Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Municipal waste incineration; An environmentally benign energy source for district heating  

SciTech Connect

Municipal solid waste should be regarded as a good fuel. Emissions from solid waste incineration can be kept within any reasonable limit. Compared with fossil fuels, waste can be regarded as a renewable source of energy that does not contribute to the greenhouse effect. Finally, waste incineration for district heating can be very economical.

Astrand, L.E. (Uppsala Energi AB, Uppsala (SE))

1990-01-01T23:59:59.000Z

2

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

3

Ground Source Heat Pumps Ground source heat pumps (GSHPs) use the earth's  

E-Print Network (OSTI)

Ground Source Heat Pumps Fact Sheet Ground source heat pumps (GSHPs) use the earth's constant. Waste heat can be used to heat hot water. System Types There are two types of ground source heat pumps, closed loop and open loop systems. Closed loop heat pumps use the earth as the heat source and heat sink

Paulsson, Johan

4

Waste Heat Recovery from Industrial Process Heating Equipment -  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

5

Waste Heat Management Options: Industrial Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Management Options Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases - combustion products - Temperature from 300 deg. F. to 3000 deg.F. * Radiation-Convection heat loss - From temperature source of 500 deg. F. to 2500 deg. F. * Sensible-latent heat in heated product - From temperature 400 deg. F. to 2200 deg. F. * Cooling water or other liquids - Temperature from 100 deg. F. to 180 deg. F.

6

An Introduction to Waste Heat Recovery  

E-Print Network (OSTI)

The recovery of waste heat energy is one element of a complete energy conservation plan. In addition to contributing to the goal of saving energy, utilization of waste heat is also an important source of cost savings. This presentation details the steps necessary to develop a good waste heat recovery plan. The necessity of performing a complete waste heat audit is detailed, together with guidelines to selecting waste heat recovery projects. The economic analysis of potential projects, and the art of selling these projects to management are discussed. Also included are brief descriptions of the various types of heat exchangers commonly used in industry today.

Darby, D. F.

1985-05-01T23:59:59.000Z

7

Characterization of industrial process waste heat and input heat streams  

SciTech Connect

The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

1984-05-01T23:59:59.000Z

8

Dual source heat pump  

DOE Patents (OSTI)

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

9

Waste Heat Recapture from Supermarket Refrigeration Systems  

DOE Green Energy (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

10

Multiple source heat pump  

DOE Patents (OSTI)

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

11

Thulium-170 heat source  

DOE Patents (OSTI)

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

12

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

1990-09-06T23:59:59.000Z

13

Recovering Industrial Waste Heat by the Means of Thermoelectricity  

E-Print Network (OSTI)

]. When waste heat, geothermal heat and solar is the heat source, the cost of thermal input canRecovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit

Kjelstrup, Signe

14

Waste Heat Recovery and Furnace Technology - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Each source of waste heat is listed together with the assessment for potential cogeneration or direct recovery. The overall impact on energy ...

15

Heat Source Lire,  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Lire, Source Lire, (liayrICS-25 ) tooling Tulles (Ai 1,06:1) - 11 (31.118 Module Stack Thermoelectric Module:, (14) ltcal L/Mr r a it i lli tisli Block Mounting Interface MMRTG Design Housing (At 2219) Fin (At Go63) Thermal Insulation (Min-K & Microtherm) Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator January 2008 What is a Multi-Mission Radioisotope Thermoelectric Generator? Space exploration missions require safe, reliable, long-lived power systems to provide electricity and heat to spacecraft and their science instruments. A uniquely capable source of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA are developing

16

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network (OSTI)

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering an estimated energy equivalent of nearly 1.1 million barrels of oil annually. Energy recovered by these units has been used to either preheat process supply air or to heat plant comfort make-up air. Heat pipe heat exchangers have been applied to an ever-expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat pipes. This device has a number of advantageous features. Field operational experience of several units in service has been excellent.

Ruch, M. A.

1981-01-01T23:59:59.000Z

17

Carbon Material Based Heat Exchanger for Waste Heat Recovery ...  

Industrial processing plants Nuclear power Solar power ... Carbon Material Based Heat Exchanger for Waste Heat Recovery from Engine Exhaust Contact:

18

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

Robertson, R.C.

