unknowns, and concludes that SNL has reasonable confidence that compliance is achievable with the Standard as first promulgated. 46 refs., 7 figs.

  16. From science to compliance: Geomechanics studies of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    2000-06-05T23:59:59.000Z

    Mechanical and hydrological properties of salt provide excellent bases for geological isolation of hazardous materials. Regulatory certification of the Waste Isolation Pilot Plant (WIPP) testifies to the nearly ideal characteristics of bedded salt deposits in southeast New Mexico. The WIPP history includes decades of testing and scientific investigations, which have resulted in a comprehensive understanding of salt's mechanical deformational and hydrological properties over an applicable range of stresses and temperatures. Comprehensive evaluation of salt's favorable characteristics helped demonstrate regulatory compliance and ensure isolation of radioactive waste placed in a salt geological setting.

  17. EIS-0026-S: Supplemental Environmental Impact Statement Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Environmental Restoration and Waste Management prepared this statement to update the environmental record established during preparation of DOE/EIS-0026, Waste Isolation Pilot Plant, by evaluating the environmental impacts associated with new information, new circumstances, and modifications to the actions evaluated in DOE/EIS-0026 that were proposed in light of the new information.

  18. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29T23:59:59.000Z

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  19. Enterprise Assessments Operational Awareness Record, Waste Isolation...

    Energy Savers [EERE]

    Operational Awareness Record, Waste Isolation Pilot Plant - March 2015 Enterprise Assessments Operational Awareness Record, Waste Isolation Pilot Plant - March 2015 March 2015...

  20. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    SciTech Connect (OSTI)

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01T23:59:59.000Z

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

  1. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J. [Univ. of Chicago, IL (United States)]|[Stanford Univ., CA (United States). Hoover Institution

    1998-01-01T23:59:59.000Z

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

  2. Core analyses for selected samples from the Culebra Dolomite at the Waste Isolation Pilot Plant site

    SciTech Connect (OSTI)

    Kelley, V.A.; Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (USA))

    1990-11-01T23:59:59.000Z

    Two groups of core samples from the Culebra Dolomite Member of the Rustler Formation at and near the Waste Isolation Pilot Plant were analyzed to provide estimates of hydrologic parameters for use in flow-and-transport modeling. Whole-core and core-plug samples were analyzed by helium porosimetry, resaturation and porosimetry, mercury-intrusion porosimetry, electrical-resistivity techniques, and gas-permeability methods. 33 refs., 25 figs., 10 tabs.

  3. Data used in preliminary performance assessment of the Waste Isolation Pilot Plant (1990)

    SciTech Connect (OSTI)

    Rechard, R.P (Sandia National Labs., Albuquerque, NM (USA)); Luzzolino, H. (Geo-Centers, Inc., Albuquerque, NM (USA)); Sandha, J.S. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-12-01T23:59:59.000Z

    This report documents the data available as of August 1990 and used by the Performance Assessment Division of Sandia National Laboratories in its December 1990 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Parameter values are presented in table form for the geologic subsystem, engineered barriers, borehole flow properties, climate variability, and intrusion characteristics. Sources for the data and a brief discussion of each parameter are provided. 101 refs., 72 figs., 21 tabs.

  4. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility for the demonstration of the permanent isolation of transuranic radioactive wastes in a geologic formation. The facility was constructed in southeastern New Mexico in a manner intended to meet criteria established by the scientific and regulatory community for the safe, long-term disposal of transuranic wastes. The US Department of Energy (DOE) is preparing an application to demonstrate compliance with the requirements outlined in Title 40, Part 191 of the Code of Federal Regulations (CFR) for the permanent disposal of transuranic wastes. As mandated by the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act of 1992, the US Environmental Protection Agency (EPA) must evaluate this compliance application and provide a determination regarding compliance with the requirements within one year of receiving a complete application. Because the WIPP is a very complex program, the DOE has planned to submit the application as a draft in two parts. This strategy will allow for the DOE and the EPA to begin technical discussions on critical WIPP issues before the one-year compliance determination period begins. This report is the first of these two draft submittals.

  5. Waste Isolation Pilot Plant (WIPP) Recovery | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModelingFederal EnergyWaste Heat Waste Heat - - to to -

  6. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  7. Waste Isolation Pilot Plant design validation: Final report, Appendices

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This volume is comprised of the following appendices: DOE stipulated agreement with State of New Mexico (partial); geologic correlations; mathematical simulation of underground in situ behavior; C and SH shaft geologic logs and maps; waste shaft geologic logs and maps; exhaust shaft geologic log; test rooms geologic maps and sections; drift cross sections; facility level geologic core hole logs; geomechanical instrumentation data plots; and analytical data plots.

  8. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Bradley, E.W. [Science Applications International Corp., Oak Ridge, TN (United States); Wu, C.F.; Goff, T.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-12-31T23:59:59.000Z

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

  9. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP`s environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence.

  10. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant - 019

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami - FL06TNWashingtonWaste

  11. Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric EdlundWaste07 Revision 0

  12. Waste Isolation Pilot Plant Activites | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivites Waste

  13. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Silva, M.K.; Neill, R.H.

    1994-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

  14. Waste Isolation Pilot Plant TruDock crane system analysis

    SciTech Connect (OSTI)

    Morris, B.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Carter, M. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1996-10-01T23:59:59.000Z

    The WIPP TruDock crane system located in the Waste Handling Building was identified in the WIPP Safety Analysis Report (SAR), November 1995, as a potential accident concern due to failures which could result in a dropped load. The objective of this analysis is to evaluate the frequency of failure of the TruDock crane system resulting in a dropped load and subsequent loss of primary containment, i.e. drum failure. The frequency of dropped loads was estimated to be 9.81E-03/year or approximately one every 102 years (or, for the 25% contingency, 7.36E-03/year or approximately one every 136 years). The dominant accident contributor was the failure of the cable/hook assemblies, based on failure data obtained from NUREG-0612, as analyzed by PLG, Inc. The WIPP crane system undergoes a rigorous test and maintenance program, crane operation is discontinued following any abnormality, and the crane operator and load spotter are required to be trained in safe crane operation, therefore it is felt that the WIPP crane performance will exceed the data presented in NUREG-0612 and the estimated failure frequency is felt to be conservative.

  15. Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience

    SciTech Connect (OSTI)

    Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M. [CH2M-WG Idaho, Idaho Falls, ID (United States); D'Amico, E. [Washington TRU Solutions, Denver, CO (United States); Lattin, W. [United States Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Watson, K. [United States Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States)

    2008-07-01T23:59:59.000Z

    On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the following day. While some of the success of this endeavor can be attributed to the sheer will and determination of the individuals involved, the fact that it was established and managed as a separate sub-project under the ICP, accounts for a majority of the success. Utilizing a structured project management approach, including development of, and management to, a performance baseline, allowed for timely decision making and the flexibility to adapt to changing conditions as the various aspects of the project matured. This paper provides some insight into how this was achieved, in a relatively short time, and provides an overview of the experience of start-up of a new retrieval, characterization, loading, and transportation operation in the midst of an aggressive cleanup project. Additionally, as one might expect, everything within the project did not go as planned, which provides a great opportunity to discuss some lessons learned. Finally, the first shipment was just the beginning. There are 224 additional shipments scheduled. In keeping with the theme of WM 2008, Phoenix Rising: Moving Forward in Waste Management, this paper will address the future opportunities and challenges of RH TRU waste management at the INL. (authors)

  16. TRU (transuranic) waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

  17. TRU (transuranic) waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the Waste Isolation Pilot Plant: Revision 2

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for acceptance of newly generated CH waste to be shipped to the WIPP are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

  18. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect (OSTI)

    Hill, L.R.; Aguilar, R.; Mercer, J.W. [Sandia National Labs., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

    1997-01-01T23:59:59.000Z

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

  19. Perspective of the Science Advisor to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    WEART,WENDELL D.

    1999-09-03T23:59:59.000Z

    In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.

  20. Waste Isolation Pilot Plant Land Management Plan DOE/WIPP-93-004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective ActionsWaste Isolation Pilot

  1. The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Swift, P.N.; Corbet, T.F.

    1999-03-04T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site.

  2. The Waste Isolation Pilot Plant: A Success Story with International Cooperation

    SciTech Connect (OSTI)

    Matthews, M.

    2002-02-26T23:59:59.000Z

    The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) administers and operates the Waste Isolation Pilot Plant (WIPP) site, which hosts a deep geologic repository for safe disposal of U.S. defense-related TRU waste and is located 42 kilometers (km) east of Carlsbad, New Mexico. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. The WIPP began receiving waste in March 1999. In some areas of broad international interest, the CBFO has developed a leading expertise through its 25-year WIPP repository and TRU waste characterization activities. In addition to participating in relevant and beneficial experiments, the CBFO will provide the international community convenient access to this information by sponsoring and hosting symposia and workshops on relevant topics and by participation in international waste management organizations and topical meetings. In recognition of the successes at WIPP, the Inter national Atomic Energy Agency (IAEA) has designated WIPP as an International Center of Excellence and part of IAEA's Network of Centers of Excellence. The IAEA will foster cooperative training in and demonstration of waste disposal technologies in underground research facilities (URFs).such as WIPP. The CBFO, supported by its Science Advisor, has agreed to exchange scientific information with eight foreign radioactive waste management organizations, and three more national radioactive waste management and disposal organizations have expressed interest in similar agreements. These activities result in the cost-effective acquisition of scientific information in support of increased WIPP facility operational and post-closure assurance and reliability. It also demonstrates the CBFO's intent and resolve to honor international commitments and obligations.

  3. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J. [and others

    1997-02-01T23:59:59.000Z

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  4. Advantages of the shielded containers at the Waste Isolation Pilot Plant.

    SciTech Connect (OSTI)

    Nelson, Roger A. (U.S. Department of Energy, Carlsbad, NM); Dunagan, Sean C.

    2010-05-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) disposal operations currently employ two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement and therefore poses logistical constraints, in addition to the loss of valuable disposal capacity. To improve operational efficiency and disposal capacity, the Department of Energy (DOE) has proposed a shielded container for certain RH waste streams. RH waste with relatively low gammaemitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container is similar to the nominal 208-liter (55-gallon) drum, however it includes about 2.5 cm (1 in) of lead, sandwiched between thick steel sheets. Furthermore, the top and bottom are made of thick plate steel to strengthening the package to meet transportation requirements. This robust configuration provides an overpack for materials that otherwise would be RH waste. This paper describes the container and the regulatory approach used to meet the requirements imposed by regulations that apply to WIPP. This includes a Performance Assessment used to evaluate WIPP's long-term performance and the DOE's approach to gain approval for the transportation of shielded containers. This paper also describes estimates of the DOE's RH transuranic waste inventory that may be packaged and emplaced in shielded containers. Finally, the paper includes a discussion of how the DOE proposes to track the waste packaged into shielded containers against the RH waste inventory and how this will comply with the regulated volume.

  5. Status of Waste Isolation Pilot Plant compliance with 40 CFR 191B, December 1992

    SciTech Connect (OSTI)

    Marietta, M.G.; Anderson, D.R.

    1993-10-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the US Department of Energy (DOE) must evaluate compliance with long-term regulations of the US Environmental Protection Agency (EPA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper describes the 1992 preliminary comparison with Subpart B of the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), which regulates long-term releases of radioactive waste. Results of the 1992 PA are preliminary, and cannot be used to determine compliance or noncompliance with EPA regulations because portions of the modeling system and data base are incomplete. Results are consistent, however, with those of previous iterations of PA, and the SNL WIPP PA Department has high confidence that compliance with 40 CFR 191B can be demonstrated. Comparison of predicted radiation doses from the disposal system also gives high confidence that the disposal system is safe for long-term isolation.

  6. Waste Isolation Pilot Plant site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental impacts and establish baselines for future quantitative environmental impact evaluations. Surface water and groundwater, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include meteorological, air quality, soil properties, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, no waste has been received; therefore, certain elements required by Order DOE 5400.1 are not presented in this report. 15 figs. 19 tabs.

  7. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect (OSTI)

    Gillow, J.B.; Francis, A.

    2011-07-01T23:59:59.000Z

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  8. Historical Background on the Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.

    1999-10-21T23:59:59.000Z

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the U.S. Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a Research and development facility for the safe management storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and after site selection, the U.S. Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance. assessment conducted in 1996, which is summarized in this special issue of Reliability Engineering and System Safety. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This paper provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project.

  9. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    SciTech Connect (OSTI)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01T23:59:59.000Z

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  10. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Trauth, K.M. [Sandia National Labs., Albuquerque, NM (United States); Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States). Business Administration & Economics Div.

    1994-09-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature.

  11. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  12. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    SciTech Connect (OSTI)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01T23:59:59.000Z

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  13. Basic data report for drillhole WIPP 11 (Waste Isolation Pilot Plant - WIPP)

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    Seismic reflection data from petroleum industry sources showed anomalous reflectors in the Castile Formation over a small area about 3 miles north of the center of the Waste Isolation Pilot Plant (WIPP) site. Additional corroborative seismic reflection data were collected as part of WIPP investigations, and WIPP 11 was drilled to investigate the anomaly. WIPP 11 was drilled near the northwest corner of Section 9, T.22.S., R.31E. it penetrated, in descending order, sand dune deposits and the Gatuna Formation (29'), Santa Rosa Sandstone (132'), Dewey Lake Red Beds (502'), Rustler Formation (288'), Salado Formation (1379'), and most of the Castile Formation (1240'). Beds within the lower part of the Salado, and the upper anhydrite of the Castile, are thinner than normal; these beds are displaced upward structurally by the upper Castile halite which is highly thickened (about 968'). The lowest halite is thin (51') and the basal anhydrite was not completely penetrated. Subsequent seismic and borehole data has shown WIPP 11 to be in a structural complex now identified as the disturbed zone. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level waste, though there are no plans at this time to dispose of high level waste or spent fuel at WIPP.

  14. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.

    2000-03-01T23:59:59.000Z

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  15. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect (OSTI)

    Rechard, R.P.

    1998-04-01T23:59:59.000Z

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  16. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  17. Scenario development for the Waste Isolation Pilot Plant: Building confidence in the assessment

    SciTech Connect (OSTI)

    Galson, D.A. [Galson Sciences Limited, (United Kingdom); Swift, P.N. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    Scenario developments is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review, and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence is this aspect of the PA will be through the use of a systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.

  18. Scenario development for the Waste Isolation Pilot Plant: Building confidence in the assessment

    SciTech Connect (OSTI)

    Galson, D.A.; Swift, P.N.

    1994-07-01T23:59:59.000Z

    Scenario development is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence in this aspect of the PA will be through the use of the systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.

  19. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP`s disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II.

  20. Identification and evaluation of appropriate backfills for the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Bynum, R.V. [Science Applications International Corp. (United States); Stockman, C.; Papenguth, H. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1998-08-01T23:59:59.000Z

    A backfill system has been designed for the Waste Isolation Pilot Plant (WIPP) which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and the oxidation state of the actinide which is stable under the specific conditions. The use of magnesium oxide (MgO) has the backfill material not only controls the pH of the expected fluids, but also effectively removes carbonate from the system, which has a significant impact on actinide solubility. The backfill selection process, emplacement system design, and confirmatory experimental results are presented.

  1. Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

    2000-05-18T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

  2. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Holt, R.M.; Powers, D.W. (IT Corporation (USA))

    1990-12-01T23:59:59.000Z

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  3. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 3. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report consists of information related to the waste forms at the WIPP facility from the waste originators. Data for retrievably stored, projected and total wastes are given.

  4. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  5. Performance Assessment in Support of the 1996 Compliance Certification Application for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Anderson, D.R.; Basabilvazo, G.; Helton, J.C.; Jow, H.-N.; Marietta, M.G.

    1998-10-14T23:59:59.000Z

    The conceptual and computational structure of a performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is described. Important parts of thk structure are @ maintenance of a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertain, with stochastic uncefinty arising from the many possible disruptions that could occur over the 10,000 Y regulatory period fiat applies to the WIPP and subjective uncertainty arising from `the imprecision with which many of the quantities rquired in tie `hdysis are known, (ii) use of Latin hypercttbe sampling to incorporate the effects of subjective uncefirtty, (iii) use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncetinty, and OV) efficient use of tie necessarily limited number of mechanistic calculations that can be performed to SUPPOII the analysis. The WIPP is under development by the U.S. Department of Ener~ (DOE) for the geologic (i.e., deep underground) disposal of transuranic (TRU) waste, with the indicated PA supporting a ~Compliance Certification Application (CCA) by the DOE to the U.S. Environmental Protection Agency (EPA) in October 1996 for tie necessary certifications for the WIPP to begin operation. If certified, the WIPP will be the first operational faciliv in tie United States for the geologic disposal of ra&oactive waste.

  6. Uncertainty and Sensitivity Analysis in Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Helton, J.C.

    1998-12-17T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is under development by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. This development has been supported by a sequence of performance assessments (PAs) carried out by Sandla National Laboratories (SNL) to assess what is known about the WIPP and to provide .tidance for future DOE research and development activities. Uncertainty and sensitivity analysis procedures based on Latin hypercube sampling and regression techniques play an important role in these PAs by providing an assessment of the uncertainty in important analysis outcomes and identi~ing the sources of thk uncertainty. Performance assessments for the WIPP are conceptually and computational] y interesting due to regulatory requirements to assess and display the effects of both stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, where stochastic uncertainty arises from the possible disruptions that could occur over the 10,000 yr regulatory period associated with the WIPP and subjective uncertainty arises from an inability to unambi-aously characterize the many models and associated parameters required in a PA for the WIPP. The interplay between uncertainty analysis, sensitivity analysis, stochastic uncertainty and subjective uncertainty are discussed and illustrated in the context of a recent PA carried out by SNL to support an application by the DOE to the U.S. Environmental Protection Agency for the certification of the WIPP for the disposal of TRU waste.

  7. Summary discussion of the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; ANDERSON,D. RICHARD; BASABILVAZO,G.; JOW,HONG-NIAN; MARIETTA,MELVIN G.

    2000-05-19T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic waste. The construction of complementary cumulative distribution functions (CCDFs) for total radionuclide release from the WIPP to the accessible environment is described. The resultant CCDFs (1) combine releases due to cuttings and cavings, spallings, direct brine release, and long-term transport in flowing groundwater, (2) fall substantially to the left of the boundary line specified by the U.S. Environmental Protection Agency's (EPA's) standard 40 CFR 191 for the geologic disposal of radioactive waste, and (3) constitute an important component of the DOE's successful Compliance Certification Application to the EPA for the WIPP. Insights and perspectives gained in the performance assessment (PA) that led to these CCDFs are described, including the importance of (1) an iterative approach to PA, (2) uncertainty and sensitivity analysis, (3) a clear conceptual model for the analysis, (4) the separation of stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, (5) quality assurance procedures, (6) early involvement of peer reviewers, regulators, and stake holders, (7) avoidance of conservative assumptions, and (8) adequate documentation.

  8. Annual site environmental monitoring report for the Waste Isolation Pilot Plant, Calendar year 1985

    SciTech Connect (OSTI)

    Reith, C.; Prince, K.; Fischer, T.; Rodriguez, A.; Uhland, D.; Winstanley, D.

    1986-04-01T23:59:59.000Z

    This is the first Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the US Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes generated by the defense activities of the U.S. Government. The report provides a comprehensive description of environmental activities at WIPP during Calendar Year 1985, including: a description of the WIPP project and its mission; a description of the local environment, including demographics; a summary of environmental program information, including an update on the status of environmental permits and compliance activities; a presentation of the findings of the Radiological Baseline Program (RBP), which is a program to characterize radionuclide activities in the environment around the WIPP site; and a summary of findings of the Ecological Monitoring Program (EMP), which examines non-radiological impacts of WIPP construction on the surrounding ecosystem. The WIPP facility is under construction, and will not receive radioactive wastes before October 1988. Therefore, this report describes the status of preoperational (as opposed to operational) environmental activities. 29 refs., 17 figs., 22 tabs.

  9. Conceptual structure of performance assessments conducted for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Marietta, M.G.; Rechard, R.P. [Sandia National Labs., Albuquerque, NM (United States)

    1993-04-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being developed by the US Department of Energy as a disposal facility for transuranic waste. In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP. The ordered triple representation for risk proposed by Kaplan and Garrick is used to provide a clear conceptual structure for this PA. This presentation describes how the preceding representation provides a basis in the WIPP PA for (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of the complementary cumulative distribution functions required in comparisons with the US Environmental Protection Agency`s standard for the geologic disposal of radioactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the WIPP completed in December of 1991 are used for illustration.

  10. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect (OSTI)

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  11. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01T23:59:59.000Z

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  12. Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Levich, R. A.; Patterson, R. L.; Linden, R. M.

    2002-02-26T23:59:59.000Z

    A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

  13. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 1. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This document provides baseline inventories of transuranic wastes for the WIPP facility. Information on waste forms, forecasting of future inventories, and waste stream originators is also provided. A diskette is provided which contains the inventory database.

  14. Waste Isolation Pilot Plant annual site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) defined a comprehensive set of parameters which are monitored to detect potential environmental impacts and establish baselines for future environmental evaluations. Surface water and groundwater, air, soil, and biotics are monitored for radioactivity levels. Nonradiological environmental monitoring activities include air, water quality, soil properties, meteorological measurements and determination of the status of the local biological community. Ecological studies focus on the immediate area surrounding the WIPP site with emphasis on the salt storage pile. The baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in its preoperational phase (i.e., no waste has been received) certain operational requirements of DOE Orders 5400.1, 5400.5, and the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T) are not relevant. Therefore, this report does not discuss items such as radionuclide emissions and effluents and subsequent doses to the public.

  15. Characterization of stochastic uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; DAVIS,FREDDIE J.; JOHNSON,J.D.

    2000-05-19T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191, 40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of stochastic uncertainty is discussed including drilling intrusion time, drilling location penetration of excavated/nonexcavated areas of the repository, penetration of pressurized brine beneath the repository, borehole plugging patterns, activity level of waste, and occurrence of potash mining. Additional topics discussed include sampling procedures, generation of individual 10,000 yr futures for the WIPP, construction of complementary cumulative distribution functions (CCDFs), mechanistic calculations carried out to support CCDF construction the Kaplan/Garrick ordered triple representation for risk and determination of scenarios and scenario probabilities.

  16. Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Rechard, R.P.

    1999-06-01T23:59:59.000Z

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the US Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a research and development facility for the safe management, storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and 25 years after site selection, the US Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance assessment conducted in 1996. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This report provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project. For example, the federal requirement to provide environmental impact statements and negotiated agreements with the State of New Mexico influenced the type of scientific areas that were investigated and the engineering analysis prior to 1989 for the WIPP.

  17. Computational implementation of a systems prioritization methodology for the Waste Isolation Pilot Plant: A preliminary example

    SciTech Connect (OSTI)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mathematics; Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States). WIPP Performance Assessments Departments; Baker, B.L. [Technadyne Engineering Consultants, Albuquerque, NM (United States)] [and others

    1996-04-01T23:59:59.000Z

    A systems prioritization methodology (SPM) is under development to provide guidance to the US DOE on experimental programs and design modifications to be supported in the development of a successful licensing application for the Waste Isolation Pilot Plant (WIPP) for the geologic disposal of transuranic (TRU) waste. The purpose of the SPM is to determine the probabilities that the implementation of different combinations of experimental programs and design modifications, referred to as activity sets, will lead to compliance. Appropriate tradeoffs between compliance probability, implementation cost and implementation time can then be made in the selection of the activity set to be supported in the development of a licensing application. Descriptions are given for the conceptual structure of the SPM and the manner in which this structure determines the computational implementation of an example SPM application. Due to the sophisticated structure of the SPM and the computational demands of many of its components, the overall computational structure must be organized carefully to provide the compliance probabilities for the large number of activity sets under consideration at an acceptable computational cost. Conceptually, the determination of each compliance probability is equivalent to a large numerical integration problem. 96 refs., 31 figs., 36 tabs.

