National Library of Energy BETA

Sample records for waste isolation pilot

  1. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative ... Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, ...

  2. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  3. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Home Page About WIPP Contact Us Search Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume...

  4. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep...

  5. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provided by the U.S. Environmental Protection Agency. The Karst and Related Issues at the Waste Isolation Pilot Plant - A paper addressing the issue of karst at WIPP by Dr. Lokesh...

  6. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  7. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What happened at WIPP in February 2014 Burned Truck Salt hauling truck after the fire Two isolated events took place at the Waste Isolation Pilot Plant (WIPP) in February. On February 5, a salt haul truck caught fire. Workers were evacuated, and the underground portion of WIPP was shut down. Six workers were treated for smoke inhalation. Nine days later, late in the evening of February 14, a second, unrelated event occurred when a continuous air monitor (CAM) alarmed during the night shift. Only

  8. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3/3/16 WIPP Home Page About WIPP Contact Us Search The supplemental ventilation system installed in the air intake drift WIPP's new hybrid (diesel/electric) bolter in the underground mine A drill being run at WIPP's new Emergency Operations Center Emergency response vehicles stationed in the WIPP underground WIPP Update March 3, 2016 Interim Ventilation System Tie-in Completed IVS Ducts Early this week sub-contractors at the Waste Isolation Pilot Plant (WIPP) completed the "tie in" of

  9. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  10. Sandia Energy - Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant Home Analysis A photo of Drum 68660 during the WIPP incident investigation. Permalink Gallery Waste Isolation Pilot Plant Technical Assessment Report...

  11. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases December 29, 2015 Emergency Operations Center Level 1 Activation August 4, 2015 Event News Release #4 Event News Release #3 Event News Release #2 Event News Release #1 Joint Information Center Activated at WIPP Emergency Operations Center Activated at WIPP June 02, 2015 Nitrate Waste Stream Isolated at WIPP December 22, 2014 CBFO Manager Letter #14 November 04, 2014 CBFO Manager Letter #13 September 30, 2014 Department of Energy Releases WIPP Recovery Plan June 18, 2014 CBFO

  12. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  13. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is contaminated with small amounts of plutonium and other TRU

  14. Waste Isolation Pilot Plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare drums of contact-handled transuranic waste for loading into transportation containers A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into

  15. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

  16. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department...

  17. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Broader source: Energy.gov (indexed) [DOE]

    Plan | Department of Energy The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container Isolation Plan for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant underground disposal facility. PDF

  18. Waste Isolation Pilot Plant Typifies Optimizing Resources to...

    Office of Environmental Management (EM)

    Plant Typifies Optimizing Resources to Maximize Results Waste Isolation Pilot Plant ... HalfPACT transportation packages on a Waste Isolation Pilot Plant (WIPP) truck are ...

  19. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples:...

  20. Performance Assessment Updates for Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Updates for Waste Isolation Pilot Plant Recertification Performance Assessment Updates for Waste Isolation Pilot Plant Recertification R. Chris Camphouse Sandia National...

  1. Independent Oversight Review, Waste Isolation Pilot Plant - April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2013 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 April 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities The...

  2. Voluntary Protection Program Onsite Review, Waste Isolation Pilot...

    Office of Environmental Management (EM)

    March 2009 Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant - March 2009 March 2009 Evaluation to determine whether the Waste Isolation Pilot Plant is...

  3. Voluntary Protection Program Onsite Review, Waste Isolation Pilot...

    Office of Environmental Management (EM)

    January 2013 Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant - January 2013 January 2013 Evaluation to determine whether the Waste Isolation Pilot Plant is...

  4. Waste Isolation Pilot Plant Update | Department of Energy

    Office of Environmental Management (EM)

    Update Waste Isolation Pilot Plant Update PDF icon Waste Isolation Pilot Plant Update More Documents & Publications Transuranic Package Transporter (TRUPACT-III) Content Codes...

  5. Deputy Secretary Sherwood-Randall Visits Waste Isolation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Visits Waste Isolation Pilot Plant to Survey Recovery Progress, Support Stakeholders and Employees Deputy Secretary Sherwood-Randall Visits Waste Isolation Pilot Plant...

  6. Waste Isolation Pilot Plant Recovery Plan

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  7. Waste Isolation Pilot Plant Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security Waste Isolation Pilot Plant Transportation Security PDF icon Waste Isolation Pilot Plant Transportation Security More Documents & Publications Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation Report - Fire Report Fire Hazard Analysis of the Waste Isolation Pilot Plant

  8. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workers lift a waste box from a TruPact II container at the Waste Isolation Pilot Plant. Workers lift a waste box from a TruPact II container at the Waste Isolation Pilot Plant. ...

  9. EIS-0026: Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The Office of Environmental Restoration and Waste Management prepared this EIS for the Waste Isolation Pilot Plant.

  10. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    Department of Energy The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the final report. PDF icon Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

  11. Enterprise Assessments Review of Waste Isolation Pilot Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Engineering and Procurement Processes - November 2015 Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering and Procurement Processes - November...

  12. Panelists Update Workshop Participants on Waste Isolation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    speaks at the workshop as a member of a panel on the Waste Isolation Pilot Plant recovery. ... speaks at the workshop as a member of a panel on the Waste Isolation Pilot Plant recovery. ...

  13. Waste Isolation Pilot Plant Status and Plans - 2010 | Department...

    Office of Environmental Management (EM)

    Status and Plans - 2010 Waste Isolation Pilot Plant Status and Plans - 2010 Overview of WIPP presented by Dr. Dave Moody. Waste Isolation Pilot Plant Status and Plans - 2010 More...

  14. Chemical and Radiochemical Analyses of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Analyses of Waste Isolation Pilot Plant (WIPP) Samples R-15 C-5 SWB and R-16 C-4 Lip Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP) Samples...

  15. Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses | Department of

    Office of Environmental Management (EM)

    Energy Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment F.

  16. Enterprise Assessments Review, Waste Isolation Pilot Plant – December 2014

    Broader source: Energy.gov [DOE]

    Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows

  17. Waste Isolation Pilot Plant Activites | Department of Energy

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites PDF icon Waste Isolation Pilot Plant Activites More Documents & Publications EIS-0026: 2010 Annual Mitigation Report EIS-0026: Annual Mitigation Report Table 2: U.S. Geographic Areas and Census Regions

  18. Cook-off Experiments with Surrogate Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Surrogate WIPP Drum Contents More Documents & Publications Probative Investigation of the Thermal Stability of Wastes Involved in February 2014 Waste Isolation Pilot Plant (WIPP)...

  19. Independent Oversight Review, Waste Isolation Pilot Plant - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2012 Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste...

  20. WIPP | Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high resolution video equipment, was specifically designed and built to examine all waste containers in Panel 7, Room 7 in support of the Accident Investigation Board. The boom...

  1. Waste Isolation Pilot Plant Update

    Office of Environmental Management (EM)

    Update J. R. Stroble Director, National TRU Program U.S. Department of Energy Carlsbad Field Office National Transportation Stakeholder Forum May 11, 2011 Denver, Colorado 2 2 Shipments received at WIPP to date: 9,493 Contact-handled: 9,019 Remote-handled: 474 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 44 84 366 947 818 1,002 98 8 997 1,144 730 1,032 Total Shipments by Calendar Year (Including intersite shipments) 1,194 CH TRU waste shipments only CH and RH TRU waste

  2. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  3. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Recovery Plan Waste Isolation Pilot Plant Recovery Plan This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing

  4. Waste Isolation Pilot Plant (WIPP) Source Term Attribution Analysis |

    Office of Environmental Management (EM)

    Department of Energy (WIPP) Source Term Attribution Analysis Waste Isolation Pilot Plant (WIPP) Source Term Attribution Analysis This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in

  5. Performance Assessment Updates for Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    Recertification | Department of Energy Updates for Waste Isolation Pilot Plant Recertification Performance Assessment Updates for Waste Isolation Pilot Plant Recertification R. Chris Camphouse Sandia National Laboratories December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation PDF icon Performance Assessment Updates for Waste Isolation Pilot Plant Recertification More Documents & Publications WIPP Performance Assessment:

  6. Panelists Update Workshop Participants on Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    Recovery | Department of Energy Panelists Update Workshop Participants on Waste Isolation Pilot Plant Recovery Panelists Update Workshop Participants on Waste Isolation Pilot Plant Recovery October 5, 2015 - 12:10pm Addthis EM Acting Associate Principal Deputy Assistant Secretary Frank Marcinowski, far right, speaks at the workshop as a member of a panel on the Waste Isolation Pilot Plant recovery. DOE Idaho Operations Office Deputy Manager Jack Zimmerman, left, and EM Associate Deputy

  7. DOE Waste Isolation Pilot Plant Receives EPA Recertification | Department

    Energy Savers [EERE]

    of Energy Waste Isolation Pilot Plant Receives EPA Recertification DOE Waste Isolation Pilot Plant Receives EPA Recertification March 29, 2006 - 9:42am Addthis CARLSBAD, NM - The U.S. Department of Energy's (DOE) Carlsbad Field Office today reached a significant milestone when its Waste Isolation Pilot Plant (WIPP) was recertified by the U.S. Environmental Protection Agency (EPA). This decision indicates that after a thorough evaluation of the physical state and performance of the facility,

  8. Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant |

    Energy Savers [EERE]

    Department of Energy Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of tribes and pueblos along the WIPP transportation corridors. The funds are for first responder training and support. The following tribes and pueblos are involved with WIPP transportation corridors: Acoma Pueblo Nambe Pueblo Navajo Nation Pojoaque Pueblo San Ildefonso Pueblo Laguna Pueblo

  9. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant

    Energy Savers [EERE]

    Samples: Integrated Summary Report | Department of Energy National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team

  10. Enterprise Assessments Operational Awareness Record, Waste Isolation Pilot

    Office of Environmental Management (EM)

    Plant - March 2015 | Department of Energy Record, Waste Isolation Pilot Plant - March 2015 Enterprise Assessments Operational Awareness Record, Waste Isolation Pilot Plant - March 2015 March 2015 Review of the Waste Isolation Pilot Plant Limited Review of Engineering Configuration Management Processes The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's independent Office of Enterprise Assessments (EA), Office of Environment, Safety and Health

  11. Waste Isolation Pilot Plant Update for January 2016

    Broader source: Energy.gov [DOE]

    At the January 27, 2016 Board Meeting J.R. Stroble, Carlsbad Field Office, Provided a presentation on the Waste Isolation Pilot Plant Update for January 2016.

  12. Enterprise Assessments Review of Waste Isolation Pilot Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Engineering and Procurement ... 2 5.1 Engineering Process Review ... RJR Engineering SDD System Design Description SR ...

  13. Waste Isolation Pilot Plant 2002 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... species, receive special consideration when ... set limits for doses due to radionuclide emissions to air. ... Waste Isolation Pilot Plant 2002 Site Environmental Report ...

  14. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the...

    Office of Environmental Management (EM)

    the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River National Laboratory (SRNL) This document was used to...

  15. Analysis of Waste Isolation Pilot Plant (WIPP) Underground and...

    Office of Environmental Management (EM)

    the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL) This...

  16. Radiological Release Event at the Waste Isolation Pilot Plant...

    Broader source: Energy.gov (indexed) [DOE]

    radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following...

  17. Sandia Energy - Waste Isolation Pilot Plant Accident Investigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Energy Nuclear Energy News News & Events Research & Capabilities Systems Analysis Materials Science Computational Modeling & Simulation Waste Isolation Pilot Plant Accident...

  18. Waste Isolation Pilot Plant (WIPP) Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant (WIPP) Recovery Waste Isolation Pilot Plant (WIPP) Recovery The U.S. Department of Energy’s (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. Two incidents occurred in February 2014 that led to the current shutdown of the

  19. Waste Isolation Pilot Plant EMHQ Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant EMHQ Statement Waste Isolation Pilot Plant EMHQ Statement Topic: Approved Statement for WIPP Recovery Effort. PDF icon WIPP Statement - March 12, 2014 More Documents & Publications Nuke Watch New Mexico Perspective on MDA G Cap and Cover Treatment of Remediated Nitrate Salts Pueblo De San Ildefonso Department of Environmental and Cultural Preservation Program Overview 2015

  20. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, ... WIPP has permanently disposed of more than 89,000 cubic meters of TRU waste enough ...

  1. EM Waste Isolation Pilot Plant Team's Holiday Spirit Shines | Department

    Office of Environmental Management (EM)

    of Energy Waste Isolation Pilot Plant Team's Holiday Spirit Shines EM Waste Isolation Pilot Plant Team's Holiday Spirit Shines December 23, 2013 - 12:00pm Addthis Aspen Cass, a relative of an EM Carlsbad Field Office (CBFO) employee, holds donated coats with Farok Sharif (left), president and project manager of Nuclear Waste Partnership, the WIPP management and operating contractor, and Joe Franco, manager of CBFO. Aspen Cass, a relative of an EM Carlsbad Field Office (CBFO) employee, holds

  2. Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP)

    Office of Environmental Management (EM)

    Samples R-15 C-5 SWB and R-16 C-4 Lip | Department of Energy Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP) Samples R-15 C-5 SWB and R-16 C-4 Lip Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP) Samples R-15 C-5 SWB and R-16 C-4 Lip This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The

  3. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPPs operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  4. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  5. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    by calling 1 (800) 336-9477 COVER SHEET Lead Agency: U.S. Department of Energy Title: Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement...

  6. Waste Isolation Pilot Plant Attracts World Interest | Department of Energy

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Attracts World Interest Waste Isolation Pilot Plant Attracts World Interest June 26, 2013 - 12:00pm Addthis Lights, Camera, Action! In May 2013, an INDIGO FILMS production crew prepares for an interview with EM's Carlsbad Field Office Chief Scientist Roger Nelson. INDIGO FILMS is producing a segment on WIPP for a program that highlights interesting, non-public locations that should air on the Travel Channel this fall. Lights, Camera, Action! In May 2013, an INDIGO

  7. Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize

    Office of Environmental Management (EM)

    Results | Department of Energy Plant Typifies Optimizing Resources to Maximize Results Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize Results March 5, 2013 - 12:00pm Addthis EM Carlsbad Field Office (CBFO) Manager Joe Franco, right, presents a memento to EM Senior Advisor Dave Huizenga EM Carlsbad Field Office (CBFO) Manager Joe Franco, right, presents a memento to EM Senior Advisor Dave Huizenga Three HalfPACT transportation packages on a Waste Isolation Pilot Plant

  8. Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering

    Energy Savers [EERE]

    and Procurement Processes - November 2015 | Department of Energy Waste Isolation Pilot Plant Engineering and Procurement Processes - November 2015 Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering and Procurement Processes - November 2015 November 2015 Review of Engineering and Procurement Processes The U.S. Department of Energy (DOE) Office of Environment, Safety and Health Assessments, within the independent Office of Enterprise Assessments (EA), conducted a review

  9. Enterprise Assessments Review, Waste Isolation Pilot Plant - December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 | Department of Energy December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's independent Office of Enterprise Assessments, conducted a limited scope review of the current status of Waste Isolation Pilot Plant (WIPP) plans and activities outlined in the WIPP Recovery Plan in the area of Conduct of Maintenance and the associated planned maintenance

  10. Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report- August 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant

  11. Waste Isolation Pilot Plant Recovery Update | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Topic: J. R. Stroble CBFO, Provided Information on the February 5, 2014 Truck Fire and the February 14, 2014 Radiological Incident at WIPP. PDF icon WIPP Update - November 19, 2014 More Documents & Publications WIPP Recovery Progress Resuming Operations at WIPP Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan

  12. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  13. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  14. Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant CARLSBAD, N.M., July 14, 2000 - A shipment of defense-generated transuranic radioactive waste from the U.S. Department of Energy's (DOE's) Hanford Site arrived safely today at the Waste Isolation Pilot Plant (WIPP). The shipment left the Richland, Wash. site at about 5 p.m. (Pacific Time) July 12 and arrived at WIPP today at about 2:10 p.m. (MT). Hanford is the fourth DOE site to ship waste to WIPP. Over the next 35-year period,

  15. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  16. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    SciTech Connect (OSTI)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  17. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  18. Report for Waste Isolation Pilot Plant (WIPP) UG Sample #3, R15C5...

    Office of Environmental Management (EM)

    of Waste Isolation Pilot Plant Samples: Integrated Summary Report Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP) Samples R-15 C-5 SWB and R-16 C-4 Lip...

  19. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – In a new fact sheet, DOE’s Carlsbad Field Office (CBFO) chronicles the significant progress in recovery efforts at the Waste Isolation Pilot Plant (WIPP) in the two years since a truck fire and radiological release at the site.

  20. DOE/WIPP-11-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 U.S. Department of Energy September 2011 Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 DOE/WIPP-11-2225 2 This page intentionally left blank Waste Isolation Pilot Plant Annual Site Environmental Report for 2010 DOE/WIPP-11-2225 3 2010 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 presents summary environmental

  1. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Westinghouse Electric Company Waste Isolation Division

    1999-09-29

    DOE Order 5400.1, General Environmental Protection Program Requirements (DOE, 1990a), requires each DOE facility to prepare an EMP. This document is prepared for WIPP in accordance with the guidance contained in DOE Order 5400.1; DOE Order 5400.5, Radiation Protection of the Public and Environment (DOE, 1990b); Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T; DOE, 1991); and the Title 10 Code of Federal Regulations (CFR) 834, Radiation Protection of the Public and Environment (Draft). Many sections of DOE Order 5400.1 have been replaced by DOE Order 231.1 (DOE, 1995), which is the driver for the Annual Site Environmental Report (ASER) and the guidance source for preparing many environmental program documents. The WIPP project is operated by Westinghouse Electric Company, Waste Isolation Division (WID), for the DOE. This plan defines the extent and scope of the WIPP's effluent and environmental monitoring programs during the facility's operational life and also discusses the WIPP's quality assurance/quality control (QA/QC) program as it relates to environmental monitoring. In addition, this plan provides a comprehensive description of environmental activities at WIPP including: A summary of environmental programs, including the status of environmental monitoring activities A description of the WIPP project and its mission A description of the local environment, including demographics An overview of the methodology used to assess radiological consequences to the public, including brief discussions of potential exposure pathways, routine and accidental releases, and their consequences Responses to the requirements described in the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE, 1991). This document references DOE orders and other federal and state regulations affecting environmental monitoring programs at the site. WIPP procedures, which implement the requirements of this program plan, are also referenced. The DOE regulates its own activities for radiation protection of the public under the authority of the Atomic Energy Act of 1954, as amended (42 U.S.C. 2011). The effluent and environmental monitoring activities prescribed by DOE Order 5400.5 and the DOE/EH-0173T guidance manual are designed to ensure that DOE facilities implement standards and regulations to protect members of the public and the environment against undue risk from radiation. Effluent and environmental monitoring also provide 1999 Environmental Monitoring Plan DOE/WIPP 99-2194 the data necessary to demonstrate compliance with applicable environmental protection regulations. Other federal agencies, such as the U.S. Environmental Protection Agency (EPA), are empowered through specific legislation to regulate certain aspects of DOE activities potentially affecting public health and safety or the environment. Presidential Executive Order 12088, Federal Compliance with Pollution Control Standards (43 FR 47707), requires the heads of executive agencies to ensure that all federal facilities and activities comply with applicable pollution control standards and to take all necessary actions for the prevention, control, and abatement of environmental pollution. Beyond statutory requirements, the DOE has established a general environmental protection policy. The Environmental Policy Statement (issued by then Secretary Herrington on January 8, 1986, and extended on January 7, 1987) describes the DOE's commitment to national environmental protection goals in that it conducts operations ''in an environmentally safe and sound manner . . . in compliance with the letter and spirit of applicable environmental statutes, regulations, and standards'' (DOE, 1986). This Environmental Policy Statement also states the DOE's commitment to ''good environmental management in all of its programs and at all of its facilities in order to correct existing environmental problems, to minimize risks to the environment or public health, and to anticipate and address pote

  2. Waste Isolation Pilot Plant Technical Assessment Team Report Revision 0 |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL). The charter of the WIPP Technical Assessment Team (TAT) was to determine to the extent

  3. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  4. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect (OSTI)

    Roy B. Evans, Ph.D. Amy Adams Luft Don Martin; Randall C. Morris, Ph.D.; Timothy D. Reynolds, Ph.D.; Ronald W. Warren; Westinghouse Waste Isolation Division

    2000-09-30

    The U.S. Department of Energy?s (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  5. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico Environment Department Administrative Order 05-20001 Issued May 20, 2014 1.0 INTRODUCTION The purpose of this document is to provide the Plan required by the New Mexico Environment Department (NMED) Administrative Order 05-20001 (Order) issued on May 20, 2014 to the U. S. Department of Energy (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. The Order, at paragraph 22,

  6. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  7. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  8. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  9. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect (OSTI)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  10. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  11. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  12. Cook-off Experiments with Surrogate Waste Isolation Pilot Plant (WIPP) Drum

    Office of Environmental Management (EM)

    Contents | Department of Energy Cook-off Experiments with Surrogate Waste Isolation Pilot Plant (WIPP) Drum Contents Cook-off Experiments with Surrogate Waste Isolation Pilot Plant (WIPP) Drum Contents This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative investigation process

  13. Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative investigation process to understand and determine the cause

  14. DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 Errata U.S. Department of Energy September 2010 2 Waste Isolation Pilot Plant Annual Site Environmental Report for 2009 DOE/WIPP-10-2225 3 2009 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2009 presents summary environmental data to (1) characterize site environmental management performance, (2) summarize environmental occurrences and

  15. ISSUED DOE/WIPP-15-8866 Waste Isolation Pilot Plant Annual

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15-8866 Waste Isolation Pilot Plant Annual Site Environmental Report for 2014 - EMENDED U.S. Department of Energy September 2015 ISSUED This page intentionally left blank 2 ISSUED Waste Isolation Pilot Plant Annual Site Environmental Report for 2014 DOE/WIPP-15-8866 2014 Annual Site Environmental Report To our readers: This Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 presents summary environmental data to (1) characterize site environmental management

  16. Microsoft Word - Waste Isolation Pilot Plant Summary Report May 22.2014.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Summary Report for Waste Isolation Pilot Plant (WIPP) Samples David Diprete John Young Leigh Brown Analytical Development (AD) Section May 22, 2014 - Revision 0 2 May 22, 2014 Revision 0 SRNL Preliminary Summary Report for Waste Isolation Pilot Plant (WIPP) Samples Background The Savannah River National Laboratory (SRNL), Analytical Development (AD) section received high priority samples from the Waste Isolation Pilot Plant (WIPP) in New Mexico on May 8, 2014. The samples consisted

  17. Fact Sheet Investigation of Incident at Waste Isolation Pilot Plant by

    Energy Savers [EERE]

    Technical Assessment Team | Department of Energy Fact Sheet Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team Fact Sheet Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team On February 14, 2014, an incident in Panel 7 Room 7 (P7R7) of the Waste Isolation Pilot Plant (WIPP) underground repository resulted in the release of radioactive material into the environment and contaminated 21 people with low-level radioactivity. The

  18. Deputy Secretary Sherwood-Randall Visits Waste Isolation Pilot Plant to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Survey Recovery Progress, Support Stakeholders and Employees | Department of Energy Deputy Secretary Sherwood-Randall Visits Waste Isolation Pilot Plant to Survey Recovery Progress, Support Stakeholders and Employees Deputy Secretary Sherwood-Randall Visits Waste Isolation Pilot Plant to Survey Recovery Progress, Support Stakeholders and Employees October 28, 2015 - 4:30pm Addthis Deputy Secretary Sherwood-Randall speaks to the Waste Isolation Pilot Plant workforce and employees of the

  19. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- January 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  20. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  1. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- February 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  2. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  3. Sampling Report for May-June, 2014 Waste Isolation Pilot Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Samples Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP) Samples R-15 C-5 SWB and R-16 C-4 Lip Sampling Report for Parent Drum S855793...