1978-12-01T23:59:59.000Z

19

Waste heat driven absorption refrigeration process and system  

DOE Patents (OSTI)

Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

Wilkinson, William H. (Columbus, OH)

1982-01-01T23:59:59.000Z

20

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network (OSTI)

WOW operates in the energy efficiency field- one of the fastest growing energy sectors in the world today. The two key products - WOWGen® and WOWClean® provide more energy at cheaper cost and lower emissions. •WOWGen® - Power Generation from Industrial Waste Heat •WOWClean® - Multi Pollutant emission control system. Current power generation technology uses only 35% of the energy in a fossil fuel and converts it to useful output. The remaining 65% is discharged into the environment as waste heat at temperatures ranging from 300°F to 1,200°F. This waste heat can be captured using the WOWGen® technology and turned into electricity. This efficiency is up to twice the rate of competing technologies. Compelling economics and current environmental policy are stimulating industry interest. WOWGen® power plants can generate between 1 - 25 MW of electricity. Project payback is between two to five years with IRR of 15% 30%. Nearly anywhere industrial waste heat is present, the WOW products can be applied. Beneficial applications of heat recovery power generation can be found in Industry (e.g. steel, glass, cement, lime, pulp and paper, refining and petrochemicals), Power Generation (CHP, biomass, biofuel, traditional fuels, gasifiers, diesel engines) and Natural Gas (pipeline compression stations, processing plants). Sources such as stack flue gases, steam, diesel exhaust, hot oil or combinations of sources can be used to generate power. WOWGen® can also be used with stand alone power plants burning fossil fuels or using renewable energy sources such as solar and biomass.

Romero, M.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

22

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network (OSTI)

3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using RelaxorWaste heat Pyroelectric energy

Lee, Felix

2012-01-01T23:59:59.000Z

23

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and ...

24

Waste Heat Recovery in Industrial Facilities  

Science Conference Proceedings (OSTI)

Low-temperature waste heat streams account for the majority of the industrial waste heat inventory. With a reference temperature of 60°F (16°C), 65% of the waste heat is below 450°F (232°C) and 99% is below 1,200°F (649°C). With a reference temperature of 300°F (149°C), 14% of the waste heat is below 450°F, and 96% is below 1,200°F. Waste heat is concentrated in a few industrial manufacturing sectors. Based on a review of 21 manufacturing sectors, the top two sectors that produce waste heat are petroleu...

2010-12-20T23:59:59.000Z

25

Waste Heat Recovery from Industrial Process Heating Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am...

26

Linear and nonlinear transient heat conduction in nuclear waste repositories  

Science Conference Proceedings (OSTI)

Analytical solutions of thermal problems connected with the disposal of nuclear wastes are presented. Linear and nonlinear diffusion problems are analyzed considering time-dependent heat sources. Comparisons between the temperature distributions at a ...

C. A. Estrada-Gasca; M. H. Cobble

1988-10-01T23:59:59.000Z

27

Hoosac tunnel geothermal heat source. Final report  

DOE Green Energy (OSTI)

The Hoosac Rail Tunnel has been analyzed as a central element in a district heating system for the City of North Adams. The tunnel has been viewed as a collector of the earth's geothermal heat and a seasonal heat storage facility with heat piped to the tunnel in summer from existing facilities at a distance. Heated fluid would be transported in winter from the tunnel to users who would boost the temperature with individual heat pumps. It was concluded the tunnel is a poor source of geothermal heat. The maximum extractable energy is only 2200 million BTU (20000 gallons of oil) at 58/sup 0/F. The tunnel is a poor heat storage facility. The rock conductivity is so high that 75% of the heat injected would escape into the mountain before it could be recaptured for use. A low temperature system, with individual heat pumps for temperature boost could be economically attractive if a low cost fuel (byproduct, solid waste, cogeneration) or a cost effective seasonal heat storage were available.

Not Available

1982-06-10T23:59:59.000Z

28

Navy Heat Source Safety Tests  

SciTech Connect

The purpose of these tests was to validate the integrity of the Navy Heat Source after imposing conditions which might, in the extreme, be encountered singly or serially so that safety would be assured.

Anderson, C. G.; Cartmill, W. B.

1975-06-18T23:59:59.000Z

29

Economic Options for Upgrading Waste Heat  

E-Print Network (OSTI)

There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat pump; and (6) waste heat driven compressor heat pump. Some of these are not widely known, and there has been a tendency to ascribe the characteristics and limitations of the most well-known member to all members of the group. This paper demonstrates the wide variation that actually exists between the different options, and highlights the considerations necessary to ensure the most economic choice for a particular application.

Erickson, D. C.