  18. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Swift, P.N. [Sandia National Labs., Albuquerque, NM (United States); Baker, B.L. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Economy, K. [Ecodynamics Research Associates, Albuquerque, NM (United States); Garner, J.W. [Applied Physics, Inc., Albuquerque, NM (United States); Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Rudeen, D.K. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing had values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

  19. Software quality assurance in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    FROEHLICH,GARY K.; OGDEN,HARVEY C.; BYLE,KATHLEEN A.

    2000-05-23T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP), located in southeast New Mexico, is a deep geologic repository for the permanent disposal of transuranic waste generated by DOE defense-related activities. Sandia National Laboratories (SNL), in its role as scientific advisor to the DOE, is responsible for evaluating the long-term performance of the WIPP. This risk-based Performance Assessment (PA) is accomplished in part through the use of numerous scientific modeling codes, which rely for some of their inputs on data gathered during characterization of the site. The PA is subject to formal requirements set forth in federal regulations. In particular, the components of the calculation fall under the configuration management and software quality assurance aegis of the American Society of Mechanical Engineers(ASME) Nuclear Quality Assurance (NQA) requirements. This paper describes SNL's implementation of the NQA requirements regarding software quality assurance (SQA). The description of the implementation of SQA for a PA calculation addresses not only the interpretation of the NQA requirements, it also discusses roles, deliverables, and the resources necessary for effective implementation. Finally, examples are given which illustrate the effectiveness of SNL's SQA program, followed by a detailed discussion of lessons learned.

  20. DRSPALL :spallings model for the Waste Isolation Pilot Plant 2004 recertification.

    SciTech Connect (OSTI)

    Gilkey, Amy P. (GRAM Inc., Albuquerque, NM); Hansen, Clifford W.; Schatz, John F. (John F. Schatz Research & Consulting, Inc., Del Mar, CA); Rudeen, David Keith (GRAM Inc., Albuquerque, NM); Lord, David L.

    2006-02-01T23:59:59.000Z

    This report presents a model to estimate the spallings releases for the Waste Isolation Pilot Plant Performance Assessment (WIPP PA). A spallings release in the context of WIPP PA refers to a portion of the solid waste transported from the subsurface repository to the ground surface due to inadvertent oil or gas drilling into the WIPP repository at some time after site closure. Some solid waste will be removed by the action of the drillbit and drilling fluid; this waste is referred to as cuttings and cavings. If the repository is pressurized above hydrostatic at the time of intrusion, solid waste material local to the borehole may be subject to mechanical failure and entrainment in high-velocity gases as the repository pressure is released to the borehole. Solid material that fails and is transported into the wellbore and thus to the surface comprise the spallings releases. The spallings mechanism is analogous to a well blowout in the modern oil and gas drilling industry. The current spallings conceptual model and associated computer code, DRSPALL, were developed for the 2004 recertification because the prior spallings model used in the 1996 WIPP Compliance Certification Application (CCA) was judged by an independent peer review panel as inadequate (DOE 1996, 9.3.1). The current conceptual model for spallings addresses processes that take place several minutes before and after a borehole intrusion of a WIPP waste room. The model couples a pipe-flow wellbore model with a porous flow repository model, allowing high-pressure gas to flow from the repository to the wellbore through a growing cavity region at the well bottom. An elastic stress model is applied to the porous solid domain that allows for mechanical failure of repository solids if local tensile stress exceeds the tensile strength of the waste. Tensile-failed solids may be entrained into the wellbore flow stream by a fluidized bed model, in which case they are ultimately transported to the land surface comprising a release. In July 2003, DOE/SNL presented the spallings conceptual model to a independent peer review panel in accordance with NUREG 1297 guidelines (NRC, 1988). The panel ultimately judged the model as adequate for implementation in WIPP PA (Yew et al., 2003). This report documents the spallings model history from 1997 to the implementation of DRSPALL in the 2004 Compliance Recertification Application (CRA) (DOE, 2004). The scope of this report includes descriptions of the conceptual model, numerical model, verification and validation techniques, model sensitivity studies, and WIPP PA spallings results as presented in the 2004 CRA.

  1. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    SciTech Connect (OSTI)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States)] [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States); Leigh, Christi [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)] [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)

    2013-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  2. Audit of selected aspects of the Waste Isolation Pilot Plant cost structure, Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-08-22T23:59:59.000Z

    The Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, is a research and development facility intended to demonstrate that transuranic waste from the Government`s defense activities can be safely disposed of in a deep geologic formation. The Fiscal Year 1994 budget for WIPP is about $185 million and includes funding for the operation of WIPP and for experiments being done by other DOE facilities. DOE`s current plan is for WIPP to begin receiving transuranic waste in June 1998. This audit was requested by the Assistant Secretary for Environmental Management because two recent reports, one issues by the Office of Inspector General (OIG), were critical of the staffing and cost-effectiveness of WIPP, and because of recent mission changes at WIPP. The audit team consisted of representatives from the DOE, auditors from the OIG, and technical specialists hired by the OIG to assist in the audit. The purpose of the audit was to determine whether WIPP was appropriately staffed to meet programmatic requirements in the most cost-effective manner. The Secretary of Energy expected DOE facilities to benchmark their performance against other facilities to strive for best in class status, and the Westinghouse management and operating contract for WIPP required the facility to be operated in a cost-effective manner. However, the authors determined that Westinghouse did not use benchmarks and that WIPP could be managed more cost-effectively, with fewer personnel, while maintaining its current level of excellence. They concluded that the WIPP staffing level could be significantly reduced with a decrease in costs at WIPP of about $11.4 million per year.

  3. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    SciTech Connect (OSTI)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  4. Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results

    SciTech Connect (OSTI)

    Novak, C.F. [ed.

    1995-08-01T23:59:59.000Z

    This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.

  5. Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    SciTech Connect (OSTI)

    Jarolimek, L.; Timmer, M.J.; Powers, D.W.

    1983-03-01T23:59:59.000Z

    This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

  6. Conceptual structure of the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; ANDERSON,D. RICHARD; BASABILVAZO,G.; JOW,HONG-NIAN; MARIETTA,MELVIN G.

    2000-05-18T23:59:59.000Z

    The conceptual structure of the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is described. This structure involves three basic entities (EN1, EN2, EN3): (1) EN1, a probabilistic characterization of the likelihood of different futures occurring at the WIPP site over the next 10,000 yr, (2) EN2, a procedure for estimating the radionuclide releases to the accessible environment associated with each of the possible futures that could occur at the WIPP site over the next 10,000 yr, and (3) EN3, a probabilistic characterization of the uncertainty in the parameters used in the definition of EN1 and EN2. In the formal development of the 1996 WIPP PA, EN1 is characterized by a probability space (S{sub st}, P{sub st}, p{sub st}) for stochastic (i.e., aleatory) uncertainly; EN2 is characterized by a function {line_integral} that corresponds to the models and associated computer programs used to estimate radionuclide releases; and EN3 is characterized by a probability space (S{sub su}, P{sub su}, p{sub su}) for subjective (i.e., epistemic) uncertainty. A high-level overview of the 1996 WIPP PA and references to additional sources of information are given in the context of (S{sub st}, P{sub st}, p{sub st}), {line_integral} and (S{sub su}, P{sub su}, p{sub su}).

  7. Waste Isolation Pilot Plant site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires each DOE facility that conducts significant environmental protection programs to prepare an Annual Site Environmental Report (ASER). The purpose of the ASER is to summarize environmental data in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts. This ASER not only documents the required data, it also documents new and continued monitoring and compliance activities during the 1994 calendar year. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP) (DOE/WIPP 94-024). The EMP defines a comprehensive set of parameters that must be monitored to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater, air, soil, and biotics are monitored for radiological and nonradiological activity levels. The baseline radiological surveillance program covers the broader geographic area that encompasses nearby ranches, villages, and cities. Nonradiological studies focus on the area immediately surrounding the WIPP site.

  8. Preparations and Planning for EPA Recertification of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Casey, S. C.; Shoemaker, P. E.; Patterson, R. L.

    2002-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Recertification Project was established to meet the requirement of the WIPP Land Withdrawal Act (LWA)1 to demonstrate continued compliance with U.S. Environmental Protection Agency (EPA) disposal regulations at five-year intervals. This paper delineates the objective of the first recertification effort, sets out project goals, and establishes guiding assumptions. It describes the overall direction for a highly complex and interdependent set of tasks leading to recertification of the WIPP repository in 2004. This paper also lays out a high-level schedule for producing the WIPP Compliance Recertification Application (CRA). The major principle behind recertification is that the EPA recertification decision will not involve rulemaking or judicial review. To ensure that the EPA is able to retain this principle, the U.S. Department of Energy (DOE) will not be incorporating changes through the recertification process. Only changes previously approved by the EPA will be included in the CRA. The EPA can approve significant changes to the current WIPP Certification through rulemaking. Non-significant changes are approved without rulemaking through the planned change reporting process [Title 40 Code of Federal Regulations (CFR), Section 194.4(b)].

  9. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    SciTech Connect (OSTI)

    Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States). Geophysics Dept.

    1997-03-05T23:59:59.000Z

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports.

  10. Waste Isolation Pilot Plant site environmental report, for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar year are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.

  11. Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt

    SciTech Connect (OSTI)

    Brodsky, N.S. [RE/SPEC, Inc., Rapid City, SD (United States)

    1994-03-01T23:59:59.000Z

    Crushed natural rock salt is a primary candidate for use as backfill and barrier material at the Waste Isolation Pilot Plant (WIPP) and therefore Sandia National Laboratories (SNL) has been pursuing a laboratory program designed to quantify its consolidation properties and permeability. Variables that influence consolidation rate that have been examined include stress state and moisture content. The experimental results presented in this report complement existing studies and work in progress conducted by SNL. The experiments described in this report were designed to (1) measure permeabilities of consolidated specimens of crushed salt, (2) determine the influence of brine saturation on consolidation under hydrostatic loads, and 3) measure the effects of small applied shear stresses on consolidation properties. The laboratory effort consisted of 18 individual tests: three permeability tests conducted on specimens that had been consolidated at Sandia, six hydrostatic consolidation and permeability tests conducted on specimens of brine-saturated crushed WIPP salt, and nine shear consolidation and permeability tests performed on crushed WIPP salt specimens containing 3 percent brine by weight. For hydrostatic consolidation tests, pressures ranged from 1.72 MPa to 6.90 MPa. For the shear consolidation tests, confining pressures were between 3.45 MPa and 6.90 MPa and applied axial stress differences were between 0.69 and 4.14 MPa. All tests were run under drained conditions at 25{degrees}C.

  12. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

  13. An appraisal of the 1992 preliminary performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Lee, W.W.L.; Chaturvedi, L.; Silva, M.K.; Weiner, R.; Neill, R.H. [Environmental Evaluation Group, Albuquerque, NM (United States)]|[Environmental Evaluation Group, Carlsbad, NM (United States)

    1994-09-01T23:59:59.000Z

    The purpose of the New Mexico Environmental Evaluation Group is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The Environmental Evaluation Group (EEG) has reviewed the WIPP 1992 Performance Assessment (Sandia WIPP Performance Assessment Department, 1992). Although this performance assessment was released after the October 1992 passage of the WIPP Land Withdrawal Act (PL 102-579), the work preceded the Act. For individual and ground-water protection, calculations have been done for 1000 years post closure, whereas the US Environmental Protection Agency`s Standards (40 CFR 191) issued in 1993 require calculations for 10,000 years. The 1992 Performance Assessment continues to assimilate improved understanding of the geology and hydrogeology of the site, and evolving conceptual models of natural barriers. Progress has been made towards assessing WIPP`s compliance with the US Environmental Protection Agency`s Standards (40 CFR 191). The 1992 Performance Assessment has addressed several items of major concern to EEG, outlined in the July 1992 review of the 1991 performance assessment (Neill et al., 1992). In particular, the authors are pleased that some key results in this performance assessment deal with sensitivity of the calculated complementary cumulative distribution functions (CCDF) to alterative conceptual models proposed by EEG -- that flow in the Culebra be treated as single-porosity fracture-flow; with no sorption retardation unless substantiated by experimental data.

  14. Waste Isolation PIlot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 1

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-03T23:59:59.000Z

    This Geotechnical Analysis Report (GAR) presents and interprets geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2005, to June 30, 2006. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists references.

  15. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2004 - June 2005, Volume 1

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-03T23:59:59.000Z

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2004, to June 30, 2005. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the Geomechanical Monitoring Program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists the references and bibliography.

  16. Annual water quality data report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Lyon, M.L. (International Technology Corp., Torrance, CA (USA)) [International Technology Corp., Torrance, CA (USA)

    1989-04-01T23:59:59.000Z

    This is the fourth Annual Water Quality Data Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the United States Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of transuranic radioactive wastes generated by the defense activities of the United States Government. This report presents water quality data collected from January 1988 through December 1988 from 16 designated pre-operational (WIPP facility) monitoring wells, two additional wells, and 10 privately-owned wells in the vicinity of the WIPP. Additionally, water samples were collected from the Air Intake Shaft during shaft construction activities at the WIPP. This report lists pertinent information regarding the monitoring wells sampled, sampling zone, dates pumped, and types of samples collected during 1988. Comparative data from previous samplings of all wells can be found in Uhland and Randall (1986), Uhland et al. (1987), Randall et al. (1988), as well as in this report. The data reported by the Water Quality Sampling Program in this and previous reports indicate that serial sampling is a very useful tool in determining sample representativeness from wells in the WIPP vicinity. Serial sample field chemistry data are demonstrated to be highly accurate and precise as indicated by the excellent overall average percent spike recovery values and low RPD values reported for the sampling events. Serial sample field chemistry data and laboratory water quality parameter analyses gathered by the WQSP since January 1985 are the foundation for a pre-operational water quality baseline at the WIPP. 32 refs., 66 figs., 96 tabs.

  17. Performance assessment in support of the 1996 compliance certification application for the Waste Isolation Pilot Plant: A decision analysis perspective

    SciTech Connect (OSTI)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mathematics; Anderson, D.R.; Jow, H.N.; Marietta, M.G. [Sandia National Labs., Albuquerque, NM (United States); Basabilvazo, G. [Dept. of Energy, Carlsbad, NM (United States)

    1998-08-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic waste. The primary regulatory requirements (i.e., 40 CFR 191 and 40 CFR 194) placed on the WIPP by the US Environmental Protection Agency (EPA) involve a complementary cumulative distribution function (CCDF) for normalized radionuclide releases to the accessible environment. The interpretation and use of this CCDF from a decision analysis perspective is discussed and illustrated with results from the 1996 performance assessment for the WIPP, which was carried out to support a compliance certification application by the DOE to the EPA for the WIPP.

  18. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    SciTech Connect (OSTI)

    Butcher, B.M.

    1997-08-01T23:59:59.000Z

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  19. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01T23:59:59.000Z

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  20. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-09-01T23:59:59.000Z

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have been overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.

  1. Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant

    SciTech Connect (OSTI)

    Johnson, H.E. [U.S. Dept. of Energy, Carlsbad, NM (United States) Carlsbad Area Office; Whatley, M.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1996-08-01T23:59:59.000Z

    WIPP`s long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP`s suitability as a TRU waste repository. Now, as DOE`s Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP`s second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed.

  2. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01T23:59:59.000Z

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  3. Inspection of Emergency Management at the Waste Isolation Pilot Plant- Volume II, August 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health and emergency management programs at the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP emergency management program. The results of the review of the WIPP environment, safety, and health (ES&H) programs are discussed in Volume I of this report, and the combined results are discussed in a summary report. The results of this review indicate that, overall, CBFO and WTS have effectively addressed nearly all of the weaknesses identified during the May 2000 OA emergency management review. Furthermore, as a consequence of that effort, CBFO and WTS have implemented a hazardous material emergency management program that, with few exceptions, meets Departmental expectations for providing a system that protects responders, site workers, and the public in the event of an emergency at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP emergency management program, including positive aspects, findings, and other items requiring management attention. Section 3 provides OA’s conclusions regarding the overall effectiveness of CBFO and WTS management of the emergency management program. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the findings that require corrective action and follow-up. Appendices C- F detail the results of the reviews of individual emergency management program elements.

  4. Certifying the Waste Isolation Pilot Plant: Lessons Learned from the WIPP Experience

    SciTech Connect (OSTI)

    Anderson, D.R. (Rip); Chu, Margaret S.Y.; Froehlich, Gary K.; Howard, Bryan A.; Howarth, Susan M.; Larson, Kurt W.; Pickering, Susan Y.; Swift, Peter N.

    1999-07-13T23:59:59.000Z

    In May 1998, the US Environmental Protection Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with applicable long-term regulations governing the permanent disposal of spent nuclear fuel, high-level, and transuranic radioactive wastes. The WIPP is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal requirements. The first disposal of TRU waste at WIPP occurred on March 26, 1999. Many of the lessons learned during the WIPP Project's transition from site characterization and experimental research to the preparation of a successful application may be of general interest to other repository programs. During a four-year period (1992 to 1996), the WIPP team [including the DOE Carlsbad Area Office (CAO), the science advisor to CAO, Sandia National Laboratories (SNL), and the management and operating contractor of the WIPP site, Westinghouse Electric Corporation (WID)] met its aggressive schedule for submitting the application without compromising the integrity of the scientific basis for the long-term safety of the repository. Strong leadership of the CAO-SNL-WID team was essential. Within SNL, a mature and robust performance assessment (PA) allowed prioritization of remaining scientific activities with respect to their impact on regulatory compliance. Early and frequent dialog with EPA staff expedited the review process after the application was submitted. Questions that faced SNL are familiar to geoscientists working in site evaluation projects. What data should be gathered during site characterization? How can we know when data are sufficient? How can we know when our understanding of the disposal system is sufficient to support our conceptual models? What constitutes adequate ''validation'' of conceptual models for processes that act over geologic time? How should we use peer review and expert judgment? Other lessons learned by SNL and the WIPP team are more specific to the regulatory context of the project and the demands imposed by pervasive review by the regulator and other external organizations. How should we document the relationship between site data and the parameter values used in computer models? How can we manage software configuration and use it to support the regulatory requirement that analyses be traceable and reproducible? Can we institute a quality assurance (QA) program that will meet the regulatory requirements and enhance the process without unreasonable budget and schedule impacts? How can we resolve technical disputes, both within the project and with external critics? How should we involve regulators and stakeholders in the compliance process? The WIPP teams answers to these questions, and others like them, were, in many cases, pragmatic solutions based on the needs of the pro-warn at the time. Some problems encountered and their solutions may be of limited interest. However, that it is possible to license a geologic repository in a regulatory proceeding while incorporating meaningful public review and criticism is a lesson of general interest to all radioactive waste management programs.

  5. An analysis of salt and moisture deposition on the air sampling probes in the exhaust shaft of the waste isolation pilot plant

    E-Print Network [OSTI]

    Weaver, Gregg Shelton

    1996-01-01T23:59:59.000Z

    A study was performed to determine the source of moist salt formations on air sampling , probes at the top of the exhaust shaft used in ventilating the waste repository at the Waste Isolation Pilot Plant (WIPP). An earlier study by Texas A&M Univ...

  6. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992. Revision

    SciTech Connect (OSTI)

    Rechard, R.P.

    1996-06-01T23:59:59.000Z

    This document provides an overview of the processes used to access the performance of the Waste Isolation Pilot Plant (WIPP). The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, HIgh-LEvel and transuranic radioactive Wastes (40 CFR 191).

  7. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    SciTech Connect (OSTI)

    Best, T.L.; Neuhauser, S. (eds.)

    1980-03-01T23:59:59.000Z

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project

    SciTech Connect (OSTI)

    Not Available

    1992-12-29T23:59:59.000Z

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

  9. Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)

    SciTech Connect (OSTI)

    Mercer, J.W.; Cole, D.L.; Holt, R.M.

    1998-10-09T23:59:59.000Z

    Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and correlate different lithologies among the seven wells.

  10. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States)] [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others] [RE/SPEC Inc., Albuquerque, NM (United States); and others

    1997-02-01T23:59:59.000Z

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  11. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 3, Chapter C, Appendix C3 (conclusion)--Chapter C, Appendix C9: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains appendices for the following: results of extraction procedure (EP) toxicity data analyses; summary of headspace gas analysis in Rocky Flats Plant sampling program-FY 1988; waste drum gas generation sampling program at Rocky Flats Plant during FY 1988; TRU waste sampling program waste characterization; summary of headspace gas analyses in TRU waste sampling program; summary of volatile organic compounds analyses in TRU waste sampling program; totals analysis versus toxicity characteristic leaching procedure; Waste Isolation Pilot Plant waste characterization sampling and analysis methods; Waste Isolation Pilot Plant waste characterization analytical methods; data reduction, validation and reporting; examples of waste screening checklists; and Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program.

  12. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR {section} 761.75[c])

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2002-03-19T23:59:59.000Z

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) {section} 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available from the WIPP website. To facilitate the disposal of TRU wastes containing PCBs, the owner/operators are hereby submitting this initial report containing information required pursuant to the Chemical Waste Landfill Approval requirements in 40 CFR {section} 761.75(c). Although WIPP is defined as a miscellaneous unit and not a landfill by the New Mexico Hazardous Waste Act, WIPP meets or exceeds all applicable technical standards for chemical waste landfills by virtue of its design and programs as indicated in the Engineering Report (Attachment B). The layout of this initial report is consistent with requirements (i.e., Sections 2.0 through 12.0 following the sequence of 40 CFR {section} 761.75[c][i] -[ix] with sections added to discuss the Contingency and Training Plans; and Attachment B of this initial report addresses the requirements of 40 CFR {section} 761.75[b][1] through [9] in this order). This initial report includes a description of three proposed changes that will be subject to ''conditional approval.'' The first will allow the disposal of remote-handled (RH) PCB/TRU waste at WIPP. The second will allow the establishment of a central confirmation facility at WIPP. The third will allow for an increase in contact-handled Working Copy Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 (CH) waste storage capacities. These proposed changes are discussed further in Section 3.3 of this initial report. ''Conditional approval'' of these requests would allow these activities at WIPP contingent upon: - Approval of the HWFP modification (NMED) and Compliance Certification Application (CCA) change request (Environmental Protection Agency [EPA]) - Inspection of facility prior to implementing the change (if deemed necessary by the EPA) - Written approval from the EPA This initial report also includes the following three requests for waivers to the technical requirements for Chemical Waste Landfills pursuant to 40 CFR {section} 761.75(c)(4): - Hydrologic Conditions (40 CFR {section} 761.75[b][3]) - Monitoring Systems (40 CFR {sect

  13. Preliminary comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990

    SciTech Connect (OSTI)

    Bertram-Howery, S.G.; Marietta, M.G.; Rechard, R.P.; Anderson, D.R. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA)); Baker, B.L. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Bean, J.E. Jr.; McCurley, R.D.; Rudeen, D.K. (New Mexico Engineering Research Inst., Albuquerque, NM (USA)); Beyeler, W.; Brinster, K.F.; Guzowski, R.V.; Sch

    1990-12-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is planned as the first mined geologic repository for transuranic (TRU) wastes generated by defense programs of the United States Department of Energy (DOE). Before disposing of waste at the WIPP, the DOE must evaluate compliance with the United states Environmental Protection Agency's (EPA) Standard, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191, US EPA, 1985). Sandia National Laboratories (SNL) is evaluating long-term performance against criteria in Subpart B of the Standard. Performance assessment'' as used in this report includes analyses for the Containment Requirements ({section} 191.13(a)) and the Individual Protection Requirements ({section} 191.15). Because proving predictions about future human actions or natural events is not possible, the EPA expects compliance to be determined on the basis of specified quantitative analyses and informed, qualitative judgment. The goal of the WIPP performance-assessment team at SNL is to provide as detailed and thorough a basis as practical for the quantitative aspects of that decision. This report summarizes SNL's late-1990 understanding of the WIPP Project's ability to evaluate compliance with Subpart B. 245 refs., 88 figs., 23 tabs.