  4. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  5. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  6. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  7. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    1999-09-01

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

  8. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  9. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  10. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  11. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  12. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-12

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] 7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. 6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. 300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. 2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. 9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  13. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  14. Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant Carlsbad, N.M., August 21, 2000 -- The U.S. Department of Energy (DOE) today announced the selection of Tri-State Motor Transit Co. (TSMT) and CAST Transportation, Inc. (CAST) to transport radioactive transuranic waste from DOE generator sites throughout the United States to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Following a request for proposals issued on January 14,

  15. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  16. EIS-0026-S-2; Waste Isolation Pilot Plant Disposal Phase Final...

    Office of Environmental Management (EM)

    by calling 1 (800) 336-9477 COVER SHEET Lead Agency: U.S. Department of Energy Title: Waste Isolation Pilot Plant Disposal Phase Final Supplemental Environmental Impact Statement...

  17. DOE Seeks Proposals for Management of New Mexico Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Cincinnati --The U.S. Department of Energy (DOE) today issued a Final Request for Proposal for management and operations of the Waste Isolation Pilot Plan (WIPP) located in Carlsbad, New Mexico.

  18. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah

    Office of Environmental Management (EM)

    River National Laboratory (SRNL) | Department of Energy Samples by the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River National Laboratory (SRNL) This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative

  19. Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples

    Office of Environmental Management (EM)

    by the Savannah River National Laboratory (SRNL) | Department of Energy Underground and MgO Samples by the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL) This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical

  20. Waste Isolation Pilot Plant Update and Status of Recovery | Department of

    Office of Environmental Management (EM)

    Energy Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant Update and Status of Recovery Topic: Dana Bryson CBFO, Provided Information on the Status of the WIPP Site Recovery. Information Provided Included the two WIPP Events that Resulted in the Site Operations Shut Down and The Status of the Investigations. PDF icon WIPPP Update - May 21, 2014 More Documents & Publications WIPP Update and Status of Recovery NNMCAB Board Minutes: May 2014 Pojoaque Waste

  1. Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team

    Energy Savers [EERE]

    Incident at Waste Isolation Pilot Plant by Technical Assessment Team March 2015 Overall Findings On February 14, 2014, an incident in Panel 7 Room 7 (P7R7) of the Waste Isolation Pilot Plant (WIPP) underground repository resulted in the release of radioactive material into the environment and contaminated 21 people with low-level radioactivity. The Technical Assessment Team (TAT) concluded that one drum, Drum 68660, was the source of radioactive contamination released during the February 14,

  2. Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour

    Energy Savers [EERE]

    Since February Incidents | Department of Energy Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents October 16, 2014 - 12:00pm Addthis CBFO Manager Joe Franco, left, and EM Acting Assistant Secretary Mark Whitney discuss points of interest on a map of the WIPP underground. CBFO Manager Joe Franco, left, and EM Acting Assistant Secretary Mark Whitney discuss

  3. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.

  4. Waste Isolation Pilot Plant 2005 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-13

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated disposal rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel of seven rooms has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. One of the main attributes of salt, as a rock formation in which to isolate radioactive waste, is the ability of the salt to creep, that is, to deform continuously over time. Excavations into which the waste-filled drums are placed will close eventually, flowing around the drums and sealing them within the formation.

  5. Waste Isolation Pilot Plant 2003 Site Environmental Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-09-03

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management, defense nuclear materials security and safeguards and security investigations, and defense research and development. The waste must also meet the WIPP Waste Acceptance Criteria. When TRU waste arrives at WIPP, it is transported into the Waste Handling Building. The waste containers are removed from the shipping containers, placed on the waste hoist, and lowered to the repository level of 655 m (2,150 ft; approximately 0.5 mi) below the surface. Next, the containers of waste are removed from the hoist and placed in excavated storage rooms in the Salado Formation, a thick sequence of evaporite beds deposited approximately 250 million years ago (Figure 1.1). After each panel has been filled with waste, specially designed closures are emplaced. When all of WIPP's panels have been filled, at the conclusion of WIPP operations, seals will be placed in the shafts. Salt under pressure is relatively plastic, and mine openings will be allowed to creep closed for final disposal, encapsulating and isolating the waste.

  6. DOE Issues Draft Request for Proposals Seeking Contractor to Manage, Operate Waste Isolation Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cincinnati -- The U.S. Department of Energy (DOE) issued a Draft Request for Proposal (RFP) seeking a management and operations contractor to maintain the Waste Isolation Pilot Plan (WIPP) and manage the DOE National Transuranic Waste (TRU) Program in Carlsbad, New Mexico.

  7. Technical Assessment Team Report on Cause of Breached Drum at Waste Isolation Pilot Plant Released

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The U.S. Department of Energy today released a report by an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a waste drum at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, N.M.

  8. First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Washington, D.C. - The U.S. Department of Energy (DOE) announced today that the first shipment of transuranic waste using the newly approved shipping package known as the TRUPACT-III safely arrived at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  9. Robust Solution to Difficult Hydrogen Issues When Shipping Transuranic Waste to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Countiss, S. S.; Basabilvazo, G. T.; Moody, D. C. III; Lott, S. A.; Pickerell, M.; Baca, T.; CH2M Hill; Tujague, S.; Svetlik, H.; Hannah, T.

    2003-02-27

    The Waste Isolation Pilot Plant (WIPP) has been open, receiving, and disposing of transuranic (TRU) waste since March 26, 1999. The majority of the waste has a path forward for shipment to and disposal at the WIPP, but there are about two percent (2%) or approximately 3,020 cubic meters (m{sup 3}) of the volume of TRU waste (high wattage TRU waste) that is not shippable because of gas generation limits set by the U.S. Nuclear Regulatory Commission (NRC). This waste includes plutonium-238 waste, solidified organic waste, and other high plutonium-239 wastes. Flammable gases are potentially generated during transport of TRU waste by the radiolysis of hydrogenous materials and therefore, the concentration at the end of the shipping period must be predicted. Two options are currently available to TRU waste sites for solving this problem: (1) gas generation testing on each drum, and (2) waste form modification by repackaging and/or treatment. Repackaging some of the high wattage waste may require up to 20:1 drum increase to meet the gas generation limits of less than five percent (5%) hydrogen in the inner most layer of confinement (the layer closest to the waste). (This is the limit set by the NRC.) These options increase waste handling and transportation risks and there are high costs and potential worker exposure associated with repackaging this high-wattage TRU waste. The U.S. Department of Energy (DOE)'s Carlsbad Field Office (CBFO) is pursuing a twofold approach to develop a shipping path for these wastes. They are: regulatory change and technology development. For the regulatory change, a more detailed knowledge of the high wattage waste (e.g., void volumes, gas generation potential of specific chemical constituents) may allow refinement of the current assumptions in the gas generation model for Safety Analysis Reports for Packaging for Contact-Handled (CH) TRU waste. For technology development, one of the options being pursued is the use of a robust container, the ARROW-PAK{trademark} System. (1) The ARROW-PAK{trademark} is a macroencapsulation treatment technology, developed by Boh Environmental, LLC, New Orleans, Louisiana. This technology has been designed to withstand any unexpected hydrogen deflagration (i.e. no consequence) and other benefits such as criticality control.

  10. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Community Relations Plan Web Page Click Here Current Contracts Carlsbad Field Office The U.S. Department of Energy Carlsbad Field Office has responsibility for the Waste Isolation Pilot Plant and the NationalTransuranic (TRU) Program. The office's mission is to provide safe, compliant, and efficient characterization, transportation, and disposal of defense-related TRU waste. Its vision is to enable a nuclear future for our country by providing safe and environmentally responsible waste

  11. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 Media Contact: Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 i For immediate release Magnum Minerals to Buy WIPP Salt CARLSBAD, N.M., December 21, 2009- The U.S. Department of Energy's (DOE) Carlsbad Field Office (CBFO) has worked out an agreement to sell 300,000 tons of run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) to Magnum Minerals LLC of Hereford,

  12. DOE Awards Small Business Contract for Support to the Waste Isolation Pilot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant | Department of Energy Support to the Waste Isolation Pilot Plant DOE Awards Small Business Contract for Support to the Waste Isolation Pilot Plant March 27, 2014 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a task order to Southwestern Public Service Company, of Amarillo, TX to supply on a daily basis the required quantity of electric energy required for the customer's operation at

  13. DOE/WIPP 02-3196 - Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization, March 19, 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-3196 Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR § 761.75[c]) March 19, 2002 Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 TABLE OF CONTENTS 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 LOCATION OF THE DISPOSAL FACILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.0 DETAILED DESCRIPTION OF THE DISPOSAL

  14. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  15. WASTE ISOLATION PILOT PLANT (WIPP): THE NATIONS' SOLUTION TO NUCLEAR WASTE STORAGE AND DISPOSAL ISSUES

    SciTech Connect (OSTI)

    Lopez, Tammy Ann

    2014-07-17

    In the southeastern portion of my home state of New Mexico lies the Chihuahauan desert, where a transuranic (TRU), underground disposal site known as the Waste Isolation Pilot Plant (WIPP) occupies 16 square miles. Full operation status began in March 1999, the year I graduated from Los Alamos High School, in Los Alamos, NM, the birthplace of the atomic bomb and one of the nations main TRU waste generator sites. During the time of its development and until recently, I did not have a full grasp on the role Los Alamos was playing in regards to WIPP. WIPP is used to store and dispose of TRU waste that has been generated since the 1940s because of nuclear weapons research and testing operations that have occurred in Los Alamos, NM and at other sites throughout the United States (U.S.). TRU waste consists of items that are contaminated with artificial, man-made radioactive elements that have atomic numbers greater than uranium, or are trans-uranic, on the periodic table of elements and it has longevity characteristics that may be hazardous to human health and the environment. Therefore, WIPP has underground rooms that have been carved out of 2,000 square foot thick salt formations approximately 2,150 feet underground so that the TRU waste can be isolated and disposed of. WIPP has operated safely and successfully until this year, when two unrelated events occurred in February 2014. With these events, the safety precautions and measures that have been operating at WIPP for the last 15 years are being revised and improved to ensure that other such events do not occur again.

  16. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-03-25

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  17. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – Proceeds from a unique arrangement that turned excavated salt from EM’s Waste Isolation Pilot Plant (WIPP) into a usable commodity have supported an array of public projects, including field trips focusing on conservation education for about 600 elementary-age students.

  18. Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering and Procurement Processes … November 2015

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Engineering and Procurement Processes November 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  19. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  20. EIS-0026-S: Supplemental Environmental Impact Statement Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Environmental Restoration and Waste Management prepared this statement to update the environmental record established during preparation of DOE/EIS-0026, Waste Isolation Pilot Plant, by evaluating the environmental impacts associated with new information, new circumstances, and modifications to the actions evaluated in DOE/EIS-0026 that were proposed in light of the new information.

  1. Waste Isolation Pilot Plant Recovery Plan Revision 0 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing safety, health, and environmental protection. The recovery and resumption of TRU

  2. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  3. Panelists Update Workshop Participants on Waste Isolation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    left, and EM Associate Deputy Assistant Secretary for Waste Management Christine Gelles also served as panelists. EM Acting Associate Principal Deputy Assistant Secretary...

  4. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    contract. TRU waste exists in a variety of forms ranging from unprocessed laboratory trash, such as tools, glassware, and gloves, to solidified sludges from wastewater...

  5. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... . . . . . . . . . . . 6-21 Figure 6.12 - Contour Plot of the SSW Potentionmetric Surface ... HEPA high-efficiency particulate air (filter) HWDU Hazardous Waste Disposal Unit HWFP ...

  6. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    but it is also of benefit to the regional environment because it allows for sustainable reuse instead of solid waste disposal. Additionally, the Carlsbad Soil and Water...

  7. Radionuclide inventory for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report updates the information previously submitted in the draft report DOE/WIPP 88-005, Radionuclide Source Term for the WIPP, dated 1987 (reference 1). The information in this report provides the projected radionuclide inventory at the WIPP based on the projected waste receipts through the year 2013. The information is based on the 1991 TRU Program Data submittals for the Integrated Data Base (DOE/RW-0006, Rev. 7) from each of the DOE sites generating or storing TRU waste for shipment to the WIPP. The data is based on existing characterization data on the waste in interim storage, waste estimates based on projected programs during the 1991 through 2013 time period, projected treatment processes required to meet WIPP Waste Acceptance Criteria (WAC), and a projection of the waste that will be declared low level waste when it is assayed as part of the certification program for waste shipments to WIPP. This data will serve as a standard reference for WIPP programs requiring radionuclide data, including safety programs, performance assessment, and regulatory compliance. These projections will continue to be periodically updated as the waste data estimates are refined by the generator sites as they participate in the annual update of the Integrated Data Base (IDB).

  8. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant...

    Office of Legacy Management (LM)

    is the worlds first underground repository licensed to safely and permanently dispose of transuranic radioactive waste left from the research and production of nuclear weapons. ...

  9. Enterprise Assessments Operational Awareness Record, Waste Isolation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operational Awareness Record, Waste Isolation Pilot Plant - March 2015 March 2015 Review of the Waste Isolation Pilot Plant Limited Review of Engineering Configuration...

  10. Waste Isolation Pilot Plant Carlsbad, New Mexico REPRESENTATIONS, CERTIFICATIONS, AND NOTICES APPLICABLE TO OFFERS IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    /01/2012 Page 1 of 10 Waste Isolation Pilot Plant Carlsbad, New Mexico REPRESENTATIONS, CERTIFICATIONS, AND NOTICES APPLICABLE TO OFFERS IN EXCESS OF $25,000 Seller's authorized signature is required in the space provided at the bottom of this page. The representations and certifications shall apply based on the dollar value of this offer and the specific solicitation provisions and instructions contained in this request for proposal. Section Page 1. Taxpayer Identification 2 2. Previous

  11. Radiological Release Event at the Waste Isolation Pilot Plant, February 14, 2014

    Broader source: Energy.gov [DOE]

    On February 14, 2014, an airborne radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following the event, the investigation was broken into two phases. The Phase 1 report focused on how the radiological material was released into the atmosphere and Phase 2, performed once limited access to the underground was re?established, focused on the source of the released radiological material.

  12. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 1

    SciTech Connect (OSTI)

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility for the demonstration of the permanent isolation of transuranic radioactive wastes in a geologic formation. The facility was constructed in southeastern New Mexico in a manner intended to meet criteria established by the scientific and regulatory community for the safe, long-term disposal of transuranic wastes. The US Department of Energy (DOE) is preparing an application to demonstrate compliance with the requirements outlined in Title 40, Part 191 of the Code of Federal Regulations (CFR) for the permanent disposal of transuranic wastes. As mandated by the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act of 1992, the US Environmental Protection Agency (EPA) must evaluate this compliance application and provide a determination regarding compliance with the requirements within one year of receiving a complete application. Because the WIPP is a very complex program, the DOE has planned to submit the application as a draft in two parts. This strategy will allow for the DOE and the EPA to begin technical discussions on critical WIPP issues before the one-year compliance determination period begins. This report is the first of these two draft submittals.

  13. Office of Enterprise Assessments Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan, December 2014

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan December 2014 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy EXECUTIVE SUMMARY The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's independent Office of Enterprise Assessments (EA), conducted a limited scope review of the current status of Waste Isolation Pilot Plant

  14. Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year

    Broader source: Energy.gov (indexed) [DOE]

    in 2013 | Department of Energy Since WIPP became operational in March 1999, it has surpassed receiving 11,000 shipments, which traveled over 14 million safe loaded miles over the nation’s highways through WIPP’s transportation program — equal to about 29 trips around the moon. WIPP has permanently disposed of more than 89,000 cubic meters of TRU waste — enough to fill more than 35 Olympic-size swimming pools. In 2013, WIPP is on course in support of the Los Alamos

  15. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  16. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP`s environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence.

  17. Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience

    SciTech Connect (OSTI)

    Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M.; D'Amico, E.; Lattin, W.; Watson, K.

    2008-07-01

    On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the following day. While some of the success of this endeavor can be attributed to the sheer will and determination of the individuals involved, the fact that it was established and managed as a separate sub-project under the ICP, accounts for a majority of the success. Utilizing a structured project management approach, including development of, and management to, a performance baseline, allowed for timely decision making and the flexibility to adapt to changing conditions as the various aspects of the project matured. This paper provides some insight into how this was achieved, in a relatively short time, and provides an overview of the experience of start-up of a new retrieval, characterization, loading, and transportation operation in the midst of an aggressive cleanup project. Additionally, as one might expect, everything within the project did not go as planned, which provides a great opportunity to discuss some lessons learned. Finally, the first shipment was just the beginning. There are 224 additional shipments scheduled. In keeping with the theme of WM 2008, Phoenix Rising: Moving Forward in Waste Management, this paper will address the future opportunities and challenges of RH TRU waste management at the INL. (authors)

  18. Waste Isolation Pilot Plant Annual Site Environmental Report for 2014. Emended

    SciTech Connect (OSTI)

    none,

    2015-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2014 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year (CY); Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE environmental sustainability goals made through implementation of the WIPP Environmental Management System (EMS).

  19. An in-line thermal-neutron coincidence counter for WIPP (Waste Isolation Pilot Plant) certification measurements

    SciTech Connect (OSTI)

    Krick, M.S.; Osborne, L.; Polk, P.J.; Atencio, J.D.; Bjork, C.

    1989-10-01

    A custom-designed, in-line, thermal-neutron coincidence counter has been constructed for the certification of plutonium waste intended for storage at the Waste Isolation Pilot Plant. The mechanical and electrical components of the system and its performance characteristics are described. 6 refs., 16 figs.

  20. No-migration variance petition for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Carnes, R.G.; Hart, J.S. ); Knudtsen, K. )

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under {section}3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs.

  1. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  2. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Trauth, K.M.; Guzowski, R.V.; Hora, S.C.

    1994-09-01

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature.

  3. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect (OSTI)

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  4. Waste Isolation Pilot Plant site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental impacts and establish baselines for future quantitative environmental impact evaluations. Surface water and groundwater, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include meteorological, air quality, soil properties, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, no waste has been received; therefore, certain elements required by Order DOE 5400.1 are not presented in this report. 15 figs. 19 tabs.

  5. Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplement Analysis For Disposal of Certain Rocky Flats Plutonium-Bearing Materials at the Waste Isolation Pilot Plant PURPOSE The U.S. Department of Energy (DOE) is proposing to revise its approach for managing approximately 0.97 metric tons (MT) of plutonium-bearing materials (containing about 0.18 MT of surplus plutonium) located at the Rocky Flats Environmental Technology Site (RFETS). DOE is proposing to repackage and transport these materials for direct disposal at the Waste Isolation

  6. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect (OSTI)

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  7. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  8. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.

    2000-03-01

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  9. Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Accident Prevention Investigation Board was appointed to investigate a fire at the Waste Isolation Pilot Plant that occurred on February 5, 2014. An aged EIMCO 985-T15 salt haul truck (dump truck) caught fire in an underground mine.

  10. Enterprise Assessments Review of Mine Safety, Stabilization, and Habitability at the Waste Isolation Pilot Plant … October 2015

    Office of Environmental Management (EM)

    Mine Safety, Stabilization, and Habitability at the Waste Isolation Pilot Plant October 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  11. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  12. Assessment of potential doses to workers during postulated accident conditions at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Hoover, M.D.; Newton, G.J.; Farrell, R.F.

    1996-06-01

    This qualitative hazard evaluation systematically assessed potential doses to workers during postulated accident conditions at the U.S. Department of Energy`s Waste Isolation Pilot Plant (WIPP). Postulated accidents included the spontaneous ignition of a waste drum, puncture of a waste drum by a forklift, dropping of a waste drum from a forklift, and simultaneous dropping of seven drums during a crane failure. The descriptions and estimated frequencies of occurrence for these accidents were developed by the Hazard and Operability Study for CH TRU Waste Handling System (WCAP 14312). The estimated materials at risk, damage ratios, airborne release fractions and respirable fractions for these accidents were taken from the 1995 Safety Analysis Report (SAR) update and from the DOE handbook Airborne Release Fractions/Rates and Respirable Fractions for Nonreactor Nuclear Facilities (DOE-HDBK-3010-94). A Monte Carlo simulation was used to estimate the range of worker exposures that could result from each accident. Guidelines for evaluating the adequacy of defense-in-depth for worker protection at WIPP were adopted from a scheme presented by the International Commission on Radiological Protection in its publication on Protection from Potential Exposure: A Conceptual Framework (ICRP Publication 64). Probabilities of exposures greater than 5, 50, and 300 rem were less than 10{sup -2}, 10{sup -4}, and 10{sup -6} per year, respectively. In conformance with the guidance of DOE standard 3009-94, Appendix A (draft), we emphasize that use of these evaluation guidelines is not intended to imply that these numbers constitute acceptable limits for worker exposure under accident conditions. However, in conjunction with the extensive safety assessment in the 1995 SAR update, these results indicate that the Carlsbad Area Office strategy for the assessment of hazards and accidents assures the protection of workers, as well as members of the public and the environment.

  13. Computational implementation of a systems prioritization methodology for the Waste Isolation Pilot Plant: A preliminary example

    SciTech Connect (OSTI)

    Helton, J.C.; Anderson, D.R.; Baker, B.L.

    1996-04-01

    A systems prioritization methodology (SPM) is under development to provide guidance to the US DOE on experimental programs and design modifications to be supported in the development of a successful licensing application for the Waste Isolation Pilot Plant (WIPP) for the geologic disposal of transuranic (TRU) waste. The purpose of the SPM is to determine the probabilities that the implementation of different combinations of experimental programs and design modifications, referred to as activity sets, will lead to compliance. Appropriate tradeoffs between compliance probability, implementation cost and implementation time can then be made in the selection of the activity set to be supported in the development of a licensing application. Descriptions are given for the conceptual structure of the SPM and the manner in which this structure determines the computational implementation of an example SPM application. Due to the sophisticated structure of the SPM and the computational demands of many of its components, the overall computational structure must be organized carefully to provide the compliance probabilities for the large number of activity sets under consideration at an acceptable computational cost. Conceptually, the determination of each compliance probability is equivalent to a large numerical integration problem. 96 refs., 31 figs., 36 tabs.

  14. Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    SciTech Connect (OSTI)

    Jarolimek, L.; Timmer, M.J.; Powers, D.W.

    1983-03-01

    This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

  15. Waste Isolation Pilot Plant site environmental report, for calendar year 1995

    SciTech Connect (OSTI)

    1996-09-01

    The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar year are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.

  16. Waste Isolation PIlot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 1

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-03

    This Geotechnical Analysis Report (GAR) presents and interprets geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2005, to June 30, 2006. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists references.

  17. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2004 - June 2005, Volume 1

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-03

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2004, to June 30, 2005. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the Geomechanical Monitoring Program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists the references and bibliography.

  18. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-09-01

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have been overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.

  19. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  20. Inspection of Emergency Management at the Waste Isolation Pilot Plant- Volume II, August 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health and emergency management programs at the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP emergency management program. The results of the review of the WIPP environment, safety, and health (ES&H) programs are discussed in Volume I of this report, and the combined results are discussed in a summary report. The results of this review indicate that, overall, CBFO and WTS have effectively addressed nearly all of the weaknesses identified during the May 2000 OA emergency management review. Furthermore, as a consequence of that effort, CBFO and WTS have implemented a hazardous material emergency management program that, with few exceptions, meets Departmental expectations for providing a system that protects responders, site workers, and the public in the event of an emergency at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP emergency management program, including positive aspects, findings, and other items requiring management attention. Section 3 provides OA’s conclusions regarding the overall effectiveness of CBFO and WTS management of the emergency management program. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the findings that require corrective action and follow-up. Appendices C- F detail the results of the reviews of individual emergency management program elements.