1983-01-01T23:59:59.000Z

30

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

Waste heat rejection systems for geothermal power stations have a significantly greater influence on plant operating performances and costs than do corresponding systems in fossil- and nuclear-fueled stations. With thermal efficiencies of only about 10%, geothermal power cycles can reject four times as much heat per kilowatt of output. Geothermal sites in the United States tend to be in water-short areas that could require use of more expensive wet/dry or dry-type cooling towers. With relatively low-temperature heat sources, the cycle economics are more sensitive to diurnal and seasonal variations in sink temperatures. Factors such as the necessity for hydrogen sulfide scrubbers in off-gas systems or the need to treat cooling tower blowdown before reinjection can add to the cost and complexity of goethermal waste heat rejection systems. Working fluids most commonly considered for geothermal cycles are water, ammonia, Freon-22, isobutane, and isopentane. Both low-level and barometric-leg direct-contact condensers are used, and reinforced concrete has been proposed for condenser vessels. Multipass surface condensers also have wide application. Corrosion problems at some locations have led to increased interest in titanium tubing. Studies at ORNL indicate that fluted vertical tubes can enhance condensing film coefficients by factors of 4 to 7.

Robertson, R C

1979-01-01T23:59:59.000Z

31

Waste as a Renewable Source of Energy  

E-Print Network (OSTI)

Waste as a Renewable Source of Energy Dr. Karsten Millrath Columbia University / Waste-To-Energy Waste Management · Status of Renewable · Current and Future Practices · The Waste-To-Energy Research management practices renewable resources> Millrath 10 #12;MSW as Renewable Energy Source · Broader

Columbia University

32

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps (Redirected from Geothermal Heat Pumps) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

33

Waste as a Renewable Source of Energy  

E-Print Network (OSTI)

Waste as a Renewable Source of Energy Karsten Millrath and N.J. Themelis Columbia University) Overview · Waste-To-Energy · Municipal Solid Waste Management · Status of Renewable · Current and Future renewable resources> Millrath 9 MSW as Renewable Energy Source · Broader definition of renewable energy

Columbia University

34

Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Ground Source Heat Pumps Ground Source Heat Pumps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ground Source Heat Pumps Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps GSHP Links Related documents and websites An Information Survival Kit for the Prospective Geothemral Heat Pump Owner List of Heat Pumps Incentives List of Ground Source Heat Pumps Incentives Policy Makers' Guidebook for Geothermal Heating and Cooling Various ways to configure a geothermal heat pump system. (Source: The Geo-Heat Center's Survival Kit for the Prospective Geothemral Heat Pump

35

Analysis of Organic Rankine Cycle for Low and Medium Grade Heat Source  

Science Conference Proceedings (OSTI)

Organic Rankine cycle (ORC) is an effective technique to generate power from low and medium temperature heat source, including industrial waste heat, solar heat, geothermal and biomass etc. Advantages of ORC are high efficiency, simple system, environment ... Keywords: organic Rankine cycle, new energy, waste heat recovery

Zhonghe Han, Yida Yu

2012-07-01T23:59:59.000Z

36

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

37

Using Waste Heat for External Processes  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes the savings resulting from using waste heat from high-temperature industrial processes for lower temperature processes, like oven-drying.

Not Available

2006-01-01T23:59:59.000Z

38

Mobile power plants : waste body heat recovery  

E-Print Network (OSTI)

Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to ...

Gibbons, Jonathan S. (Jonathan Scott), 1979-

2004-01-01T23:59:59.000Z

39

Waste: main source of sustainable energy  

E-Print Network (OSTI)

Waste: main source of sustainable energy Dr. K.D. van der Linde President of Afval Energie Bedrijf ­ Waste and Energy Company City of Amsterdam Institute of Physics, London, 16th March 2005 #12;March, 16th 2005 Afval Energie Bedrijf 2 Afval Energie Bedrijf (AEB)Afval Energie Bedrijf (AEB) for wastefor waste

Columbia University

40

HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER  

SciTech Connect

The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

Lee, S.

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

42

Carbothermic reduction with parallel heat sources  

DOE Patents (OSTI)

Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.

Troup, Robert L. (Murrysville, PA); Stevenson, David T. (Washington Township, Washington County, PA)

1984-12-04T23:59:59.000Z

43

Water recovery using waste heat from coal fired power plants.  

Science Conference Proceedings (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

44

Absorptive Recycle of Distillation Waste Heat  

E-Print Network (OSTI)

When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux condenser operates above ambient temperature, the rejected heat also contains unused availability. By incorporating an absorption heat pump (AHP) into the distillation process, these sources of unused availability can be tapped so as to recycle (and hence, conserve) up to 50% of the required distillation energy. In contrast to compressor driven heat pumps, this savings is accomplished without need for a separate substantial input of mechanical power. A different AHP configuration is used depending on whether the excess availability is in the source heat or reject heat. In the excessive source temperature case, the higher temperature source heat is applied to the AHP, which then supplies the total reboiler requirement and recycles half the reject heat, with the remainder being rejected conventionally. In the excessive reject temperature case, all the reject heat is supplied to a reverse absorption heat pump (HAHP) which recycles half to reboiler temperature while reducing the remainder to ambient temperature.