  14. Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Knowles, M.K; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

    2000-05-22T23:59:59.000Z

    The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. The paper presents a review of the evolution of these models during regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided.

  15. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The US Department of Energy is currently constructing the Waste Isolation Pilot near Carlsbad, New Mexico. The full-scale pilot plant will demonstrate the feasibility of the safe disposal of defense-related nuclear waste in a bedded salt formation at a depth of 2160 feet below the surface. WIPP will provide for the permanent storage of 25,000 cu ft of remote-handled (RH) transuranic waste and 6,000,000 cu ft of contact-handled (CH) transuranic waste. This paper covers the major mechanical/structural design considerations for the waste hoist and its hoist tower structure. The design of the hoist system and safety features incorporates state-of-the-art technology developed in the hoist and mining industry to ensure safe operation for transporting nuclear waste underground. Also included are design specifications for VOC-10 monitoring system.

  16. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 7: Appendix GCR Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    This report contains the second part of the geological characterization report for the Waste Isolation Pilot Plant. Both hydrology and geochemistry are evaluated. The following aspects of hydrology are discussed: surface hydrology; ground water hydrology; and hydrology drilling and testing. Hydrologic studies at the site and adjacent site areas have concentrated on defining the hydrogeology and associated salt dissolution phenomena. The geochemical aspects include a description of chemical properties of geologic media presently found in the surface and subsurface environments of southeastern New Mexico in general, and of the proposed WIPP withdrawal area in particular. The characterization does not consider any aspect of artificially-introduced material, temperature, pressure, or any other physico-chemical condition not native to the rocks of southeastern New Mexico.

  17. A select bibliography with abstracts of reports related to Waste Isolation Pilot Plant geotechnical studies (1972--1990)

    SciTech Connect (OSTI)

    Powers, D.W. [Powers (Dennis W.), Anthony, TX (United States); Martin, M.L. [International Technology, Inc., Las Vegas, NV (United States)

    1993-08-01T23:59:59.000Z

    This select bibliography contains 941 entries. Each bibliographic entry contains the citation of a report, conference paper, or journal article containing geotechnical information about the Waste Isolation Pilot Plant (WIPP). The entries cover the period from 1972, when investigation began for a WIPP Site in southeastern New Mexico, through December 1990. Each entry is followed by an abstract. If an abstract or suitable summary existed, it has been included; 316 abstracts were written for other documents. For some entries, an annotation has been provided to clarify the abstract, comment on the setting and significance of the document, or guide the reader to related reports. An index of key words/phrases is included for all entries.

  18. The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

    1996-02-01T23:59:59.000Z

    The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

  19. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  20. Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

    SciTech Connect (OSTI)

    Pfeifle, T.W. [RE/SPEC Inc., Rapid City, SD (United States); Hurtado, L.D. [Sandia National Lab., Albuquerque, NM (United States)

    1998-06-01T23:59:59.000Z

    The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics.

  1. The Second Opening of the Waste Isolation Pilot Plant? Review of Salient Characteristics and Unique Operational Considerations for Remote Handled Transuranic Waste

    SciTech Connect (OSTI)

    Anastas, G.; Walker, B.A.

    2003-02-24T23:59:59.000Z

    The U.S. Department of Energy (DOE) intends to dispose of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) beginning in 2005. (1) Four principle regulatory agencies are involved in the process of approving the RH TRU waste activities. The DOE is responsible for operational activities. The U. S. Nuclear Regulatory Commission (NRC) approves the design and use of shipping containers. The U.S. Environmental Protection Agency (EPA) is responsible for assuring safe and environmentally effective long-term disposal of the radioactive component of the waste and operational environmental monitoring. The New Mexico Environment Department (NMED) is responsible for the handling and the disposal of the non-radioactive hazardous component of the waste. The Environmental Evaluation Group (EEG) is responsible for performing independent technical oversight of all WIPP activities, and will comment on documents and practices for the various regulated RH TRU waste activities. The DOE has already obtained the necessary approvals from the NRC, and has submitted a Class 3 Modification request to the NMED. On December 16, 2002 the DOE Carlsbad Field Office (CBFO) provided the EPA with a notice of proposed change, in accordance with 40 CFR 194.4 (b) (3), to receive and dispose of remote handled transuranic waste. (2) WIPP procedures for the management of RH TRU waste at the site are being developed. While there are no issues with current NRC Certificates of Compliance for the RH TRU waste shipping containers, it is likely that there will be some controversy over other aspects of the currently planned RH TRU waste program. These issues may include: (1) the published RH TRU waste inventory, (2) the characterization of the radionuclide portion of the waste, for which one planned method is to use dose-to-Curie conversions, and (3) the plans to use bounding estimates for the hazardous portion of the WIPP waste, rather than measuring VOCs on a container-by-container basis or by representative sampling as is done for contact handled transuranic (CH TRU) waste. This paper discusses the currently planned process and the possible issues related to the DOE's efforts to dispose RH TRU waste at the WIPP.

  2. Waste Isolation Pilot Plant shaft sealing system compliance submittal design report. Volume 2 of 2: Appendix E

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report describes a shaft sealing design for the Waste Isolation Pilot Plant (WIPP), a proposed nuclear waste repository in bedded salt. The system is designed to limit entry of water and release of contaminants through the four existing shafts after the WIPP is decommissioned. The design approach applies redundancy to functional elements and specifies multiple, common, low-permeability materials to reduce uncertainty in performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These evaluations indicate that the design guidance is addressed by effectively limiting transport of fluids within the shafts, thereby limiting transport of hazardous material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for placement of the seal components combined with the use of available, common materials assure that the design can be constructed.

  3. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

    1997-04-01T23:59:59.000Z

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  4. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 1, Third comparison with 40 CFR 191, Subpart B

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Before disposing of transuranic radioactive wastes in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This volume contains an overview of WIPP performance assessment and a preliminary comparison with the long-term requirements of the Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B).

  5. Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers

    SciTech Connect (OSTI)

    Molecke, M.A.; Sorensen, N.R. [eds.] [Sandia National Labs., Albuquerque, NM (US); Wicks, G.G. [ed.] [Westinghouse Savannah River Technology Center, Aiken, SC (US)

    1993-08-01T23:59:59.000Z

    The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D`Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program.

  6. The Waste Isolation Pilot Plant Deep Geological Repository: A Domestic and Global Blueprint for Safe Disposal of High-Level Radioactive Waste - 12081

    SciTech Connect (OSTI)

    Eriksson, Leif G. [Nuclear Waste Dispositions, Winter Park, Florida 32789 (United States); Dials, George E. [B and W Conversion Services, LLC, Lexington, Kentucky 40513 (United States)

    2012-07-01T23:59:59.000Z

    At the end of 2011, the world's first used/spent nuclear fuel and other long-lived high-level radioactive waste (HLW) repository is projected to open in 2020, followed by two more in 2025. The related pre-opening periods will be at least 40 years, as it also would be if USA's candidate HLW-repository is resurrected by 2013. If abandoned, a new HLW-repository site would be needed. On 26 March 1999, USA began disposing long-lived radioactive waste in a deep geological repository in salt at the Waste Isolation Pilot Plant (WIPP) site. The related pre-opening period was less than 30 years. WIPP has since been re-certified twice. It thus stands to reason the WIPP repository is the global proof of principle for safe deep geological disposal of long-lived radioactive waste. It also stands to reason that the lessons learned since 1971 at the WIPP site provide a unique, continually-updated, blueprint for how the pre-opening period for a new HLW repository could be shortened both in the USA and abroad. (authors)

  7. An analysis of the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J.

    1995-11-01T23:59:59.000Z

    The Environmental Evaluation Group (EEG) previously analyzed the probability of a catastrophic accident in the waste hoist of the Waste Isolation Pilot Plant (WIPP) and published the results in Greenfield (1990; EEG-44) and Greenfield and Sargent (1993; EEG-53). The most significant safety element in the waste hoist is the hydraulic brake system, whose possible failure was identified in these studies as the most important contributor in accident scenarios. Westinghouse Electric Corporation, Waste Isolation Division has calculated the probability of an accident involving the brake system based on studies utilizing extensive fault tree analyses. This analysis conducted for the U.S. Department of Energy (DOE) used point estimates to describe the probability of failure and includes failure rates for the various components comprising the brake system. An additional controlling factor in the DOE calculations is the mode of operation of the brake system. This factor enters for the following reason. The basic failure rate per annum of any individual element is called the Event Probability (EP), and is expressed as the probability of failure per annum. The EP in turn is the product of two factors. One is the {open_quotes}reported{close_quotes} failure rate, usually expressed as the probability of failure per hour and the other is the expected number of hours that the element is in use, called the {open_quotes}mission time{close_quotes}. In many instances the {open_quotes}mission time{close_quotes} will be the number of operating hours of the brake system per annum. However since the operation of the waste hoist system includes regular {open_quotes}reoperational check{close_quotes} tests, the {open_quotes}mission time{close_quotes} for standby components is reduced in accordance with the specifics of the operational time table.

  8. Performance Confirmation Strategies for the Waste Isolation Pilot Plant - A Historical Perspective from an Operating Disposal Facility - 12248

    SciTech Connect (OSTI)

    Wagner, Steve [John Hart and Associate for Sandia National Laboratories, Carlsbad, New Mexico 88220 (United States)

    2012-07-01T23:59:59.000Z

    Performance confirmation is an important element of the Waste Isolation Pilot Plant (WIPP) program. Performance confirmation was first used during the early WIPP site characterization phase to focus experimental activities that address the development of probabilistic repository performance models and to address stakeholder assurance needs. The program is currently used to analyze the conditions of the repository and its surroundings to ensure that the basis for the repository's long-term radioactive waste containment predictions is valid. This basis is related to the parameters, assumptions, conceptual and numerical models that are used to predict or validate the potential radioactive waste containment performance of the system. The concept of performance confirmation for the WIPP is one that has evolved since the first repository work was initiated decades ago and plays an important role in assuring adequate repository performance both now and in the long-term. The WIPP mission has progressed from a pilot project to an operational disposal facility and will progress to eventual site closure when disposal operations are completed. Performance confirmation is an important part of each of these progressions. The concept of disposing radioactive waste in a geologic repository today involves a complete understanding of many technical, political, regulatory, societal and economic elements. Many of these elements overlap and solving all relevant issues necessary to site, operate and decommission a disposal facility should be done with knowledge of each element's requirements and impacts. Performance confirmation is one tool that can help to coordinate many of these elements into a program that actively investigates what is thought to be adequately understood about the system and what information is lacking. A performance confirmation program is used to determine ways to challenge and verify those areas that are thought to be understood and to find ways to understand those areas that are not well understood. Performance confirmation programs have been used twice at WIPP, first during site characterization and PA development and later in a Compliance Monitoring program. At first, only certain technical aspects of the system were deemed important because it was a scientifically-based, government project. Early site characterization work was design to gather information about the geology and hydrology of the area and the mechanical properties of the natural barrier. The information would be used in a PA to determine the long-term containment performance of the disposal system. A performance confirmation element was used to identify the sensitive elements of the system that were certain, well understood or justified and those that were not. It identified experimental and analytical programs that could be used to reduce uncertainty, confirm sensitive assumptions and provide useful data. This performance confirmation program provided data to justify the adequacy of the information used in PA to demonstrate compliance with EPA's containment requirements. Performance confirmation will continue to be used in the post-closure period for at least 30 years and likely up to the end of the 100-year institutional controls period. As the technical basis for the repository matures throughout the operational period, the currently planned post-closure monitoring program will need to be reassessed prior to implementation. However, the intent of the program will be the same as it was for the previous programs, to ensure the ultimate goal of the repository. This goal is to safely isolate waste from the accessible environment and ensure public and environmental safety. (authors)

  9. Radiological health review of the Final Environmental Impact Statement Waste Isolation Pilot Plant. Volumes 1 and 2. DOE/EIS-0026

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Purpose of the Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the potential radiation exposure to people from the proposed Federal radioactive Waste Isolation Pilot Plant (WIPP) near Carlsbad, in order to protect the public health and safety and ensure that there is minimal environmental degradation. Analyses are conducted of reports issued by the US DOE and its contractors, other Federal agencies and other organizations, as they relate to the potential health, safety and environmental impacts from WIPP.

  10. Hydrogeochemical studies of the Rustler Formation and related rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico

    SciTech Connect (OSTI)

    Siegel, M.D.; Lambert, S.J.; Robinson, K.L. (eds.)

    1991-08-01T23:59:59.000Z

    Chemical, mineralogical, isotopic, and hydrological studies of the Culebra dolomite member of the Rustler Formation and related rocks are used to delineate hydrochemical facies and form the basis for a conceptual model for post-Pleistocene groundwater flow and chemical evolution. Modern flow within the Culebra in the Waste Isolation Pilot Plant (WIPP) area appears to be largely north-to-south; however, these flow directions under confined conditions are not consistent with the salinity distribution in the region surrounding the WIPP Site. Isotopic, mineralogical, and hydrological data suggest that vertical recharge to the Culebra in the WIPP area and to the immediate east and south has not occurred for several thousand years. Eastward increasing {sup 234}U/{sup 238}U activity ratios suggest recharge from a near-surface Pleistocene infiltration zone flowing from the west-northwest and imply a change in flow direction in the last 30,000 to 12,000 years. 49 refs., 34 figs., 4 tabs.

  11. Analysis of solutes in groundwaters from the Rustler Formation at and near the Waste Isolation Pilot Plant site

    SciTech Connect (OSTI)

    Robinson, K.L.

    1997-09-01T23:59:59.000Z

    Between 1976 and 1986, groundwater samples from more than 60 locations in the vicinity of the Waste Isolation Pilot Plant site were collected and analyzed for a variety of major, minor, and trace solutes. Most of the samples were from the Rustler Formation (the Culebra Dolomite, the Magenta Dolomite, or the zone at the contact between the Rustler and underlying Salado Formations) or the Dewey Lake Red Beds. The analytical data from the laboratories are presented here with accompanying discussions of sample collection methods, supporting field measurements, and laboratory analytical methods. A comparison of four data sets and a preliminary evaluation of the data for the major solutes (Cl{sup {minus}}, SO{sub 4}{sup {minus}2}, Na, K, Ca, and Mg) shows that the data for samples analyzed by UNC/Bendix for SNL seem to be the most reliable, but that at some locations, samples representative of the native, unperturbed groundwater have not been collected. At other locations, the water chemistry has apparently changed between sampling episodes.

  12. Guidebook for performance assessment parameters used in the Waste Isolation Pilot Plant compliance certification application. Volume 2: Appendices

    SciTech Connect (OSTI)

    Howarth, S.M.; Martell, M.A.; Weiner, R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Lattier, C. [GRAM, Inc., Albuquerque, NM (United States)] [GRAM, Inc., Albuquerque, NM (United States)

    1998-06-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA) Performance Assessment (PA) Parameter Database and its ties to supporting information evolved over the course of two years. When the CCA was submitted to the Environmental Protection Agency (EPA) in October 1996, information such as identification of parameter value or distribution source was documented using processes established by Sandia National Laboratories WIPP Quality Assurance Procedures. Reviewers later requested additional supporting documentation, links to supporting information, and/or clarification for many parameters. This guidebook is designed to document a pathway through the complex parameter process and help delineate flow paths to supporting information for all WIPP CCA parameters. In addition, this report is an aid for understanding how model parameters used in the WIPP CCA were developed and qualified. To trace the source information for a particular parameter, a dual-route system was established. The first route uses information from the Parameter Records package as it existed when the CCA calculations were run. The second route leads from the EPA Parameter Database to additional supporting information.

  13. Guidebook for performance assessment parameters used in the Waste Isolation Pilot Plant compliance certification application. Volume 1: Main report

    SciTech Connect (OSTI)

    Howarth, S.M.; Martell, M.A.; Weiner, R. [Sandia National Labs., Albuquerque, NM (United States); Lattier, C. [GRAM, Inc., Albuquerque, NM (United States)

    1998-06-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA) Performance Assessment (PA) Parameter Database and its ties to supporting information evolved over the course of two years. When the CCA was submitted to the Environmental Protection Agency (EPA) in October 1996, information such as identification of parameter value or distribution source was documented using processes established by Sandia National Laboratories WIPP Quality Assurance Procedures. Reviewers later requested additional supporting documentation, links to supporting information, and/or clarification for many parameters. This guidebook is designed to document a pathway through the complex parameter process and help delineate flow paths to supporting information for all WIPP CCA parameters. In addition, this report is an aid for understanding how model parameters used in the WIPP CCA were developed and qualified. To trace the source information for a particular parameter, a dual-route system was established. The first route uses information from the Parameter Records Package as it existed when the CCA calculations were run. The second route leads from the EPA Parameter Database to additional supporting information.

  14. Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise

    Broader source: Energy.gov [DOE]

    COVINGTON, Ga. – Emergency personnel throughout the U.S. who respond in the event of a potential accident involving radioactive waste shipments take part in mock training scenarios to help them prepare for an actual incident.

  15. EIS-0026-S2: Waste Isolation Pilot Plant Disposal Phase, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a...

  16. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect (OSTI)

    Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

    1991-08-01T23:59:59.000Z

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  17. Status of planned change requests for the waste isolation pilot plant

    SciTech Connect (OSTI)

    Patterson, R. [Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States); Gross, M. [MG Enterprises, San Rafael, CA (United States); Thompson, B. [Golder Associates, Inc., Lakewood, CO (United States); Kouba, St. [Washington Group International, Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

    2008-07-01T23:59:59.000Z

    At the submittal of the initial abstract to the Waste Management Symposium, the U.S. Department of Energy (DOE) had submitted and contemplated submitting a total of four planned change requests (PCRs) for U.S. Environmental Protection Agency (EPA) action before March of 2009. That date is the regulatory deadline for submitting the second Compliance Re-certification Application (CRA-2009) to the EPA. The Panel Closure PCR has subsequently been withdrawn in favor of postponing a final decision until after sufficient data has been obtained from the monitoring of hydrogen and methane in waste-filled rooms. A proposal to change a set of performance assessment (PA) parameters and a conceptual model has been removed from consideration due to schedule constraints. These parameters were the shear strength of the waste and the extent and evolution of the disturbed rock zone surrounding the rooms. A PCR was submitted to the EPA in April 2006 to reduce the mass of magnesium oxide (MgO) that must be emplaced in the repository. The EPA is currently reviewing the information submitted by DOE. A PCR was submitted to the EPA in November 2007 to allow emplacement of remote-handled transuranic (RH-TRU) waste in shielded containers on the floor of the repository. (authors)

  18. Waste Isolation Pilot Plant (WIPP) We are applying our unique capabilities in actinide and repository

    E-Print Network [OSTI]

    to the continued and growing use of nuclear energy as a sustainable option. Workers at Los Alamos' Radioassay. A salt bed in the area of Carlsbad, New Mexico, which was left from the evaporation of an ancient ocean to 42 waste drums. #12;Los Alamos National Laboratory is operated for the Department of Energy

  19. Waste Isolation Pilot Plant No-Migration Variance Petition. Revision 1, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    The purpose of the WIPP No-Migration Variance Petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the facility for as long as the wastes remain hazardous. The DOE submitted the petition to the EPA in March 1989. Upon completion of its initial review, the EPA provided to DOE a Notice of Deficiencies (NOD). DOE responded to the EPA`s NOD and met with the EPA`s reviewers of the petition several times during 1989. In August 1989, EPA requested that DOE submit significant additional information addressing a variety of topics including: waste characterization, ground water hydrology, geology and dissolution features, monitoring programs, the gas generation test program, and other aspects of the project. This additional information was provided to EPA in January 1990 when DOE submitted Revision 1 of the Addendum to the petition. For clarity and ease of review, this document includes all of these submittals, and the information has been updated where appropriate. This document is divided into the following sections: Introduction, 1.0: Facility Description, 2.0: Waste Description, 3.0; Site Characterization, 4.0; Environmental Impact Analysis, 5.0; Prediction and Assessment of Infrequent Events, 6.0; and References, 7.0.

  20. Uncertainty and Sensitivity Analysis Results Obtained in the 1996 Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Bean, J.E.; Berglund, J.W.; Davis, F.J.; Economy, K.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; MacKinnon, R.J.; Miller, J.; O'Brien, D.G.; Ramsey, J.L.; Schreiber, J.D.; Shinta, A.; Smith, L.N.; Stockman, C.; Stoelzel, D.M.; Vaughn, P.

    1998-09-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WPP) is located in southeastern New Mexico and is being developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. A detailed performance assessment (PA) for the WIPP was carried out in 1996 and supports an application by the DOE to the U.S. Environmental Protection Agency (EPA) for the certification of the WIPP for the disposal of TRU waste. The 1996 WIPP PA uses a computational structure that maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the many possible disruptions that could occur over the 10,000 yr regulatory period that applies to the WIPP and subjective uncertainty arising from the imprecision with which many of the quantities required in the PA are known. Important parts of this structure are (1) the use of Latin hypercube sampling to incorporate the effects of subjective uncertainty, (2) the use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncertainty, and (3) the efficient use of the necessarily limited number of mechanistic calculations that can be performed to support the analysis. The use of Latin hypercube sampling generates a mapping from imprecisely known analysis inputs to analysis outcomes of interest that provides both a display of the uncertainty in analysis outcomes (i.e., uncertainty analysis) and a basis for investigating the effects of individual inputs on these outcomes (i.e., sensitivity analysis). The sensitivity analysis procedures used in the PA include examination of scatterplots, stepwise regression analysis, and partial correlation analysis. Uncertainty and sensitivity analysis results obtained as part of the 1996 WIPP PA are presented and discussed. Specific topics considered include two phase flow in the vicinity of the repository, radionuclide release from the repository, fluid flow and radionuclide transport in formations overlying the repository, and complementary cumulative distribution functions used in comparisons with regulatory standards (i.e., 40 CFR 191, Subpart B).

  1. Basic data report for drillhole ERDA 9 (Waste Isolation Pilot Plant WIPP)

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    ERDA 9 was drilled in eastern Eddy County, New Mexico, to investigate and test salt beds for the disposal of nuclear wastes. The hole was placed near the SE corner of section 20, T22S,R31E. It was drilled between April 28 and June 4, 1976, to a depth of 2889 ft (measured from a kelly bushing altitude of 3,420.4 ft MSL). The borehole encountered, from top to bottom, Holocene deposits (including artificial fill) of 22 ft, the Pleistocene Mescalero Caliche (5 ft) and Gatuna Formation (27 ft), 9 ft of the Triassic Santa Rosa Sandstone, and 487 ft of the Dewey Lake Red Beds, 290 ft of the Rustler Formation, 1976 ft of the Salado Formation and 53 ft of the Castile Formation, all of Permian age. Cuttings were collected at 5-ft intervals for the land surface to a depth of 1090 ft, and consecutive cores were taken to a depth of 2876.6 ft. A suite of wireline geophysical logs was run the full length of the borehole to measure distribution of radioactive elements and hydrogen, and variations in rock density and elastic velocity. On the basis of the borehole findings and related hydrological and geophysical programs, the site was judged suitable to pursue the extensive geological characterization program which followed. The core from ERDA 9 provided a suite of samples extensively tested for rock mechanics, physical properties, and mineralogy. Drill-stem tests in ERDA 9 indicated no significant fluids or permeability in the Salado beds of interest. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes.