  1. Office of Environmental Management Taps Small Business for Waste Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Contract | Department of Energy Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract August 29, 2012 - 4:54pm Addthis A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. A stratigraph of the Waste Isolation Pilot Plant's underground layers, where Transuranic waste is safely stored. John Hale

  2. Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)

    SciTech Connect (OSTI)

    Mercer, J.W.; Cole, D.L.; Holt, R.M.

    1998-10-09

    Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and correlate different lithologies among the seven wells.

  3. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  4. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    SciTech Connect (OSTI)

    Best, T.L.; Neuhauser, S.

    1980-03-01

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

  5. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992. Revision

    SciTech Connect (OSTI)

    Rechard, R.P.

    1996-06-01

    This document provides an overview of the processes used to access the performance of the Waste Isolation Pilot Plant (WIPP). The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, HIgh-LEvel and transuranic radioactive Wastes (40 CFR 191).

  6. Enforcement Letter, Westinghouse Waste Isolation Division- October 3, 2000

    Broader source: Energy.gov [DOE]

    Issued to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant

  7. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR {section} 761.75[c])

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2002-03-19

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) {section} 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available from the WIPP website. To facilitate the disposal of TRU wastes containing PCBs, the owner/operators are hereby submitting this initial report containing information required pursuant to the Chemical Waste Landfill Approval requirements in 40 CFR {section} 761.75(c). Although WIPP is defined as a miscellaneous unit and not a landfill by the New Mexico Hazardous Waste Act, WIPP meets or exceeds all applicable technical standards for chemical waste landfills by virtue of its design and programs as indicated in the Engineering Report (Attachment B). The layout of this initial report is consistent with requirements (i.e., Sections 2.0 through 12.0 following the sequence of 40 CFR {section} 761.75[c][i] -[ix] with sections added to discuss the Contingency and Training Plans; and Attachment B of this initial report addresses the requirements of 40 CFR {section} 761.75[b][1] through [9] in this order). This initial report includes a description of three proposed changes that will be subject to ''conditional approval.'' The first will allow the disposal of remote-handled (RH) PCB/TRU waste at WIPP. The second will allow the establishment of a central confirmation facility at WIPP. The third will allow for an increase in contact-handled Working Copy Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 (CH) waste storage capacities. These proposed changes are discussed further in Section 3.3 of this initial report. ''Conditional approval'' of these requests would allow these activities at WIPP contingent upon: - Approval of the HWFP modification (NMED) and Compliance Certification Application (CCA) change request (Environmental Protection Agency [EPA]) - Inspection of facility prior to implementing the change (if deemed necessary by the EPA) - Written approval from the EPA This initial report also includes the following three requests for waivers to the technical requirements for Chemical Waste Landfills pursuant to 40 CFR {section} 761.75(c)(4): - Hydrologic Conditions (40 CFR {section} 761.75[b][3]) - Monitoring Systems (40 CFR {sect

  8. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 3, Chapter C, Appendix C3 (conclusion)--Chapter C, Appendix C9: Revision 3

    SciTech Connect (OSTI)

    Roggenthen, D. K.; McFeeters, T. L.; Nieweg, R. G.; Blakeslee, J. J.

    1993-03-01

    This volume contains appendices for the following: results of extraction procedure (EP) toxicity data analyses; summary of headspace gas analysis in Rocky Flats Plant sampling program-FY 1988; waste drum gas generation sampling program at Rocky Flats Plant during FY 1988; TRU waste sampling program waste characterization; summary of headspace gas analyses in TRU waste sampling program; summary of volatile organic compounds analyses in TRU waste sampling program; totals analysis versus toxicity characteristic leaching procedure; Waste Isolation Pilot Plant waste characterization sampling and analysis methods; Waste Isolation Pilot Plant waste characterization analytical methods; data reduction, validation and reporting; examples of waste screening checklists; and Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program.

  9. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 7: Appendix GCR Volume 2

    SciTech Connect (OSTI)

    1995-03-31

    This report contains the second part of the geological characterization report for the Waste Isolation Pilot Plant. Both hydrology and geochemistry are evaluated. The following aspects of hydrology are discussed: surface hydrology; ground water hydrology; and hydrology drilling and testing. Hydrologic studies at the site and adjacent site areas have concentrated on defining the hydrogeology and associated salt dissolution phenomena. The geochemical aspects include a description of chemical properties of geologic media presently found in the surface and subsurface environments of southeastern New Mexico in general, and of the proposed WIPP withdrawal area in particular. The characterization does not consider any aspect of artificially-introduced material, temperature, pressure, or any other physico-chemical condition not native to the rocks of southeastern New Mexico.

  10. A select bibliography with abstracts of reports related to Waste Isolation Pilot Plant geotechnical studies (1972--1990)

    SciTech Connect (OSTI)

    Powers, D.W.; Martin, M.L.

    1993-08-01

    This select bibliography contains 941 entries. Each bibliographic entry contains the citation of a report, conference paper, or journal article containing geotechnical information about the Waste Isolation Pilot Plant (WIPP). The entries cover the period from 1972, when investigation began for a WIPP Site in southeastern New Mexico, through December 1990. Each entry is followed by an abstract. If an abstract or suitable summary existed, it has been included; 316 abstracts were written for other documents. For some entries, an annotation has been provided to clarify the abstract, comment on the setting and significance of the document, or guide the reader to related reports. An index of key words/phrases is included for all entries.

  11. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  12. DRSPALL: Impact of the Modification of the Numerical Spallings Model on Waste Isolation Pilot Plant Performance Assessment.

    SciTech Connect (OSTI)

    Kicker, Dwayne Curtis; Herrick, Courtney G.; Zeitler, Todd; Malama, Bwalya; Rudeen, David Keith; Gilkey, Amy P.

    2016-01-01

    The numerical code DRSPALL (from direct release spallings) is written to calculate the volume of Waste Isolation Pilot Plant (WIPP) solid waste subject to material failure and transport to the surface as a result of a hypothetical future inadvertent drilling intrusion. An error in the implementation of the DRSPALL finite difference equations was discovered as documented in Software Problem Report (SPR) 13-001. The modifications to DRSPALL to correct the finite difference equations are detailed, and verification and validation testing has been completed for the modified DRSPALL code. The complementary cumulative distribution function (CCDF) of spallings releases obtained using the modified DRSPALL is higher compared to that found in previous WIPP performance assessment (PA) calculations. Compared to previous PAs, there was an increase in the number of vectors that result in a nonzero spallings volume, which generally translates to an increase in spallings releases. The overall mean CCDFs for total releases using the modified DRSPALL are virtually unchanged, thus the modification to DRSPALL did not impact WIPP PA calculation results.

  13. The use of expert elicitation to quantify uncertainty in incomplete sorption data bases for Waste Isolation Pilot Plant performance assessment

    SciTech Connect (OSTI)

    Anderson, D.R.; Trauth, K.M. ); Hora, S.C. )

    1991-01-01

    Iterative, annual performance-assessment calculations are being performed for the Waste Isolation Pilot Plant (WIPP), a planned underground repository in southeastern New Mexico, USA for the disposal of transuranic waste. The performance-assessment calculations estimate the long-term radionuclide releases from the disposal system to the accessible environment. Because direct experimental data in some areas are presently of insufficient quantity to form the basis for the required distributions. Expert judgment was used to estimate the concentrations of specific radionuclides in a brine exiting a repository room or drift as it migrates up an intruding borehole, and also the distribution coefficients that describe the retardation of radionuclides in the overlying Culebra Dolomite. The variables representing these concentrations and coefficients have been shown by 1990 sensitivity analyses to be among the set of parameters making the greatest contribution to the uncertainty in WIPP performance-assessment predictions. Utilizing available information, the experts (one expert panel addressed concentrations and a second panel addressed retardation) developed an understanding of the problem and were formally elicited to obtain probability distributions that characterize the uncertainty in fixed, but unknown, quantities. The probability distributions developed by the experts are being incorporated into the 1991 performance-assessment calculations. 16 refs., 4 tabs.

  14. Petrographic and X-ray diffraction analyses of selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Fredrich, J.T.; Zeuch, D.H.

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) is located 660 m underground in the Salado Formation which consists of thick, horizontally bedded pure and impure salt and thin, laterally continuous clay and anhydrite interbeds. The Salado Two-Phase Flow Laboratory Program was established to provide site-specific-two-phase flow and other related rock properties to support performance assessment modeling of the WIPP repository. Owing to their potentially significant role in the hydrologic response of the repository, the program initially focused on the anhydrite interbeds, and in particular, on Marker Bed 139 (MB 139), which lies approximately 1 m below the planned waste storage rooms. This report synthesizes petrographic and X-ray powder diffraction studies performed to support the Salado Two-Phase Flow Laboratory Program. Experimental scoping activities in this area were performed in FY 1993 by three independent laboratories in order to: (1) quantify the mineral composition to support laboratory studies of hydrologic properties and facilitate correlation of transport properties with composition; (2) describe textures, including grain size; and (3) describe observed porosity. Samples from various depths were prepared from six 6-inch diameter cores which were obtained by drilling into the marker bed from the floor of two separate rooms. The petrographic analyses are augmented here with additional study of the original thin sections, and the pore structure observations are also examined in relation to an independent observational study of microcracks in Marker Bed 139 core samples performed in FY 1994 by the Geomechanics Department at Sandia National Laboratories.

  15. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M.

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  16. Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise

    Broader source: Energy.gov [DOE]

    COVINGTON, Ga. – Emergency personnel throughout the U.S. who respond in the event of a potential accident involving radioactive waste shipments take part in mock training scenarios to help them prepare for an actual incident.

  17. EIS-0026-S2: Waste Isolation Pilot Plant Disposal Phase, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a...

  18. Hydrogeochemical studies of the Rustler Formation and related rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico

    SciTech Connect (OSTI)

    Siegel, M.D.; Lambert, S.J.; Robinson, K.L.

    1991-08-01

    Chemical, mineralogical, isotopic, and hydrological studies of the Culebra dolomite member of the Rustler Formation and related rocks are used to delineate hydrochemical facies and form the basis for a conceptual model for post-Pleistocene groundwater flow and chemical evolution. Modern flow within the Culebra in the Waste Isolation Pilot Plant (WIPP) area appears to be largely north-to-south; however, these flow directions under confined conditions are not consistent with the salinity distribution in the region surrounding the WIPP Site. Isotopic, mineralogical, and hydrological data suggest that vertical recharge to the Culebra in the WIPP area and to the immediate east and south has not occurred for several thousand years. Eastward increasing {sup 234}U/{sup 238}U activity ratios suggest recharge from a near-surface Pleistocene infiltration zone flowing from the west-northwest and imply a change in flow direction in the last 30,000 to 12,000 years. 49 refs., 34 figs., 4 tabs.

  19. Guidebook for performance assessment parameters used in the Waste Isolation Pilot Plant compliance certification application. Volume 2: Appendices

    SciTech Connect (OSTI)

    Howarth, S.M.; Martell, M.A.; Weiner, R.; Lattier, C.

    1998-06-01

    The Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA) Performance Assessment (PA) Parameter Database and its ties to supporting information evolved over the course of two years. When the CCA was submitted to the Environmental Protection Agency (EPA) in October 1996, information such as identification of parameter value or distribution source was documented using processes established by Sandia National Laboratories WIPP Quality Assurance Procedures. Reviewers later requested additional supporting documentation, links to supporting information, and/or clarification for many parameters. This guidebook is designed to document a pathway through the complex parameter process and help delineate flow paths to supporting information for all WIPP CCA parameters. In addition, this report is an aid for understanding how model parameters used in the WIPP CCA were developed and qualified. To trace the source information for a particular parameter, a dual-route system was established. The first route uses information from the Parameter Records package as it existed when the CCA calculations were run. The second route leads from the EPA Parameter Database to additional supporting information.

  20. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect (OSTI)

    Beauheim, R.L. ); Saulnier, G.J. Jr.; Avis, J.D. )

    1991-08-01

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  1. Waste Isolation Pilot Plant no-migration variance petition. Executive summary

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    Section 3004 of RCRA allows EPA to grant a variance from the land disposal restrictions when a demonstration can be made that, to a reasonable degree of certainty, there will be no migration of hazardous constituents from the disposal unit for as long as the waste remains hazardous. Specific requirements for making this demonstration are found in 40 CFR 268.6, and EPA has published a draft guidance document to assist petitioners in preparing a variance request. Throughout the course of preparing this petition, technical staff from DOE, EPA, and their contractors have met frequently to discuss and attempt to resolve issues specific to radioactive mixed waste and the WIPP facility. The DOE believes it meets or exceeds all requirements set forth for making a successful ``no-migration`` demonstration. The petition presents information under five general headings: (1) waste information; (2) site characterization; (3) facility information; (4) assessment of environmental impacts, including the results of waste mobility modeling; and (5) analysis of uncertainties. Additional background and supporting documentation is contained in the 15 appendices to the petition, as well as in an extensive addendum published in October 1989.

  2. Waste Isolation Pilot Plant No-Migration Variance Petition. Revision 1, Volume 1

    SciTech Connect (OSTI)

    Hunt, Arlen

    1990-03-01

    The purpose of the WIPP No-Migration Variance Petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the facility for as long as the wastes remain hazardous. The DOE submitted the petition to the EPA in March 1989. Upon completion of its initial review, the EPA provided to DOE a Notice of Deficiencies (NOD). DOE responded to the EPA`s NOD and met with the EPA`s reviewers of the petition several times during 1989. In August 1989, EPA requested that DOE submit significant additional information addressing a variety of topics including: waste characterization, ground water hydrology, geology and dissolution features, monitoring programs, the gas generation test program, and other aspects of the project. This additional information was provided to EPA in January 1990 when DOE submitted Revision 1 of the Addendum to the petition. For clarity and ease of review, this document includes all of these submittals, and the information has been updated where appropriate. This document is divided into the following sections: Introduction, 1.0: Facility Description, 2.0: Waste Description, 3.0; Site Characterization, 4.0; Environmental Impact Analysis, 5.0; Prediction and Assessment of Infrequent Events, 6.0; and References, 7.0.

  3. 2013-08 "Waste Isolation Pilot Plant Storage for LANL" | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy The intent of this recommendation is that DOE/EM and WIPP set their priorities for the remaining storage facilities at WIPP to ensure that there will be enough capacity to hold all TRU waste remaining at LANL and that the current disposal schedules can be met. PDF icon Rec 2013-08 - July 31, 2013 More Documents & Publications NNMCAB Board Minutes: July 2013 Los Alamos NNMCAB Committee Minutes: July 2013 Pojoaque 2013-02 "Review Material Disposal Areas at LANL in Addition to

  4. Expert judgment on markers to deter inadvertent human intrusion into the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Trauth, K.M.; Hora, S.C.; Guzowski, R.V.

    1993-11-01

    The expert panel identified basic principles to guide current and future marker development efforts: (1) the site must be marked, (2) message(s) must be truthful and informative, (3) multiple components within a marker system, (4) multiple means of communication (e.g., language, pictographs, scientific diagrams), (5) multiple levels of complexity within individual messages on individual marker system elements, (6) use of materials with little recycle value, and (7) international effort to maintain knowledge of the locations and contents of nuclear waste repositories. The efficacy of the markers in deterring inadvertent human intrusion was estimated to decrease with time, with the probability function varying with the mode of intrusion (who is intruding and for what purpose) and the level of technological development of the society. The development of a permanent, passive marker system capable of surviving and remaining interpretable for 10,000 years will require further study prior to implementation.

  5. Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant- Volume I, August 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy’s Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP ES&H programs. The results of the review of the WIPP emergency management program are discussed in Volume II of this report, and the combined results are discussed in a summary report. As discussed throughout this report, the ISM program at WIPP is generally effective. Although improvements are warranted in some areas, the current programs have contributed to overall effective ES&H performance and a good safety record at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP ES&H programs, including positive aspects and weaknesses. Section 3 provides OA’s conclusions regarding the overall effectiveness of CBFO and WTS management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the specific finding that requires corrective action and follow-up. Appendix C presents the results of the review of selected guiding principles of ISM. Appendix D presents the results of the review of the CBFO and WTS feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM for the selected WIPP activities are discussed in Appendix E.

  6. Natural-analog studies for partial validation of conceptual models of radionuclide retardation at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Ward, D.B.; Brookins, D.G. . Dept. of Geology); Siegel, M.D.; Lambert, S.J. )

    1990-01-01

    Transport by groundwater within the Culebra Dolomite, an aquifer above the Waste Isolation Pilot Plant (WIPP), is the most probable mechanism for long-term release of radionuclides to the accessible environment. Radionuclides could be retarded by sorption if the groundwater is exposed to sufficient amounts of fracture-lining clays. In this natural-analog study, distributions of U and trace metals have been examined to constrain the strength of clay/solute interactions within the Culebra. Uranium solid/liquid distribution ratios, calculated from U concentrations of groundwaters and consanguineous fracture-filling clays, range from {approximately}80 to 800 m{ell}/g and imply retardation factors of 60 to 500 using a fracture-flow model. Retardation factors inferred from uranium-series disequilibria and {sup 14}C ages in Culebra groundwaters alone are much lower ({approximately}10), implying that clays may contain a significant unreactive component of U. Such a possibility is corroborated by Rb/Sr ages; these imply long-term stability of the clays,with resetting occurring more than 250 Ma ago. Factor analysis and mass-balance calculations suggest, however, that Mg-rich clays are dissolving in Pleistocene-age groundwaters and/or are converting to Na-rich smectites, and that B and Li are taken up from the water by the clays. Apparently, the solution chemistry reflects gradual equilibration of clays with groundwater, but thus far the bulk of the clays remain structurally intact. Measurements of the distribution of U in the Culebra will be more meaningful if the inert and exchangeable components of the U content of the clays can be quantified. 26 refs., 3 figs., 2 tabs.

  7. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was discovered during routine ground control and bulkhead inspections conducted by geotechnical staff. It was known that this area required bolting since before the events of last...

  8. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    less than 10 millirem each, which is equivalent to the exposure you would expect from a chest x-ray. All follow-up tests were below minimum detectable concentrations. No long-term...

  9. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Havens Increases WIPP Underground Safety November 12, 2015 - WIPP Conducts Limited Scope Performance Tests October Updates October 22, 2015 - WIPP Interim Ventilation System...

  10. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with additional sampling. Sampling is being done on air, soil, surface water and sediment, and vegetation. Air Sampling Sampling for airborne radioactive particles helps...

  11. DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation

    Office of Environmental Management (EM)

    Pilot Plant Receives 10,000th Shipment | Department of Energy ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment October 3, 2011 - 12:00pm Addthis DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE: Waste Isolation Pilot Plant Receives 10,000th Shipment DOE ACHIEVES MAJOR COLD WAR LEGACY WASTE CLEANUP MILESTONE:

  12. WASHINGTON GROUP TEAM WINS NEW CONTRACT TO MANAGE WASTE ISOLATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2000 WASHINGTON GROUP TEAM WINS NEW CONTRACT TO MANAGE WASTE ISOLATION PILOT PLANT IN NEW MEXICO Boise, Idaho-Washington Group International, Inc. (NYSE: WNG), announced today...

  13. Office of Enterprise Assessments Review of the Waste Isolation...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan December 2014 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health...

  14. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    SciTech Connect (OSTI)

    Cook, Neville G.W.; Heuze, Francois E.; Miller, Hamish D.S.; Thoms, Robert L.

    1993-03-01

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  15. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992

    SciTech Connect (OSTI)

    Rechard, R.P.

    1995-10-01

    This document provides an overview of the process used to assess the performance of the Waste Isolation Pilot Plant (WIPP), a proposed repository for transuranic wastes that is located in southeastern New Mexico. The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive flasks (40 CFR 191). Much has been written about the individual building blocks that comprise the foundation of PA theory and practice, and that WIPP literature is well cited herein. However, the present approach is to provide an accurate, well documented overview of the process, from the perspective of the mechanical steps used to perform the actual PA calculations. Specifically, the preliminary stochastic simulations that comprise the WIPP PAs of 1990, 1991. and 1992 are summarized.

  16. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 5: Appendices D and D, DEF, FAC

    SciTech Connect (OSTI)

    1995-03-31

    This plan serves to describe the objectives of decommissioning for the Waste Isolation Pilot Plant (WIPP), identifies the elements necessary to accomplish the decommissioning, and defines the steps to execute those elements in a safe and environmentally sound manner. The plan provides a strategy for progressing from the final actions of the Disposal Phase, through the Decontamination and Decommissioning Phase, and into the initiation of the Long-Term Monitoring Phase. This plan describes a sequence of events for decontamination of the WIPP facilities and structures used to manage and contain TRU and TRU mixed waste during the receipt and emplacement operations. Alternative methods of decontamination are provided where practical. The methods for packaging and disposal of the waste generated (derived waste) during this process are discussed. The best available technology at the time of this plan`s development, may become outmoded by future technology and alternative strategies. If alternative technologies are identified the affected stakeholder(s), the Secretary of the Interior and the State will be consulted prior to implementation.

  17. Lessons Learned from Characterization, Performance Assessment, and EPA Regulatory Review of the 1996 Actinide Source Term for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Larson, K.W.; Moore, R.C.; Nowak, E.J.; Papenguth, H.W.; Jow, H.

    1999-03-22

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of transuranic waste from defense activities. In 1996, the DOE submitted the Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the US Environmental Protection Agency (EPA). The CCA included a probabilistic performance assessment (PA) conducted by Sandia National Laboratories to establish compliance with the quantitative release limits defined in 40 CFR 191.13. An experimental program to collect data relevant to the actinide source term began around 1989, which eventually supported the 1996 CCA PA actinide source term model. The actinide source term provided an estimate of mobile dissolved and colloidal Pu, Am, U, Th, and Np concentrations in their stable oxidation states, and accounted for effects of uncertainty in the chemistry of brines in waste disposal areas. The experimental program and the actinide source term included in the CCA PA underwent EPA review lasting more than 1 year. Experiments were initially conducted to develop data relevant to the wide range of potential future conditions in waste disposal areas. Interim, preliminary performance assessments and actinide source term models provided insight allowing refinement of experiments and models. Expert peer review provided additional feedback and confidence in the evolving experimental program. By 1995, the chemical database and PA predictions of WIPP performance were considered reliable enough to support the decision to add an MgO backfill to waste rooms to control chemical conditions and reduce uncertainty in actinide concentrations, especially for Pu and Am. Important lessons learned through the characterization, PA modeling, and regulatory review of the actinide source term are (1) experimental characterization and PA should evolve together, with neither activity completely dominating the other, (2) the understanding of physical processes required to develop conceptual models is greater than can be represented in PA models, (3) experimentalists should be directly involved in model and parameter abstraction and simplification for PA, and (4) external expert review should be incorporated early in a project to increase confidence long before regulatory reviews begin.