Erickson, D. C.; Lutz, E. J., Jr.

1982-01-01T23:59:59.000Z

45

Waste Heat Recovery System: Lightweight Thermal Energy Recovery (LIGHTER) System  

SciTech Connect

Broad Funding Opportunity Announcement Project: GM is using shape memory alloys that require as little as a 10°C temperature difference to convert low-grade waste heat into mechanical energy. When a stretched wire made of shape memory alloy is heated, it shrinks back to its pre-stretched length. When the wire cools back down, it becomes more pliable and can revert to its original stretched shape. This expansion and contraction can be used directly as mechanical energy output or used to drive an electric generator. Shape memory alloy heat engines have been around for decades, but the few devices that engineers have built were too complex, required fluid baths, and had insufficient cycle life for practical use. GM is working to create a prototype that is practical for commercial applications and capable of operating with either air- or fluid-based heat sources. GM’s shape memory alloy based heat engine is also designed for use in a variety of non-vehicle applications. For example, it can be used to harvest non-vehicle heat sources, such as domestic and industrial waste heat and natural geothermal heat, and in HVAC systems and generators.

2010-01-01T23:59:59.000Z

46

Heat Recovery From Solid Waste  

E-Print Network (OSTI)

More opportunity exists today for the successful implementation of resource recovery projects than at any other period. However, that doesn't mean that energy/resource recovery exists for everyone. You must have a favorable match of all the critical areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc.

Underwood, O. W.

1981-01-01T23:59:59.000Z

47

Thulium heat sources for space power applications  

DOE Green Energy (OSTI)

Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems.

Alderman, C.J.

1992-05-01T23:59:59.000Z

48

Low Grade Waste Heat Driven Desalination and SO2 Scrubbing  

Science Conference Proceedings (OSTI)

About 15% of the electricity required to produce aluminum is lost as waste heat ... An Overview of Energy Consumption and Waste Generation in the Recovery of ...

49

Line Heat-Source Guarded Hot Plate  

Science Conference Proceedings (OSTI)

Line Heat-Source Guarded Hot Plate. Description: The 1-meter guarded hot-plate apparatus measures thermal conductivity of building insulation. ...

2012-03-06T23:59:59.000Z

50

Waste heat steams ahead with injection technology  

Science Conference Proceedings (OSTI)

Owners of Commercial-Industrial-Institutional buildings whose thermal usage is too variable to implement cogeneration are looking to a gasturbine steam-injection technology, called the Cheng Cycle, to reduce their energy costs. The Cheng Cycle uses industrial components-a gas-turbine generating set, a waste-heat recovery steam generator and system controls-in a thermodynamically optimized mode. In the process, steam produced from waste heat can be used for space or process heating or to increase the electrical output of a gas turbine. The process was patented in 1974 by Dr. Dah Yu Cheng, of the University of Santa Clara, Santa Clara, Calif. When a plant's thermal needs fall because of production or temperature changes, unused steam is directed back to the turbine to increase electrical output. As thermal requirements rise, the process is reversed and needed steam is channeled to plant uses.

Shepherd, S.; Koloseus, C.

1985-03-01T23:59:59.000Z

51

TVA pilot greenhouse for waste heat research  

SciTech Connect

A pilot facility for evaluating the use of waste heat from power plants, both fossil-fueled and nuclear, to heat a greenhouse was designed and built at the TVA reservation at Muscle Shoals, Ala. The simulation of waste heat was from an electric hot water heater. The subjects to be evaluated included: greenhouse environmental control system operation during one year period under wide range of climatic conditions and the crop performance, i.e., yield and disease control under various controlled-environment conditions and with various rooting media conditions. The facility design, control instrumentation, tests performed, and operating conditions obtained for airflow, air temperature, and humidity are described. No information is included on the crops produced. It is concluded that the pilot facility is providing valuable guidelines for the design of a larger demonstration plant to be located at an operating power plant. (LCL)

King, L.D.; Furlong, W.K.

1973-01-01T23:59:59.000Z

52

Random Analysis on Line-Heat Source Temperature Field of Ground Source Heat Pumps Buried Pipes  

Science Conference Proceedings (OSTI)

In this paper the random properties of ground-source heat pump (GSHP) system.GSHP buried pipe to Kelvin one-dimensional line source of heat transfer model are discussed. The model randomness is analyzed, and the GSHP buried pipe to random excess temperature ... Keywords: GSHP, Buriedpipe, Line-heat source, Temperature field, Correlation

Changsheng Guan; Zhuodong Liu; Kai Xia; Xuyi Chen

2009-05-01T23:59:59.000Z

53

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How...