  2. Basic data report for drillhole WIPP 19 (Waste Isolation Pilot Plant-WIPP)

    SciTech Connect (OSTI)

    Not Available

    1980-03-01T23:59:59.000Z

    WIPP 19 is an exploratory borehole whose objective was to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between April 6 and May 4, 1978. The hole was drilled to a depth of 1038.2 feet and encountered, from top to bottom, surficial Holocene deposits (7', including artificial fill for drill pad), the Mescalero caliche (7'), the Santa Rosa Sandstone (82'), the Dewey Lake Red Beds (494'), the Rustler Formation (315'), and the upper portion of the Salado Formation (143'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 19 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt.

  3. Regulatory issues for Waste Isolation Pilot Plant long-term compliance with U.S. Environmental Protection Agency 40 CFR 191B and 268

    SciTech Connect (OSTI)

    Anderson, D.R.; Marietta, M.G. [Sandia National Labs., Albuquerque, NM (United States); Higgins, P.J. Jr. [USDOE Albuquerque Field Office, NM (United States). Waste Isolation Pilot Plant Project Integration Office

    1993-10-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with long-term regulations of the United States Environmental Protection Agency (EPA), specifically the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), and the Land Disposal Restrictions (40 CFR 268) of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper provides background information on the regulations, describes the SNL WIPP PA Departments approach to developing a defensible technical basis for consistent compliance evaluations, and summarizes the major observations and conclusions drawn from the 1991 and 1992 PAs.

  4. Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant- Volume I, August 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP ES&H programs. The results of the review of the WIPP emergency management program are discussed in Volume II of this report, and the combined results are discussed in a summary report. As discussed throughout this report, the ISM program at WIPP is generally effective. Although improvements are warranted in some areas, the current programs have contributed to overall effective ES&H performance and a good safety record at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP ES&H programs, including positive aspects and weaknesses. Section 3 provides OA’s conclusions regarding the overall effectiveness of CBFO and WTS management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the specific finding that requires corrective action and follow-up. Appendix C presents the results of the review of selected guiding principles of ISM. Appendix D presents the results of the review of the CBFO and WTS feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM for the selected WIPP activities are discussed in Appendix E.

  5. Expert judgment on markers to deter inadvertent human intrusion into the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Trauth, K.M. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Hawaii Univ., Hilo, HI (United States); Guzowski, R.V. [Science Applications International Corp., San Diego, CA (United States)

    1993-11-01T23:59:59.000Z

    The expert panel identified basic principles to guide current and future marker development efforts: (1) the site must be marked, (2) message(s) must be truthful and informative, (3) multiple components within a marker system, (4) multiple means of communication (e.g., language, pictographs, scientific diagrams), (5) multiple levels of complexity within individual messages on individual marker system elements, (6) use of materials with little recycle value, and (7) international effort to maintain knowledge of the locations and contents of nuclear waste repositories. The efficacy of the markers in deterring inadvertent human intrusion was estimated to decrease with time, with the probability function varying with the mode of intrusion (who is intruding and for what purpose) and the level of technological development of the society. The development of a permanent, passive marker system capable of surviving and remaining interpretable for 10,000 years will require further study prior to implementation.

  6. Coupled multiphase flow and closure analysis of repository response to waste-generated gas at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Freeze, G.A.; Larson, K.W. [INTERA Inc., Austin, TX (United States); Davies, P.B. [Sandia National Laboratories, Albuquerque, NM (United States)

    1995-10-01T23:59:59.000Z

    A long-term assessment of the Waste Isolation Pilot Plant (WIPP) repository performance must consider the impact of gas generation resulting from the corrosion and microbial degradation of the emplaced waste. A multiphase fluid flow code, TOUGH2/EOS8, was adapted to model the processes of gas generation, disposal room creep closure, and multiphase (brine and gas) fluid flow, as well as the coupling between the three processes. System response to gas generation was simulated with a single, isolated disposal room surrounded by homogeneous halite containing two anhydrite interbeds, one above and one below the room. The interbeds were assumed to have flow connections to the room through high-permeability, excavation-induced fractures. System behavior was evaluated by tracking four performance measures: (1) peak room pressure; (2) maximum brine volume in the room; (3) total mass of gas expelled from the room; and (4) the maximum gas migration distance in an interbed. Baseline simulations used current best estimates of system parameters, selected through an evaluation of available data, to predict system response to gas generation under best-estimate conditions. Sensitivity simulations quantified the effects of parameter uncertainty by evaluating the change in the performance measures in response to parameter variations. In the sensitivity simulations, a single parameter value was varied to its minimum and maximum values, representative of the extreme expected values, with all other parameters held at best-estimate values. Sensitivity simulations identified the following parameters as important to gas expulsion and migration away from a disposal room: interbed porosity; interbed permeability; gas-generation potential; halite permeability; and interbed threshold pressure. Simulations also showed that the inclusion of interbed fracturing and a disturbed rock zone had a significant impact on system performance.

  7. Conceptual Decontamination and Decommissioning Plan for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Westinghouse Electric Corporation Waste Isolation Division, now Washington TRU Solutions LLC

    1995-01-30T23:59:59.000Z

    The Conceptual Decontamination and Decommissioning Plan (D&D) was developed as a concept for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan was written in a manner that coincides with many of the requirements specified in DOE Order 5820.2A. Radioactive Waste Management; ASTM El 167 87, Standard Guide for Radiation Protection Program for Decommissioning Operations; and other documents listed in Attachment 3 of the D&D Plan. However, this conceptual plan does not meet all of the requirements necessary for a Decontamination and Decommissioning plan necessary for submission to the U.S. Congress in accordance with the Land Withdrawal Act (P.L. 102-579). A complete D&D plan that will meet the requirements of all of these documents and of the Land Withdrawal Act will be prepared and submitted to Congress by October 1997.

  8. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: Cuttings, cavings and spallings

    SciTech Connect (OSTI)

    BERGLUND,J.W.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SMITH,L.N.; ANDERSON,R.P.

    2000-05-22T23:59:59.000Z

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models. (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194).

  9. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessments for the Waste Isolation Pilot Plant: Direct brine release

    SciTech Connect (OSTI)

    STOELZEL,D.M.; O'BRIEN,D.G.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SCOTT,L.N.

    2000-05-19T23:59:59.000Z

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (4O CFR 191.40 CFR 194).

  10. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects &Town Hall

  11. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects &Town

  12. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects

  13. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjectsFrequently Asked

  14. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjectsFrequently

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version

  16. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to Protect

  17. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to

  18. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to30/15 WIPP

  19. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to30/15

  20. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply forFollow

  1. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    confirmed that installation of renewable energy generating projects (wind and large scale solar photovoltaic) is not financially viable as payback realization would take greater...

  2. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  3. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992

    SciTech Connect (OSTI)

    Rechard, R.P.

    1995-10-01T23:59:59.000Z

    This document provides an overview of the process used to assess the performance of the Waste Isolation Pilot Plant (WIPP), a proposed repository for transuranic wastes that is located in southeastern New Mexico. The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive flasks (40 CFR 191). Much has been written about the individual building blocks that comprise the foundation of PA theory and practice, and that WIPP literature is well cited herein. However, the present approach is to provide an accurate, well documented overview of the process, from the perspective of the mechanical steps used to perform the actual PA calculations. Specifically, the preliminary stochastic simulations that comprise the WIPP PAs of 1990, 1991. and 1992 are summarized.

  4. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 5: Appendices D and D, DEF, FAC

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    This plan serves to describe the objectives of decommissioning for the Waste Isolation Pilot Plant (WIPP), identifies the elements necessary to accomplish the decommissioning, and defines the steps to execute those elements in a safe and environmentally sound manner. The plan provides a strategy for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan describes a sequence of events for decontamination of the WIPP facilities and structures used to manage and contain TRU and TRU mixed waste during the receipt and emplacement operations. Alternative methods of decontamination are provided where practical. The methods for packaging and disposal of the waste generated (derived waste) during this process are discussed. The best available technology at the time of this plan`s development, may become outmoded by future technology and alternative strategies. If alternative technologies are identified the affected stakeholder(s), the Secretary of the Interior and the State will be consulted prior to implementation.

  5. Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Undisturbed conditions

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.; GARNER,J.W.; MACKINNON,ROBERT J.; MILLER,JOEL D.; SCHREIBER,JAMES D.; VAUGHN,PALMER

    2000-05-19T23:59:59.000Z

    Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the Waste Isolation Pilot Plant are presented for two-phase flow the vicinity of the repository under undisturbed conditions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformation are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure is potentially the most important due to its influence on spallings and direct brine releases, with the uncertainty in its value being dominated by the extent to which the microbial degradation of cellulose takes place, the rate at which the corrosion of steel takes place, and the amount of brine that drains from the surrounding disturbed rock zone into the repository.

  6. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    SciTech Connect (OSTI)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.; Hoag, D.L.; Ball, J.R. [RE/SPEC Inc., Albuquerque, NM (United States); Baird, G.T.; Jones, R.L. [Tech Reps, Inc., Albuquerque, NM (United States)

    1995-07-01T23:59:59.000Z

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991.

  7. Development of the Conceptual Models for Chemical Conditions and Hydrology Used in the 1996 Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    LARSON, KURT W.

    2000-05-24T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000 years following closure. In 1996, the DOE submitted the ''40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant'' (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on March 28, 1999. The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evacuating the potential for groundwater to dissolve the Salado Formation (the repository host formation), development of a regional model for hydrologic conditions, development of a stochastic, probabilistic representation of hydraulic properties in the Culebra Member of the Rustler Formation; characterization of physical transport in the Culebra, and the evaluation of brine and gas flow in the Salado. Additional confidence in the conceptual models used in the 1996 WIPP PA was gained through independent peer review in many stages of their development.

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 4: Uncertainty and sensitivity analyses for 40 CFR 191, Subpart B

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Additional information about the 1992 PA is provided in other volumes. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions, the choice of parameters selected for sampling, and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect compliance with 40 CFR 191B are: drilling intensity, intrusion borehole permeability, halite and anhydrite permeabilities, radionuclide solubilities and distribution coefficients, fracture spacing in the Culebra Dolomite Member of the Rustler Formation, porosity of the Culebra, and spatial variability of Culebra transmissivity. Performance with respect to 40 CFR 191B is insensitive to uncertainty in other parameters; however, additional data are needed to confirm that reality lies within the assigned distributions.

  9. Combining scenarios in a calculation of the overall probability distribution of cumulative releases of radioactivity from the Waste Isolation Pilot Plant, southeastern New Mexico

    SciTech Connect (OSTI)

    Tierney, M.S.

    1991-11-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP), in southeastern New Mexico, is a research and development facility to demonstrate safe disposal of defense-generated transuranic waste. The US Department of Energy will designate WIPP as a disposal facility if it meets the US Environmental Protection Agency's standard for disposal of such waste; the standard includes a requirement that estimates of cumulative releases of radioactivity to the accessible environment be incorporated in an overall probability distribution. The WIPP Project has chosen an approach to calculation of an overall probability distribution that employs the concept of scenarios for release and transport of radioactivity to the accessible environment. This report reviews the use of Monte Carlo methods in the calculation of an overall probability distribution and presents a logical and mathematical foundation for use of the scenario concept in such calculations. The report also draws preliminary conclusions regarding the shape of the probability distribution for the WIPP system; preliminary conclusions are based on the possible occurrence of three events and the presence of one feature: namely, the events attempted boreholes over rooms and drifts,'' mining alters ground-water regime,'' water-withdrawal wells provide alternate pathways,'' and the feature brine pocket below room or drift.'' Calculation of the WIPP systems's overall probability distributions for only five of sixteen possible scenario classes that can be obtained by combining the four postulated events or features.

  10. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 8: Appendices HYDRO, IRD, LTM, NUTS, PAR, PMR, QAPD, RBP

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    Geohydrologic data have been collected in the Los Medanos area at the US Department of Energy`s proposed Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico since 1975 as part of a study evaluating the feasibility of storing defense-associated nuclear wastes within the bedded salt of the Salado Formation of Permian age. Drilling and hydrologic testing have identified three principal water-bearing zones above the Salado Formation and one below that could potentially transport wastes to the biosphere if the proposed facility were breached. The zones above the Salado are the contact between the Rustler and Salado Formations and the Culebra and Magenta Dolomite Members of the Rustler Formation of Permian age. The zone below the Salado Formation consists of channel sandstones in the Bell Canyon Formation of the Permian Delaware Mountain Group. Determinations of hydraulic gradients, directions of flow, and hydraulic properties were hindered because of the negligible permeability of the water-bearing zones. Special techniques in drilling, well completion, and hydraulic testing have been developed to determine the hydrologic characteristics of these water-producing zones.

  11. Laboratory creep and mechanical tests on salt data report (1975-1996): Waste Isolation Pilot Plant (WIPP) thermal/structural interactions program

    SciTech Connect (OSTI)

    Mellegard, K.D. [RE/SPEC Inc., Rapid City, SD (United States); Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-02-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP), a facility located in a bedded salt formation in Carlsbad, New Mexico, is being used by the U.S. Department of Energy to demonstrate the technology for safe handling and disposal of transuranic wastes produced by defense activities in the United States. In support of that demonstration, mechanical tests on salt were conducted in the laboratory to characterize material behavior at the stresses and temperatures expected for a nuclear waste repository. Many of those laboratory test programs have been carried out in the RE/SPEC Inc. rock mechanics laboratory in Rapid City, South Dakota; the first program being authorized in 1975 followed by additional testing programs that continue to the present. All of the WIPP laboratory data generated on salt at RE/SPEC Inc. over the last 20 years is presented in this data report. A variety of test procedures were used in performance of the work including quasi-static triaxial compression tests, constant stress (creep) tests, damage recovery tests, and multiaxial creep tests. The detailed data is presented in individual plots for each specimen tested. Typically, the controlled test conditions applied to each specimen are presented in a plot followed by additional plots of the measured specimen response. Extensive tables are included to summarize the tests that were performed. Both the tables and the plots contain cross-references to the technical reports where the data were originally reported. Also included are general descriptions of laboratory facilities, equipment, and procedures used to perform the work.

  12. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  13. Radionuclide transport in the vicinity of the repository and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    STOCKMAN,CHRISTINE T.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,JAY DEAN; SHINTA,A.; SMITH,L.N.

    2000-05-22T23:59:59.000Z

    The following topics related to radionuclide transport in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant are presented (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that no releases to the accessible environment take place due to radionuclide movement through the anhydrite marker beds, through the Dewey Lake Red Beds or directly to the surface, and also that the releases to the Culebra Dolomite are small. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for release to the Culebra Dolomite fall to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194).

  14. Waste Isolation Pilot Plant Shaft Sealing System Compliance Submittal Design Report. Volume 1 and 2: Main report, appendices A, B, C, and D

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report describes a shaft sealing system design for the Waste Isolation Pilot Plant (WIPP), a proposed nuclear waste repository in bedded salt. The system is designed to limit entry of water and release of contaminants through the four existing shafts after the WIPP is decommissioned. The design approach applies redundancy to functional elements and specifies multiple, common, low-permeability materials to reduce uncertainty in performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These evaluations indicate that the design guidance is addressed by effectively limiting transport of fluids within the shafts, thereby limiting transport of hazardous material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for placement of the seal components combined with the use of available, common materials assure that the design can be constructed.

  15. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Progress report for the period November 1989 through December 1992

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States)

    1993-09-01T23:59:59.000Z

    The corrosion and gas-generation characteristics of three material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base materials, and Ti-base materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments included anoxic brine and anoxic brine with overpressures of CO{sub 2}, H{sub 2}S, and H{sub 2}. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of a protective iron sulfide reaction product. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  16. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

  17. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 4: Appendix BIR Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    This report consists of the waste stream profile for the WIPP transuranic waste baseline inventory at Lawrence Livermore National Laboratory. The following assumptions/modifications were made by the WTWBIR team in developing the LL waste stream profiles: since only current volumes were provided by LL, the final form volumes were assumed to be the same as the current volumes; the WTWBIR team had to assign identification numbers (IDs) to those LL waste streams not given an identifier by the site, the assigned identification numbers are consistent with the site reported numbers; LL Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID, these changes included word and spelling changes, the assigned Final Waste Form Groups are consistent with the information provided by LL; the volumes for the year 1993 were changed from an annual rate of generation (m{sup 3}/year) to a cumulative value (m{sup 3}).

  18. Potential microbial impact on transuranic wastes under conditions expected in the Waste Isolation Pilot Plant (WIPP). Annual report, October 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Barnhart, B.J.; Campbell, E.W.; Martinez, E.; Caldwell, D.E.; Hallett, R.

    1980-07-01T23:59:59.000Z

    Previous results were confirmed showing elevated frequencies of radiation-resistant bacteria in microorganisms isolated from shallow transuranic (TRU) burial soil that exhibits nanocurie levels of beta and gamma radioactivity. Research to determine whether plutonium could be methylated by the microbially produced methyl donor, methylcobalamine, was terminated when literature and consulting radiochemists confirmed that other alkylated transuranic elements are extremely short-lived in the presence of oxygen. Emphasis was placed on investigation of the dissolution of plutonium dioxide by complex formation between plutonium and a polyhydroxamate chelate similar to that produced by microorganisms. New chromatographic and spectrophotometric evidence supports previous results showing enhanced dissolution of alpha radioactivity when /sup 239/Pu dioxide was mixed with the chelate Desferol. Microbial degradation studies of citrate, ethylenediamine tetraacetate (EDTA), and nitrilo triacetate (NTA) chelates of europium are in progress. Current results are summarized. All of the chelates were found to degrade. The average half-life for citrate, NTA, and EDTA was 3.2, 8.0, and 28 years, respectively. Microbial CO/sub 2/ generation is also in progress in 72 tests on several waste matrices under potential WIPP isolation conditions. The mean rate of gas generation was 5.97 ..mu..g CO/sub 2//g waste/day. Increasing temperature increased rates of microbial gas generation across treatments of brine, varying water content, nutrient additions, and anaerobic conditions. No microbial growth was detected in experiments to enumerate and identify the microorganisms in rocksalt cores from the proposed WIPP site. This report contains the year's research results and recommendations derived for the design of safe storage of TRU wastes under geologic repository conditions.

  19. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 3 of 3: Appendices C, D, E, and F

    SciTech Connect (OSTI)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01T23:59:59.000Z

    This volume contains the mineralogy, porosity, and permeability results from the Marker Bed 139 anhydrite specimens evaluated by TerraTek, Inc. for the Waste Isolation Pilot Plant. This volume also documents the brine recipe used by RE/SPEC, Inc., the parameter package submitted to Performance Assessment based on all the data, and a memo on the mixed Brooks and Corey two-phase characteristic curves.

  20. Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report

    SciTech Connect (OSTI)

    LaVenue, A.M.; Haug, A.; Kelley, V.A.

    1988-03-01T23:59:59.000Z

    This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

  1. Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Finley, R.E. [Sandia National Labs., Albuquerque, NM (United States); Jones, R.L. [Tech. Reps., Inc., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).

  2. An aerial radiological survey of the Waste Isolation Pilot Plant and surrounding area, Carlsbad, New Mexico: Date of survey, April 1988

    SciTech Connect (OSTI)

    Not Available

    1989-06-01T23:59:59.000Z

    An aerial radiological survey was conducted during the period April 8 to April 19, 1988 over a 404-square-kilometer (156-square-mile) area covering the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico, the surrounding area. The survey was conducted at a nominal altitude of 91 meters (300 feet) with a line spacing of 152 meters (500 feet). A contour map of the terrestrial exposure rates plus the cosmic exposure rate extrapolated to 1 meter above ground level was prepared and overlaid on an aerial photograph of the area. The average terrestrial exposure rates ranged from approximately 6.0 to 9.0 microroentgens per hour ({mu}R/h). Two areas of increased exposure rate were evident. Both areas indicated higher than normal concentrations of naturally occurring radionuclides. A machine-aided search of the data for man-made sources of radiation indicated the presence of Cs-137 at the Gnome Site, which was expected from previous survey work done in the area. No other sources of man-made radiation were found.

  3. A comparison of geostatistically based inverse techniques for use in performance assessment analysis at the Waste Isolation Pilot Plant Site: Results from Test Case No. 1

    SciTech Connect (OSTI)

    Zimmerman, D.A. [GRAM, Inc., Albuquerque, NM (United States); Gallegos, D.P. [Sandia National Labs., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    The groundwater flow pathway in the Culebra Dolomite aquifer at the Waste Isolation Pilot Plant (WIPP) has been identified as a potentially important pathway for radionuclide migration to the accessible environment. Consequently, uncertainties in the models used to describe flow and transport in the Culebra need to be addressed. A ``Geostatistics Test Problem`` is being developed to evaluate a number of inverse techniques that may be used for flow calculations in the WIPP performance assessment (PA). The Test Problem is actually a series of test cases, each being developed as a highly complex synthetic data set; the intent is for the ensemble of these data sets to span the range of possible conceptual models of groundwater flow at the WIPP site. The Test Problem analysis approach is to use a comparison of the probabilistic groundwater travel time (GWTT) estimates produced by each technique as the basis for the evaluation. Participants are given observations of head and transmissivity (possibly including measurement error) or other information such as drawdowns from pumping wells, and are asked to develop stochastic models of groundwater flow for the synthetic system. Cumulative distribution functions (CDFs) of groundwater flow (computed via particle tracking) are constructed using the head and transmissivity data generated through the application of each technique; one semi-analytical method generates the CDFs of groundwater flow directly. This paper describes the results from Test Case No. 1.

  4. Preliminary geohydrologic conceptual model of the Los Medanos region near the Waste Isolation Pilot Plant for the purpose of performance assessment

    SciTech Connect (OSTI)

    Brinster, K.F. (Science Applications International Corp., Albuquerque, NM (USA))

    1991-01-01T23:59:59.000Z

    This report describes a geohydrologic conceptual model of the northern Delaware Basin to be used in modeling three-dimensional, regional ground-water flow for assessing the performance of the Waste Isolation Pilot Plant (WIPP) in the Los Medanos region near Carlsbad, New Mexico. Geochemical and hydrological evidence indicates that flow is transient in the Rustler Formation and the Capitan aquifer in response to changing geologic, hydrologic, and climatic conditions. Before the Pleistocene, ground-water flow in the Rustler Formation was generally eastward, but uneven tilting of the Delaware Basin lowered the regional base level and formed fractures in the evaporitic sequence of rocks approximately parallel to the basin axis. Dissolution along the fractures, coupled with erosion, formed Nash Draw. Also, the drop in base level resulted in an increase in the carrying power of the Pecos River, which began incising the Capitan/aquifer near Carlsbad, New Mexico. Erosion and downcutting released hydraulic pressure that caused a reversal in Rustler ground-water flow direction near the WIPP. Flow in the Rustler west of the WIPP is toward Nash Draw and eventually toward Malaga Bend; flow south of the WIPP is toward Malaga Bend. 126 refs., 70 figs., 18 tabs.