  18. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 8: Appendices HYDRO, IRD, LTM, NUTS, PAR, PMR, QAPD, RBP

    SciTech Connect (OSTI)

    1995-03-31

    Geohydrologic data have been collected in the Los Medanos area at the US Department of Energy`s proposed Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico since 1975 as part of a study evaluating the feasibility of storing defense-associated nuclear wastes within the bedded salt of the Salado Formation of Permian age. Drilling and hydrologic testing have identified three principal water-bearing zones above the Salado Formation and one below that could potentially transport wastes to the biosphere if the proposed facility were breached. The zones above the Salado are the contact between the Rustler and Salado Formations and the Culebra and Magenta Dolomite Members of the Rustler Formation of Permian age. The zone below the Salado Formation consists of channel sandstones in the Bell Canyon Formation of the Permian Delaware Mountain Group. Determinations of hydraulic gradients, directions of flow, and hydraulic properties were hindered because of the negligible permeability of the water-bearing zones. Special techniques in drilling, well completion, and hydraulic testing have been developed to determine the hydrologic characteristics of these water-producing zones.

  19. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  20. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Progress report for the period November 1989 through December 1992

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E.

    1993-09-01

    The corrosion and gas-generation characteristics of three material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base materials, and Ti-base materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments included anoxic brine and anoxic brine with overpressures of CO{sub 2}, H{sub 2}S, and H{sub 2}. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of a protective iron sulfide reaction product. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  1. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Chapter D, Appendix D1 (beginning), Revision 3

    SciTech Connect (OSTI)

    Lappin, A. R.

    1993-03-01

    The Waste Isolation Pilot Plant (WIPP), which is designed for receipt, handling, storage, and permanent isolation of defense-generated transuranic wastes, is being excavated at a depth of approximately 655 m in bedded halites of the Permian Salado Formation of southeastern New Mexico. Site-characterization activities at the present WIPP site began in 1976. Full construction of the facility began in 1983, after completion of ``Site and Preliminary Design Validation`` (SPDV) activities and reporting. Site-characterization activities since 1983 have had the objectives of updating or refining the overall conceptual model of the geologic, hydrologic, and structural behavior of the WIPP site and providing data adequate for use in WIPP performance assessment. This report has four main objectives: 1. Summarize the results of WIPP site-characterization studies carried out since the spring of 1983 as a result of specific agreements between the US Department of Energy and the State of New Mexico. 2. Summarize the results and status of site-characterization and facility-characterization studies carried out since 1983, but not specifically included in mandated agreements. 3. Compile the results of WIPP site-characterization studies into an internally consistent conceptual model for the geologic, hydrologic, geochemical, and structural behavior of the WIPP site. This model includes some consideration of the effects of the WIPP facility and shafts on the local characteristics of the Salado and Rustler Formations. 4. Discuss the present limitations and/or uncertainties in the conceptual geologic model of the WIPP site and facility. The objectives of this report are limited in scope, and do not include determination of whether or not the WIPP Project will comply with repository-performance criteria developed by the US Environmental Protection Agency (40CFR191).

  2. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 4: Appendix BIR Volume 2

    SciTech Connect (OSTI)

    1995-03-31

    This report consists of the waste stream profile for the WIPP transuranic waste baseline inventory at Lawrence Livermore National Laboratory. The following assumptions/modifications were made by the WTWBIR team in developing the LL waste stream profiles: since only current volumes were provided by LL, the final form volumes were assumed to be the same as the current volumes; the WTWBIR team had to assign identification numbers (IDs) to those LL waste streams not given an identifier by the site, the assigned identification numbers are consistent with the site reported numbers; LL Final Waste Form Groups were modified to be consistent with the nomenclature used in the WTWBID, these changes included word and spelling changes, the assigned Final Waste Form Groups are consistent with the information provided by LL; the volumes for the year 1993 were changed from an annual rate of generation (m{sup 3}/year) to a cumulative value (m{sup 3}).

  3. Numerical simulation of ground-water flow in the Culebra dolomite at the Waste Isolation Pilot Plant (WIPP) site: Second interim report

    SciTech Connect (OSTI)

    LaVenue, A.M.; Haug, A.; Kelley, V.A.

    1988-03-01

    This hydrogeologic modeling study has been performed as part of the regional hydrologic characterization of the Waste Isolation Pilot Plant (WIPP) Site in southeastern New Mexico. The study resulted in an estimation of the transmissivity distrubution, hydraulic potentials, flow field, and fluid densities in the Culebra Dolomite Member of the Permian Rustler Formation at the WIPP site. The three-dimensional finite-difference code SWIFT-II was employed for the numerical modeling, using variable-fluid-density and a single-porosity formulation. The modeled area includes and extends beyond the WIPP controlled zone (Zone 3). The work performed consisted of modeling the hydrogeology of the Culebra using two approaches: (1) steady-state modeling to develop the best estimate of the undisturbed head distribution, i.e., of the situation before sinking if the WIPP shafts, which began in 1981; and (2) superimposed transient modeling of local hydrologic responses to excavation of the three WIPP shafts at the center of the WIPP site, as well as to various well tests. Boundary conditions (prescribed constant fluid pressures and densities) were estimated using hydraulic-head and fluid-density data obtained from about 40 wells at and near the WIPP site. The transient modeling used the calculated steady-state freshwater heads as initial conditions. 107 refs., 112 figs., 22 tabs.

  4. Enterprise Assessments Operational Awareness Record of Observations of the Design and Modification Progress of the Waste Isolation Pilot Plant Underground Interim Ventilation System and Supplemental Ventilation System November 2015

    Energy Savers [EERE]

    EA Operational Awareness Record Report Number: EA-WIPP-IVS/SVS-2015-11-15 Site: Waste Isolation Pilot Plant (WIPP) Subject: Observations of the design and modification progress of the WIPP Underground Interim Ventilation System and Supplemental Ventilation System Dates of Activity: 11/15/2015 - 11/19/2015 Report Preparer: Jeff Snook Activity Description / Purpose: The Office of Environment, Safety and Health Assessments within the Office of Enterprise Assessments (EA) is reviewing the design,

  5. Implementation of the Resource Disincentive in 40 CFR part 191.14 (e) at the Waste Isolation Pilot Plant. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    In 1986, the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) (DOE-WPO) prepared a strategy for complying with the Environmental Protection Agency`s (EPA`s) Standards for the management of transuranic (TRU) waste. Section 3.2.2.2 of the DOE`s report addressed compliance with the Assurance Requirements found in 40 CFR {section} 191.14. One of the Assurance Requirements addresses the selection of repository sites that contain recoverable natural resources. This report documents that the site selection process for the WIPP facility did indeed comply with the natural resource disincentive requirement in 40 CFR {section} 191,14(e) at the time selected and therefore complies with the standard at this time. Thus, it shall be shown that it is reasonably certain that the WIPP site provides better overall protection than practical alternatives that were available when the site was selected. It is important to point out here, and it will be discussed later in the report, that the resource disincentive requirement is a preliminary siting criterion that requires further evaluation of sites that have resources (i.e, hydrocarbons, minerals and groundwater) in the vicinity or on the site. This further evaluation requires that for sites that do have resources, a qualitative determination must be made that the site will provide better overall protection than practical alternatives. The purpose of this report is not to provide a quantitative evaluation for selection of the WIPP site. A further discussion on the difference between the qualitative analysis required under 40 CFR {section} 191.14(e) and the quantitative analysis under other sections of 40 CFR 191 is provided in {section}2.1 of this report.

  6. DOE Awards Management and Operating Contract for DOE's Waste Isolation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pilot Plant | Department of Energy Management and Operating Contract for DOE's Waste Isolation Pilot Plant DOE Awards Management and Operating Contract for DOE's Waste Isolation Pilot Plant April 20, 2012 - 12:00pm Addthis Media Contacts Bill Taylor Environmental Management Consolidated Business Center (803) 952-8564 Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) announced today that Nuclear Waste Partnership LLC (members comprised

  7. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 2: Appendices, AAC, BECR, BH

    SciTech Connect (OSTI)

    1995-03-31

    This report describes the conceptual design of a system the Department of Energy (DOE) may implement for compliance with the requirement to control access to the disposal site. In addition, this report addresses the scheduling process for control of inspection, maintenance, and periodic reporting related to Long Term Monitoring which addresses the monitoring of disposal system performance, environmental monitoring in accordance with the Consultation and Cooperation Agreement between the DOE and the state of New Mexico, and evaluation of testing activities related to the Permanent Marker System design. In addition to access control addressed by this report, the controlling or cleaning up of releases from the site is addressed in the Conceptual Decontamination and Decommissioning Plan. The monitoring of parameters related to disposal system performance is addressed in the Long Term Monitoring Design Concept Description. Together, these three documents address the full range of active institutional controls planned after disposal of the TRU waste in the WIPP repository.

  8. Development and field placement of an expansive salt-saturated concrete (ESC) for the Waste Isolation Pilot Plant (WIPP). Final report

    SciTech Connect (OSTI)

    Wakeley, L.D.; Walley, D.M.

    1986-09-01

    An expansive salt-saturated concrete (ESC) was proportioned for placement underground in halite rock at the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. Requirements for this concrete were: (1) to be chemically compatible with the host rock; (2) to remain pumpable for four hours: (3) to give net volume increase beginning at an early age, and continuing until creep closure of the salt assures sealing at the rock interface; and (4) to cure to a solid with extremely low permeability and fairly high strength. ESC was proportioned and placed underground at the WIPP in two successful field tests during FY 85 and FY 86. This report is the first of three reports about this concrete. It describes (1) the development of ESC in the laboratory, and (2) the mixture properties prior to final set. It summarizes field-placement activities in July 1985 and February 1986, when ESC was placed in test holes underground at the WIPP for two series of Small-Scale Seal Performance Tests (SSSPT). It gives data from tests of expansive behavior of the concrete at early ages and under simulated repository conditions. The second report will describe expansive behavior of ESC relative to several variables that could have an impact on its field performance and long-term stability, as determined during laboratory testing. It also will discuss possible explanations of the rather extraordinary suite of properties exhibited by ESC, as controlled by its chemical composition. The third report will describe laboratory studies of the mechanism of set retardation in a grout derived from this concrete.

  9. Analysis of Waste Isolation Pilot Plan (WIPP) Underground and MGO Samples by the Savannah River National Laboratory (SRNL)

    SciTech Connect (OSTI)

    Young, J.; Ajo, H.; Brown, L.; Coleman, C.; Crump, S.; Diprete, C.; Diprete, D.; Ekechukwu, A.; Gregory, C.; Jones, M.; Missimer, D.; O'Rourke, P.; White, T.

    2014-12-31

    Analysis of the recent WIPP samples are summarized in this report; WIPP Cam Filters 4, 6, 9 (3, 7, 11 were analyzed with FAS-118 in a separate campaign); WIPP Drum Lip R16 C4; WIPP Standard Waste Box R15 C5; WIPP MgO R16 C2; WIPP MgO R16 C4; WIPP MgO R16 C6; LANL swipes of parent drum; LANL parent drum debris; LANL parent drum; IAEA Swipe; Unused undeployed Swheat; Unused undeployed MgO; and Masselin cloth smears. Analysis showed that the MgO samples were very pure with low carbonate and water content. Other samples showed the expected dominant presence of Mg, Na and Pb. Parent drum debris sample was mildly acidic. Interpretation of results is not provided in this document, but rather to present and preserve the analytical work that was performed. The WIPP Technical Analysis Team is responsible for result interpretation which will be written separately.

  10. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Chapter E, Appendix E1, Chapter L, Appendix L1: Volume 12, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP) Project was authorized by the US Department of Energy 5 (DOE) National Security and Military Applications of the Nuclear Energy Authorization Act of 1980 (Public Law 96-164). Its legislative mandate is to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from national defense programs and activities. To fulfill this mandate, the WIPP facility has been designed to perform scientific investigations of the behavior of bedded salt as a repository medium and the interactions between the soft and radioactive wastes. In 1991, DOE proposed to initiate a experimental Test Phase designed to demonstrate the performance of the repository. The Test Phase activities involve experiments using transuranic (TRU) waste typical of the waste planned for future disposal at the WIPP facility. Much of this TRU waste is co-contaminated with chemical constituents which are defined as hazardous under HWMR-7, Pt. II, sec. 261. This waste is TRU mixed waste and is the subject of this application. Because geologic repositories, such as the WIPP facility, are defined under the Resource Conservation and Recovery Act (RCRA) as land disposal facilities, the groundwater monitoring requirements of HWMR-7, PLV, Subpart X, must be addressed. HWMR-7, Pt. V, Subpart X, must be addressed. This appendix demonstrates that groundwater monitoring is not needed in order to demonstrate compliance with the performance standards; therefore, HWMR-7, Pt.V, Subpart F, will not apply to the WIPP facility.

  11. WIPP | Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2015 Wouldn't it be cheaper to just fill this mine with salt, walk away, and build a brand new mine with a better ventilation system? Or is permitting the main problem with...

  12. Waste Isolation Pilot Plant Activites

    Office of Environmental Management (EM)

    *MERRTT 1082 EMERGENCY PERSONNEL TRAINED IN 2010 MERRTT *INCIDENT COMMAND SYSTEM *HOSPITAL PREPAREDNESS *HOSPITAL PREPAREDNESS *MEDICAL EXAMINER DISPATCHER (BETA) *DISPATCHER...

  13. Estimates of the solubilities of waste element radionuclides in waste isolation pilot plant brines: A report by the expert panel on the source term

    SciTech Connect (OSTI)

    Hobart, D.E.; Bruton, C.J.; Millero, F.J.; Chou, I.M.; Trauth, K.M.; Anderson, D.R.

    1996-05-01

    Evaluation of the long-term performance of the WIPP includes estimation of the cumulative releases of radionuclide elements to the accessible environment. Nonradioactive lead is added because of the large quantity expected in WIPP wastes. To estimate the solubilities of these elements in WIPP brines, the Panel used the following approach. Existing thermodynamic data were used to identify the most likely aqueous species in solution through the construction of aqueous speciation diagrams. Existing thermodynamic data and expert judgment were used to identify potential solubility-limiting solid phases. Thermodynamic data were used to calculate the activities of the radionuclide aqueous species in equilibrium with each solid. Activity coefficients of the radionuclide-bearing aqueous species were estimated using Pitzer`s equations. These activity coefficients were then used to calculate the concentration of each radionuclide at the 0.1 and 0.9 fractiles. The 0.5 fractile was chosen to represent experimental data with activity coefficient corrections as described above. Expert judgment was used to develop the 0.0, 0.25, 0.75, and 1.0 fractiles by considering the sensitivity of solubility to the potential variability in the composition of brine and gas, and the extent of waste contaminants, and extending the probability distributions accordingly. The results were used in the 1991 and 1992 performance assessment calculations. 68 refs.

  14. DOE Awards Grant to New Mexico Environment Department for Waste Isolation

    Office of Environmental Management (EM)

    Pilot Plant Oversight, Monitoring | Department of Energy Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring September 19, 2012 - 12:00pm Addthis Media Contact Deb Gill deb.gill@wipp.ws 575-234-7270 Carlsbad, NM - The Department of Energy (DOE) today awarded a grant for an estimated $1.6 million to the New Mexico Environment Department

  15. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory’s TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – A project to ship 3,706 cubic meters of transuranic (TRU) waste stored above ground at Los Alamos National Laboratory is ahead of schedule, on budget and has resulted in improved relationships among EM, the state of New Mexico and the National Nuclear Security Administration.

  16. Office of Environmental Management Taps Small Business for Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Management Taps Small Business for Waste Isolation Pilot Plant Contract Office of Environmental Management Taps Small Business for Waste Isolation Pilot Plant...

  17. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. DOE Carlsbad Field Office (575) 234-7270 www.wipp.energy.gov For Immediate Release Waste Isolation Pilot Plant Receives Second EPA Recertification CARLSBAD, N.M., November...

  18. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    we have at the Waste Isolation Pilot Plant. I am also happy for Gary Kessler and his induction into the Hall of Fame. This honor reflects the tremendous impact he has had...

  19. Resource Conservation and Recovery Act Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 7: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This permit application (Vol. 7) for the WIPP facility contains appendices related to the following information: Ground water protection; personnel; solid waste management; and memorandums concerning environmental protection standards.

  20. Resource Conservation and Recovery Act: Part B, Permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revison 1.0

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report contains information related to the permit application for the WIPP facility. Information is presented on solid waste management; personnel safety; emergency plans; site characterization; applicable regulations; decommissioning; and ground water monitoring requirements.

  1. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  2. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 9: Appendices RM, SCR, SER, SUM, WRAC

    SciTech Connect (OSTI)

    1995-03-31

    The Rock Mechanics Program is important to the establishment of a radioactive waste repository in salt because rock mechanics deals with the prediction of creep closure and eventual encapsulation of the waste. The intent of this paper is to give the current status of the program. This program consists of three major modeling efforts: continuum creep, fracture, and the disturbed rock zone. These models, together with laboratory material parameters, plastic flow potentials, initial and boundary input data, and other peripheral information forms the predictive technology. The extent to which the predictive technology is validated against in situ test data adds certainty to the method. Application of the technology is through simulations of the test results, design, or performance using numerical codes. In summary, the predictive capabilities are technically sound and reasonable. The current status of the program is that which would be advanced for compliance.

  3. Porosity, single-phase permeability, and capillary pressure data from preliminary laboratory experiments on selected samples from Marker Bed 139 at the Waste Isolation Pilot Plant. Volume 1 of 3: Main report, appendix A

    SciTech Connect (OSTI)

    Howarth, S.M.; Christian-Frear, T.

    1997-08-01

    Three groups of core samples from Marker Bed 139 of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) were analyzed to provide data to support the development of numerical models used to predict the long-term hydrologic and structural response of the WIPP repository. These laboratory experiments, part of the FY93 Experimental Scoping Activities of the Salado Two-Phase Flow Laboratory Program, were designed to (1) generate WIPP-specific porosity and single-phase permeability data, (2) provide information needed to design and implement planned tests to measure two-phase flow properties, including threshold pressure, capillary pressure, and relative permeability, and (3) evaluate the suitability of using analog correlations for the Salado Formation to assess the long-term performance of the WIPP. This report contains a description of the boreholes core samples, the core preparation techniques used, sample sizes, testing procedures, test conditions, and results of porosity and single-phase permeability tests performed at three laboratories: TerraTek, Inc. (Salt Lake City, UT), RE/SPEC, Inc. (Rapid City, SD), and Core Laboratories-Special Core Analysis Laboratory (Carrollton, TX) for Rock Physics Associates. In addition, this report contains the only WIPP-specific two-phase-flow capillary-pressure data for twelve core samples. The WIPP-specific data generated in this laboratory study and in WIPP field-test programs and information from suitable analogs will form the basis for specification of single- and two-phase flow parameters for anhydrite markers beds for WIPP performance assessment calculations.

  4. Waste Isolation Pilot Plant Recovery Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than 10 millirem over 50 years, which is equivalent to the exposure resulting from a chest x-ray. All follow-up tests were below minimum detectable concentrations. No long-term...

  5. Waste Isolation Pilot Plant Transportation Security

    Office of Environmental Management (EM)

    WIPP Transportation Security Gregory M. Sahd Security Manager Carlsbad Field Office U.S. Department of Energy Contact Information Gregory M. Sahd Security Operations Carlsbad Field Office * U.S. Department of Energy 575.234.8117 * Greg.Sahd@wipp.ws WIPP Transportation "...The (WIPP transportation) system is safer than that employed for any other hazardous material in the U.S...." - National Academy of Sciences, WIPP Panel Hanford Idaho National Engineering and Environmental Laboratory

  6. Waste Isolation Pilot Plant land management plan

    SciTech Connect (OSTI)

    1996-05-01

    On October 30, 1992, the WIPP Land Withdrawal Act became law. This Act transferred the responsibility for the management of the WIPP Land Withdrawal Area (WILWA) from the Secretary of the Interior to the Secretary of Energy. In accordance with sections 3(a)(1) and (3) of the Act, these lands {open_quotes}{hor_ellipsis}are withdrawn from all forms of entry, appropriation, and disposal under the public land laws{hor_ellipsis}{close_quotes}and are reserved for the use of the Secretary of Energy {open_quotes}{hor_ellipsis}for the construction, experimentation, operation, repair and maintenance, disposal, shutdown, monitoring, decommissioning, and other activities, associated with the purposes of WIPP as set forth in the Department of Energy National Security and Military Applications of Nuclear Energy Act of 1980 and this Act.{close_quotes}. As a complement to this LMP, a MOU has been executed between the DOE and the BLM, as required by section 4(d) of the Act. The state of New Mexico was consulted in the development of the MOU and the associated Statement of Work (SOW).

  7. WIPP Status Report Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Version: 2.4.3 WDS Instance: prd05.wipp.carlsbad.nm.us Generated on: June 24, 2015 7:29 AM Generated by: REPORT, WEEKLY Total Pages: 3 Selection Criteria Reporting Date...

  8. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  9. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped more than 3,000 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste headed to the Waste Isolation Pilot Plant in southeastern New Mexico.

  10. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos exceeds waste shipping goal Los Alamos exceeds waste shipping goal Los Alamos shipped 1,074 cubic meters of transuranic (TRU) and mixed low-level waste to the Waste Isolation Pilot Plant and other approved waste disposal facilities. July 8, 2013 A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot Plant in southeastern New Mexico. A shipment carrying Los Alamos transuranic waste heads down NM 502, bound for the Waste Isolation Pilot

  11. Nuclear waste isolation activities report

    SciTech Connect (OSTI)

    1980-12-01

    Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE`s radwaste management programs. (DLC)

  12. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  13. Probative Investigation of the Thermal Stability of Wastes Involved...

    Office of Environmental Management (EM)

    Probative Investigation of the Thermal Stability of Wastes Involved in February 2014 Waste Isolation Pilot Plant (WIPP) Waste Drum Breach Event Probative Investigation of the...

  14. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  15. Probative Investigation of the Thermal Stability of Wastes Involved in

    Energy Savers [EERE]

    February 2014 Waste Isolation Pilot Plant (WIPP) Waste Drum Breach Event | Department of Energy Probative Investigation of the Thermal Stability of Wastes Involved in February 2014 Waste Isolation Pilot Plant (WIPP) Waste Drum Breach Event Probative Investigation of the Thermal Stability of Wastes Involved in February 2014 Waste Isolation Pilot Plant (WIPP) Waste Drum Breach Event This document was used to determine facts and conditions during the Department of Energy Accident Investigation

  16. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  17. Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Container data is available within 14 days after the containerÆs emplacement in the WIPP Repository.

  18. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... bulkheads to the underground. The waist hoist equipment is currently undergoing cleaning (to remove soot from the February 5, 2014, fire) and inspections to ensure operability. ...

  19. Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Container data is available within 14 days after the containers emplacement in the WIPP Repository.

  20. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore...

  1. Enforcement Notice of Intent to Investigate, Nuclear Waste Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues a Notice of Intent to Investigate potential nuclear safety and worker safety and health programmatic deficiencies at the Waste Isolation Pilot Plant to Nuclear Waste...

  2. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number...

  3. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 6, Chapter D, Appendices D4--D13: Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This report (Vol. 6) for the WIPP facility contains appendices on the following information: Site characterization; general geology; ecological monitoring; and chemical compatibility of waste forms and container materials.

  4. Section 08: Approval Process for Waste Shipment From Waste Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approval Process for Waste Shipment From Waste Generator Sites for Disposal at the WIPP (40 CFR 194.8) United States Department of Energy Waste Isolation Pilot Plant Carlsbad...

  5. Environmental and Waste Management (WMO) Legacy TRU Waste Pause |

    Office of Environmental Management (EM)

    Department of Energy Environmental and Waste Management (WMO) Legacy TRU Waste Pause Environmental and Waste Management (WMO) Legacy TRU Waste Pause This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014,

  6. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 3 0 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Subject: Information Regarding the Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan Dear Mr. Kieling: The purpose of this letter is to provide the information requested in your August 5, 2014 letter regarding the Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan. The following are enclosed with the letter: * Waste Isolation

  7. Nuclear Waste Partnership, LLC

    Office of Environmental Management (EM)

    Nuclear Waste Partnership, LLC Waste Isolation Pilot Plant Report from the Department of Energy Voluntary Protection Program Onsite Review March 17-27, 2015 U.S. Department of...