  5. Implementation of the Resource Disincentive in 40 CFR part 191.14 (e) at the Waste Isolation Pilot Plant. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    In 1986, the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) (DOE-WPO) prepared a strategy for complying with the Environmental Protection Agency`s (EPA`s) Standards for the management of transuranic (TRU) waste. Section 3.2.2.2 of the DOE`s report addressed compliance with the Assurance Requirements found in 40 CFR {section} 191.14. One of the Assurance Requirements addresses the selection of repository sites that contain recoverable natural resources. This report documents that the site selection process for the WIPP facility did indeed comply with the natural resource disincentive requirement in 40 CFR {section} 191,14(e) at the time selected and therefore complies with the standard at this time. Thus, it shall be shown that it is reasonably certain that the WIPP site provides better overall protection than practical alternatives that were available when the site was selected. It is important to point out here, and it will be discussed later in the report, that the resource disincentive requirement is a preliminary siting criterion that requires further evaluation of sites that have resources (i.e, hydrocarbons, minerals and groundwater) in the vicinity or on the site. This further evaluation requires that for sites that do have resources, a qualitative determination must be made that the site will provide better overall protection than practical alternatives. The purpose of this report is not to provide a quantitative evaluation for selection of the WIPP site. A further discussion on the difference between the qualitative analysis required under 40 CFR {section} 191.14(e) and the quantitative analysis under other sections of 40 CFR 191 is provided in {section}2.1 of this report.

  6. Tracing early breccia pipe studies, Waste Isolation Pilot Plant, southeastern New Mexico: A study of the documentation available and decision-making during the early years of WIPP

    SciTech Connect (OSTI)

    Power, D.W. [HC 12, Anthony, TX (United States)

    1996-01-01T23:59:59.000Z

    Breccia pipes in southeastern New Mexico are local dissolution-collapse features that formed over the Capitan reef more than 500,000 years ago. During early site studies for the Waste Isolation Pilot Plant (WIPP), the threat to isolation by these features was undetermined. Geophysical techniques, drilling, and field mapping were used beginning in 1976 to study breccia pipes. None were found at the WIPP site, and they are considered unlikely to be a significant threat even if undetected. WIPP documents related to breccia pipe studies were assembled, inspected, and analyzed, partly to present a history of these studies. The main objective is to assess how well the record reflects the purposes, results, and conclusions of the studies from concept to decision-making. The main record source was the Sandia WIPP Central File (SWCF). Early records (about 1975 to 1977) are very limited, however, about details of objectives and plans predating any investigation. Drilling programs from about 1977 were covered by a broadly standardized statement of work, field operations plan, drilling history, and basic data report. Generally standardized procedures for peer, management, and quality assurance review were developed during this time. Agencies such as the USGS conducted projects according to internal standards. Records of detailed actions for individual programs may not be available, though a variety of such records were found in the SWCF. A complete written record cannot be reconstructed. With persistence, a professional geologist can follow individual programs, relate data to objectives (even if implied), and determine how conclusions were used in decision-making. 83 refs.

  7. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 2: Appendices, AAC, BECR, BH

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    This report describes the conceptual design of a system the Department of Energy (DOE) may implement for compliance with the requirement to control access to the disposal site. In addition, this report addresses the scheduling process for control of inspection, maintenance, and periodic reporting related to Long Term Monitoring which addresses the monitoring of disposal system performance, environmental monitoring in accordance with the Consultation and Cooperation Agreement between the DOE and the state of New Mexico, and evaluation of testing activities related to the Permanent Marker System design. In addition to access control addressed by this report, the controlling or cleaning up of releases from the site is addressed in the Conceptual Decontamination and Decommissioning Plan. The monitoring of parameters related to disposal system performance is addressed in the Long Term Monitoring Design Concept Description. Together, these three documents address the full range of active institutional controls planned after disposal of the TRU waste in the WIPP repository.

  8. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    SciTech Connect (OSTI)

    Lunsford, G.F.

    2001-01-24T23:59:59.000Z

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  9. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  10. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department of Energy P.O. Box 2324 Germantown, MD 20874-2324 Toll-Free Fax: 1-877-865-0277 Email:...

  11. Brine and Gas Flow Patterns Between Excavated Areas and Disturbed Rock Zone in the 1996 Performance Assessment for the Waste Isolation Pilot Plant for a Single Drilling Intrusion that Penetrates Repository and Castile Brine Reservoir

    SciTech Connect (OSTI)

    ECONOMY,KATHLEEN M.; HELTON,JON CRAIG; VAUGHN,PALMER

    1999-10-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP), which is located in southeastern New Mexico, is being developed for the geologic disposal of transuranic (TRU) waste by the U.S. Department of Energy (DOE). Waste disposal will take place in panels excavated in a bedded salt formation approximately 2000 ft (610 m) below the land surface. The BRAGFLO computer program which solves a system of nonlinear partial differential equations for two-phase flow, was used to investigate brine and gas flow patterns in the vicinity of the repository for the 1996 WIPP performance assessment (PA). The present study examines the implications of modeling assumptions used in conjunction with BRAGFLO in the 1996 WIPP PA that affect brine and gas flow patterns involving two waste regions in the repository (i.e., a single waste panel and the remaining nine waste panels), a disturbed rock zone (DRZ) that lies just above and below these two regions, and a borehole that penetrates the single waste panel and a brine pocket below this panel. The two waste regions are separated by a panel closure. The following insights were obtained from this study. First, the impediment to flow between the two waste regions provided by the panel closure model is reduced due to the permeable and areally extensive nature of the DRZ adopted in the 1996 WIPP PA, which results in the DRZ becoming an effective pathway for gas and brine movement around the panel closures and thus between the two waste regions. Brine and gas flow between the two waste regions via the DRZ causes pressures between the two to equilibrate rapidly, with the result that processes in the intruded waste panel are not isolated from the rest of the repository. Second, the connection between intruded and unintruded waste panels provided by the DRZ increases the time required for repository pressures to equilibrate with the overlying and/or underlying units subsequent to a drilling intrusion. Third, the large and areally extensive DRZ void volumes is a significant source of brine to the repository, which is consumed in the corrosion of iron and thus contributes to increased repository pressures. Fourth, the DRZ itself lowers repository pressures by providing storage for gas and access to additional gas storage in areas of the repository. Fifth, given the pathway that the DRZ provides for gas and brine to flow around the panel closures, isolation of the waste panels by the panel closures was not essential to compliance with the U.S. Environment Protection Agency's regulations in the 1996 WIPP PA.

  12. Waste Isolation Pilot Plant Activites

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhen

  13. WIPP | Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and WindArchives 2003

  14. Waste Isolation Pilot Plant Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy

  15. The second iteration of the Systems Prioritization Method: A systems prioritization and decision-aiding tool for the Waste Isolation Pilot Plant: Volume 1, Synopsis of method and results

    SciTech Connect (OSTI)

    Prindle, N.H.; Mendenhall, F.T.; Boak, D.M. [and others

    1996-05-01T23:59:59.000Z

    In March 1994, the US Department of Energy Carlsbad Area Office (DOE/CAO) embarked on an effort to design and implement a performance- based decision-aiding tool to provide an analytical basis for planning, prioritizing, and selecting programmatic options for the Waste Isolation Pilot Plant (WIPP). This tool, called Systems Prioritization Method (SPM) defines the most viable combinations of scientific investigations, engineered alternatives (EAs), and waste acceptance criteria (WAC) for supporting the final WIPP compliance application. The scope of SPM is restricted to selected portions of applicable Environmental Protection Agency (EPA) long-term performance regulations. SPM calculates the probabilities of certain sets of activities demonstrating compliance with various regulations. SPM provides results in the form of a decision matrix to identify cost-effective programmatic paths with a high probability of successfully demonstrating compliance.

  16. The second iteration of the Systems Prioritization Method: A systems prioritization and decision-aiding tool for the Waste Isolation Pilot Plant: Volume 2, Summary of technical input and model implementation

    SciTech Connect (OSTI)

    Prindle, N.H.; Mendenhall, F.T.; Trauth, K.; Boak, D.M. [Sandia National Labs., Albuquerque, NM (United States); Beyeler, W. [Science Applications International Corp., Albuquerque, NM (United States); Hora, S. [Hawaii Univ., Hilo, HI (United States); Rudeen, D. [New Mexico Engineering Research Inst., Albuquerque, NM (United States)

    1996-05-01T23:59:59.000Z

    The Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories (SNL). SPM provides an analytical basis for supporting programmatic decisions for the Waste Isolation Pilot Plant (WIPP) to meet selected portions of the applicable US EPA long-term performance regulations. The first iteration of SPM (SPM-1), the prototype for SPM< was completed in 1994. It served as a benchmark and a test bed for developing the tools needed for the second iteration of SPM (SPM-2). SPM-2, completed in 1995, is intended for programmatic decision making. This is Volume II of the three-volume final report of the second iteration of the SPM. It describes the technical input and model implementation for SPM-2, and presents the SPM-2 technical baseline and the activities, activity outcomes, outcome probabilities, and the input parameters for SPM-2 analysis.

  17. The second iteration of the Systems Prioritization Method: A systems prioritization and decision-aiding tool for the Waste Isolation Pilot Plant: Volume 3, Analysis for final programmatic recommendations

    SciTech Connect (OSTI)

    Prindle, N.H.; Boak, D.M.; Weiner, R.F. [and others] [and others

    1996-05-01T23:59:59.000Z

    Systems Prioritization Method (SPM) is a decision-aiding tool developed by Sandia National Laboratories for the US DOE Carlsbad Area Office (DOE/CAO). This tool provides an analytical basis for programmatic decision making for the Waste Isolation Pilot Plant (WIPP). SPM integrates decision-analysis techniques, performance,a nd risk-assessment tools, and advanced information technology. Potential outcomes of proposed activities and combination of activities are used to calculate a probability of demonstrating compliance (PDC) with selected regulations. The results are presented in a decision matrix showing cost, duration, and maximum PDC for all activities in a given cost and duration category. This is the third and final volume in the series which presents the analysis for final programmatic recommendations.

  18. A summary of the models used for the mechanical response of disposal rooms in the Waste Isolation Pilot Plant with regard to compliance with 40 CFR 191, Subpart B

    SciTech Connect (OSTI)

    Butcher, B.M.; Mendenhall, F.T.

    1993-08-01T23:59:59.000Z

    A summary is presented of the results of a number of studies conducted prior to March 1992 that have led to a conceptual model describing how the porosity (and therefore the permeability) of waste and backfill in a Waste Isolation Pilot Plant disposal room changes with time and also describes how results from calculations involving mathematical models of these processes are used to provide input into performance assessment of the repository. Included in the report are descriptions of essential material response or constitutive models that include the influence of gas generation and the response of simple gas-pressurized cracks and fractures in salt, marker beds, and clay seams. Two-dimensional versus three-dimensional disposal room configurations and descriptions of the differences between numerical codes are also discussed. Calculational results using the mathematical models for disposal room response are described, beginning with closure of empty rooms and becoming progressively more complex. More recent results address some of the effects of gas generation in a room containing waste and backfill and intersected by a gas permeable marker bed. Developments currently in progress to improve the evaluation of the disposal room performance are addressing the coupling between brine flow and closure and the two-dimensional capability for analyzing a complete panel of rooms. Next, a method is described for including disposal room closure results into performance assessment analyses that determine if the repository is in compliance with regulatory standards. The coupling is accomplished using closure surfaces that describe the relationship among porosity, total amount of gas in the repository, and time. A number of conclusions about room response and recommendations for further work are included throughout the report.

  19. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  20. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  1. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  2. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 9: Appendices RM, SCR, SER, SUM, WRAC

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Rock Mechanics Program is important to the establishment of a radioactive waste repository in salt because rock mechanics deals with the prediction of creep closure and eventual encapsulation of the waste. The intent of this paper is to give the current status of the program. This program consists of three major modeling efforts: continuum creep, fracture, and the disturbed rock zone. These models, together with laboratory material parameters, plastic flow potentials, initial and boundary input data, and other peripheral information forms the predictive technology. The extent to which the predictive technology is validated against in situ test data adds certainty to the method. Application of the technology is through simulations of the test results, design, or performance using numerical codes. In summary, the predictive capabilities are technically sound and reasonable. The current status of the program is that which would be advanced for compliance.

  3. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Broader source: Energy.gov (indexed) [DOE]

    Division related to four noncompliances with the requirements of the Quality Assurance Rule andor the Occupational Radiation Protection Rule at DOE's Waste Isolation...

  4. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    SciTech Connect (OSTI)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01T23:59:59.000Z

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations.

  5. Using a multiphase flow code to model the coupled effects of repository consolidation and multiphase brine and gas flow at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Freeze, G.A. [INTERA Inc., Albuquerque, NM (United States); Larson, K.W.; Davies, P.B.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-01T23:59:59.000Z

    Long-term repository assessment must consider the processes of (1) gas generation, (2) room closure and expansions due to salt creep, and (3) multiphase (brine and gas) fluid flow, as well as the complex coupling between these three processes. The mechanical creep closure code SANCHO was used to simulate the closure of a single, perfectly sealed disposal room filled with water and backfill. SANCHO uses constitutive models to describe salt creep, waste consolidation, and backfill consolidation, Five different gas-generation rate histories were simulated, differentiated by a rate multiplier, f, which ranged from 0.0 (no gas generation) to 1.0 (expected gas generation under brine-dominated conditions). The results of the SANCHO f-series simulations provide a relationship between gas generation, room closure, and room pressure for a perfectly sealed room. Several methods for coupling this relationship with multiphase fluid flow into and out of a room were examined. Two of the methods are described.

  6. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program. | DepartmentManagementLasSavings

  7. Carlsbad Area Office Waste Isolation Division Transition Plan

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    In October 1993, the US Department of Energy (DOE) announced the Revised Test Strategy for the Waste Isolation Pilot Plant (WIPP). The new strategy involves conducting additional radioactive waste tests in laboratories instead of the underground at the WIPP. It will likely result in an acceleration of regulatory compliance activities needed for a disposal decision, which could result in permanent disposal of transuranic waste earlier than the previous test program and regulatory compliance strategy. The Revised Test Strategy changes the near-term program activities for the WIPP site. The revised strategy deletes radioactive waste tests at the WIPP, prior to completing all activities for initiating disposal operations, and consequently the need to maintain readiness to receive waste in the near-term. However, the new strategy enables the DOE to pursue an earlier disposal decision, supported by an accelerated regulatory compliance strategy. With the new strategy, the WIPP must prepare for disposal operations in early 1998. This Westinghouse Waste Isolation Division (WID) Transition Plan addresses the WID programmatic, budgetary, and personnel changes to conform to the Revised Test Strategy, and to support the accelerated compliance strategy and earlier disposal operations at the WIPP.

  8. Sandia National Laboratories: Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

  9. Independent Oversight Inspection, Waste Isolation Pilot Plant...

    Broader source: Energy.gov (indexed) [DOE]

    security in accordance with that DOE directive. These protocols describe the overall philosophy, approach, scope, and methods to be used when conducting independent oversight...

  10. Waste Isolation Pilot Plant Transportation Security

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus and

  11. Waste Isolation Pilot Plant | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus

  12. Sandia National Laboratories Waste Isolation Pilot Plant

    E-Print Network [OSTI]

    and Decision Analysis Dept. 6711 Sandia National Laboratories Carlsbad Programs Group Carlsbad, NM 88220 SNL

  13. Waste Isolation Pilot Plant land management plan

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    On October 30, 1992, the WIPP Land Withdrawal Act became law. This Act transferred the responsibility for the management of the WIPP Land Withdrawal Area (WILWA) from the Secretary of the Interior to the Secretary of Energy. In accordance with sections 3(a)(1) and (3) of the Act, these lands {open_quotes}{hor_ellipsis}are withdrawn from all forms of entry, appropriation, and disposal under the public land laws{hor_ellipsis}{close_quotes}and are reserved for the use of the Secretary of Energy {open_quotes}{hor_ellipsis}for the construction, experimentation, operation, repair and maintenance, disposal, shutdown, monitoring, decommissioning, and other activities, associated with the purposes of WIPP as set forth in the Department of Energy National Security and Military Applications of Nuclear Energy Act of 1980 and this Act.{close_quotes}. As a complement to this LMP, a MOU has been executed between the DOE and the BLM, as required by section 4(d) of the Act. The state of New Mexico was consulted in the development of the MOU and the associated Statement of Work (SOW).

  14. WIPP Status Report Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind

  15. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect (OSTI)

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01T23:59:59.000Z

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  16. DOE/EIS-0200-SA-01: Supplement Analysis and Determination for the Proposed Characterization for Disposal of Contact-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) (12/00)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolarStartupCH-TRU waste may

  17. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A. (ed.)

    1991-01-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  18. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  19. Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Container data is available within 14 days after the containerÆs emplacement in the WIPP Repository.

  20. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-073.99 4.22Primary

  1. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorage Interface TransportationDepartment

  2. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    SciTech Connect (OSTI)

    HERTING DL

    2008-09-16T23:59:59.000Z

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  3. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 6, Chapter D, Appendices D4--D13: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This report (Vol. 6) for the WIPP facility contains appendices on the following information: Site characterization; general geology; ecological monitoring; and chemical compatibility of waste forms and container materials.

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09T23:59:59.000Z

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  5. Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

  6. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

  7. Waste Isolation Pilot Plant Typifies Optimizing Resources to...

    Broader source: Energy.gov (indexed) [DOE]

    Field Office (CBFO) Manager Joe Franco, right, presents a memento to EM Senior Advisor Dave Huizenga EM Carlsbad Field Office (CBFO) Manager Joe Franco, right, presents a...

  8. Sandia and the Waste Isolation Pilot Plant, 1974--1999

    SciTech Connect (OSTI)

    MORA,CARL J.

    2000-04-11T23:59:59.000Z

    Engineers have learned to design and build big projects, which certainly describes the WIPP project, but also includes defense projects, highway networks, space exploration, the Internet, etc., through what has been called a messily complex embracing of contradictions. When something massive and complicated has to be built these days, it leads to a protracted political process in which every special interest makes a stand, lobbyists exert what influence they can, lawmakers bicker, contractors change things, Congress struggles with costs, environmentalists hold things up--and this is good. It may seem amazing that anything gets done, but when it does, everyone has had their say. It's an intensely democratic, even if expensive and time-consuming, process. The corporate historian of Sandia National Laboratories presents a unique background of the WIPP project and Sandia's part in it.

  9. SciTech Connect: Waste Isolation Pilot Plant Salt Decontamination...

    Office of Scientific and Technical Information (OSTI)

    tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high,...

  10. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...

    Broader source: Energy.gov (indexed) [DOE]

    would administer the contract with proceeds to remain in southeast New Mexico for public works projects. CBFO, which has responsibility for WIPP and the National TRU Program,...

  11. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    for heavy-duty construction equipment found in EPA's Supplement A to Compilation of Air Pollution Emission Factors, Volume 2: Mobile Sources (EPA 1991, Table 2-7.1) were...

  12. Emergency Management Program Review at the Waste Isolation Pilot...

    Broader source: Energy.gov (indexed) [DOE]

    value instead of the appropriate ERPG-2 dose guideline for the postulated release of carbon tetrachloride. Using the correct, lower protective action criteria could require...

  13. EM Waste Isolation Pilot Plant Team's Holiday Spirit Shines | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||More Emphasis onEnergy One Systemof

  14. DOE Waste Isolation Pilot Plant Receives EPA Recertification | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. - EnergyEnergy LearnFebruaryof

  15. US Department of Energy Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The0 - 20 Publications 1.HowUPF: SafetyUS

  16. Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012 | Department ofFederal

  17. Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012 | Department

  18. Performance Assessment Updates for Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.Paul L. JoskowDepartmentServiceL l

  19. Waste Isolation Pilot Plant Attracts World Interest | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's CentraliaWashingtonSystemsLights,

  20. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's

  1. Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults | Department of Energy

  2. Waste Isolation Pilot Plant Update | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults | Department of

  3. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults | DepartmentConservation

  4. Waste Isolation Pilot Plant Status and Plans - 2010

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus and Plans

  5. Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatusin 2013 |

  6. Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access| Department

  7. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    water. The land is mainly used for grazing; other uses include potash mining and oil and gas exploration and development. WIPP was authorized by Public Law 96-164 to provide a...

  8. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    for protecting the site from inadvertent human intrusion (e.g., drilling for oilgas resources)." Response: The following language has been incorporated into Section 4.1.1:...

  9. Socioeconomic study for the proposed waste isolation pilot plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This document presents the historical and existing socioeconomic conditions in the vicinity of the proposed plant, projected changes in those conditions with and without the plant, and an outline of the various techniques used to make these projections. The analysis predicts impacts on the general economy in the area near the plant and on employment, personal income, population, social structure, the private economic sector, housing, land use, community services and facilities, and local government finances. Among the most important results are the following predictions: The economy of the area will derive $165 million directly and indirectly during the first 7.5 years of the project. After that, it will derive about $21 million directly and indirectly during each year of full operation. About 2100 jobs will be created directly and indirectly at the peak of the construction and about 950 jobs during the full operation. A net in-migration will occur: about 2250 people at the peak of the construction and about 1000 people during operation. A housing shortage may begin in Carlsbad in 1981 or 1982 and last for about 2 years.

  10. Waste Isolation Pilot Plant (WIPP) site gravity survey and interpretation

    SciTech Connect (OSTI)

    Barrows, L.J.; Fett, J.D.

    1983-04-01T23:59:59.000Z

    A portion of the WIPP site has been extensively surveyed with high-precision gravity. The main survey (in T22S, R31E) covered a rectangular area 2 by 4-1/3 mi encompassing all of WIPP site Zone II and part of the disturbed zone to the north of the site. Stations were at 293-ft intervals along 13 north-south lines 880 ft apart. The data are considered accurate to within a few hundredths of a milligal. Long-wavelength gravity anomalies correlate well with seismic time structures on horizons below the Castile Formation. Both the gravity anomalies and the seismic time structures are interpreted as resulting from related density and velocity variations within the Ochoan Series. Shorter wavelength negative gravity anomalies are interpreted as resulting from bulk density alteration in the vicinity of karst conduits. The WIPP gravity survey was unable to resolve low-amplitude, long-wavelength anomalies that should result from the geologic structures within the disturbed zone. It did indicate the degree and character of karst development within the surveyed area.

  11. Enterprise Assessments Operational Awareness Record, Waste Isolation Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy2 ENRON CORP KennethPlant - March

  12. Waste Isolation Pilot Plant 2002 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions

  13. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actionssubmitted as

  14. Waste Isolation Pilot Plant Electronic FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions

  15. Enterprise Assessments Review, Waste Isolation Pilot Plant - December

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartmentImmobilization2014 |

  16. Enterprise Assessments Review, Waste Isolation Pilot Plant - December

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartmentImmobilization2014 |2014 |

  17. Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2|Superior Energy Performance »18-8914of2010 DOESamples

  18. Sandia National Laboratories: Waste Isolation Pilot Plant Accident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave Energy Converter Modeling andScaled

  19. Waste Isolation Pilot Plant (WIPP) Source Term Attribution Analysis |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWaste

  20. Waste Isolation Pilot Plant Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivitesTransportation

  1. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed|3 ANNUAL REPORT3 ORSSABSafety

  2. Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR CenterJune

  3. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [ed.

    1996-09-01T23:59:59.000Z

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  4. A method to hydrologically isolate water soluble wastes

    E-Print Network [OSTI]

    Rooney, Daniel James

    1995-01-01T23:59:59.000Z

    A natural cover system with gravel used as a capillary barrier was designed and evaluated as a method to hydrologically isolate buried water soluble oil and gas wastes. Simulated cover systems were installed in 200 liter barrels and tested in a...

  5. Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments

    Broader source: Energy.gov [DOE]

    With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

  6. Pilot-scale grout production test with a simulated low-level waste

    SciTech Connect (OSTI)

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01T23:59:59.000Z

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  7. Appendix DATA Attachment B: WIPP Waste Containers and Emplacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment B: WIPP Waste Containers and Emplacement Table of Contents DATA-B-1.0...

  8. Fluid flow through very low permeability materials: A concern in the geological isolation of waste

    SciTech Connect (OSTI)

    Deal, D.E.

    1992-12-31T23:59:59.000Z

    The geological isolation of waste usually involves the selection of sites where very low permeability materials exist, but there are few earth materials that are truly impermeable. Regulatory concerns for the containment of radioactive material extend for geologic periods of time (i.e., 10,000 years or more), and it becomes nearly impossible to ``assure`` the behavior of the site for such long periods of time. Experience at the Waste Isolation Pilot Plant (WIPP) shows that very slow movements of fluid can take place through materials that may, in fact, have no intrinsic permeability in their undisturbed condition. Conventional hydrologic models may not be appropriate to describe flow, may provide modeling results that could be in significant variance with reality, and may not be easy to defend during the compliance process. Additionally, the very small volumes of fluid and very slow flow rates involved are difficult to observe, measure, and quantify. The WIPP disposal horizon is excavated 655 m below the surface in bedded salt of Permian age. Salt has some unique properties, but similar hydrologic problems can be expected in site investigations were other relatively impermeable beds occur, and especially in deep sites where significant overburden and confining pressures may be encountered. Innovative techniques developed during the investigations at the WIPP may find utility when investigating other disposal sites. Ongoing work at the WIPP is expected to continue to advance understanding of flow through very low permeability materials. The study of flow under these conditions will become increasingly important as additional waste disposal sites are designed that require assurance of their safety for geological periods of time.

  9. Final Reclamation Report: Basalt Waste Isolation Project exploratory shaft site

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01T23:59:59.000Z

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs.

  10. THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUSSOLUTIONS DATABASE

    SciTech Connect (OSTI)

    Phillips, S.L.; Hale, F.V.; Silvester, L.F.

    1988-05-01T23:59:59.000Z

    Tables of consistent thermodynamic property values for nuclear waste isolation are given. The tables include critically assessed values for Gibbs energy of formation. enthalpy of formation, entropy and heat capacity for minerals; solids; aqueous ions; ion pairs and complex ions of selected actinide and fission decay products at 25{sup o}C and zero ionic strength. These intrinsic data are used to calculate equilibrium constants and standard potentials which are compared with typical experimental measurements and other work. Recommendations for additional research are given.

  11. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  12. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect (OSTI)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01T23:59:59.000Z

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

  13. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24T23:59:59.000Z

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  14. GEOHYDROLOGICAL STUDIES FOR NUCLEAR WASTE ISOLATION AT THE HANFORD RESERVATION -- Vol. I: Executive Summary; Vol. II: Final Report

    E-Print Network [OSTI]

    Apps, J.

    2010-01-01T23:59:59.000Z

    NUCLEAR WASTE ISOLATION AT THE HANFORD RESERVATION Volume I:of Washington state." Rockwell Hanford Operations Topicalmodel evaluation at the Hanford nuclear waste facility."

  15. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect (OSTI)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01T23:59:59.000Z

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  16. Transuranic Waste Characterization Quality Assurance Program Plan

    SciTech Connect (OSTI)

    NONE

    1995-04-30T23:59:59.000Z

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  17. TRU Waste Sampling Program: Volume I. Waste characterization

    SciTech Connect (OSTI)

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01T23:59:59.000Z

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

  18. Office of Enterprise Assessments Review of the Waste Isolation...

    Energy Savers [EERE]

    and maintains the necessary safety management programs and infrastructure to safely conduct full operations. WIPP, managed and operated by Nuclear Waste Partnership, LLC,...

  19. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Bernard Neerdael SCK-CEN , HADES Project, Waste and Disposalunderground labora- tory (HADES) was constructed in the claydisposal: Historical Review of Hades Program Early studies

  20. Basalt waste isolation project. Quarterly report, October 1, 1980-December 31, 1980

    SciTech Connect (OSTI)

    Deju, R.A.

    1981-02-01T23:59:59.000Z

    In September 1977, the National Waste Terminal Storage Program was restructured to support investigations of two US DOE sites - Hanford and Nevada. The Basalt Waste Isolation Project within Rockwell Hanford Operations has been chartered with the responsibility of conducting these investigations. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration, geosciences, hydrology, engineered barriers, near-surface test facility, engineering testing, and repository studies. Summaries of major accomplishments for each of these areas are reported in this document.

  1. DOE Awards Management and Operating Contract for DOE's Waste Isolation

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FY 2012 FYEnergyDepartmentofPilot

  2. Geological Problems in Radioactive Waste Isolation: Second Worldwide Review

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    number of drums in each cavern associated with each wasteArea F: Maintenance Area T Cavern Entrance Tunnel Ca FigureCross section of L L W cavern. Shotcrete Roof - Crane '

  3. TRU waste certification compliance requirements for contact-handled wastes retrieved from storage for shipment to the WIPP

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE Orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste.

  4. Technical Evaluations of Proposed Remote-Handled Transuranic Waste Characterization Requirements at WIPP

    SciTech Connect (OSTI)

    Anastas, G.; Channell, J. K.

    2002-02-26T23:59:59.000Z

    Characterization, packaging, transport, handling and disposal of remotely handled transuranic (RH TRU) waste at WIPP will be different than similar operations with contact handled transuranic (CH TRU) waste. This paper presents results of technical evaluations associated with the planned disposal of remotely handled transuranic waste at the Waste Isolation Pilot Plant (WIPP).

  5. Office of Environmental Management Taps Small Business for Waste Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober Field ElementIdahoPilot

  6. Hanford Waste Vitrification Program process development: Melt testing subtask, pilot-scale ceramic melter experiment, run summary

    SciTech Connect (OSTI)

    Nakaoka, R.K.; Bates, S.O.; Elmore, M.R.; Goles, R.W.; Perez, J.M.; Scott, P.A.; Westsik, J.H.

    1996-03-01T23:59:59.000Z

    Hanford Waste Vitrification Program (HWVP) activities for FY 1985 have included engineering and pilot-scale melter experiments HWVP-11/HBCM-85-1 and HWVP-12/PSCM-22. Major objectives designated by HWVP fo these tests were to evaluate the processing characteristics of the current HWVP melter feed during actual melter operation and establish the product quality of HW-39 borosilicate glass. The current melter feed, defined during FY 85, consists of reference feed (HWVP-RF) and glass-forming chemicals added as frit.

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14T23:59:59.000Z

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  8. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    SciTech Connect (OSTI)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.; Harrison, W.; Herzenberg, C.L.

    1983-10-01T23:59:59.000Z

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advise SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.

  9. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01T23:59:59.000Z

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

  10. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01T23:59:59.000Z

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

  11. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09T23:59:59.000Z

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel other directives.

  12. Geochemical assessment of nuclear waste isolation. Report of activities during fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    The status of the following investigations is reported: canister/overpack-backfill chemical interactions and mechanisms; backfill and near-field host rock chemical interactions mechanisms; far-field host rock geochemical interactions; verification and improvement of predictive algorithms for radionuclide migration; and geologic systems as analogues for long-term radioactive waste isolation.

  13. TRU waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the WIPP. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable DOE orders must continue to be met. The compliance requirements for certified waste retrieved from certified storage are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

  14. Radioactive waste isolation in salt: Peer review of the Office of Nuclear Waste Isolation's draft report on an issues hierarchy and data needs for site characterization

    SciTech Connect (OSTI)

    Harrison, W.; Fenster, D.F.; Ditmars, J.D.; Paddock, R.A.; Rote, D.M.; Hambley, D.F.; Seitz, M.G.; Hull, A.B.

    1986-12-01T23:59:59.000Z

    At the request of the Salt Repository Project (SRPO), Argonne National Laboratory conducted an independent peer review of a report by the Battelle Office of Nuclear Waste Isolation entitled ''Salt Repository Project Issues Hierarchy and Data Needs for Site Characterization (Draft).'' This report provided a logical structure for evaluating the outstanding questions (issues) related to selection and licensing of a site as a high-level waste repository. It also provided a first estimate of the information and data necessary to answer or resolve those questions. As such, this report is the first step in developing a strategy for site characterization. Microfiche copies of ''Draft Issues Hierarchy, Resolution Strategy, and Information Needs for Site Characterization and Environmental/Socioeconomic Evaluation - July, 1986'' and ''Issues Hierarchy and Data Needs for Site Characterization - February, 1985'' are included in the back pocket of this report.

  15. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.

  16. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Broader source: Energy.gov (indexed) [DOE]

    donning personal protective clothing or respirators. Workers are cleaning and performing preventive maintenance on equipment in the underground and on the surface impacted by the...

  17. Basic data report for Drillhole WIPP 33 (Waste Isolation Pilot Plant-WIPP)

    SciTech Connect (OSTI)

    None

    1981-02-01T23:59:59.000Z

    WIPP 33 is an exploratory borehole to investigate the nature of unusually thick fill material in the northwest portion of the WIPP site; a breccia pipe was considered a possible, though unlikely, cause of the fill. The borehole is located in Section 13, T22S, R30E, in east central Eddy County, New Mexico and was drilled during July, 1979. The hole was drilled to a depth of 840 feet, and encountered, from top to bottom, surficial Holocene deposits (44 ft including artificial fill for drill pad), the Dewey Lake Red Beds (457 ft), the Rustler Formation (276 ft) and the upper portion of the Salado Formation (163 ft). Selected intervals were cored, and cuttings were taken for examination by geologists. Geophysical logs were taken the full length of the borehole to measure radioactivity, resistivity and density. The stratigraphic profile was found to be normal, and no breccia was observed.

  18. Deformation of evaporites near the Waste Isolation Pilot Plant (WIPP) site

    SciTech Connect (OSTI)

    Borns, D.J.; Barrows, L.J.; Powers, D.W.; Snyder, R.P.

    1983-03-01T23:59:59.000Z

    Layered evaporite units of Ochoan age in the Delaware Basin are 1000 m thick. They are divided into three stratigraphic units (listed in order of increasing age): the Rustler Formation, the Salado Formation, the Castile Formation. These units, especially the Castile, are deformed along portions of the margin of the Delaware Basin and in some areas internal to the basin. Hypotheses of origin of deformation considered are: gravity foundering; gravity sliding; gypsum dehydration; dissolution; and depositional variations. Gravity foundering and sliding are considered the most probable causes of deformation. However, no hypothesis adequately answers why the deformation has a limited areal distribution. A possible explanation would be areal variations in rock strength caused by variations of intergranular water content. Age and timing of deformation are also crucial. Standard stratigraphic arguments based on superposition may not apply to such a highly incompetent material as halite. Gravity foundering could have happened at any time since deposition including the present; gravity sliding would probably have occurred since basin tilting began in the Cenozoic. Deformation could be ongoing. However, the strain rates are such (10/sup -16/ s/sup -1/) that deformation would progress slowly relative to the facility's time frame of 2.5 x 10/sup 5/ y. Deformation of Salado units would be minimal (<10 m) or nonexistent, but within this time frame, upper anhydrite units of the Castile could fracture and provide the volume for a brine reservoir. Such Volumes would be small (<1%) and would require 10/sup 4/ to 10/sup 6/ y to develop. At these strain rates, fractures that connect the fractured anhydrites of the Castile with the middle Salado could not develop. Deformation should not directly jeopardize the facility over the next 2.5 x 10/sup 5/ y.

  19. Waste Isolation Pilot Plant Salado hydrology program data report {number_sign}3

    SciTech Connect (OSTI)

    Chace, D.A.; Roberts, R.M.; Palmer, J.B.; Kloska, M.B.; Fort, M.D.; Martin, G.J.; Stensrud, W.A. [INTERA, Inc., Albuquerque, NM (United States)

    1998-01-01T23:59:59.000Z

    WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbed and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.

  20. PROBABILITY OF FAILURE OF THE TRUDOCK CRANE SYSTEM AT THE WASTE ISOLATION PILOT PLANT (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A.; Sargent, T.J.

    2000-05-01T23:59:59.000Z

    This probabilistic analysis of WIPP TRUDOCK crane failure is based on two sources of failure data. The source for operator errors is the report by Swain and Guttman, NUREG/CR-1278-F, August 1983. The source for crane cable hook breaks was initially made by WIPP/WID-96- 2196, Rev. O by using relatively old (1970s) U.S. Navy data (NUREG-0612). However, a helpful analysis by R.K. Deremer of PLG guided the authors to values that were more realistic and more conservative, with the recommendation that the crane cable/hook failure rate should be 2.5 x 10-6 per demand. This value was adopted and used. Based on these choices a mean failure rate of 9.70 x 10-3(1/yr) was calculated. However, a mean rate by itself does not reveal the level of confidence to be associated with this number. Guidance to making confidence calculations came from the report by Swain and Guttman, who stated that failure data could be described by lognormal distributions. This is in agreement with the widely use d reports (by DOE and others) NPRD-95 and NPRD-91, on failure data. The calculations of confidence levels showed that the mean failure rate of 9.70x 10-3(1/yr) corresponded to a percentile value of approximately 71; i.e. there is a 71% likelihood that the failure rate is less than 9.70x 10-3(1/yr). One also calculated that there is a 95% likelihood that the failure rate is less than 29.6x 10-3(1/yr). Or, as stated previously, there is a 71% likelihood that not more than one dropped load will occur in 103 years. Also, there is a 95% likelihood that not more than one dropped load will occur in approximately 34 years. It is the responsibility of DOE to select the confidence level at which it desires to operate.

  1. Supplements to the release scenario analyses for the waste isolation pilot plant (WIPP)

    SciTech Connect (OSTI)

    Bingham, F.W.; Merritt, M.L.; Tierney, M.S.

    1980-01-01T23:59:59.000Z

    This paper summarizes three analyses of long-term environmental impacts of the WIPP that were made subsequent to the publication of the DEIS in response to agency and public comments. Three supplemental scenarios are described in which activity is transported to the biosphere by groundwater. The scenarios are entitled: brine pocket rupture scenario, effects of water on domestic wells; and agricultural use of the Pecos River Water.

  2. Preoperational radiation surveillance of the WIPP (Waste Isolation Pilot Plant) Project by EEG, 1985--1988

    SciTech Connect (OSTI)

    Kenney, J.; Shenk, K. (Environmental Evaluation Group, Carlsbad, NM (USA)); Rodgers, J. (Los Alamos National Lab., NM (USA)); Chapman, J. (Nevada Univ., Las Vegas, NV (USA). Desert Research Inst.)

    1990-01-01T23:59:59.000Z

    Since the beginning of the preoperational radiation monitoring program in late 1985, the EEG has collected 815 air particulate samples, 123 water samples, 12 biota samples and three sediment samples. Analysis of the majority of these samples have provided 3749 specific radionuclide concentrations in the WIPP environment and in surrounding communities. As would be expected, analyses of air particulates frequently indicated a detectable presence of naturally occurring Ra-226, Ra-228, Th-228, Th-230, and Th-232. Cs-137 was detected in air samples collected during the calendar quarter of the Soviet disaster at Chernobyl. Fallout from this event was detected by air surveillance networks worldwide. Radionuclide data from the analyses of water samples were consistent with other published findings for water from this area. Observed concentration of naturally occurring decay products of U-238 were not in equilibrium with the parent. This is consistent with differential radionuclide mobility in the environment. Ra-226 and Ra-228 were detected in a large number of samples with a high chloride content. 27 refs., 21 figs., 24 tabs.

  3. EIS-0026-S-2; Waste Isolation Pilot Plant Disposal Phase Final...

    Office of Environmental Management (EM)

    Occupational Safety and Health NM New Mexico NMDG&F New Mexico Department of Game and Fish NMDOL New Mexico Department of Labor NMED New Mexico Environment Department NMEMNR New...

  4. Basic data report for drillhole WIPP 15 (Waste Isolation Pilot Plant-WIPP)

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    WIPP 15 is a borehole drilled in Marformation.h, 1978, in section 18, T.23S., R. 35E. of south-central Lea County. The purpose of WIPP 15 was to examine fill in San Simon Sink in order to extract climatic information and to attempt to date the collapse of the sink. The borehole was cored to total depth (810.5 feet) and encountered, from top to bottom, Quaternary calcareous clay, marl and sand, the claystones and siltstones of the Triassic Santa Rosa Formation. Neutron and gamma ray geophysical logs were run to measure density and radioactivity. The sink was about 547 feet of Quaternary fill indicating subsidence and deposition. Diatomaceous beds exposed on the sink margin yielded samples dated by /sup 14/C at 20,570 +- 540 years BP and greater than 32,000 years BP; these beds are believed stratigraphically equivalent to ditomaceous beds at 153 to 266 feet depth in the core. Aquatic fauna and flora from the upper 98 feet of core indicate a pluvial period (probably Tohokan) followed by an arid or very arid time before the present climate was established. Aquifer pump tests performed in the Quaternary sands and clays show transmissivities to be as high as 600 feet squared per day. As the water quality was good, the borehole was released to the lessee as a potential water well.

  5. DOE Awards Small Business Contract for Support to the Waste Isolation Pilot

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FY 2012Control Work in Los

  6. First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire ProtectionUpdatesPlant

  7. WASHINGTON GROUP TEAM WINS NEW CONTRACT TO MANAGE WASTE ISOLATION PILOT PLANT IN NEW MEXICO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. |VolunteeringMap2-5: EastW.W7WAPD-SC-545#

  8. Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator LaboratoryHot andguide|SeasonsLoreleiSince

  9. Fire Hazard Analysis of the Waste Isolation Pilot Plant | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs Find Jobs Clean energy jobs

  10. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign Register todayUser

  11. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign Register todayUser

  12. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 DocumentationAnalysis of Crossover

  13. DOE Seeks Proposals for Management of New Mexico Waste Isolation Pilot

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPPDocumentSTGWGGeneration NuclearPlant |

  14. Modeling gas and brine migration for assessing compliance of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Vaughn, P. [Applied Physics, Inc., Albuquerque, NM (United States); Butcher, B. [Sandia National Labs., Albuquerque, NM (United States); Helton, J. [Arizona State Univ., Tempe, AZ (United States); Swift, P. [Tech. Reps., Inc., Albuquerque, NM (United States)

    1993-10-01T23:59:59.000Z

    At the request of the WIPP Project Integration Office (WPIO) of the DOE, the WIPP Performance Assessment (PA) Department of Sandia National Laboratories (SNL) has completed preliminary uncertainty and sensitivity analyses of gas and brine migration away from the undisturbed repository. This paper contains descriptions of the numerical model and simulations, including model geometries and parameter values, and a summary of major conclusions from sensitivity analyses. Because significant transport of contaminants can only occur in a fluid (gas or brine) medium, two-phase flow modeling can provide an estimate of the distance to which contaminants can migrate. Migration of gas or brine beyond the RCRA ``disposal-unit boundary`` or the Standard`s accessible environment constitutes a potential, but not certain, violation and may require additional evaluations of contaminant concentrations.

  15. A comparison of two potential repositories: The Waste Isolation Pilot Plant and Yucca Mountain

    SciTech Connect (OSTI)

    Pflum, C.G.

    1994-07-11T23:59:59.000Z

    Two repositories in the same country, yet Congress and the DOE manage them differently. While Congress encumbers WIPP with unanticipated oversight and inappropriate regulations, Congress streamlines the commercial repository program and promises improved regulations for Yucca Mountain. While DOE encouraged science at the expense of the WIPP infrastructure, DOE postponed its scientific investigations at Yucca Mountain and constructed an infrastructure, large enough to support an ambitious program that was never realized. Somewhere between WIPP and Yucca Mountain lies an ideal repository program. A program where consistent national policy promotes progress; where lucid regulations inspire confidence; where science and infrastructure are balanced; and where oversight groups do not become the tail that wags the dog. Neither WIPP nor Yucca Mountain are ideal programs, but each has its advantages that approach the ideal. Consistent national policy would steer the ideal repository program in a predictable direction. Here Yucca Mountain has the advantage. Successive legislation has streamlined the siting process and promises better regulations. From the beginning, the ideal program would know its regulators and regulations. Again, Yucca Mountain has the advantage. More familiar with regulators and regulations, the Yucca Mountain program had the foresight not to declare HLW to be hazardous and subject to dual regulations. The ideal program would equitably balance its science and infrastructure. Here neither program has the advantage and could possibly represent extremes. The WIPP`s emphasis on scientific investigations left it with little or no infrastructure to deal with regulations and oversight. A regulatory infrastructure, for example, could have forewarned WIPP that its in situ tests were not relevant to the regulations. On the opposite extreme, the Yucca Mountain`s emphasis on infrastructure left it with less money for scientific investigations.

  16. Implementation of chemical controls through a backfill system for the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Bynum, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Stockman, C.; Wang, Yifeng; Peterson, A.; Krumhansl, J.; Nowak, J.; Chu, M.S.Y. [Sandia National Labs., Albuquerque, NM (United States); Cotton, J.; Patchet, S.J. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1997-06-01T23:59:59.000Z

    A backfill system has been designed for the WIPP which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and oxidation state of the actinide which is stable under the specific conditions. The implementation of magnesium oxide (MgO) as the backfill material not only controls the pH of the expected fluids but also effectively removes the carbonate from the system, which has a significant impact for actinide solubility. The selection process, emplacement system, design, and confirmatory experimental results are presented.

  17. Brine transport studies in the bedded salt of the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    McTigue, D.F.; Nowak, E.J.

    1987-01-01T23:59:59.000Z

    Brine flow has been measured to unheated boreholes for periods of a few days and to heated holes for two years in the WIPP facility. It is suggested that Darcy flow may dominate the observed influx of brine. Exact solutions to a linearized model for one-dimensional, radial flow are evaluated for conditions approximating the field experiments. Flow rates of the correct order of magnitude are calculated for permeabilities in the range 10/sup -21/ to 10/sup -20/ m/sup 2/ (1 to 10 nanodarcy) for both the unheated and heated cases. 20 refs., 3 figs., 1 tab.

  18. Microsoft Word - Waste Isolation Pilot Plant Summary Report May 22.2014.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC5, 2010UPDATES: MarchC IG

  19. Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files DataADVANCES INNuclearDepartment of Energy Announces

  20. DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department of4223WIPP-10-2225

  1. DOE/WIPP-11-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department

  2. Waste Isolation Pilot Plant Carlsbad, New Mexico REPRESENTATIONS, CERTIFICATIONS, AND NOTICES APPLICABLE TO OFFERS IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actionssubmitted

  3. Cook-off Experiments with Surrogate Waste Isolation Pilot Plant (WIPP) Drum

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison Uranium activities onDepartment ofScott

  4. Administrative Compliance Order HWB-14-21 Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout Us »Settlement EvaluationsEnergyDepartment

  5. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small Business Webinar June 20,

  6. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall BusinessSmall1AmesFermiU.S.

  7. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall BusinessSmall1AmesFermiU.S.

  8. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall BusinessSmall1AmesFermiU.S.