  8. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    Isolation Pilot Plant Recovery Update J.R. Stroble DOE Carlsbad Field Office Northern New Mexico Citizens Advisory Board March 25, 2015 www.energy.govEM 2 Waste Isolation Pilot...

  9. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOV 2 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Plant Project 2015 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant (WIPP) Project 2015 Waste Minimization Report. This report, required by and prepared in accordance with the WIPP Hazardous Waste Facility Permit Part 2,

  10. WIPP WASTE MINIMIZATION PROGRAM DESCRIPTION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 8822 1 NOV 2 3 2011 Mr. John Kieling , Acting Bureau Chief Hazardous Waste Bureau New Mexico Environme nt Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report Dear Mr. Kieling: This letter provides the submittal of the Waste Isolation Pilot Plant Annual Waste Minimization Report. This report is required by and has bee n prepared in accordance with the WIPP

  11. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 0 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of Waste Isolation Pilot Plant Annual Geotechnical Analysis Report Dear Mr. Kieling : The purpose of this letter is to submit the following annual report as required by the Waste Isolation Pilot Plant Hazardous Waste Facility Permit No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Ana lysis Report for July 2013- June

  12. Low-level waste vitrification pilot-scale system need report

    SciTech Connect (OSTI)

    Morrissey, M.F.; Whitney, L.D.

    1996-03-01

    This report examines the need for pilot-scale testing in support of the low-level vitrification facility at Hanford. In addition, the report examines the availability of on-site facilities to contain a pilot-plant. It is recommended that a non-radioactive pilot-plant be operated for extended periods. In addition, it is recommended that two small-scale systems, one processing radioactive waste feed and one processing a simulated waste feed be used for validation of waste simulants. The actual scale of the pilot-plant will be determined from the technologies included in conceptual design of the plant. However, for the purposes of this review, a plant of 5 to 10 metric ton/day of glass production was assumed. It is recommended that a detailed data needs package and integrated flowsheet be developed in FY95 to clearly identify data requirements and identify relationships with other TWRS elements. A pilot-plant will contribute to the reduction of uncertainty in the design and initial operation of the vitrification facility to an acceptable level. Prior to pilot-scale testing, the components will not have been operated as an integrated system and will not have been tested for extended operating periods. Testing for extended periods at pilot-scale will allow verification of the flowsheet including the effects of recycle streams. In addition, extended testing will allow evaluation of wear, corrosion and mechanical reality of individual components, potential accumulations within the components, and the sensitivity of the process to operating conditions. Also, the pilot facility will provide evidence that the facility will meet radioactive and nonradioactive environmental release limits, and increase the confidence in scale-up. The pilot-scale testing data and resulting improvements in the vitrification facility design will reduce the time required for cold chemical testing in the vitrification facility.

  13. DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant | Department of Energy Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant DOE Selects Two Small Businesses to Truck Transuranic Waste to New Mexico Waste Isolation Pilot Plant January 9, 2012 - 12:00pm Addthis Media Contact Bill Taylor 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded two small-business contracts to CAST Specialty Transportation, Inc. and Visionary Solutions,

  14. Waste Characterization, Reduction, and Repackaging Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography...

  15. IPP RH-TRU Waste Study - Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a congressional mandate specified in Public Law 102-579, referred to as the Waste Isolation Pilot Plant Land Withdrawal Act. In addition, the Department considers the...

  16. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    going to leak anything. Now, propane is easy. They have 2,000 pounds of pressure on that propane in that down there. So if it would leak, it would leak." Response: The long-term...

  17. Waste Isolation Pilot Plant Electronic FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to warrant expedited processing because there is: An imminent threat to the life of physical safety of an individual exists or An urgency to inform the public concerning...

  18. Sandia Energy - Waste Isolation Pilot Plant Technical Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forensic science, modeling, and reaction chemistry-enabling the generation and peer review of scientifically based conclusions. The TAT's final report delivered five key...

  19. Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

  20. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP...

    Office of Environmental Management (EM)

    Quality Control Inspector (QCI) Pre-Exam Quiz U.S. Department of Energy Building Energy Data Exchange Specification Alignment: Achieving Management & Operational Excellence...

  1. US Department of Energy Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or on the ground. They must be covered securely to contain the contents, and placed in trash bins. 7. Used tobacco products must be properly disposed of in the fire-resistent...

  2. Waste Isolation Pilot Plant Technical Assessment Team Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    data review, sample collection and analysis, laboratory testing, and computational ... which made collection and interpretation of scientific data alone insufficient ...

  3. Waste Isolation Pilot Plant Status and Plans - 2010

    Office of Environmental Management (EM)

    Status and Plans WIPP Status and Plans - - 2010 2010 National Transportation Stakeholders Forum National Transportation Stakeholders Forum Chicago, Illinois Chicago, Illinois May 26, 2010 May 26, 2010 Dr. Dave Moody Dr. Dave Moody Manager Manager Carlsbad Field Office Carlsbad Field Office May 26, 2010 May 26, 2010 Transportation Success * First shipment to WIPP departed Los Alamos National Laboratory on March 25, 1999 * WIPP honored with U.S. Transport Council award for transportation safety in

  4. Fact Sheet Investigation of Incident at Waste Isolation Pilot...

    Energy Savers [EERE]

    Team (TAT) concluded that one drum, Drum 68660, was the source of radioactive contamination released during the February 14, 2014, radiological event at WIPP. The contents of...

  5. Administrative Compliance Order HWB-14-21 Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Bureau ("HWB") of the Environmental Health Division ("Division") of the New Mexico Environmental Department ("NMED") issues this Administrative Compliance Order ("Order") to the...

  6. New Mexico Environmental Department (NMED) Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Monitoring PDF icon Part 6 - Closure Requirements PDF icon Part 7 - Post-Closure Care Plan PDF icon Part 8 - Corrective Action For SWMUs and AOCs PDF icon Attachment A -...

  7. Fire Hazard Analysis of the Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  8. Fire Hazard Analysis for the Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  9. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs.

  10. Pilot-scale testing of paint-waste incineration. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-07-01

    Operations at the U.S. Army depots generate large quantities of paint removal and application wastes. These wastes, many of which are hazardous, are currently disposed of off site. Off-site disposal of solids is often by landfilling, which will be banned or highly restricted in the future. Several research activities have been initiated by USATHAMA to evaluate alternative technologies for management of paint wastes. The project described in this report involved pilot-scale incineration testing of two paint wastes: spent plastic blast media and spent agricultural blast media (ground walnut shells). The objective of this task was to continue development of incineration as an alternative treatment technology for paint wastes through pilot-scale rotary-kiln incineration testing. The results of the pilot test were evaluated to assess how the paint waste characteristics and incinerator operating conditions affected the following: characteristics of ash residue volume reduction achieved, destruction and removal efficiencies (DRE's) for organic compound and characteristics of stack gases.

  11. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  12. Graphite matrix materials for nuclear waste isolation

    SciTech Connect (OSTI)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  13. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  14. Application to ship nonmixed transuranic waste to the Nevada Test Site for interim storage. Waste Cerification Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This report documents various regulations on radioactive waste processing and discusses how the Waste Isolation Pilot Plant will comply with and meet these requirements. Specific procedures are discussed concerning transuranic, metal scrap, salt block, solid, and glove box wastes.

  15. Unreviewed Safety Question Determination - Processing Waste in the Waste

    Office of Environmental Management (EM)

    Characterization Glovebox | Department of Energy Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed

  16. North Central Texas Dairy Waste Control Pilot Project

    SciTech Connect (OSTI)

    2006-08-01

    One of the major goals of this project is to remove 80% of the phosphorus from the liquid waste stream. Also important is that it be economically beneficial to the farm.

  17. Pioneering Nuclear Waste Disposal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T h e W a s t e I s o l a t i o n P i l o t P l a n t DOE 1980. Final Environmental Impact Statement, Waste Isolation Pilot Plant. DOE/EIS-0026, Washington, DC, Office of Environmental Management, U.S. Department of Energy. DOE 1981. Waste Isolation Pilot Plant (WIPP): Record of Decision. Federal Register, Vol. 46, No. 18, p. 9162, (46 Federal Register 9162), January 28, 1981. U.S. Department of Energy. DOE 1990. Final Supplement Environmental Impact Statement, Waste Isolation Pilot Plant.

  18. Basalt Waste Isolation Project. Annual report, fiscal year 1980

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    During this fiscal year the information available in the fields of geology and hydrology of the Columbia Plateau was consolidated and two reports were issued summarizing this information. In addition, the information on engineered barriers was consolidated and a report summarizing the research to date on waste package development and design of borehole seals was prepared. The waste package studies, when combined with the hydrologic integration, revealed that even under extreme disruptive conditions, a repository in basalt with appropriately designed waste packages can serve as an excellent barrier for containment of radionuclides for the long periods of time required for waste isolation. On July 1, 1980, the first two heater tests at the Near-Surface Test Facility were started and have been successfully operated to this date. The papers on the Near-Surface Test Facility section of this report present the results of the equipment installed and the preliminary results of the testing. In October 1979, the US Department of Energy selected the joint venture of Kaiser Engineers/Parsons Brinckerhoff Quade and Douglas, Inc., to be the architect-engineer to produce a conceptual design of a repository in basalt. During the year, this design has progressed and concept selection has now been completed. This annual report presents a summary of the highlights of the work completed during fiscal year 1980. It is intended to supplement and summarize the nearly 200 papers and reports that have been distributed to date as a part of the Basalt Waste Isolation Project studies.

  19. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico 87505-6303 Subject: Transmittal of Waste Isolation Pilot Plant Annual Geotechnical Analysis Report Dear Mr. Kieling : The purpose of this letter is to submit the...

  20. Enhancements to System for Tracking Radioactive Waste Shipments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... country to the Waste Isolation Pilot Plant in New Mexico. | Photo courtesy of the National Museum of Nuclear Science & History National Museum of Nuclear Science & History Opens ...

  1. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  2. WIPP Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Bearing Waste Container Isolation Plan Implementation Update May 12, 2015 Panel 6 and Panel 7, Room 7 a. Rollback * Contamination Assessment-This prerequisite is complete and therefore status updates are no longer required. * Fixing/Decontamination Activities-Decontaminated equipment has been removed from Room 7 of Panel 7 to prepare for Room 7 closure activities. Remaining items in Panel 7, Room 7 include thirteen empty magnesium oxide racks, about 200 roof bolts, nine messenger

  3. Pilot-scale grout production test with a simulated low-level waste

    SciTech Connect (OSTI)

    Fow, C.L.; Mitchell, D.H.; Treat, R.L.; Hymas, C.R.

    1987-05-01

    Plans are underway at the Hanford Site near Richland, Washington, to convert the low-level fraction of radioactive liquid wastes to a grout form for permanent disposal. Grout is a mixture of liquid waste and grout formers, including portland cement, fly ash, and clays. In the plan, the grout slurry is pumped to subsurface concrete vaults on the Hanford Site, where the grout will solidify into large monoliths, thereby immobilizing the waste. A similar disposal concept is being planned at the Savannah River Laboratory site. The underground disposal of grout was conducted at Oak Ridge National Laboratory between 1966 and 1984. Design and construction of grout processing and disposal facilities are underway. The Transportable Grout Facility (TGF), operated by Rockwell Hanford Operations (Rockwell) for the Department of Energy (DOE), is scheduled to grout Phosphate/Sulfate N Reactor Operations Waste (PSW) in FY 1988. Phosphate/Sulfate Waste is a blend of two low-level waste streams generated at Hanford's N Reactor. Other wastes are scheduled to be grouted in subsequent years. Pacific Northwest Laboratory (PNL) is verifying that Hanford grouts can be safely and efficiently processed. To meet this objective, pilot-scale grout process equipment was installed. On July 29 and 30, 1986, PNL conducted a pilot-scale grout production test for Rockwell. During the test, 16,000 gallons of simulated nonradioactive PSW were mixed with grout formers to produce 22,000 gallons of PSW grout. The grout was pumped at a nominal rate of 15 gpm (about 25% of the nominal production rate planned for the TGF) to a lined and covered trench with a capacity of 30,000 gallons. Emplacement of grout in the trench will permit subsequent evaluation of homogeneity of grout in a large monolith. 12 refs., 34 figs., 5 tabs.

  4. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Project 2014 Waste Minimization Report, Permit Number NM4890139088-TSDF Dear Mr. Kieling: The purpose of this letter is to provide you with the Waste Isolation Pilot Plant {WIPP) Project 2014 Waste Minimization Report. This report, required by and prepared in accordance with the W IPP Hazardous Waste Facility Permit Part 2,

  5. Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments

    Broader source: Energy.gov [DOE]

    With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

  6. Final Reclamation Report: Basalt Waste Isolation Project exploratory shaft site

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.

    1990-06-01

    The restoration of areas disturbed by activities of the Basalt Waste Isolation Project (BWIP) constitutes a unique operation at the US Department of Energy's (DOE) Hanford Site, both from the standpoint of restoration objectives and the time frame for accomplishing these objectives. The BWIP reclamation program comprises three separate projects: borehole reclamation, Near Surface Test Facility (NSTF) reclamation, and Exploratory Shaft Facility (ESF) reclamation. The main focus of this report is on determining the success of the revegetation effort 1 year after work was completed. This report also provides a brief overview of the ESF reclamation program. 21 refs., 7 figs., 14 tabs.

  7. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  8. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect (OSTI)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

  9. Idaho's Advanced Mixed Waste Treatment Project Details 2013Accomplish...

    Office of Environmental Management (EM)

    (MLLW). The defense-related TRU waste is sent to the Waste Isolation Pilot Plant in New Mexico, and the MLLW is sent to other federal and commercial disposal sites. AMWTP is the...

  10. A pilot test of partitioning for the simulated highly saline high level waste

    SciTech Connect (OSTI)

    Chen, Jing; Wang, Jianchen; Jing, Shan

    2007-07-01

    It is a problem how to treat the highly saline high level waste (HLW). A partitioning process for HLW was developed at INET. The partitioning process includes the removal of actinides by TRPO extraction, the removal of Sr by crown ether extraction, and the removal of Cs by ion exchange. A 72-hour test was carried out in a pilot facility using the simulated HLW. Nd and Zr were used to simulate Am and Pu, respectively. The decontamination factors are >3000, >500, >1000, {approx}150 and {approx}94 for U, Nd, Zr, Sr and Cs, respectively. The results meet the requirement to change the highly saline HLW into a non-{alpha} and intermediate level waste. (authors)

  11. Nitrate Salt Bearing Transuranic Waste Container Monitoring | Department of

    Office of Environmental Management (EM)

    Energy Nitrate Salt Bearing Transuranic Waste Container Monitoring Nitrate Salt Bearing Transuranic Waste Container Monitoring This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment

  12. Packing TRU Waste Containers Design | Department of Energy

    Office of Environmental Management (EM)

    Packing TRU Waste Containers Design Packing TRU Waste Containers Design This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various

  13. Los Alamos Waste Acceptance Criteria | Department of Energy

    Energy Savers [EERE]

    Waste Acceptance Criteria Los Alamos Waste Acceptance Criteria This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public

  14. INVESTIGATING SUSPENSION OF MST, CST, AND SIMULATED SLUDGE SLURRIES IN A PILOT-SCALE WASTE TANK

    SciTech Connect (OSTI)

    Poirier, M.; Qureshi, Z.; Restivo, M.; Steeper, T.; Williams, M.

    2011-05-24

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending and resuspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is for the pumps to resuspend the MST, CST, and simulated sludge particles so that they can be removed from the tank, and to suspend the MST so it can contact strontium and actinides. The pilot-scale tank is a 1/10.85 linear scaled model of Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5, B3, and B1). Previous testing showed that three Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank, and to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The conclusions from this analysis are: (1) Three SMPs will be able to resuspend more than 99.9% of the MST and CST that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 84% of the maximum discharge velocity of the pump. (2) Three SMPs will be able to resuspend more than 99.9% of the MST, CST, and simulated sludge that has settled for four weeks at nominal 45 C. The testing shows the required pump discharge velocity is 82% of the maximum discharge velocity of the pump. (3) A contact time of 6-12 hours is needed for strontium sorption by MST in a jet mixed tank with cooling coils, which is consistent with bench-scale testing and actinide removal process (ARP) operation.

  15. Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste

    Office of Environmental Management (EM)

    Characterization Glovebox Operations | Department of Energy Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation

  16. Lab sets new record for waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New record for waste shipments Lab sets new record for waste shipments LANL completing its 132nd transuranic (TRU) waste shipment of fiscal year 2010 to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. August 20, 2010 LANL's shipment of transuranic waste leaves Los Alamos. LANL's shipment of transuranic waste leaves Los Alamos. Contact Fred deSousa Communications Office (505) 500-5672 Email "Removing this waste from Los Alamos is crucial to our plans for overall

  17. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit The WIPP Hazardous Waste Facility Permit (HWFP) effective April 15, 2011 WIPP Hazardous Waste Facility Permit Authorizes the U.S. Department of Energy to manage, store, and dispose of contact-handled and remote-handled transuranic mixed waste at the Waste Isolation Pilot Plant. Mixed waste contains radioactive and chemically hazardous components. Information Repository Documents related to the Hazardous Waste Facility Permit

  18. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 4 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant Annual Report Dear Mr. Kieling: The purpose of this letter is to provide the following annual report as requ ired by the Waste Isolation Pilot Plant Hazardous Waste Facility Permit No. NM4890139088-TSDF, Part 4, Section 4.6.1.2. * Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2012- June 2013, DOEIW

  19. New Mexico Environmental Department (NMED) Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  20. Pilot-scale Tests to Vitrify Korean Low-Level Wastes

    SciTech Connect (OSTI)

    Choi, K.; Kim, C.-W.; Park, J. K.; Shin, S. W.; Song, M.-J.; Brunelot, P.; Flament, T.

    2002-02-26

    Korea is under preparation of its first commercial vitrification plant to handle LLW from her Nuclear Power Plants (NPPs). The waste streams include three categories: combustible Dry Active Wastes (DAW), borate concentrates, and spent resin. The combustible DAW in this research contains vinyl bag, paper, and protective cloth and rubber shoe. The loaded resin was used to simulate spent resin from NPPs. As a part of this project, Nuclear Environment Technology Institute (NETEC) has tested an operation mode utilizing its pilot-scale plant and the mixed waste surrogates of resin and DAW. It has also proved, with continuous operation for more than 100 hours, the consistency and operability of the plant including cold crucible melter and its off-gas treatment equipment. Resin and combustible DAW were simultaneously fed into the glass bath with periodic addition of various glass frits as additives, so that it achieved a volume reduction factor larger than 70. By adding various glass frits, this paper discusses about maintaining the viscosity and electrical conductivity of glass bath within their operable ranges, but not about obtaining a durable glass product. The operating mode starts with a batch of glass where a titanium ring is buried. When the induced power ignites the ring, the joule heat melts the surrounding glass frit along with the oxidation heat of titanium. As soon as the molten bath is prepared, in the first stage of the mode, the wastes consisting of loaded resin and combustible DAW are fed with no or minimum addition of glass frits. Then, in the second stage, the bath composition is kept as constant as possible. This operation was successful in terms of maintaining the glass bath under operable condition and produced homogeneous glass. This operation mode could be adapted in commercial stage.

  1. 10,000th Waste Shipment Milestone is All in the Family | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10,000th Waste Shipment Milestone is All in the Family 10,000th Waste Shipment Milestone is All in the Family August 29, 2011 - 12:00pm Addthis A Waste Isolation Pilot Plant facility shift manager inspects the shipping manifest of the 10,000th safe shipment to roll through the gates at the Department of Energy’s Waste Isolation Pilot Plant on Sept. 24, 2011. A Waste Isolation Pilot Plant facility shift manager inspects the shipping manifest of the 10,000th safe shipment to roll

  2. Study of the VOC emissions from a municipal solid waste storage pilot-scale cell: Comparison with biogases from municipal waste landfill site

    SciTech Connect (OSTI)

    Chiriac, R.; De Araujos Morais, J.; Carre, J.; Bayard, R.; Chovelon, J.M.; Gourdon, R.

    2011-11-15

    Highlights: > Follow-up of the emission of VOCs in a municipal waste pilot-scale cell during the acidogenesis and acetogenesis phases. > Study from the very start of waste storage leading to a better understanding of the decomposition/degradation of waste. > Comparison of the results obtained on the pilot-scale cell with those from 3 biogases coming from the same landfill site. > A methodology of characterization for the progression of the stabilization/maturation of waste is finally proposed. - Abstract: The emission of volatile organic compounds (VOCs) from municipal solid waste stored in a pilot-scale cell containing 6.4 tonnes of waste (storage facility which is left open during the first period (40 days) and then closed with recirculation of leachates during a second period (100 days)) was followed by dynamic sampling on activated carbon and analysed by GC-MS after solvent extraction. This was done in order to know the VOC emissions before the installation of a methanogenesis process for the entire waste mass. The results, expressed in reference to toluene, were exploited during the whole study on all the analyzable VOCs: alcohols, ketones and esters, alkanes, benzenic and cyclic compounds, chlorinated compounds, terpene, and organic sulphides. The results of this study on the pilot-scale cell are then compared with those concerning three biogases from a municipal waste landfill: biogas (1) coming from waste cells being filled or recently closed, biogas (2) from all the waste storage cells on site, and biogas (3) which is a residual gas from old storage cells without aspiration of the gas. The analysis of the results obtained revealed: (i) a high emission of VOCs, principally alcohols, ketones and esters during the acidogenesis; (ii) a decrease in the alkane content and an increase in the terpene content were observed in the VOCs emitted during the production of methane; (iii) the production of heavier alkanes and an increase in the average number of carbon atoms per molecule of alkane with the progression of the stabilisation/maturation process were also observed. Previous studies have concentrated almost on the analysis of biogases from landfills. Our research aimed at gaining a more complete understanding of the decomposition/degradation of municipal solid waste by measuring the VOCs emitted from the very start of the landfill process i.e. during the acidogenesis and acetogenesis phases.

  3. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot...

  4. Basalt waste isolation project. Quarterly report, April 1, 1981-June 30, 1981

    SciTech Connect (OSTI)

    Deju, R.A.

    1981-08-01

    This document reports progress made in the Basalt Waste Isolation Project during the third quarter of fiscal year 1981. Efforts are described for the following programs of the project work breakdown structure: systems; waste package; site; repository; regulatory and institutional; test facilities; in situ test facilities.

  5. Los Alamos National Laboratory resumes transuranic waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL resumes transuranic waste shipments Los Alamos National Laboratory resumes transuranic waste shipments The waste was received at Waste Control Specialists in Andrews, Texas, where it will be temporarily staged until it can be shipped to the Waste Isolation Pilot Plant. April 2, 2014 Los Alamos sent the first shipment to Waste Control Specialists on April 1. Los Alamos sent the first shipment to Waste Control Specialists on April 1. Contact Patti Jones Communications Office (505) 665-7748

  6. Study of the isolation system for geologic disposal of radioactive wastes

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This study was conducted for the US Department of Energy by a Waste Isolation System Panel of the Board on Radioactive Waste Management under the National Research Council's Commission on Physical Sciences, Mathematics, and Resources. The panel was charged to review the alternative technologies available for the isolation of radioactive waste in mined geologic repositories, evaluate the need for and possible performance benefits from these technologies as potential elements of the isolation system, and identify appropriate technical criteria for choosing among them to achieve satisfactory overall performance of a geologic repository. Information has been acquired through examination of a large body of technical literature, briefings by representatives of government agencies and their industrial and university contractors, in-depth discussions with individual experts in the field, site visits, and calculations by panel members and staff, with deliberations extending over a period of approximately two years. The panel's principal findings are given. Chapters are devoted to: the geologic waste-disposal system; waste characteristics; waste package; conceptual design of repositories; geologic hydrologic, and geochemical properties of geologic waste-disposal systems; overall performance criterion for geologic waste disposal; performance analysis of the geologic waste-disposal system; and natural analogs relevant to geologic disposal. 336 references.