  9. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall

  10. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmallU.S. Department of Energy

  11. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmallU.S. Department of Energy

  12. Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, February 5, 2014

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of Energy Sof EnergyDepartment of EnergyEnergy, Office

  13. Waste Isolation Pilot Plant Status and Plans - 2010 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivites

  14. Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of|Products |:Department

  15. Sampling Report for May-June, 2014 Waste Isolation Pilot Plant Samples |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of|Products

  16. Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTSDOE-IG-0882DepartmentEnergyEnergyIntroduction to

  17. After Review, DOE Competitively Awards Contract For the Management of Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 SimulationAftab Ahmed PostdocAfterTom

  18. Strategic Plan for Groundwater Monitoring at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout » Staff125,849| OSTI, US Dept ofStrategic

  19. The Karst and Related Issues at the Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrelCellsDepartment

  20. Technological enhancements in TRU waste management.

    SciTech Connect (OSTI)

    Elkins, N. Z. (Ned Z.); Moody, D. C. (David C.)

    2002-01-01T23:59:59.000Z

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. After the WIPP began receiving waste, it was evident that, at the rate at which TRU waste was being shipped to and received at WIPP, the facility was not being used to its full potential, nor would it be unless improvements to the TRU waste management system were made. This paper describes some of the efforts to optimize (to make as functional as possible) characterization, transportation, and disposal of TRU waste; some of the technological enhancements necessary to achieve an optimized national transuranic waste system (1); and the interplay between regulatory change and technology development

  1. The WIPP Hazardous Waste Facility Permit Improvements--2007 Update

    SciTech Connect (OSTI)

    Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

    2007-07-01T23:59:59.000Z

    The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

  2. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

    1989-01-01T23:59:59.000Z

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.

  3. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

    2003-08-06T23:59:59.000Z

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

  4. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  5. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    SciTech Connect (OSTI)

    WINTERHALDER, J.A.

    1999-09-29T23:59:59.000Z

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris waste, which consists of 52 containers from waste streams NPFPDLIA, NPFPDLIB, NPFPDLIC, and NPFPDLID, is not hazardous waste, and no hazardous waste numbers specified in Title 40 Code of Federal Regulations, Part 261, have been assigned. Accordingly, the 52 containers of transuranic debris waste addressed in this report meet the requirements for transuranic waste as defined by the Department of Energy Waste Acceptance Criteria for the Waste Isolation Pilot Plant. The 52 containers are acceptable for disposal at the Waste Isolation Pilot Plant as nonhazardous transuranic waste.

  6. Hanford site transuranic waste certification plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-12T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  7. Selected, annotated bibliography of studies relevant to the isolation of nuclear wastes. [705 references

    SciTech Connect (OSTI)

    Hyder, L.K.; Fore, C.S.; Vaughan, N.D.; Faust, R.A.

    1980-09-01T23:59:59.000Z

    This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.

  8. Environmental assessment for transuranic waste work-off plan, Los Alamos National Laboratory. Rough draft: Final report

    SciTech Connect (OSTI)

    Not Available

    1990-10-26T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) generates transuranic (TRU) waste in a variety of programs related to national defense. TRU waste is a specific class of radioactive waste requiring permanent isolation. Most defense-related TRU waste will be permanently disposed of in the Waste Isolation Pilot Plant (WIPP). WIPP is a deep geologic repository located in southeastern New Mexico and is now in the testing phase of development. All waste received by Wipp must conform with established Waste Acceptance Criteria (WAC). The purpose of the proposed action is to retrieve stored TRU waste and prepare the waste for shipment to and disposal WIPP. Stored TRU waste LANL is represented by four waste forms. The facilities necessary for work-off activities are tailored to the treatment and preparation of these four waste forms. Preparation activities for newly generated TRU waste are also covered by this action.

  9. Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

  10. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01T23:59:59.000Z

    understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

  11. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  12. User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).

    SciTech Connect (OSTI)

    Reeves, Mark; Cranwell, Robert M.

    1981-11-01T23:59:59.000Z

    This report describes a three-dimensional finite-difference model (SWIFT) which is used to simulate flow and transport processes in geologic media. The model was developed for use by the Nuclear Regulatory Commission in the analysis of deep geologic nuclear waste-disposal facilities. This document, as indicated by the title, is a user's manual and is intended to facilitate the use of the SWIFT simulator. Mathematical equations, submodels, application notes, and a description of the program itself are given herein. In addition, a complete input data guide is given along with several appendices which are helpful in setting up a data-input deck. Computer code SWIFT (Sandia Waste Isolation, Flow and Transport Model) is a fully transient, three-dimensional model which solves the coupled equations for transport in geologic media. The processes considered are: (1) fluid flow; (2) heat transport; (3) dominant-species miscible displacement; and (4) trace-species miscible displacement. The first three processes are coupled via fluid density and viscosity. Together they provide the velocity field on which the fourth process depends.

  13. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    William Linak

    2004-12-16T23:59:59.000Z

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

  14. Thermo-Hydrological-Mechanical Analysis of a Clay Barrier for Radioactive Waste Isolation: Probabilistic Calibration and Advanced Modeling

    E-Print Network [OSTI]

    Dontha, Lakshman

    2012-07-16T23:59:59.000Z

    Sanchez Co-Chairs of Committee, Zenon Medina-Cetina Committee Member, Frederick Chester Head of Department, John Niedzwecki May 2012 Major Subject: Civil Engineering iii ABSTRACT Thermo... Committee, Dr. Marcelo Sanchez Dr. Zenon Medina-Cetina The engineered barrier system is a basic element in the design of repository to isolate high level radioactive waste (HLW...

  15. Los Alamos National Laboratory Waste Management Program

    SciTech Connect (OSTI)

    Lopez-Escobedo, G.M.; Hargis, K.M.; Douglass, C.R. [Los Alamos National Laboratory, NM (United States)

    2007-07-01T23:59:59.000Z

    Los Alamos National Laboratory's (LANL) waste management program is responsible for disposition of waste generated by many of the LANL programs and operations. LANL generates liquid and solid waste that can include radioactive, hazardous, and other constituents. Where practical, LANL hazardous and mixed wastes are disposed through commercial vendors; low-level radioactive waste (LLW) and radioactive asbestos-contaminated waste are disposed on site at LANL's Area G disposal cells, transuranic (TRU) waste is disposed at the Waste Isolation Pilot Plant (WIPP), and high-activity mixed wastes are disposed at the Nevada Test Site (NTS) after treatment by commercial vendors. An on-site radioactive liquid waste treatment facility (RLWTF) removes the radioactive constituents from liquid wastes and treated water is released through an NPDES permitted outfall. LANL has a very successful waste minimization program. Routine hazardous waste generation has been reduced over 90% since 1993. LANL has a DOE Order 450.1-compliant environmental management system (EMS) that is ISO 14001 certified; waste minimization is integral to setting annual EMS improvement objectives. Looking forward, under the new LANL management and operating contractor, Los Alamos National Security (LANS) LLC, a Zero Liquid Discharge initiative is being planned that should eliminate flow to the RLWTF NPDES-permitted outfall. The new contractor is also taking action to reduce the number of permitted waste storage areas, to charge generating programs directly for the cost to disposition waste, and to simplify/streamline the waste system. (authors)

  16. Optimizing the National TRU waste system transportation program.

    SciTech Connect (OSTI)

    Lott, S. A. (Sheila A.); Countiss, S. (Sue)

    2002-01-01T23:59:59.000Z

    The goal of the National TRU Waste Program (NTP) is to operate the system safely and cost-effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. One of the objectives of the Department of Energy's Carlsbad Field Office (DOE/CBFO) is to complete the current Waste Isolation Pilot Plant (WIPP) mission for the disposal of the nation's legacy transuranic (TRU) waste at least IO years earlier thus saving approximately %7B. The National TRU Waste Optimization Plan (1) recommends changes to accomplish this. This paper discusses the optimization of the National TRU Waste System Transportation Program.

  17. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  18. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  19. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  20. Waste acceptance and waste loading for vitrified Oak Ridge tank waste

    SciTech Connect (OSTI)

    Harbour, J.R.; Andrews, M.K.

    1997-06-06T23:59:59.000Z

    The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC`s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC.

  1. TRU waste certification and TRUPACT-2 payload verification

    SciTech Connect (OSTI)

    Hunter, E.K. (USDOE Albuquerque Operations Office, Carlsbad, NM (USA). Waste Isolation Pilot Plant Project Office); Johnson, J.E. (Westinghouse Electric Corp., Carlsbad, NM (USA). Waste Isolation Div.)

    1990-01-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig.

  2. Low-Level Liquid Waste Processing Pilot Studies Using a Vibratory Shear Enhancing Process (VSEP) for Filtration

    SciTech Connect (OSTI)

    Bushart, S.; Tran, P.; Asay, R.

    2002-02-25T23:59:59.000Z

    A previous EPRI study evaluated potential treatment methods for the removal of iron from BWR waste streams. Of the methods investigated, high shear filtration using the vibratory shear-enhanced process (VSEP) showed the most promise to effectively and economically remove high iron concentrations from backwash receiving tank waste. A VSEP filter uses oscillatory vibration to create high shear at the surface of the filter membrane. This high shear force significantly improves the filter's resistance to fouling thereby enabling high throughputs with very little secondary waste generation. With a VSEP filter, the waste feed stream is split into two effluents- a permeate stream with little or no suspended solids and a concentrate stream with a suspended solids concentration much higher than that of the feed stream. To evaluate the feasibility of using a VSEP concept for processing typical high iron containing BWR radwaste, a surrogate feedstream containing up to 1,700 ppm iron oxide (as Fe2O3) was used. This surrogate waste simulates radioactive waste found at Exelon's Limerick and Peach Bottom (powdered resin condensate) plants, and in Hope Creek's (deep bed condensate) radwaste systems. Testing was done using a series L (laboratory scale) VSEP unit at the manufacturer's and contractor's laboratories. These tests successfully demonstrated the VSEP capability for producing highly concentrated waste streams with totally ''recyclable'' permeate (e.g., greater than 95% recovery).

  3. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    SciTech Connect (OSTI)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31T23:59:59.000Z

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.

  4. TRU waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the WIPP. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1985-09-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, newly generated, contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated, however, interim storage sites may have additional requirements consistent with these requirements. All applicable DOE orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 2 refs., 1 fig.

  5. Transuranic waste characterization sampling and analysis methods manual

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Transuranic Waste Characterization Sampling and Analysis Methods Manual (Methods Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program). This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP.

  6. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01T23:59:59.000Z

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  7. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14T23:59:59.000Z

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  8. Crystalline Ceramic Waste Forms: Report Detailing Data Collection In Support Of Potential FY13 Pilot Scale Melter Test

    SciTech Connect (OSTI)

    Brinkman, K. S.; Amoroso, J.; Marra, J. C.; Fox, K. M.

    2012-09-21T23:59:59.000Z

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to summarize the data collection in support of future melter demonstration testing for crystalline ceramic waste forms. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. The principal difficulties encountered during processing of the ?reference ceramic? waste form by a melt and crystallization process were the incomplete incorporation of Cs into the hollandite phase and the presence of secondary Cs-Mo non-durable phases. In the single phase hollandite system, these issues were addressed in this study by refining the compositions to include Cr as a transition metal element and the use of Ti/TiO{sub 2} buffer to maintain reducing conditions. Initial viscosity studies of ceramic waste forms indicated that the pour spout must be maintained above 1400{deg}C to avoid flow blockages due to crystallization. In-situ electron irradiations simulate radiolysis effects indicated hollandite undergoes a crystalline to amorphous transition after a radiation dose of 10{sup 13} Gy which corresponds to approximately 1000 years at anticipated doses (2?10{sup 10}-2?10{sup 11} Gy). Dual-beam ion irradiations employing light ion beam (such as 5 MeV alpha) and heavy ion beam (such as 100 keV Kr) studies indicate that reference ceramic waste forms are radiation tolerant to the ??particles and ?-particles, but are susceptible to a crystalline to amorphous transition under recoil nuclei effects. A path forward for refining the processing steps needed to form the targeted phase assemblages is outlined in this report. Processing modifications including melting in a reducing atmosphere with the use of Ti/TiO2 buffers, and the addition of Cr to the transition metal additives to facilitate Cs-incorporation in the hollandite phase. In addition to melt processing, alternative fabrication routes are being considered including Spark Plasma Sintering (SPS) and Hot Isostatic Pressing (HIP).

  9. The effect of vibration on alpha radiolysis of transuranic (TRU) waste

    SciTech Connect (OSTI)

    Zerwekh, A.; Kosiewicz, S. (Los Alamos National Lab., NM (United States)); Warren, J. (NFT, Inc., Lakewood, CO (United States))

    1993-01-01T23:59:59.000Z

    This paper reports on previously unpublished scoping work related to the potential for vibration to redistribute radionuclides on transuranic (TRU) waste. If this were to happen, the amount of gases generated, including hydrogen, could be increased above the undisturbed levels. This could be an important consideration for transport of TRU wastes either at DOE sites or from them to a future repository, e.g., the Waste Isolation Pilot Plant (WIPP). These preliminary data on drums of real waste seem to suggest that radionuclide redistribution does not occur. However improvements in the experimental methodology are suggested to enhance safety of future experiments on real wastes as well as to provide more rigorous data.

  10. The effect of vibration on alpha radiolysis of transuranic (TRU) waste

    SciTech Connect (OSTI)

    Zerwekh, A.; Kosiewicz, S. [Los Alamos National Lab., NM (United States); Warren, J. [NFT, Inc., Lakewood, CO (United States)

    1993-02-01T23:59:59.000Z

    This paper reports on previously unpublished scoping work related to the potential for vibration to redistribute radionuclides on transuranic (TRU) waste. If this were to happen, the amount of gases generated, including hydrogen, could be increased above the undisturbed levels. This could be an important consideration for transport of TRU wastes either at DOE sites or from them to a future repository, e.g., the Waste Isolation Pilot Plant (WIPP). These preliminary data on drums of real waste seem to suggest that radionuclide redistribution does not occur. However improvements in the experimental methodology are suggested to enhance safety of future experiments on real wastes as well as to provide more rigorous data.

  11. Assessment of near-surface dissolution at and near the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    SciTech Connect (OSTI)

    Bachman, G.O.

    1985-07-01T23:59:59.000Z

    The area at and near the WIPP site was examined for evidence of karst development on the geomorphic surface encompassing the site. Certain surficial depressions of initial concern were identified as blowouts in sand dune fields (shallow features unrelated to karstification). An ancient stream system active more than 500,000 yr ago contained more water than any system since. During that time (Gatuna, Middle Pleistocene), many karst features such as Clayton Basin and Nash Draw began to form in the region. Halite was probably dissolved from parts of the Rustler Formation at that time. Dissolution of halite and gypsum from intervals encountered in Borehole WIPP-33 west of the WIPP site occurred during later Pleistocene time (i.e., <450,000 yr ago). However, there is no evidence of active near-surface dissolution within a belt to the east of WIPP-33 in the vicinity of the WIPP shaft. 26 refs., 11 figs., 1 tab.

  12. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    SciTech Connect (OSTI)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01T23:59:59.000Z

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  13. Resource Conservation and Recovery Act: Part B Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This report, part of the permit application for the WIPP facility, presents engineering drawings and engineering change orders for the facility. (CBS)

  14. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 6: Appendix GCR Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Geological Characterization Report (GCR) for the WIPP site presents, in one document, a compilation of geologic information available to August, 1978, which is judged to be relevant to studies for the WIPP. The Geological Characterization Report for the WIPP site is neither a preliminary safety analysis report nor an environmental impact statement; these documents, when prepared, should be consulted for appropriate discussion of safety analysis and environmental impact. The Geological Characterization Report of the WIPP site is a unique document and at this time is not required by regulatory process. An overview is presented of the purpose of the WIPP, the purpose of the Geological Characterization Report, the site selection criteria, the events leading to studies in New Mexico, status of studies, and the techniques employed during geological characterization.

  15. EPA's Response to the February 2014 Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP)

    E-Print Network [OSTI]

    on the WIPP site detected very low levels of airborne americium and plutonium. It is believed that a small the WIPP site, all the results were considered "non-detect" for americium-241, plutonium-238 and plutonium* Location Name Collection Dates Sample Type Units Americium241 Plutonium238 Plutonium 239/240 1 Far

  16. Brine release based on structural calculations of damage around an excavation at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Jensen, A.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States); DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)

    1996-02-01T23:59:59.000Z

    In a large in situ experimntal circular room, brine inflow was measured over 5 years. After correcting for evaporation losses into mine ventilation air, the measurements gave data for a period of nearly 3 years. Predicted brine accumulation based on a mechanical ``snow plow`` model of the volume swept by creep-induced damage as calculated with the Multimechanism Deformation Coupled Fracture model was found to agree with experiment. Calculation suggests the damage zone at 5 years effectively exends only some 0.7 m into the salt around the room. Also, because the mecahnical model of brine release gives an adequate explanation of the measured data, the hydrological process of brine flow appears to be rapid compared to the mechanical process of brine release.

  17. Consolidation, permeability, and strength of crushed salt/bentonite mixtures with application to the WIPP (Waste Isolation Pilot Plant)

    SciTech Connect (OSTI)

    Pfeifle, T.W. (RE/SPEC, Inc., Rapid City, SD (USA))

    1991-01-01T23:59:59.000Z

    Three tests were performed to measure the consolidation, permeability, and compressive strength of specimens prepared from bentonite/crushed salt mixtures. Each mixture comprised 30% bentonite and 70% crushed salt based on total dry weight. Brine was added to each mixture to adjust its water content to either 5 or 10% (nominal) of the total dry weight of the mixture. In the consolidation tests, each specimen was subjected to multiple stages of successively higher hydrostatic stress (pressure). During each stage, the pressure was maintained at a constant level and volumetric strain data were continuously logged. By using multiple stages, consolidation data were obtained at several pressures and the time required to consolidate the specimens to full saturation was reduced. Once full saturation was achieved, each specimen was subjected to a final test stage in which the hydrostatic stress was reduced and a permeability test performed. Permeability was measured using the steady flow of brine and was found to range between 1 {times} 10{sup {minus}17} and 5 {times} 10{sup {minus}17} m{sup 2}. After the final test stage, unconfined compressive strength was determined for each specimen and was found to range between 0.5 and 8.1 MPa. Two constitutive models were fitted to the consolidation data. One relatively simple model related volumetric strain to time while the other related instantaneous density to time, pressure, and initial density. 8 refs., 9 figs., 8 tabs.

  18. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 10, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains the continuation of Appendix D3, which consists of engineering drawings of engineering change orders and drawing change sheets for the WIPP underground facility.

  19. DOE/WIPP 02-3196 - Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization, March 19, 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department of4223

  20. TRU TeamWorks - a biweekly e-newsletter for the Waste Isolation Pilot Plant (WIPP) team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S.EnergyTri-State, 20049,

  1. Report to Congress on the Use of the Waste Isolation Pilot Plant to Develop and Demonstrate Transparency Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051SoilWindFraud toDepartment Report onto

  2. Report for Waste Isolation Pilot Plant (WIPP) UG Sample #3, R15C5 (9/3/14)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReport #StudyRenewableEntergyDepartment| Department of

  3. Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »Lab (NewportSuccess StoriesNERSCSupplement Analysis

  4. Data report on the Waste Isolation Pilot Plant Small-Scale Seal Performance Test, Series F grouting experiment

    SciTech Connect (OSTI)

    Ahrens, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Dale, T.F.; Van Pelt, R.S. [INTERA, Inc., Austin, TX (United States)] [INTERA, Inc., Austin, TX (United States)

    1996-03-01T23:59:59.000Z

    SSSPT-F was designed to evaluate sealing materials at WIPP. It demonstrated: (1) the ability to practically and consistently produce ultrafine cementitious grout at the grouting site, (2) successful, consistent, and efficient injection and permeation of the grout into fractured rock at the repository horizon, (3) ability of the grout to penetrate and seal microfractures, (4) procedures and equipment used to inject the grout. Also techniques to assess the effectiveness of the grout in reducing the gas transmissivity of the fractured rock were evaluated. These included gas-flow/tracer testing, post-grout coring, pre- and post-grout downhole televiewer logging, slab displacement measurements, and increased loading on jacks during grout injection. Pre- and post-grout diamond drill core was obtained for use in ongoing evaluations of grouting effectiveness, degradation, and compatibility. Diamond drill equipment invented for this test successfully prevented drill cuttings from plugging fractures in grout injection holes.

  5. GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01T23:59:59.000Z

    active waste storage glass. AERE-R 8706, May. Hall, A. R. ,from dispersed blocks, AERE-R 8763, June. Holdoway, M. J. (to the FINGAL process. AERE-R 6418, May. Jenkins, I. L. (

  6. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect (OSTI)

    COZZI, ALEX

    2004-02-18T23:59:59.000Z

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  7. Guidelines for developing certification programs for newly generated TRU waste

    SciTech Connect (OSTI)

    Whitty, W.J.; Ostenak, C.A.; Pillay, K.K.S.; Geoffrion, R.R.

    1983-05-01T23:59:59.000Z

    These guidelines were prepared with direction from the US Department of Energy (DOE) Transuranic (TRU) Waste Management Program in support of the DOE effort to certify that newly generated TRU wastes meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria. The guidelines provide instructions for generic Certification Program preparation for TRU-waste generators preparing site-specific Certification Programs in response to WIPP requirements. The guidelines address all major aspects of a Certification Program that are necessary to satisfy the WIPP Waste Acceptance Criteria and their associated Compliance Requirements and Certification Quality Assurance Requirements. The details of the major element of a Certification Program, namely, the Certification Plan, are described. The Certification Plan relies on supporting data and control documentation to provide a traceable, auditable account of certification activities. Examples of specific parts of the Certification Plan illustrate the recommended degree of detail. Also, a brief description of generic waste processes related to certification activities is included.

  8. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect (OSTI)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01T23:59:59.000Z

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  9. Nondestructive characterization of low-level transuranic waste

    SciTech Connect (OSTI)

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01T23:59:59.000Z

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system.

  10. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  11. Repository disposal requirements for commercial transuranic wastes (generated without reprocessing)

    SciTech Connect (OSTI)

    Daling, P.M.; Ludwick, J.D.; Mellinger, G.B.; McKee, R.W.

    1986-06-01T23:59:59.000Z

    This report forms a preliminary planning basis for disposal of commercial transuranic (TRU) wastes in a geologic repository. Because of the unlikely prospects for commercial spent nuclear fuel reprocessing in the near-term, this report focuses on TRU wastes generated in a once-through nuclear fuel cycle. The four main objectives of this study were to: develop estimates of the current inventories, projected generation rates, and characteristics of commercial TRU wastes; develop proposed acceptance requirements for TRU wastes forms and waste canisters that ensure a safe and effective disposal system; develop certification procedures and processing requirements that ensure that TRU wastes delivered to a repository for disposal meet all applicable waste acceptance requirements; and identify alternative conceptual strategies for treatment and certification of commercial TRU first objective was accomplished through a survey of commercial producers of TRU wastes. The TRU waste acceptance and certification requirements that were developed were based on regulatory requirements, information in the literature, and from similar requirements already established for disposal of defense TRU wastes in the Waste Isolation Pilot Plant (WIPP) which were adapted, where necessary, to disposal of commercial TRU wastes. The results of the TRU waste-producer survey indicated that there were a relatively large number of producers of small quantities of TRU wastes.

  12. Site characterization report for the basalt waste isolation project. Volume II

    SciTech Connect (OSTI)

    None

    1982-11-01T23:59:59.000Z

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  13. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25T23:59:59.000Z

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  14. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  15. Oak Ridge National Laboratory Transuranic Waste Certification Program

    SciTech Connect (OSTI)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01T23:59:59.000Z

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

  16. Identification of potential transuranic waste tanks at the Hanford Site

    SciTech Connect (OSTI)

    Colburn, R.P.

    1995-05-05T23:59:59.000Z

    The purpose of this document is to identify potential transuranic (TRU) material among the Hanford Site tank wastes for possible disposal at the Waste Isolation Pilot Plant (WIPP) as an alternative to disposal in the high-level waste (HLW) repository. Identification of such material is the initial task in a trade study suggested in WHC-EP-0786, Tank Waste Remediation System Decisions and Risk Assessment (Johnson 1994). The scope of this document is limited to the identification of those tanks that might be segregated from the HLW for disposal as TRU, and the bases for that selection. It is assumed that the tank waste will be washed to remove soluble inert material for disposal as low-level waste (LLW), and the washed residual solids will be vitrified for disposal. The actual recommendation of a disposal strategy for these materials will require a detailed cost/benefit analysis and is beyond the scope of this document.

  17. Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging

    SciTech Connect (OSTI)

    Arne J. Pearlstein; Alexander Scheeline

    2002-08-30T23:59:59.000Z

    Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor

  18. Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms

    SciTech Connect (OSTI)

    Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

    1998-03-01T23:59:59.000Z

    The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

  19. WRAP Module 1 sampling strategy and waste characterization alternatives study

    SciTech Connect (OSTI)

    Bergeson, C.L.

    1994-09-30T23:59:59.000Z

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  20. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11T23:59:59.000Z

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  1. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1995-01-01T23:59:59.000Z

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  2. Smectite dehydration and stability: Applications to radioactive waste isolation at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.

    1988-03-01T23:59:59.000Z

    Montmorillonite-beidellite smectites are present in amounts up to 50% in the rocks directly underlying the potential high-level radioactive waste repository horizon at Yucca Mountain, Nevada. The thermal reactions of concern include reversible collapse/expansion of the smectite layers due to loss/gain of interlayer water;irreversible collapse due to loss of interlayer water and migration of interlayer cations into the 2:1 silicate layers;irreversible reduction of the osmotic swelling ability through reaction in a steam atmosphere;and inhomogeneous transformation of the smectite into an interstratified illite/smectite. Reversible collapse should be of minor importance because any thermally driven collapse will be reversed when water is introduced and temperatures go down. The amounts of smectite in the potential repository horizon itself are probably insufficient to give rise to rock strength problems due to reversible collapse. The irreversible reduction of somotic selling capacity in a steam environment may be significant in the rocks near the repository horizon. This effect on naturally occurring Na-rich smectites would probably increase permeabilitie shut would also provide for increased cation exchange by the smectite. 60 refs., 9 figs.

  3. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  4. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    DOE Carlsbad Field Office

    2001-04-06T23:59:59.000Z

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO's). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the drummed waste PDP, a simulated waste container consists of a 55-gallon matrix drum emplaced with radioactive standards and fabricated matrix inserts. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Drum PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix conditions and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  5. Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory

    E-Print Network [OSTI]

    Selvage, Ronald Derek

    1995-01-01T23:59:59.000Z

    Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement...

  6. TRU waste inventory collection and work off plans for the centralization of TRU waste characterization/certification at INL - on your mark - get set - 9410

    SciTech Connect (OSTI)

    Mctaggert, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila A [Los Alamos National Laboratory; Gadbury, Casey [CBFO

    2008-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTF at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  7. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-06-01T23:59:59.000Z

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  8. Perspectives on Radioactive Waste Disposal: A Consideration of Economic Efficiency and Intergenerational Equity

    SciTech Connect (OSTI)

    Neill, H. R.; Neill, R. H.

    2003-02-25T23:59:59.000Z

    There are both internal and external pressures on the U.S. Department of Energy to reduce the estimated costs of isolating radioactive waste, $19 billion for transuranic waste at Waste Isolation Pilot Plant (WIPP) and $57 billion for high level waste at Yucca Mountain. The question arises whether economic analyses would add to the decision-making process to reduce costs yet maintain the same level of radiological protection. This paper examines the advantages and disadvantages of using cost-benefit analysis (CBA), a tool used to measure economic efficiency as an input for these decisions. Using a comparative research approach, we find that CBA analyses appear particularly applicable where the benefits and costs are in the near term. These findings can help policymakers become more informed on funding decisions and to develop public confidence in the merits of the program for waste disposal.

  9. Characterization of the BVEST waste tanks located at ORNL

    SciTech Connect (OSTI)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01T23:59:59.000Z

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  10. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14T23:59:59.000Z

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  11. Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site

    SciTech Connect (OSTI)

    Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L. [Bechtel Nevada Corp., Las Vegas, NV (United States); Karney, C.C. [Dept. of Energy, Las Vegas, NV (United States); Kremer, J.L.

    1998-01-01T23:59:59.000Z

    This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging.

  12. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    SciTech Connect (OSTI)

    Mctaggert, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila [Los Alamos National Laboratory; Gadbury, Casey [CBFO

    2009-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  13. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01T23:59:59.000Z

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  14. Los Alamos Transuranic Waste Size Reduction Facility

    SciTech Connect (OSTI)

    Harper, J.; Warren, J.

    1987-06-01T23:59:59.000Z

    The Los Alamos Transuranic (TRU) Waste Size Reduction Facility (SRF) is a production oriented prototype. The facility is operated to remotely cut and repackage TRU contaminated metallic wastes (e.g., glove boxes, ducting and pipes) for eventual disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The resulting flat sections are packaged into a tested Department of Transportation Type 7A metal container. To date, the facility has successfully processed stainless steel glove boxes (with and without lead shielding construction) and retention tanks. We have found that used glove boxes generate more cutting fumes than do unused glove boxes or metal plates - possibly due to deeply embedded chemical residues from years of service. Water used as a secondary fluid with the plasma arc cutting system significantly reduces visible fume generation during the cutting of used glove boxes and lead-lined glove boxes. 2 figs., 1 tab.

  15. Remote-handled transuranic waste study

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) was developed by the US Department of Energy (DOE) as a research and development facility to demonstrate the safe disposal of transuranic (TRU) radioactive wastes generated from the Nation`s defense activities. The WIPP disposal inventory will include up to 250,000 cubic feet of TRU wastes classified as remote handled (RH). The remaining inventory will include contact-handled (CH) TRU wastes, which characteristically have less specific activity (radioactivity per unit volume) than the RH-TRU wastes. The WIPP Land Withdrawal Act (LWA), Public Law 102-579, requires a study of the effect of RH-TRU waste on long-term performance. This RH-TRU Waste Study has been conducted to satisfy the requirements defined by the LWA and is considered by the DOE to be a prudent exercise in the compliance certification process of the WIPP repository. The objectives of this study include: conducting an evaluation of the impacts of RH-TRU wastes on the performance assessment (PA) of the repository to determine the effects of Rh-TRU waste as a part of the total WIPP disposal inventory; and conducting a comparison of CH-TRU and RH-TRU wastes to assess the differences and similarities for such issues as gas generation, flammability and explosiveness, solubility, and brine and geochemical interactions. This study was conducted using the data, models, computer codes, and information generated in support of long-term compliance programs, including the WIPP PA. The study is limited in scope to post-closure repository performance and includes an analysis of the issues associated with RH-TRU wastes subsequent to emplacement of these wastes at WIPP in consideration of the current baseline design. 41 refs.

  16. Quality assurance (QA) plan for the transportation and receipt of transuranic (TRU) waste

    SciTech Connect (OSTI)

    Not Available

    1990-02-01T23:59:59.000Z

    The Department of Energy (DOE) Albuquerque Operations (AL) Office of Projects and Energy Programs has been assigned the responsibility for administration of the disposal of Contact-Handled (CH) Transuranic (TRU) contaminated material (waste) from generator/storage sites of the United States defense programs that are operated by the DOE. This responsibility encompasses all activities associated with the certification of TRU waste and the transportation, receipt and disposal of that waste at the Waste Isolation Pilot Plant (WIPP). The WIPP is located near Carlsbad, New Mexico and is being developed under the management of the DOE WIPP Project Office (WPO). The DOE/WPO is a branch of the DOE/AL and has been delegated overall responsibility for all aspects of the WIPP program. This report describes the quality assurance plan for the TRU waste transportation and receipt of waste.

  17. Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033

    SciTech Connect (OSTI)

    Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

    2012-07-01T23:59:59.000Z

    Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

  18. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2005-08-03T23:59:59.000Z

    The Performance Demonstration Program (PDP) for Nondestructive Assay (NDA) is a test program designed to yield data on measurement system capability to characterize drummed transuranic (TRU) waste generated throughout the Department of Energy (DOE) complex. The tests are conducted periodically and provide a mechanism for the independent and objective assessment of NDA system performance and capability relative to the radiological characterization objectives and criteria of the Office of Characterization and Transportation (OCT). The primary documents requiring an NDA PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC), which requires annual characterization facility participation in the PDP, and the Quality Assurance Program Document (QAPD). This NDA PDP implements the general requirements of the QAPD and applicable requirements of the WAC. Measurement facilities must demonstrate acceptable radiological characterization performance through measurement of test samples comprised of pre-specified PDP matrix drum/radioactive source configurations. Measurement facilities are required to analyze the NDA PDP drum samples using the same procedures approved and implemented for routine operational waste characterization activities. The test samples provide an independent means to assess NDA measurement system performance and compliance per criteria delineated in the NDA PDP Plan. General inter-comparison of NDA measurement system performance among DOE measurement facilities and commercial NDA services can also be evaluated using measurement results on similar NDA PDP test samples. A PDP test sample consists of a 55-gallon matrix drum containing a waste matrix type representative of a particular category of the DOE waste inventory and nuclear material standards of known radionuclide and isotopic composition typical of DOE radioactive material. The PDP sample components are made available to participating measurement facilities as designated by the Carlsbad Field Office (CBFO). The nuclear material type, mass and associated alpha activity of the NDA PDP radioactive standard sets have been specified and fabricated to allow assembly of PDP samples that simulate TRU alpha activity concentrations, radionuclidic/isotopic distributions and physical forms typical of the DOE TRU waste inventory. The PDP matrix drum waste matrix types were derived from an evaluation of information contained in the Transuranic Waste Baseline Inventory Report (TWBIR) to ensure representation of prevalent waste types and their associated matrix characteristics in NDA PDP testing. NDA drum analyses required by the Waste Isolation Pilot Plant (WIPP) may only be performed by measurement facilities that comply with the performance criteria as set forth in the NDA PDP Plan. In this document, these analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes.

  19. A model for a national low level waste program

    SciTech Connect (OSTI)

    Blankenhorn, James A [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

  20. An Alternative to Performing Remote-Handled Transuranic Waste Container Headspace Gas Sampling and Analysis

    SciTech Connect (OSTI)

    Spangler, L. R.; Djordjevic, S. M.; Kehrman, R. F.; Most, W. A.

    2002-02-26T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is operating under a Resource Conservation and Recovery Act (RCRA) Hazardous Waste Facility Permit (HWFP) for contact-handled (CH) transuranic (TRU) waste. The HWFP contains limitations on allowable emissions from waste disposed in the underground. This environmental performance standard imposed on the WIPP consists of limiting volatile organic compound (VOC) emissions from emplaced waste to ensure protection of human health and the environment. The standard is currently met by tracking individual waste container headspace gas concentrations, which are determined by headspace gas sampling and analysis of CH TRU waste containers. The WIPP is seeking a HWFP modification to allow the disposal of remote-handled (RH) TRU waste. Because RH TRU waste is limited to approximately 5% of the waste volume and is emplaced in the disposal room walls, it is possible to bound the potential RH TRU waste contribution to VOC emissions using conservative upper bounds. These conservative upper bounds were developed as an alternative to RH TRU waste canister headspace gas sampling and analysis. The methodology used to perform the calculations used to evaluate VOC emissions from emplaced RH TRU waste canisters applied the same equations as those used to evaluate VOC emissions in the original HWFP application.

  1. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04T23:59:59.000Z

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

  2. APPLICATION OF NONSPHERICAL FISSILE CONFIGURATION IN WASTE CONTAINERS AT SRS

    SciTech Connect (OSTI)

    Eghbali, D; Michelle Abney, M

    2007-01-03T23:59:59.000Z

    Transuranic (TRU) solid waste that has been generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site (SRS) has been stored in more than 30,000 55-gallon drums and carbon steel boxes since 1953. Nearly two thirds of those containers have been processed and shipped to the Waste Isolation Pilot Plant. Among the containers assayed so far, the results indicate several drums with fissile inventories significantly higher (600-1000 fissile grams equivalent (FGE) {sup 239}Pu) than their original assigned values. While part of this discrepancy can be attributed to the past limited assay capabilities, human errors are believed to be the primary contributor. This paper summarizes the application of nonspherical fissile material configuration in waste containers, resulting in less restrictive mass and spacing limits, increased storage capacity, and several administrative controls for handling and storage of waste containers being modified without compromising safety.

  3. Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package

    SciTech Connect (OSTI)

    Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

    1985-10-01T23:59:59.000Z

    This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

  4. The disposal of orphan wastes using the greater confinement disposal concept

    SciTech Connect (OSTI)

    Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

    1991-02-01T23:59:59.000Z

    In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

  5. Microbial field pilot study

    SciTech Connect (OSTI)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1990-05-02T23:59:59.000Z

    The objective of this project is to perform a microbially enhanced oil recovery field pilot test in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate-reducing bacteria will be stimulated to selectively plug flow paths which have been preferentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. Results are reported on the isolation/characterization of anaerobic bacteria; bacterial mobility and the importance of chemotaxis; careflood experiments; microbial modeling; and surface facilities design. 7 figs., 1 tab.

  6. Final report of the Department of Energy pilot internship program on radioactive waste at Vanderbilt University (September 1, 1993-08/31, 1994)

    SciTech Connect (OSTI)

    Frank Parker

    1999-08-31T23:59:59.000Z

    This final report summarizes Vanderbilt's ten year program in radioactive waste management. The report describes the interns selected for the program, the interns' course of study, and their assignments.

  7. Proposed Changes to EPA's Transuranic Waste Characterization Approval Process

    SciTech Connect (OSTI)

    Joglekar. R. D.; Feltcorn, E. M.; Ortiz, A. M.

    2003-02-25T23:59:59.000Z

    This paper describes the changes to the waste characterization (WC) approval process proposed in August 2002 by the U.S. Environmental Protection Agency (EPA or the Agency or we). EPA regulates the disposal of transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) repository in Carlsbad, New Mexico. EPA regulations require that waste generator/storage sites seek EPA approval of WC processes used to characterize TRU waste destined for disposal at WIPP. The regulations also require that EPA verify, through site inspections, characterization of each waste stream or group of waste streams proposed for disposal at the WIPP. As part of verification, the Agency inspects equipment, procedures, and interviews personnel to determine if the processes used by a site can adequately characterize the waste in order to meet the waste acceptance criteria for WIPP. The paper discusses EPA's mandate, current regulations, inspection experience, and proposed changes. We expect that th e proposed changes will provide equivalent or improved oversight. Also, they would give EPA greater flexibility in scheduling and conducting inspections, and should clarify the regulatory process of inspections for both Department of Energy (DOE) and the public.

  8. Characterization of the MVST waste tanks located at ORNL

    SciTech Connect (OSTI)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01T23:59:59.000Z

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  9. Transuranic waste baseline inventory report. Revision No. 3

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Transuranic Waste Baseline Inventory Report (TWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties from across the U.S. Department of Energy (DOE) transuranic (TRU) waste system into a series of {open_quotes}waste profiles{close_quotes} that can be used as the basis for waste form discussions with regulatory agencies. The purpose of Revisions 0 and 1 of this report was to provide data to be included in the Sandia National Laboratories/New Mexico (SNL/NM) performance assessment (PA) processes for the Waste Isolation Pilot Plant (WIPP). Revision 2 of the document expanded the original purpose and was also intended to support the WIPP Land Withdrawal Act (LWA) requirement for providing the total DOE TRU waste inventory. The document included a chapter and an appendix that discussed the total DOE TRU waste inventory, including nondefense, commercial, polychlorinated biphenyls (PCB)-contaminated, and buried (predominately pre-1970) TRU wastes that are not planned to be disposed of at WIPP.

  10. DOCKET NO: A-93-02 (CERTIFICATION RULEMAKING) 40 CFR 191 COMPLIANCE DETERMINATION FOR THE WASTE ISOLATION

    E-Print Network [OSTI]

    /4/96 DOE Rpt, DOE/CAO-95-1121: Transuranic Waste Baseline Inventory Report (Revision 2) 12/95 II-A-21 6/1/96 DOE Study -- DOE/CAO-95-3102, Radioactive Waste Processing And Volume Reduction Technology Study 10" a Report Relevant to Actinide Solubility Studies at the WIPP Site 6/12/95 II-A-19 4/30/96 DOE Report, DOE/CAO

  11. The WIPP journey to waste receipt

    SciTech Connect (OSTI)

    Barnes, G.J.; Whatley, M.E.

    1997-04-01T23:59:59.000Z

    In the early 1970s the federal government selected an area in southeastern New Mexico containing large underground salt beds as potentially suitable for radioactive waste disposal. An extensive site characterization program was initiated by the federal government. This site became the Waste Isolation Pilot Plant, better known as WIPP. It is now 1997, over two decades after the initial selection of the New Mexico site as a potential radioactive waste repository. Numerous scientific studies, construction activities, and environmental compliance documents have been completed. The US Department of Energy (DOE) has addressed all relevant issues regarding the safety of WIPP and its ability to isolate radioactive waste from the accessible environment. Throughout the last two decades up to the present time, DOE has negotiated through a political, regulatory, and legal maze with regard to WIPP. New regulations have been issued, litigation initiated, and public involvement brought to the forefront of the DOE decision-making process. All of these factors combined to bring WIPP to its present status--at the final stages of working through the licensing requirements for receipt of transuranic (TRU) waste for disposal. Throughout its history, the DOE has stayed true to Congress` mandates regarding WIPP. Steps taken have been necessary to demonstrate to Congress, the State of New Mexico, and the public in general, that the nation`s first radioactive waste repository will be safe and environmentally sound. DOE`s compliance demonstrations are presently under consideration by the cognizant regulatory agencies and DOE is closer than ever to waste receipt. This paper explores the DOE`s journey towards implementing a permanent disposal solution for defense-related TRU waste, including major Congressional mandates and other factors that contributed to program changes regarding the WIPP project.

  12. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)] [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  13. An assessment of the flammability and explosion potential of transuranic waste

    SciTech Connect (OSTI)

    Silva, M.

    1991-06-01T23:59:59.000Z

    The explosion potential of transuranic (TRU) waste, destined for the Waste Isolation Pilot (WIPP), was recently examined in EEG-45. That investigation focused on the volatile organic compounds (VOCs) in the waste, particularly acetone, and concluded that an explosion due to the VOCs was unlikely. Recent evidence raises serious concerns about drums containing mixed radioactive hazardous waste bound for the WIPP. Static electricity generated by the plastic bags represents a potential ignition source for other fuels, such as methane gas or hydrogen gas, during transportation and during the test phase. The potential danger of explosion due to hydrogen gas or methane gas generation has not yet been resolved. This report investigates that potential hazard and examines documented ignitions, fires, explosions and incidents of overpressurization of containers at generating and storage sites planning to send transuranic waste to the WIPP for disposal. 68 refs., 6 figs.

  14. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P. [and others

    1997-09-01T23:59:59.000Z

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  15. RH-TRU Waste Characterization by Acceptable Knowledge at the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    Schulz, C.; Givens, C.; Bhatt, R.; Whitworth, J.

    2003-02-24T23:59:59.000Z

    Idaho National Engineering and Environmental Laboratory (INEEL) is conducting an effort to characterize approximately 620 drums of remote-handled (RH-) transuranic (TRU) waste currently in its inventory that were generated at the Argonne National Laboratory-East (ANL-E) Alpha Gamma Hot Cell Facility (AGHCF) between 1971 and 1995. The waste was generated at the AGHCF during the destructive examination of irradiated and unirradiated fuel pins, targets, and other materials from reactor programs at ANL-West (ANL-W) and other Department of Energy (DOE) reactors. In support of this effort, Shaw Environmental and Infrastructure (formerly IT Corporation) developed an acceptable knowledge (AK) collection and management program based on existing contact-handled (CH)-TRU waste program requirements and proposed RH-TRU waste program requirements in effect in July 2001. Consistent with Attachments B-B6 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) and th e proposed Class 3 permit modification (Attachment R [RH-WAP] of this permit), the draft AK Summary Report prepared under the AK procedure describes the waste generating process and includes determinations in the following areas based on AK: physical form (currently identified at the Waste Matrix Code level); waste stream delineation; applicability of hazardous waste numbers for hazardous waste constituents; and prohibited items. In addition, the procedure requires and the draft summary report contains information supporting determinations in the areas of defense relationship and radiological characterization.

  16. Nuclear waste management. Semiannual progress report, April 1983-September 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1984-01-01T23:59:59.000Z

    The status of the following programs is reported: waste stabilization; waste isolation; low-level waste management; remedial action; and supporting studies. 58 figures, 39 tables.

  17. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2001-01-31T23:59:59.000Z

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAO’s). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWB’s will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  18. Device Assembly Facility (DAF) Glovebox Radioactive Waste Characterization

    SciTech Connect (OSTI)

    Dominick, J L

    2001-12-18T23:59:59.000Z

    The Device Assembly Facility (DAF) at the Nevada Test Site (NTS) provides programmatic support to the Joint Actinide Shock Physics Experimental Research (JASPER) Facility in the form of target assembly. The target assembly activities are performed in a glovebox at DAF and include Special Nuclear Material (SNM). Currently, only activities with transuranic SNM are anticipated. Preliminary discussions with facility personnel indicate that primarily two distributions of SNM will be used: Weapons Grade Plutonium (WG-Pu), and Pu-238 enhanced WG-Pu. Nominal radionuclide distributions for the two material types are included in attachment 1. Wastes generated inside glove boxes is expected to be Transuranic (TRU) Waste which will eventually be disposed of at the Waste Isolation Pilot Plant (WIPP). Wastes generated in the Radioactive Material Area (RMA), outside of the glove box is presumed to be low level waste (LLW) which is destined for disposal at the NTS. The process knowledge quantification methods identified herein may be applied to waste generated anywhere within or around the DAF and possibly JASPER as long as the fundamental waste stream boundaries are adhered to as outlined below. The method is suitable for quantification of waste which can be directly surveyed with the Blue Alpha meter or swiped. An additional quantification methodology which requires the use of a high resolution gamma spectroscopy unit is also included and relies on the predetermined radionuclide distribution and utilizes scaling to measured nuclides for quantification.

  19. Process development for remote-handled mixed-waste treatment

    SciTech Connect (OSTI)

    Berry, J.B.; Campbell, D.O.; Lee, D.D.; White, T.L.

    1990-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is developing a treatment process for remote-handled (RH) liquid transuranic mixed waste governed by the concept of minimizing the volume of waste requiring disposal. This task is to be accomplished by decontaminating the bulk components so the process effluent can be disposed with less risk and expense. Practical processes have been demonstrated on the laboratory scale for removing cesium 137 and strontium 90 isotopes from the waste, generating a concentrated waste volume, and rendering the bulk of the waste nearly radiation free for downstream processing. The process is projected to give decontamination factors of 10{sup 4} for cesium and 10{sup 3} for strontium. Because of the extent of decontamination, downstream processing will be contact handled. The transuranic, radioactive fraction of the mixed waste stream will be solidified using a thin-film evaporator and/or microwave solidification system. Resultant solidified waste will be disposed at the Waste Isolation Pilot Plant (WIPP). 8 refs., 2 figs., 3 tabs.

  20. INEL test plan for evaluating waste assay systems

    SciTech Connect (OSTI)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01T23:59:59.000Z

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.