  7. Basalt waste isolation project. Quarterly report, October 1, 1980-December 31, 1980

    SciTech Connect (OSTI)

    Deju, R.A.

    1981-02-01

    In September 1977, the National Waste Terminal Storage Program was restructured to support investigations of two US DOE sites - Hanford and Nevada. The Basalt Waste Isolation Project within Rockwell Hanford Operations has been chartered with the responsibility of conducting these investigations. The overall Basalt Waste Isolation Project is divided into the following principal work areas: systems integration, geosciences, hydrology, engineered barriers, near-surface test facility, engineering testing, and repository studies. Summaries of major accomplishments for each of these areas are reported in this document.

  8. Transuranic Waste Characterization Quality Assurance Program Plan

    SciTech Connect (OSTI)

    NONE

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  9. Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) | Department of

    Energy Savers [EERE]

    Energy Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) Greater-than-Class C Low-Level Radioactive Waste (GTCC LLW) A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. A transuranic (TRU) waste shipment makes its way to the Waste Isolation Pilot Plant in Carlsbad, N.M. On February 17, 2011, DOE issued the Draft Environmental Impact Statement (EIS) for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste (LLRW)

  10. Construction Begins on New Waste Processing Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste

  11. Waste Management at Technical Area-55, 406-GEN-R00 | Department of Energy

    Office of Environmental Management (EM)

    Management at Technical Area-55, 406-GEN-R00 Waste Management at Technical Area-55, 406-GEN-R00 This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are

  12. Interim reclamation report: Basalt Waste Isolation Project exploration shaft site

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-02-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. Extensive studies of the geotechnical aspects of the site were undertaken, including preparations for drilling a large diameter Exploratory Shaft. This report describes the development of the reclamation program for the Exploratory Shaft Facility, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 43 refs., 19 figs., 9 tabs.

  13. RH TRU Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote-Handled Transuranic Waste Program After seven years and more than 5,000 safe shipments of contact-handled (CH) transuranic (TRU) waste, the Waste Isolation Pilot Plant is now also receiving remote-handled (RH) TRU waste. In October 2006, the New Mexico Environment Department (NMED) approved the U.S. Department of Energy's plans for disposal of RH-TRU waste at WIPP. The Environmental Protection Agency (EPA) gave its approval in 2004. Located in the remote desert of southeastern New Mexico,

  14. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APR 2 8 201 4 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505 Subject: Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling: The purpose of this letter is to provide the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014. This report is required by the

  15. January 23, 2007: WIPP receives first shipment of waste | Department of

    Energy Savers [EERE]

    Energy 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007: WIPP receives first shipment of waste January 23, 2007 The Department's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, receives (pdf) its first shipment of remote-handled (RH) transuranic (TRU) radioactive waste. The waste, which consisted of three 30-gallon drums of radioactive debris waste and originated at DOE's Idaho National Laboratory, was

  16. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  17. WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M., August 1, 2011 The U.S. Department of Energys (DOEs) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP).

  18. Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste

    Office of Environmental Management (EM)

    Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 | Department of Energy Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the

  19. Lab sets new record for waste volume removed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Sets New Record for Waste Volume Removed Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab sets new record for waste volume removed The Transuranic Waste Program has met its commitment to ship 800 cubic meters of TRU waste to the Waste Isolation Pilot Plant during fiscal year 2012. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office

  20. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  1. Waste isolation safety assessment program. Task 4. Third contractor information meeting

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Contractor Information Meeting (October 14 to 17, 1979) was part of the FY-1979 effort of Task 4 of the Waste Isolation Safety Assessment Program (WISAP): Sorption/Desorption Analysis. The objectives of this task are to: evaluate sorption/desorption measurement methods and develop a standardized measurement procedure; produce a generic data bank of nuclide-geologic interactions using a wide variety of geologic media and groundwaters; perform statistical analysis and synthesis of these data; perform validation studies to compare short-term laboratory studies to long-term in situ behavior; develop a fundamental understanding of sorption/desorption processes; produce x-ray and gamma-emitting isotopes suitable for the study of actinides at tracer concentrations; disseminate resulting information to the international technical community; and provide input data support for repository safety assessment. Conference participants included those subcontracted to WISAP Task 4, representatives and independent subcontractors to the Office of Nuclear Waste Isolation, representatives from other waste disposal programs, and experts in the area of waste/geologic media interaction. Since the meeting, WISAP has been divided into two programs: Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) (modeling efforts) and Waste/Rock Interactions Technology (WRIT) (experimental work). The WRIT program encompasses the work conducted under Task 4. This report contains the information presented at the Task 4, Third Contractor Information Meeting. Technical Reports from the subcontractors, as well as Pacific Northwest Laboratory (PNL), are provided along with transcripts of the question-and-answer sessions. The agenda and abstracts of the presentations are also included. Appendix A is a list of the participants. Appendix B gives an overview of the WRIT program and details the WRIT work breakdown structure for 1980.

  2. Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate

    SciTech Connect (OSTI)

    Liu Xiao; Wang Wei; Shi Yunchun; Zheng Lei; Gao Xingbao; Qiao Wei; Zhou Yingjun

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

  3. Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, February 5, 2014

    Office of Environmental Management (EM)

  4. The Karst and Related Issues at the Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  5. Report to Congress on the Use of the Waste Isolation Pilot Plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transparency program activities to identify priorities. It may also be prudent to consult with the International Atomic Energy Agency (IAEA) to solicit international...

  6. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  7. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for progress toward resumption of normal activities at the facility," Franco said. ... CBFO's Joe Franco, second from left, receives the New Mexico Patriotic Employer Award from ...

  8. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release Quantity

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  9. Public invited to comment on additional proposed modications to WIPP hazardous waste permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Invited to Comment on Additional Proposed Modifications To WIPP Hazardous Waste Permit CARLSBAD, N.M., April 26, 2000 - The public is invited to comment on additional proposed modifications to the hazardous waste facility permit for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). Earlier this month, DOE and the Westinghouse Waste Isolation Division requested -- through three Class 2 permit modification submittals -- that the New Mexico Environment Department

  10. DOE and westinghouse to hold public meetings on proposed modificatons to WIPP hazadous waste permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Westinghouse to Hold Public Meetings On Proposed Modifications to WIPP Hazardous Waste Permit CARLSBAD, N.M., April 7, 2000 - The public is invited to comment on proposed modifications to the hazardous waste facility permit for the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). On April 5, DOE and the Westinghouse Waste Isolation Division submitted three proposed permit modifications to the New Mexico Environment Department (NMED). The modifications do not concern

  11. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Alan R. Kerstein; Alexander Scheeline; Arne Pearlstein; William Linak

    2003-08-06

    The Overall project demonstrated that toxic metals (cesium Cs and strontium Sr) in aqueous and organic wastes can be isolated from the environment through reaction with kaolinite based sorbent substrates in high temperature reactor environments. In addition, a state-of-the art laser diagnostic tool to measure droplet characteristic in practical 'dirty' laboratory environments was developed, and was featured on the cover of a recent edition of the scientific journal ''applied Spectroscopy''. Furthermore, great strides have been made in developing a theoretical model that has the potential to allow prediction of the position and life history of every particle of waste in a high temperature, turbulent flow field, a very challenging problem involving as it does, the fundamentals of two phase turbulence and of particle drag physics.

  12. DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 513-246-0539 william.taylor@emcbc.doe.gov Cincinnati -- The Department of Energy (DOE) today will issue a Request for Proposals for the continuation of carrier services to transport transuranic waste (TRU) between DOE sites and the Waste Isolation Pilot Plant (WIPP) site, near Carlsbad, New Mexico. The transportation of TRU waste is accomplished by contracted trucking carriers that ship the waste via public highways on custom designed trailers. The contract will be an Indefinite

  13. DOE Seeks Independent Evaluation of Remote-Handled Waste Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Independent Evaluation Of Remote-Handled Waste Program CARLSBAD, N.M., July 24, 2001 - An independent panel of scientific and engineering experts will convene July 30 in Carlsbad to evaluate U.S. Department of Energy (DOE) plans for managing remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP). DOE's Carlsbad Field Office has asked the American Society of Mechanical Engineers and the Institute for Regulatory Science to review its proposed RH-TRU waste

  14. Preliminary Notice of Violation, Nuclear Waste Partnership, LLC |

    Energy Savers [EERE]

    Department of Energy Nuclear Waste Partnership, LLC Preliminary Notice of Violation, Nuclear Waste Partnership, LLC February 18, 2016 Worker Safety and Health and Nuclear Safety Enforcement Preliminary Notice of Violation issued to Nuclear Waste Partnership, LLC relating to an underground truck fire and a radiological release that occurred at the Waste Isolation Pilot Plan On February 18, 2016, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued

  15. Resource conservation and recovery act draft hazardous waste facility permit: Waste Isolation Pilot Plant (WIPP). Attachments: Volume 4 of 4

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.

  16. The Department of Energy Announces Major Cold War Legacy Waste Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone Media Contact: (208) 586-4940 For Immediate Release: September 28, 2011 The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone Waste Isolation Pilot Plant Receives 10,000th Shipment CARLSBAD, NM - The U.S. Department of Energy today announced that the Waste Isolation Pilot Plant (WIPP) received its 10,000th shipment of transuranic (TRU) waste over the weekend. This marks an important milestone in DOE�s mission to clean up the country�s Cold War

  17. Letter report: Pre-conceptual design study for a pilot-scale Non-Radioactive Low-Level Waste Vitrification Facility

    SciTech Connect (OSTI)

    Thompson, R.A.; Morrissey, M.F.

    1996-03-01

    This report presents a pre-conceptual design study for a Non-Radioactive Low-Level Waste, Pilot-Scale Vitrification System. This pilot plant would support the development of a full-scale LLW Vitrification Facility and would ensure that the full-scale facility can meet its programmatic objectives. Use of the pilot facility will allow verification of process flowsheets, provide data for ensuring product quality, assist in scaling to full scale, and support full-scale start-up. The facility will vitrify simulated non-radioactive LLW in a manner functionally prototypic to the full-scale facility. This pre-conceptual design study does not fully define the LLW Pilot-Scale Vitrification System; rather, it estimates the funding required to build such a facility. This study includes identifying all equipment necessary. to prepare feed, deliver it into the melter, convert the feed to glass, prepare emissions for atmospheric release, and discharge and handle the glass. The conceived pilot facility includes support services and a structure to contain process equipment.

  18. Selected, annotated bibliography of studies relevant to the isolation of nuclear wastes. [705 references

    SciTech Connect (OSTI)

    Hyder, L.K.; Fore, C.S.; Vaughan, N.D.; Faust, R.A.

    1980-09-01

    This annotated bibliography of 705 references represents the first in a series to be published by the Ecological Sciences Information Center containing scientific, technical, economic, and regulatory information relevant to nuclear waste isolation. Most references discuss deep geologic disposal, with fewer studies of deep seabed disposal; space disposal is also included. The publication covers both domestic and foreign literature for the period 1954 to 1980. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Envirnmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Repository Design and Engineering; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for author(s), keywords, subject category, title, geographic location, measured parameters, measured radionuclides, and publication description.

  19. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 NOV 1 4 2013 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Sa nta Fe, New Mexico 87505-6303 Subject: Transm ittal of the Waste Isolation Pilot Pl ant Annua l Waste Minimization Report Dea r Mr. Kieling : The purpose of this letter is to provide you wi th the Waste Isola lion Pilot Plant (W IPP) Annua l Waste Minimi za tion Report. This report is required by and has bee n prepared in accordance with the W IPP Haza rdou s Was te Faci lity

  20. Decomposition of tetraphenylborate precipitates used to isolate Cs-137 from Savannah River Site high-level waste

    SciTech Connect (OSTI)

    Ferrara, D.M.; Bibler, N.E.; Ha, B.C.

    1993-03-01

    This paper presents results of the radioactive demonstration of the Precipitate Hydrolysis Process (PHP) that will be performed in the Defense Waste Processing Facility (DWPF) at the Savannah River Site. The PHP destroys the tetraphenylborate precipitate that is used at SRS to isolate Cs-137 from caustic High-Level Waste (HLW) supernates. This process is necessary to decrease the amount of organic compounds going to the melter in the DWPF. Actual radioactive precipitate containing Cs-137 was used for this demonstration.

  1. Hanford site transuranic waste certification plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-05-12

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP).

  2. Isolation of Metals from Liquid Wastes: Reactive Scavenging in Turbulent Thermal Reactors

    SciTech Connect (OSTI)

    William Linak

    2004-12-16

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, non-radioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a post-flame location in the combustor. Cesium readily vaporizes in the high temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, and so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high temperature waste processing including incineration and vitrification.

  3. User's manual for the Sandia Waste-Isolation Flow and Transport model (SWIFT).

    SciTech Connect (OSTI)

    Reeves, Mark; Cranwell, Robert M.

    1981-11-01

    This report describes a three-dimensional finite-difference model (SWIFT) which is used to simulate flow and transport processes in geologic media. The model was developed for use by the Nuclear Regulatory Commission in the analysis of deep geologic nuclear waste-disposal facilities. This document, as indicated by the title, is a user's manual and is intended to facilitate the use of the SWIFT simulator. Mathematical equations, submodels, application notes, and a description of the program itself are given herein. In addition, a complete input data guide is given along with several appendices which are helpful in setting up a data-input deck. Computer code SWIFT (Sandia Waste Isolation, Flow and Transport Model) is a fully transient, three-dimensional model which solves the coupled equations for transport in geologic media. The processes considered are: (1) fluid flow; (2) heat transport; (3) dominant-species miscible displacement; and (4) trace-species miscible displacement. The first three processes are coupled via fluid density and viscosity. Together they provide the velocity field on which the fourth process depends.

  4. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    SciTech Connect (OSTI)

    Bolzonella, David; Cavinato, Cristina; Fatone, Francesco; Pavan, Paolo; Cecchi, Franco

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

  5. QA Objectives for Nondestructive Assay at the Waste Receiving & Processing (WRAP) Facility

    SciTech Connect (OSTI)

    CANTALOUB, M.G.

    2000-08-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed.

  6. QA Objectives for Nondestructive Assay at the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect (OSTI)

    CANTALOUB, M.G.; WILLS, C.E.

    2000-03-24

    The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOEMPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed.

  7. Transuranic waste disposal in the United States

    SciTech Connect (OSTI)

    Hoffman, R.B.

    1986-01-01

    The United States is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic elements in the waste. Since 1970, the US has been placing newly generated transuranic waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). WIPP opening for a demonstration emplacement period is set for October, 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by DOE. The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium contaminated materials ranging from glove boxes, HEPA filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities.

  8. AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT BETWEEN NEW MEXICO ENVIRONMENT DEPARTMENT HAZARDOUS WASTE BUREAU AND WASTE ISOLATION PILOT PLANT PERMITTEES REGARDING A TIME EXTENSION FOR DISPUTE RESOLUTION RELATED TO FINAL AUDIT REPORT A-09-08 OF THE IDAHO NATIONAL LABORATORY/CENTRAL CHARACTERIZATION PROJECT BACKGROUND 1. In a letter dated May 18,2009, the Hazardous Waste Bureau of the New Mexico Environment Department (NMED) provided comments on the Idaho National Laboratory/Central Characterization Project (INLlCCP) Audit Report

  9. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radiological Release Event Phase II | Department of Energy Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum Radiological Release Event Phase II On Friday, February 14, 2014 there was an incident in the underground (U/G) repository at the Waste Isolation Pilot Plant (WIPP), which resulted in the release of americium and plutonium from one or more transuranic (TRU) waste containers into the U/G mine and the environment. The accident

  10. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O. Box 3090 Carlsbad, New Mexico 88221 N O V 2 4 2015 Ms. Kathryn Roberts, Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of Environmental Protection Agency Hazardous Waste Number 0001 to Waste Containers Disposed at the Waste Isolation Pilot

  11. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resou rce Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Building 1190 Saint Francis Drive, PO Box 5469 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of Environmental Protection Agency Hazardous Waste Numbers D001 and D002 to Waste Containers Disposed at the Waste Isolation Pilot Plant Reference: Los Alamos National Laboratory Correspondence from Charles

  12. Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely

    Office of Environmental Management (EM)

    Reach Milestone | Department of Energy 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone Savannah River Site 2012 Outlook: Transuranic Waste Program Set to Safely Reach Milestone January 1, 2012 - 12:00pm Addthis By May, Savannah River Nuclear Solutions expects to be shipping transuranic waste to the Waste Isolation Pilot Plant almost continuously, using six TRUPACT-III shipping containers like the one shown here. By May, Savannah River Nuclear Solutions expects to be

  13. Microsoft Word - DOE Exceeds TRU Waste Cleanup Goal at LANL.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Exceeds 2012 TRU Waste Cleanup Goal at Los Alamos National Laboratory CARLSBAD, N.M., October 3, 2012 -The Waste Isolation Pilot Plant (WIPP) Central Characterization Project (CCP) and Los Alamos National Laboratory (LANL) exceeded a fiscal year 2012 goal of characterizing and shipping 800 cubic meters of transuranic (TRU) waste, fulfilling a commitment to the state of New Mexico. The 800 cubic meters goal was exceeded by more than 100 cubic meters, with the vast majority of the TRU waste

  14. Microsoft Word - INL Waste Stream Cleared for Shipment to WIPP.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory Waste Stream Cleared For Shipment to WIPP CARLSBAD, N.M., December 12, 2006 - The U.S. Department of Energy (DOE) has authorized the Idaho National Laboratory (INL) to restart shipments from the waste stream that was suspended from transport to the Waste Isolation Pilot Plant (WIPP) on November 26, 2006. DOE initiated the suspension after liquid in excess of allowable limits was identified in a single waste drum during confirmation activities at INL. Corrective actions

  15. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad , New Mexico 88221 October 12, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number NM4890139088 - TSDF Dear Mr. Bearzi: As required under Permit Condition IV.F.5.e, the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of the loss of

  16. Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov (indexed) [DOE]

    (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision 2.1 | Department of Energy The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the final report. PDF icon Waste Characterization, Reduction, and Repackaging Facility (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision

  17. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  18. Hanford Surpasses Transuranic Waste Milestone: 1,000 Cubic Meters Shipped Four Months Ahead of Schedule

    Broader source: Energy.gov [DOE]

    RICHLAND, WASH. The U.S. Department of Energy (DOE) at Hanford surpassed a Tri-Party Agreement Milestone by four months in shipping 1,000 cubic meters of transuranic waste off the Hanford Site in route to the Waste Isolation Pilot Plant (WIPP) in New Mexico before September 30, 2011.

  19. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    two types of TRU waste, Contact-Handled (CH) and Remote-Handled (RH). Fifteen 55-gallon drums of RH-TRU waste were removed from BAPL between Sept. 19 and 21 using RH-72B shipping...

  20. Characterizing cemented TRU waste for RCRA hazardous constituents

    SciTech Connect (OSTI)

    Yeamans, D.R.; Betts, S.E.; Bodenstein, S.A. [and others

    1996-06-01

    Los Alamos National Laboratory (LANL) has characterized drums of solidified transuranic (TRU) waste from four major waste streams. The data will help the State of New Mexico determine whether or not to issue a no-migration variance of the Waste Isolation Pilot Plant (WIPP) so that WIPP can receive and dispose of waste. The need to characterize TRU waste stored at LANL is driven by two additional factors: (1) the LANL RCRA Waste Analysis Plan for EPA compliant safe storage of hazardous waste; (2) the WIPP Waste Acceptance Criteria (WAC) The LANL characterization program includes headspace gas analysis, radioassay and radiography for all drums and solids sampling on a random selection of drums from each waste stream. Data are presented showing that the only identified non-metal RCRA hazardous component of the waste is methanol.

  1. Evaluation of research and development for terminal isolation of nuclear wastes

    SciTech Connect (OSTI)

    Burton, B.W.

    1982-08-01

    The National Waste Terminal Storage program is responsible for identifying and constructing a geologic repository for spent reactor fuel, high-level waste, and transuranic waste. Extensive research and development work is in progress in the areas of site selection, waste treatment and waste form development, model development and validation, and long-term repository performance assessment. Many potential technologies are under investigation, but specific technologies cannot be identified until a repository site is selected. It is too early in the program to assess the adequacy of environmental control technologies for deep geologic disposal.

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  3. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  4. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  5. DOE Identifies its Preferred Alternative for Certain Hanford Tank Wastes

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing its preferred alternative for wastes contained in underground radioactive waste storage tanks evaluated in the Final Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Final TC & WM EIS, DOE/EIS-0391, December 2012). With regard to those wastes that, in the future, may be properly and legally classified as mixed transuranic waste (mixed TRU waste). DOE's preferred alternative is to retrieve, treat, package, and characterize and certify the wastes for disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico, a geologic repository for the disposal of mixed TRU waste generated by atomic energy defense activities.

  6. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response

    Office of Environmental Management (EM)

    Instructions | Department of Energy Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the

  7. DOE to Hold Meetings on Proposed Permit Modification Regarding Centralized Waste Confirmation Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings on Proposed Permit Modification Regarding Centralized Waste Confirmation Facility CARLSBAD, N.M., June 6, 2001 - The public is invited to comment on a proposed modification to the Hazardous Waste Facility Permit for the Waste Isolation Pilot Plant (WIPP). Submittal of the proposed modification to the New Mexico Environment Department (NMED) by the U.S. Department of Energy (DOE) begins a formal review process that includes a 60-day public comment period and public information meetings.

  8. Preliminary Notice of Violation Nuclear Waste Partnership, LLC

    Energy Savers [EERE]

    8, 2016 VIA OVERNIGHT UPS MAIL CARRIER Mr. Philip Breidenbach President and Project Manager Nuclear Waste Partnership, LLC 4021 National Parks Highway Carlsbad, New Mexico 88220 WEA-2016-01 Dear Mr. Breidenbach: This letter refers to the Department of Energy's (DOE) investigation into the facts and circumstances associated with two events that occurred in February 2014 at the Waste Isolation Pilot Plant (WIPP): (1) a fire in a salt haul truck in the underground, and (2) a radiological release.

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APR 2 2 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Request for Additional Extension of Storage Time at the Waste Isolation Pilot Plant Facility, Hazardous Waste Facility Permit Number NM4890139088-TSDF Reference: New Mexico Environment Department correspondence from Ryan Flynn to

  10. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carl sbad, New Mexico 88221 FEB 1 3 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is the following Class 1 Permit Modification Notification consisting of the following items: * Clarify the Date When Laboratory Procedures are Provided to NMED * Add

  11. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 2015 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit Number: NM4890139088-TSDF Dear Mr. Kieling: Enclosed is a Class 1 Permit Modification Notification: * Update Resource Conservation and Recovery Act Emergency Coordinator List We certify under penalty of law that this document and all attachments were prepared under our

  12. U.S. Department of Energy Carlsbad Field Office Waste Isolation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 10-year WIPP Hazardous Waste Facility Permit Renewal. He has also served in an acting role as the Director of the Office of Site Operations and Director of the National TRU...

  13. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  14. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 6: Appendix GCR Volume 1

    SciTech Connect (OSTI)

    1995-03-31

    The Geological Characterization Report (GCR) for the WIPP site presents, in one document, a compilation of geologic information available to August, 1978, which is judged to be relevant to studies for the WIPP. The Geological Characterization Report for the WIPP site is neither a preliminary safety analysis report nor an environmental impact statement; these documents, when prepared, should be consulted for appropriate discussion of safety analysis and environmental impact. The Geological Characterization Report of the WIPP site is a unique document and at this time is not required by regulatory process. An overview is presented of the purpose of the WIPP, the purpose of the Geological Characterization Report, the site selection criteria, the events leading to studies in New Mexico, status of studies, and the techniques employed during geological characterization.

  15. Basic data report for drilling and hydrologic testing of drillhole DOE-2 at the Waste Isolation Pilot Plant (WIIP) site

    SciTech Connect (OSTI)

    Mercer, J.W.; Beauheim, R.L.; Snyder, R.P.; Fairer, G.M.

    1987-04-01

    Drillhole DOE-2 was drilled to investigate a structural depression marked by the downward displacement of stratigraphic markers in the Salado Formation. Contrary to several hypotheses, halite layers were thicker in the lower part of the Salado, not thinner as a result of any removal of halite. The upper Castile anhydrite in Drillhole DOE-2 is anomalously thick and is strongly deformed relative to the anhydrite in adjacent drillholes. In contrast, the halite was <8 ft thick and significantly thinner than usually encountered. The lower Castile anhydrite appears to be normal. The depression within the correlated marker beds in the Salado Formation in Drillhole DOE-2 is interpreted as a result of gravity-driven deformation of the underlying Castile Formation. Several stratigraphic units were hydrologically tested in Drillhole DOE-2. Testing of the unsaturated lower portion of the Dewey Lake Red Beds was unsuccessful because of exceptionally small rates of fluid intake. Drill-stem tests were conducted in five intervals in the Rustler Formation, over the Marker Bed 138-139 interval in the Salado formation, and over three sandstone members of the Bell Canyon Formation. A pumping test was conducted in the Culebra Dolomite Member of the Rustler Formation. Pressure-pulse tests were conducted over the entire Salado Formation. Fluid samples were collected from the Culebra Dolomite Member and from the Hays Member of the Bell Canyon Formation. 31 refs., 31 figs., 5 tabs.

  16. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  17. Appendix DATA Attachment B: WIPP Waste Containers and Emplacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attachment B: WIPP Waste Containers and Emplacement United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment B: WIPP Waste Containers and Emplacement Table of Contents DATA-B-1.0 Authorized Waste Emplacement Containers DATA-B-1.1 Container Descriptions DATA-B-1.2 Dunnage Containers DATA-B-1.3 Payload Descriptions DATA-B-1.4 Emplacement Configurations DATA-B-2.0 References List of Figures Figure DATA-B- 1. 55-gal Drum

  18. Los Alamos National Laboratory celebrates 1000th transuranic waste shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL celebrates 1000th transuranic waste shipment Los Alamos National Laboratory celebrates 1000th transuranic waste shipment LANL has sent record breaking numbers of shipments to WIPP each of the past three years and is on track to further surpass its record in 2012. June 26, 2012 The Los Alamos National Laboratory's 1000th shipment of transuranic waste leaves the Laboratory on its way to the Waste Isolation Pilot Plant near Carlsbad, N.M. The Los Alamos National Laboratory's 1000th shipment of

  19. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P 0. Box 3090 Carlsbad , New Mexico 88221 FEB 2 9 2016 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Transmittal of the Waste Isolation Pilot Plant 2015 Biennial Hazardous Waste Report Dear Mr. Kieling: In accordance with the requirements of Part 2, Section 2.14.2 of the Hazardous Waste Facility Permit NM4890139088-TSDF, please find the enclosed CD-ROM and hardcopy of the 2015 Biennial Hazardous Waste Report (Report) for the

  20. DOE Completes TRU Waste Cleanup at Bettis | Department of Energy

    Office of Environmental Management (EM)

    TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU

  1. Crystalline Ceramic Waste Forms: Report Detailing Data Collection In Support Of Potential FY13 Pilot Scale Melter Test

    SciTech Connect (OSTI)

    Brinkman, K. S.; Amoroso, J.; Marra, J. C.; Fox, K. M.

    2012-09-21

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to summarize the data collection in support of future melter demonstration testing for crystalline ceramic waste forms. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. The principal difficulties encountered during processing of the ?reference ceramic? waste form by a melt and crystallization process were the incomplete incorporation of Cs into the hollandite phase and the presence of secondary Cs-Mo non-durable phases. In the single phase hollandite system, these issues were addressed in this study by refining the compositions to include Cr as a transition metal element and the use of Ti/TiO{sub 2} buffer to maintain reducing conditions. Initial viscosity studies of ceramic waste forms indicated that the pour spout must be maintained above 1400{deg}C to avoid flow blockages due to crystallization. In-situ electron irradiations simulate radiolysis effects indicated hollandite undergoes a crystalline to amorphous transition after a radiation dose of 10{sup 13} Gy which corresponds to approximately 1000 years at anticipated doses (2?10{sup 10}-2?10{sup 11} Gy). Dual-beam ion irradiations employing light ion beam (such as 5 MeV alpha) and heavy ion beam (such as 100 keV Kr) studies indicate that reference ceramic waste forms are radiation tolerant to the ??particles and ?-particles, but are susceptible to a crystalline to amorphous transition under recoil nuclei effects. A path forward for refining the processing steps needed to form the targeted phase assemblages is outlined in this report. Processing modifications including melting in a reducing atmosphere with the use of Ti/TiO2 buffers, and the addition of Cr to the transition metal additives to facilitate Cs-incorporation in the hollandite phase. In addition to melt processing, alternative fabrication routes are being considered including Spark Plasma Sintering (SPS) and Hot Isostatic Pressing (HIP).

  2. Los Alamos National Laboratory TRU waste sampling projects

    SciTech Connect (OSTI)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-02-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC`s and SVOC`s by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ``DOE TRU Waste Quality Assurance Program Plan`` (QAPP) and the ``LANL TRU Waste Quality Assurance Project Plan,`` (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ``WIPP Waste Acceptance Criteria, Rev. 5,`` (WAC).

  3. State of New Mexico Issues Permit For Remote-Handled Waste at WIPP |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy New Mexico Issues Permit For Remote-Handled Waste at WIPP State of New Mexico Issues Permit For Remote-Handled Waste at WIPP October 16, 2006 - 1:35pm Addthis Enables DOE to Permanently Move Waste to the WIPP Repository for Safe Disposal CARLSBAD, NM - U.S. Department of Energy (DOE) today announced that the New Mexico Environment Department (NMED) issued a revised hazardous waste facility permit for DOE's Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The

  4. Microsoft Word - Los Alamos National Laboratory ships remote-handled transuranic waste to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Ships Remote-Handled Transuranic Waste to WIPP CARLSBAD, N.M., June 3, 2009 - Cleanup of the nation's defense-related transuranic (TRU) waste has reached an important milestone. Today, the first shipment of remote-handled (RH) TRU waste from Los Alamos National Laboratory (LANL) in New Mexico arrived safely at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in the southeast corner of the state. "Shipping this waste to WIPP is important

  5. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlsbad, New Mexico 88221 September 02 , 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number NM4890139088-TSDF Dear Mr. Bearzi: The purpose of this letter is to transmit notification to the New Mexico Environment Department (NMED) of the loss of a hydrogen and methane monitoring sampling line as required under Permit Condition IV.F.5.e. The sampling

  6. Mr. James Bearzi, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28, 2010 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number NM4890139088-TSDF Dear Mr. Bearzi: The purpose of this letter is to transmit notification to the New Mexico Environment Department (NMED) of the loss of a hydrogen and methane monitoring sampling line as required under Permit Condition IV.F.5.e. The sampling line involved , identified as line Panel

  7. Site characterization report for the basalt waste isolation project. Volume II

    SciTech Connect (OSTI)

    1982-11-01

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  8. Sodium-Bearing Waste Treatment Alternatives Implementation Study

    SciTech Connect (OSTI)

    Charles M. Barnes; James B. Bosley; Clifford W. Olsen

    2004-07-01

    The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

  9. Getting waste ready for shipment to the WIPP: integration of characterization and certification activities

    SciTech Connect (OSTI)

    Sinkule, B.; Knudsen, K.; Rogers, P.

    1996-06-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) serve as the primary directive for assuring the safe handling, transportation, and disposal of transuranic (TRU) waste generated at Department of Energy (DOE) sites. The WIPP WAC address fulfillment of WIPP`s operational safety and performance assessment criteria, compliance with Resource Conservation and Recovery Act (RCRA) requirements, and preparation of waste packages that meet all transportation criteria. At individual generator sites, preparation of transuranic waste for final disposal at WIPP includes characterizing the waste to meet the requirements of the transuranic Waste Characterization Quality Assurance Program Plan (QAPP) and certifying waste containers to meet the WIPP WAC and the Transuranic Package Transporter-II Authorized Methods for Payload Control (TRAMPAC). This paper compares the quality assurance and quality control requirements specified in the WIPP WAC, QAPP, and TRAMPAC and discusses the potential to consolidate activities to comply with the TRU waste characterization and certification program requirements.

  10. Transuranic waste disposal in the United State

    SciTech Connect (OSTI)

    Thompson, J.D.

    1986-01-01

    The US is unique in having created a special class of radioactive waste disposal based on the concentration of transuranic (TRU) elements in the waste. Since 1970, the US has been placing newly generated TRU waste in retrievable storage. It is intended that these wastes will be placed in a permanent deep geologic repository, the Waste Isolation Pilot Plant (WIPP). The WIPP opening for a demonstration emplacement period is set for October 1988. Transuranic wastes derive from some of the manufacturing and research activities carried out by the US Department of Energy (DOE). The bulk of this waste is generated in plutonium parts fabrication activities. A variety of plutonium-contaminated materials ranging from glove boxes, high-efficiency particulate air filters, and machine tools, to chemical sludges derived from plutonium recovery streams are stored as TRU wastes. Other processes that generate TRU waste are plutonium production operations, preparation for and cleanup from fuel reprocessing, manufacturing of plutonium heat sources, and nuclear fuel cycle research activities. Extensive procedures will be used to examine and prepare waste before it is placed in the WIPP for disposal. After the WIPP opens, certified waste will be transported to it and emplaced in the repository.

  11. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by household and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 2 of two volumes and contains the appendix for Volume 1.

  12. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by households and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 1 of two volumes. 75 refs., 24 figs., 81 tabs.

  13. Methods for removing transuranic elements from waste solutions

    SciTech Connect (OSTI)

    Slater, S.A.; Chamberlain, D.B.; Connor, C.; Sedlet, J.; Srinivasan, B.; Vandegrift, G.F.

    1994-11-01

    This report outlines a treatment scheme for separating and concentrating the transuranic (TRU) elements present in aqueous waste solutions stored at Argonne National Laboratory (ANL). The treatment method selected is carrier precipitation. Potential carriers will be evaluated in future laboratory work, beginning with ferric hydroxide and magnetite. The process will result in a supernatant with alpha activity low enough that it can be treated in the existing evaporator/concentrator at ANL. The separated TRU waste will be packaged for shipment to the Waste Isolation Pilot Plant.

  14. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  15. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    SciTech Connect (OSTI)

    Karve, M.; Rajgor, R.V.

    2008-07-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  16. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, L.

    1995-07-11

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

  17. Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1995-01-01

    A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

  18. Remote-Handled Transuranic Waste Drum Venting - Operational Experience and Lessons Learned

    SciTech Connect (OSTI)

    Clements, Th.L.Jr.; Bhatt, R.N.; Troescher, P.D.; Lattin, W.J.

    2008-07-01

    Remote-handled transuranic (RH TRU) waste drums must be vented to meet transportation and disposal requirement before shipment to the Waste Isolation Pilot Plant. The capability to perform remote venting of drums was developed and implemented at the Idaho National Laboratory. Over 490 drums containing RH TRU waste were successfully vented. Later efforts developed and implemented a long-stem filter to breach inner waste bags, which reduced layers of confinement and mitigated restrictive transportation wattage limits. This paper will provide insight to the technical specifications for the drum venting system, development, and testing activities, startup, operations, and lessons learned. (authors)

  19. The Department of Energy Announces Major Cold War Legacy Waste Cleanup

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milestone | Department of Energy The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone The Department of Energy Announces Major Cold War Legacy Waste Cleanup Milestone September 28, 2011 - 8:54am Addthis CARLSBAD, NM - The U.S. Department of Energy today announced that the Waste Isolation Pilot Plant (WIPP) received its 10,000th shipment of transuranic (TRU) waste over the weekend. This marks an important milestone in DOE's mission to clean up the country's Cold

  20. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  1. First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIPP | Department of Energy First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at WIPP March 2, 2009 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy (DOE) achieved a major environmental cleanup milestone this week with the first shipment of Remote-Handled Transuranic (TRU) Waste leaving DOE's Oak Ridge Reservation and arriving safely at the Waste Isolation Pilot Plant

  2. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    SciTech Connect (OSTI)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories.

  3. Waste management fiscal year 1998 progress report

    SciTech Connect (OSTI)

    1998-12-31

    The Waste Management Program is pleased to issue the Fiscal Year 1998 Progress Report presenting program highlights and major accomplishments of the last year. This year-end update describes the current initiatives in waste management and the progress DOE has made toward their goals and objectives, including the results of the waste management annual performance commitments. One of the most important program efforts continues to be opening the Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, for the deep geologic disposal of transuranic waste. A major success was achieved this year by the West Valley Demonstration Project in New York, which in June completed the project`s production phase of high-level waste processing ahead of schedule and under budget. Another significant accomplishment this year was the award of two privatization contracts for major waste management operations, one at Oak ridge for transuranic waste treatment, and one at Hanford for the Tank Waste Remediation System privatization project. DOE is proud of the progress that has been made, and will continue to pursue program activities that allow it to safely and expeditiously dispose of radioactive and hazardous wastes across the complex, while reducing worker, public, and environmental risks.

  4. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  5. Radioactive waste isolation in salt: Peer review of the Golder Associates draft test plan for in situ testing in an exploratory shaft in salt

    SciTech Connect (OSTI)

    Hambley, D.F.; Mraz, D.Z.; Unterberter, R.R.; Stormont, J.C.; Neuman, S.P.; Russell, J.E.; Jacoby, C.H.; Hull, A.B.; Brady, B.H.G.; Ditmars, J.D.

    1987-01-01

    This report documents the peer review conducted by Argonne National Laboratory of a document entitled ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared for Battelle Memorial Institute's Office of Nuclear Waste Isolation by Golder Associates, Inc. In general, the peer review panelists found the test plan to be technically sound, although some deficiencies were identified. Recommendations for improving the test plan are presented in this review report. A microfiche copy of the following unpublished report is attached to the inside back cover of this report: ''Draft Test Plan for In Situ Testing in an Exploratory Shaft in Salt,'' prepared by Golder Associates, Inc., for Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio (March 1985).

  6. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 7 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Supplement to Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Mr. Blaine: On April11, 2014, the Department of Energy

  7. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AUG 1 8 2014 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Mr. Tom Blaine, Division Director Environmental Health Division Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Second Supplement to Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11 , 2014 Dear Mr. Kieling and Mr. Blaine: On April 11 , 2014 , the Department

  8. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 2015 Ms. Kathryn Roberts, Division Director Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 Harold Runnels Building 1190 Saint Francis Drive, Room 4050 Santa Fe, NM 87502-5469 Subject: Fourth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April11 , 2014 Dear Mr. Kieling and Ms. Roberts: On April11, 2014, the Department

  9. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Protection Division New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87508-6303 New Mexico Environment Department Harold Runnels Bu ildi ng 1190 Saint Francis Drive, PO Box 5496 Santa Fe, NM 87502-5469 Subject: Fifth Supplement to the Report of Implementation of the Waste Isolation Pilot Plant Facility Resource Conservation and Recovery Act Contingency Plan on April 11, 2014 Dear Mr. Kieling and Ms. Roberts: On April11 , 2014, the Department of

  10. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Office of Environmental Management (EM)

    Isolation Pilot Plant Update J.R. Stroble, CBFO For the Northern New Mexico Citizens Advisory Board January 27, 2016 www.energy.gov/EM 2 Corrective Actions The DOE TRU Waste Complex has implemented several changes since the 2014 radiological release incident at WIPP. Based on the Accident Investigation Report and subsequent evaluations, DOE has implemented several Corrective Actions that will prevent such incidents from occurring throughout the Life Cycle of WIPP. Five organizations have

  11. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  12. Characterization of past and present solid waste streams from 231-Z

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Berkwitz, D.E.; Vejvoda, E.J.; Duncan, D.R.

    1993-06-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 8% of the TRU waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium Metallurgy Laboratory (231-Z) Facility. The purpose of this report is to characterize the radioactive solid wastes generated by 231-Z using process knowledge, existing records and oral history interviews. Since 1944 research and development programs utilizing plutonium have been conducted at 231-Z in the fields of physical metallurgy, property determination, alloy development, and process development. The following are sources of solid waste generation at the 231-Z Facility: (1) General Weapons Development Program, (2) process waste from gloveboxes, (3) numerous classified research and development programs, (4) advanced decontamination and decommissioning technologies, including sectioning, vibratory finishing, electropolishing, solution process, and small bench-scale work, (5) general laboratory procedures, (6) foundry area, (7) housekeeping activities, and (8) four cleanout campaigns. All solid wastes originating at 231-Z were packaged for onsite-offsite storage or disposal. Waste packaging and reporting requirements have undergone significant changes throughout the history of 231-Z. Current and historical procedures are provided in Section 4.0. Information on the radioactive wastes generated at 231-Z can be found in a number of documents and databases, most importantly the Solid Waste Information and Tracking System database and Solid Waste Burial Records. Facility personnel also provide excellent information about past waste generation and the procedures used to handle that waste. Section 5.0 was compiled using these sources.

  13. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  14. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    SciTech Connect (OSTI)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A. [and others

    1997-02-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described.

  15. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  16. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  17. DOE, Westinghouse to Partner with NMJC To Train Radiological and Waste Handling Technicians

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Partner with NMJC To Train Radiological and Waste Handling Technicians Hobbs, NM, December 5, 2001 -- Representatives of the Waste Isolation Pilot Plant (WIPP) yesterday presented a check for $70,000 to New Mexico Junior College (NMJC) to initiate a new program to train and certify radiological and waste handling technicians. Dr. Steve McCleery, President of NMJC, accepted the check from Dr. Chuan-Fu Wu, Senior Technical Advisor for the U.S. Department of Energy's Carlsbad Field Office, and

  18. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  19. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  20. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    SciTech Connect (OSTI)

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  1. Attachment C6

    Office of Environmental Management (EM)

    C6 AUDIT AND SURVEILLANCE PROGRAM Waste Isolation Pilot Plant Hazardous Waste Permit February 2014 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous Waste ...

  2. Attachment C1

    Office of Environmental Management (EM)

    C1 WASTE CHARACTERIZATION TESTING METHODS Waste Isolation Pilot Plant Hazardous Waste Permit March 13, 2013 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous ...

  3. Attachment B

    Office of Environmental Management (EM)

    B HAZARDOUS WASTE PERMIT APPLICATION PART A Waste Isolation Pilot Plant Hazardous Waste Permit April 2014 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous ...

  4. Attachment E

    Office of Environmental Management (EM)

    E INSPECTION SCHEDULE, PROCESS AND FORMS Waste Isolation Pilot Plant Hazardous Waste Permit April 2014 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous Waste ...

  5. Audit Report: WR-B-99-06 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Shipments to the Waste Isolation Pilot Plant The Waste Isolation Pilot Plant (WIPP), which received its first shipment of waste in March 1999, was designed and...

  6. TRU waste from the Superblock

    SciTech Connect (OSTI)

    Coburn, T.T.

    1997-05-27

    This data analysis is to show that weapons grade plutonium is of uniform composition to the standards set by the Waste-Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (TRUW Characterization QAPP, Rev. 2, DOE, Carlsbad Area Office, November 15, 1996). The major portion of Superblock transuranic (TRU) waste is glove-box trash contaminated with weapons grade plutonium. This waste originates in the Building 332 (B332) radioactive-materials area (RMA). Because each plutonium batch brought into the B332 RMA is well characterized with regard to nature and quantity of transuranic nuclides present, waste also will be well characterized without further analytical work, provided the batches are quite similar. A sample data set was created by examining the 41 incoming samples analyzed by Ken Raschke (using a {gamma}-ray spectrometer) for isotopic distribution and by Ted Midtaune (using a calorimeter) for mass of radionuclides. The 41 samples were from separate batches analyzed May 1993 through January 1997. All available weapons grade plutonium data in Midtaune's files were used. Alloys having greater than 50% transuranic material were included. The intention of this study is to use this sample data set to judge ''similarity.''

  7. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013.

  8. Final report of the Department of Energy pilot internship program on radioactive waste at Vanderbilt University (September 1, 1993-08/31, 1994)

    SciTech Connect (OSTI)

    Frank Parker

    1999-08-31

    This final report summarizes Vanderbilt's ten year program in radioactive waste management. The report describes the interns selected for the program, the interns' course of study, and their assignments.

  9. Radioactive waste isolation in salt: Peer review of the Fluor Technology, Inc. , report and position paper concerning waste emplacement mode and its effect on repository conceptual design

    SciTech Connect (OSTI)

    Hambley, D.F.; Russell, J.E.; Whitfield, R.G.; McGinnis, L.D.; Harrison, W.; Jacoby, C.H.; Bump, T.R.; Mraz, D.Z.; Busch, J.S.; Fischer, L.E.

    1987-02-01

    Recommendations for revising the Fluor Technology, Inc., draft position paper entitled Evaluation of Waste Emplacement Mode and the final report entitled Waste Package/Repository Impact Study include: reevaluate the relative rankings for the various emplacement modes; delete the following want objectives: maximize ability to locate the package horizon because sufficient flexibility exists to locate rooms in the relatively clean San Andres Unit 4 Salt and maximize far-field geologic integrity during retrieval because by definition the far field will be unaffected by thermal and stress perturbations caused by remining; give greater emphasis to want objectives regarding cost and use of present technology; delete the following statements from pages 1-1 and 1-2 of the draft position paper: ''No thought or study was given to the impacts of this configuration (vertical emplacement) on repository construction or short and long-term performance of the site'' and ''Subsequent salt repository designs adopted the vertical emplacement configuration as the accepted method without further evaluation.''; delete App. E and lines 8-17 of page 1-4 of the draft position paper because they are inappropriate; adopt a formal decision-analysis procedure for the 17 identified emplacement modes; revise App. F of the impact study to more accurately reflect current technology; consider designing the underground layout to take advantage of stress-relief techniques; consider eliminating reference to fuel assemblies <10 yr ''out-of-reactor''; model the temperature distribution, assuming that the repository is constructed in an infinitely large salt body; state that the results of creep analyses must be considered tentative until they can be validated by in situ measurements; and reevaluate the peak radial stresses on the waste package so that the calculated stress conditions more closely approximate expected in situ conditions.

  10. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Recovery Update J.R. Stroble, Director TRU Sites and Transportation Division Carlsbad Field Office Northern New Mexico Citizen's Advisory Board November, 2014 www.energy.gov/EM 2 February 5th Truck Fire: * All operations at the repository ceased following salt haul truck fire in the WIPP underground. * An investigation team was deployed to determine the cause of the fire. * Report released March 13 th . * February 14th Radiological Incident: * A continuous air

  11. Solazyme Pilot-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Solazyme Integrated Biorefinery: Diesel Fuels from Heterotrophic Algae Solazyme, Inc. will build, operate and optimize a pilot-scale "Solazyme Integrated Biorefinery" (SzIBR). SzIBR will demonstrate integrated scale-up of Solazyme's novel heterotrophic algal oil biomanufacturing process, validate the projected commercial-scale economics of producing multiple advanced

  12. Resource Conservation and Recovery Act, Part B Permit Application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report, Part B ( Vol. 2) of the permit application for the WIPP facility, contains information related to the WIPP site on hydrology, geology, maps, and rock salt properties.

  13. Field and laboratory investigations of coring-induced damage in core recovered from Marker Bed 139 at the waste isolation pilot plant underground facility

    SciTech Connect (OSTI)

    Holcomb, D.J.; Zeuch, D.H.; Morin, K.; Hardy, R.; Tormey, T.V.

    1995-09-01

    A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.

  14. Type B Accident Investigation Of The February 25, 2009 Injury To A Passenger In An Electric Cart At The Waste Isolation Pilot Plant, Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    This report is a product of an Accident Investigation Board appointed by David C. Moody, Manager, Carlsbad Field Office, Department of Energy, on March 4, 2009.

  15. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  16. An assessment of the flammability and explosion potential of transuranic waste

    SciTech Connect (OSTI)

    Silva, M.

    1991-06-01

    The explosion potential of transuranic (TRU) waste, destined for the Waste Isolation Pilot (WIPP), was recently examined in EEG-45. That investigation focused on the volatile organic compounds (VOCs) in the waste, particularly acetone, and concluded that an explosion due to the VOCs was unlikely. Recent evidence raises serious concerns about drums containing mixed radioactive hazardous waste bound for the WIPP. Static electricity generated by the plastic bags represents a potential ignition source for other fuels, such as methane gas or hydrogen gas, during transportation and during the test phase. The potential danger of explosion due to hydrogen gas or methane gas generation has not yet been resolved. This report investigates that potential hazard and examines documented ignitions, fires, explosions and incidents of overpressurization of containers at generating and storage sites planning to send transuranic waste to the WIPP for disposal. 68 refs., 6 figs.

  17. Appraisal of nuclear waste isolation in the vadose zone in arid and semiarid regions (with emphasis on the Nevada Test Site)

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Wang, J.S.Y.; Korbin, G.

    1983-05-01

    An appraisal was made of the concept of isolating high-level radioactive waste in the vadose zone of alluvial-filled valleys and tuffaceous rocks of the Basin and Range geomorphic province. Principal attributes of these terranes are: (1) low population density, (2) low moisture influx, (3) a deep water table, (4) the presence of sorptive rocks, and (5) relative ease of construction. Concerns about heat effects of waste on unsaturated rocks of relatively low thermal conductivity are considered. Calculations show that a standard 2000-acre repository with a thermal loading of 40 kW/acre in partially saturated alluvium or tuff would experience an average temperature rise of less than 100{sup 0}C above the initial temperature. The actual maximum temperature would depend strongly on the emplacement geometry. Concerns about seismicity, volcanism, and future climatic change are also mitigated. The conclusion reached in this appraisal is that unsaturated zones in alluvium and tuff of arid regions should be investigated as comprehensively as other geologic settings considered to be potential repository sites.

  18. Analysis of long-term impacts of TRU waste remaining at generator/storage sites for No Action Alternative 2

    SciTech Connect (OSTI)

    Buck, J.W.; Bagaasen, L.M.; Bergeron, M.P.; Streile, G.P.

    1997-09-01

    This report is a supplement to the Waste Isolation Pilot Plant Disposal-Phase Final Supplemental Environmental Impact Statement (SEIS-II). Described herein are the underlying information, data, and assumptions used to estimate the long-term human-health impacts from exposure to radionuclides and hazardous chemicals in transuranic (TRU) waste remaining at major generator/storage sites after loss of institutional control under No Action Alternative 2. Under No Action Alternative 2, TRU wastes would not be emplaced at the Waste Isolation Pilot Plant (WIPP) but would remain at generator/storage sites in surface or near-surface storage. Waste generated at smaller sites would be consolidated at the major generator/storage sites. Current TRU waste management practices would continue, but newly generated waste would be treated to meet the WIPP waste acceptance criteria. For this alternative, institutional control was assumed to be lost 100 years after the end of the waste generation period, with exposure to radionuclides and hazardous chemicals in the TRU waste possible from direct intrusion and release to the surrounding environment. The potential human-health impacts from exposure to radionuclides and hazardous chemicals in TRU waste were analyzed for two different types of scenarios. Both analyses estimated site-specific, human-health impacts at seven major generator/storage sites: the Hanford Site (Hanford), Idaho National Engineering and Environmental Laboratory (INEEL), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Rocky Flats Environmental Technology Site (RFETS), and Savannah River Site (SRS). The analysis focused on these seven sites because 99 % of the estimated TRU waste volume and inventory would remain there under the assumptions of No Action Alternative 2.

  19. Nuclear waste management. Semiannual progress report, April 1983-September 1983

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A. (comps.)

    1984-01-01

    The status of the following programs is reported: waste stabilization; waste isolation; low-level waste management; remedial action; and supporting studies. 58 figures, 39 tables.

  20. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2001-01-31

    The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAOs). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWBs will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

  1. INEL test plan for evaluating waste assay systems

    SciTech Connect (OSTI)

    Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

    1996-09-01

    A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

  2. Attachment L

    Office of Environmental Management (EM)

    L WIPP GROUNDWATER DETECTION MONITORING PROGRAM PLAN Waste Isolation Pilot Plant Hazardous Waste Permit February 2014 (This page intentionally blank) Waste Isolation Pilot Plant ...

  3. Attachment F2

    Office of Environmental Management (EM)

    F2 TRAINING COURSE AND QUALIFICATION CARD OUTLINES Waste Isolation Pilot Plant Hazardous Waste Permit October 2013 (This page intentionally blank) Waste Isolation Pilot Plant ...

  4. Attachment G2

    Office of Environmental Management (EM)

    G2 WASTE ISOLATION PILOT PLANT SHAFT SEALING SYSTEM COMPLIANCE SUBMITTAL DESIGN REPORT Waste Isolation Pilot Plant Hazardous Waste Permit October 2013 (This page intentionally ...

  5. Attachment N1

    Office of Environmental Management (EM)

    N1 HYDROGEN AND METHANE MONITORING PLAN Waste Isolation Pilot Plant Hazardous Waste Permit January 31, 2012 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous...

  6. Attachment O

    Office of Environmental Management (EM)

    O WIPP MINE VENTILATION RATE MONITORING PLAN Waste Isolation Pilot Plant Hazardous Waste Permit May 8, 2012 (This page intentionally blank) Waste Isolation Pilot Plant Hazardous...

  7. New Mexico Governor Susana Martinez and U.S Energy Secretary Ernest Moniz Announce Settlement on Nuclear Waste Incidents

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. —Today, New Mexico Governor Susana Martinez and Secretary of Energy Ernest Moniz released the terms of a $73 million settlement of the State’s claims against the U.S. Department of Energy and its contractors related to the February 2014 incidents at the Waste Isolation Pilot Plant in Carlsbad, New Mexico, including the associated activities at the Los Alamos National Laboratory.

  8. Interrelation of technologies for RW preparation and sites for final isolation of the wastes from pyrochemical processing of SNF

    SciTech Connect (OSTI)

    Gupalo, V.S.; Chistyakov, V.N.; Kormilitsyn, M.V.; Kormilitsyna, L.A.

    2013-07-01

    For the justification of engineering solutions and practical testing of the radiochemical component of the perspective nuclear power complex with on-site variant of nuclear fuel cycle (NFC), it is planned to establish a multi-functional research-development complex (MFCRC) for radiochemical processing of spent nuclear fuels (SNF) from fast reactors. MFCRC is being established at the NIIAR site, it comprises technological process lines, where innovation pyro-electrochemical and hydrometallurgical technologies are realized, with an option for closing the inter-chain material flows for testing the combined radiochemically converted materials. The technological flowchart for processing at the MFCRC is subdivided into 3 segments: -) complex of the lead operations for dismantling the fuel elements (FE) and fuel assemblies (FA), -) pyrochemical extraction flowchart for processing SNF, and -) hydrometallurgical flowchart for processing SNF. The engineered solutions for the management and disposition of the radioactive wastes from MFCRC are reviewed.

  9. Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)

    SciTech Connect (OSTI)

    Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

    1980-01-01

    The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

  10. Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors Citation Details In-Document Search Title: Advanced Remote Maintenance Design for Pilot-Scale Centrifugal Contactors Advanced designs of used nuclear fuel recycling processes and radioactive waste treatment processes are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and

  11. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford site low-level waste

    SciTech Connect (OSTI)

    Shade, J.W.

    1996-05-03

    Commercially available melter technologies were tested for application to vitrification of Hanford site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW simulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  12. Volatility and entrainment of feed components and product glass characteristics during pilot-scale vitrification of simulated Hanford Site low-level waste

    SciTech Connect (OSTI)

    Whyatt, G.A. [Pacific Northwest National Lab., Richland, WA (United States); Shade, J.W.; Stegen, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31

    Commercially available melter technologies were tested for application to vitrification of Hanford Site low-level waste (LLW). Testing was conducted at vendor facilities using a non-radioactive LLW stimulant. Technologies tested included four Joule-heated melter types, a carbon electrode melter, a cyclone combustion melter, and a plasma torch-fired melter. A variety of samples were collected during the vendor tests and analyzed to provide data to support evaluation of the technologies. This paper describes the evaluation of melter feed component volatility and entrainment losses and product glass samples produced during the vendor tests. All vendors produced glasses that met minimum leach criteria established for the test glass formulations, although in many cases the waste oxide loading was less than intended. Entrainment was much lower in Joule-heated systems than in the combustion or plasma torch-fired systems. Volatility of alkali metals, halogens, B, Mo, and P were severe for non-Joule-heated systems. While losses of sulfur were significant for all systems, the volatility of other components was greatly reduced for some configurations of Joule-heated melters. Data on approaches to reduce NO{sub x} generation, resulting from high nitrate and nitrite content in the double-shell slurry feed, are also presented.

  13. Investigating the construction of pyramid super-structures to dispose of radioactive and hazardous waste

    SciTech Connect (OSTI)

    Miller, D.J.

    1994-12-31

    Since the 1950`s, the United States and other countries have focused on utilizing {open_quotes}natural barriers{close_quotes} for disposing of dangerous radioactive and hazardous waste. The Waste Isolation Pilot Projects and Yucca Mountain Project seem practical as well as economical. However, the technical challenges involved in disposing of the waste have been underestimated. For example, geological waste disposal has difficulty in demonstrating reliability, guaranteeing protection against climatic changes or natural disasters (or combinations thereof), or ability to retrieve waste under adverse scenarios. Much has changed since the 1950`s. Technology has advanced dramatically in the areas of materials, science, and engineering. As a result, traditional approaches to waste disposal should be rethought, focusing instead on ways to apply technology breakthroughs to waste disposal problems. This paper proposes investigating the construction of fully retrievable waste disposal systems that resemble pyramid structures and rely totally on engineered barriers and preventive measurements to dispose and store radioactive and hazardous waste. This paper will describe problems currently faced by waste disposal systems that rely on natural barriers. Specific benefits demonstrated will detail the structures flexibility and durability in a number of areas.

  14. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEP 0 4 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss, Waste Isolation Pilot Plant Dear Mr. Kieling: As required under Permit Section 4.6.5.5. the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of a loss of a hydrogen and methane monitoring sampling line. The sampling line involved was in Panel 4 Room

  15. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OCT 2 9 2012 New Mexico Environment Department 2905 Rodeo Park Drive East. Building 1 Santa Fe. New Mexico 87505-6303 Subject: Notification of Results of Evaluation of Sampling Line Loss. Waste Isolation Pilot Plant Dear Mr. Kieling: As required under Permit Section 4.6.5.5. the Permittees are hereby notifying the New Mexico Environment Department (NMED) of the results of the evaluation of a loss of a hydrogen and methane monitoring sampling line. The sampling line involved was in Panel 3 Room

  16. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A UG 1 7 2012 New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe , New Mexico 87505-6303 Subject: Notification of Sampling Line Loss, Waste Isolation Pilot Plant Permit Number N M4890 139088-TS DF Dear Mr. Kieling : The purpose of this letter is to transmit notification of the loss of a hydrogen and methane monitoring system sampling line as required under Permit Condition 4.6.5.5. The sampling line that was lost is identified as line Panel 4 Room 5E, which is on

  17. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    SciTech Connect (OSTI)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D&D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews.

  18. Waste systems progress report, March 1983 through February 1984

    SciTech Connect (OSTI)

    Hickle, G.L.

    1984-10-01

    Preliminary design engineering for a Beryllum Electrorefining Demonstration Process has been completed and final engineering for fabrication of the process will be completed by the fourth quarter of FY-84. A remotely operated Advanced Size Reduction Facility (ASRF) is under construction and, when completed, will be used for sectioning plutonium-contaminated gloveboxes for disposal. Modification and additions were made to the 82 kg/hr Fluidized Bed Incinerator (FBI) in preparation for turning the unit over to Production. Several types of cementation processes are being developed to treat various TRU and low-level waste streams to reduce the dispersibility of the wastes. Portland cement and Envirostone gypsum cement were investigated as immobilization media for wet precipitation sludges and organic liquid wastes. Transuranic contaminated waste is being retrieved from storage at the Idaho National Engineering Laboratory for examination at Rocky Flats Plant for compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria. The removal of unreacted calcium metal from the waste salt formed during the direct oxide reduction of plutonium oxide to plutonium metal is necessary in order to comply with regulations regarding the transportation and storage of waste material containing flammable substances. Chemical methods of denitrification of simulated low-level nitrate wastes were investigated on a laboratory scale. Methods of inserting the carbon composite filters into presently stored and currently generated radioactive waste drums have been investigated and their sealing efficiencies determined. Analyses of carbon tetrachloride (CCl/sub 4/) recovered from spent lathe coolant revealed contamination levels above usable limits. A handbook covering techniques and processes that have been successfully demonstrated to minimize generation of new transuranic waste is being prepared.

  19. Microbial characterization for the Source-Term Waste Test Program (STTP) at Los Alamos

    SciTech Connect (OSTI)

    Leonard, P.A.; Strietelmeier, B.A.; Pansoy-Hjelvik, M.E.; Villarreal, R.

    1999-04-01

    The effects of microbial activity on the performance of the proposed underground nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) at Carlsbad, New Mexico are being studied at Los Alamos National Laboratory (LANL) as part of an ex situ large-scale experiment. Actual actinide-containing waste is being used to predict the effect of potential brine inundation in the repository in the distant future. The study conditions are meant to simulate what might exist should the underground repository be flooded hundreds of years after closure as a result of inadvertent drilling into brine pockets below the repository. The Department of Energy (DOE) selected LANL to conduct the Actinide Source-Term Waste Test Program (STTP) to confirm the predictive capability of computer models being developed at Sandia National Laboratory.

  20. Hanford Tank Waste to WIPP - Maximizing the Value of our National Repository Asset

    SciTech Connect (OSTI)

    Tedeschi, Allan R.; Wheeler, Martin

    2013-11-11

    Preplanning scope for the Hanford tank transuranic (TRU) waste project was authorized in 2013 by the Department of Energy (DOE) Office of River Protection (ORP) after a project standby period of eight years. Significant changes in DOE orders, Hanford contracts, and requirements at the Waste Isolation Pilot Plant (WIPP) have occurred during this time period, in addition to newly implemented regulatory permitting, re-evaluated waste management strategies, and new commercial applications. Preplanning has identified the following key approaches for reactivating the project: qualification of tank inventory designations and completion of all environmental regulatory permitting; identifying program options to accelerate retrieval of key leaking tank T-111; planning fully compliant implementation of DOE Order 413.3B, and DOE Standard 1189 for potential on-site treatment; and re-evaluation of commercial retrieval and treatment technologies for better strategic bundling of permanent waste disposal options.

  1. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    SciTech Connect (OSTI)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing plan as well as facility processing rates. These lessons learned, challenges, and improvements will be discussed to aid other sites in their efforts to conduct similar activities.

  2. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  3. SWEPP PAN assay system uncertainty analysis: Passive mode measurements of graphite waste

    SciTech Connect (OSTI)

    Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.; Yoon, Woo Y.

    1997-07-01

    The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the U.S. Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. To this end a modified statistical sampling and verification approach has been developed to determine the total uncertainty of a PAN measurement. In this approach the total performance of the PAN nondestructive assay system is simulated using computer models of the assay system and the resultant output is compared with the known input to assess the total uncertainty. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers passive mode measurements of weapons grade plutonium-contaminated graphite molds contained in 208 liter drums (waste code 300). The validity of the simulation approach is verified by comparing simulated output against results from measurements using known plutonium sources and a surrogate graphite waste form drum. For actual graphite waste form conditions, a set of 50 cases covering a statistical sampling of the conditions exhibited in graphite wastes was compiled using a Latin hypercube statistical sampling approach.

  4. Overview of advanced technologies for stabilization of {sup 238}Pu-contaminated waste

    SciTech Connect (OSTI)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed {sup 238}PuO{sub 2} fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of {sup 238}Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes {sup 238}Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239{sup Pu}), makes disposal of {sup 238}Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all {sup 238}Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and recover kilogram quantities of {sup 238}PuO{sub 2} from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented.

  5. Update on intrusive characterization of mixed contact-handled transuranic waste at Argonne-West

    SciTech Connect (OSTI)

    Dwight, C.C.; Jensen, B.A.; Bryngelson, C.D.; Duncan, D.S.

    1997-02-03

    Argonne National Laboratory and Lockheed Martin Idaho Technologies Company have jointly participated in the Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Program since 1990. Intrusive examinations have been conducted in the Waste Characterization Area, located at Argonne-West in Idaho Falls, Idaho, on over 200 drums of mixed contact-handled transuranic waste. This is double the number of drums characterized since the last update at the 1995 Waste Management Conference. These examinations have provided waste characterization information that supports performance assessment of WIPP and that supports Lockheed`s compliance with the Resource Conservation and Recovery Act. Operating philosophies and corresponding regulatory permits have been broadened to provide greater flexibility and capability for waste characterization, such as the provision for minor treatments like absorption, neutralization, stabilization, and amalgamation. This paper provides an update on Argonne`s intrusive characterization permits, procedures, results, and lessons learned. Other DOE sites that must deal with mixed contact-handled transuranic waste have initiated detailed planning for characterization of their own waste. The information presented herein could aid these other storage and generator sites in further development of their characterization efforts.

  6. The WIPP RCRA Part B permit application for TRU mixed waste disposal

    SciTech Connect (OSTI)

    Johnson, J.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.; Snider, C.A. [USDOE Carlsbad Area Office, NM (United States)

    1995-12-31

    In August 1993, the New Mexico Environment Department (NMED) issued a draft permit for the Waste Isolation Pilot Plant (WIPP) to begin experiments with transuranic (TRU) mixed waste. Subsequently, the Department of Energy (DOE) decided to cancel the on-site test program, opting instead for laboratory testing. The Secretary of the NMED withdrew the draft permit in 1994, ordering the State`s Hazardous and Radioactive Waste Bureau to work with the DOE on submittal of a revised permit application. Revision 5 of the WIPP`s Resource Conservation and Recovery Act (RCRA) Part B Permit Application was submitted to the NMED in May 1995, focusing on disposal of 175,600 m{sup 3} of TRU mixed waste over a 25 year span plus ten years for closure. A key portion of the application, the Waste Analysis Plan, shifted from requirements to characterize a relatively small volume of TRU mixed waste for on-site experiments, to describing a complete program that would apply to all DOE TRU waste generating facilities and meet the appropriate RCRA regulations. Waste characterization will be conducted on a waste stream basis, fitting into three broad categories: (1) homogeneous solids, (2) soil/gravel, and (3) debris wastes. Techniques used include radiography, visually examining waste from opened containers, radioassay, headspace gas sampling, physical sampling and analysis of homogeneous wastes, and review of documented acceptable knowledge. Acceptable knowledge of the original organics and metals used, and the operations that generated these waste streams is sufficient in most cases to determine if the waste has toxicity characteristics, hazardous constituents, polychlorinated biphenyls (PBCs), or RCRA regulated metals.

  7. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  8. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    SciTech Connect (OSTI)

    Pierce, G.D. . Joint Integration Office); Beaulieu, D.H. ); Wolaver, R.W.; Carson, P.H. Corp., Boulder, CO )

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.

  9. Waste immobilization process development at the Savannah River Plant

    SciTech Connect (OSTI)

    Charlesworth, D L

    1986-01-01

    Processes to immobilize various wasteforms, including waste salt solution, transuranic waste, and low-level incinerator ash, are being developed. Wasteform characteristics, process and equipment details, and results from field/pilot tests and mathematical modeling studies are discussed.

  10. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  11. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  12. Supercompaction and Repackaging Facility for Rocky Flats Plant transuranic waste

    SciTech Connect (OSTI)

    Barthel, J.M.

    1988-01-01

    The Supercompaction and Repackaging Facility (SaRF) for processing Rocky Flats Plant (RFP) generated transuranic (TRU) waste was conceptualized and has received funding of $1.9 million. The SaRF is scheduled for completion in September, 1989 and will eliminate a labor intensive manual repackaging effort. The semi-automated glovebox-contained SaRF is being designed to process 63,500 cubic feet of TRU waste annually for disposal at the Waste Isolation Pilot Plant (WIPP). Waste will enter the process through an airlock or drum dump and the combustible waste will be precompacted. Drums will be pierced to allow air to escape during supercompaction. Each drum will be supercompacted and transferred to a load out station for final packaging into a 55 gallon drum. Preliminary evaluations indicate an average 5 to 1 volume reduction, 2 to 1 increased processing rate, and 50% reduction in manpower. The SaRF will produce a significant annual savings in labor, material, shipping, and burial costs over the projected 15 year life, and also improve operator safety, reduce personnel exposure, and improve the quality of the waste product. 1 ref., 10 figs., 3 tabs.

  13. Developing an institutional strategy for transporting defense transuranic waste materials

    SciTech Connect (OSTI)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations.

  14. PUBLIC AND REGULATORY ACCEPTANCE OF BLENDING OF RADIOACTIVE WASTE VS DILUTION

    SciTech Connect (OSTI)

    Goldston, W.

    2010-11-30

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and then dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.

  15. Corrective Action Plan for Environmenta' Management Headquarters

    Office of Environmental Management (EM)

    2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14 2014 ... 2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014 ...

  16. Central Characterization Program (CCP) Reconciliation of Data...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant on February 14, 2014,...

  17. EA-1755: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Department of Energy, Waste Isolation Pilot Plant (WIPP) in Eddy County, New Mexico EA prepared for the proposed reconstruction of the Waste Isolation Pilot Plant (WIPP)...

  18. Microsoft Word - NR WIPP CONTRACT EXTENSION MAY 3 2010.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Extends Management and Operations Contract at Waste Isolation Pilot Plant Carlsbad, NM. - The U.S. Department of Energy's Waste Isolation Pilot Plant (WIPP) today announced a...

  19. WIPP Update and Status of Recovery | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    WIPP Update and Status of Recovery More Documents & Publications WIPP Recovery Information Waste Isolation Pilot Plant Update and Status of Recovery Waste Isolation Pilot Plant...

  20. Section 23: Models and Computer Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application-2014 for the Waste Isolation Pilot Plant Models and Computer Codes (40 CFR 194.23) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field...