54

Property:HeatSource | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:HeatSource Jump to: navigation, search Property Name HeatSource Property Type String Description A description of the resource heat source in the geothermal area. Describes what heats the geothermal fluid - whether it be a magmatic intrusion, a thin crust which brings the mantle closer to hydrologic systems, or only radiogenic influences (such as at Chena hot springs, Alaska). This is a property of type Page. Subproperties This property has the following 4 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Steamboat Springs Geothermal Area Pages using the property "HeatSource" Showing 9 pages using this property. C Chena Geothermal Area + Radiogenic +

55

Use of photovoltaics for waste heat recovery  

DOE Patents (OSTI)

A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.

Polcyn, Adam D

2013-04-16T23:59:59.000Z

56

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

57

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Manuel, Oliver K

2009-01-01T23:59:59.000Z

58

Earth's Heat Source - The Sun  

E-Print Network (OSTI)

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Oliver K. Manuel

2009-05-05T23:59:59.000Z

59

Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals  

E-Print Network (OSTI)

energy converter for waste heat energy harvesting using co-L. “Pyroelectric waste heat energy harvesting using heatNo.3, pp.035015, 2012. WASTE HEAT ENERGY HARVESTING USING

McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

2012-01-01T23:59:59.000Z

60

Heat Deposition in Positron Sources for ILC  

Science Conference Proceedings (OSTI)

In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.

Bharadwaj, V.; Pitthan, R.; Sheppard, J.; Vincke, H.; Wang, J.W.; /SLAC

2006-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Waste Heat Utilization to Increase Energy Efficiency in the Metals ...  

Science Conference Proceedings (OSTI)

This system will produce electricity, and/or process steam. • Low grade: ... or Save Conflict]. Waste Heat Reduction and Recovery Options for Metals Industry.

62

AHEX-A New, Combined Waste Heat Recovery and Emission ...  

Science Conference Proceedings (OSTI)

Presentation Title, AHEX-A New, Combined Waste Heat Recovery and Emission Control System for Anode Bake Furnaces. Author(s), Anders Kenneth Sorhuus, ...

63

NETL: Development and Demonstration of Waste Heat Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

performance of the integrated PC plant and CO2 capture process. The HES system is a heat exchanger that extracts waste heat from flue gas exiting the power plant's...

64

Waste heat boiler with feed mixing nozzle  

SciTech Connect

A waste heat boiler of the type which is particularly suited for use in marine applications and which incorporates a feed mixing nozzle that is operative for purposes of effecting, by utilizing steam taken from the steam generating bank, a preheating of the feedwater that is fed to the steam drum. In addition to the aforesaid feed mixing nozzle, the subject waste heat boiler includes a feedwater control valve, a steam drum, a circulation pump, a steam generating bank and a centrifugal water separator. The feedwater control valve is employed to modulate the flow rate of the incoming feedwater in order to maintain the desired level of water in the steam drum. In turn the latter steam drum is intended to function in the manner of a reservoir for the circulating water that through the operation of the circulating pump is supplied to the steam generating bank. The circulating water which is supplied to the steam generating bank is heated therein to saturation temperature, and steam is generated thus. A water-steam mixture is returned from the steam generating bank to the steam drum and is directed into the centrifugal water separator that is suitably located within the steam drum. It is in the centrifugal water separator that the separation of the water-steam mixture is effected such that water is returned to the lower portion of the steam drum and the steam is supplied to the upper portion of the steam drum. The preheating of the feedwater is accomplished by directing the incoming feedwater through an internal feed pipe to the mixing nozzle, the latter being positioned in the line through which the water-steam mixture is returned to the steam drum.

Mastronarde, Th.P.

1984-05-01T23:59:59.000Z

65

Environmental assessment for the relocation and storage of isotopic heat sources, Hanford Site, Richland, Washington  

SciTech Connect

As part of a bilateral agreement between the Federal Minister for Research and Technology of the Federal Republic of Germany (FRG) and the DOE, Pacific Northwest National Laboratory (PNNL) developed processes for the treatment and immobilization of high-level radioactive waste. One element of this bilateral agreement was the production of sealed isotopic heat sources. During the mid-1980s, 30 sealed isotopic heat sources were manufactured. The sources contain a total of approximately 8.3 million curies consisting predominantly of cesium-137 and strontium-90 with trace amounts of transuranic contamination. Currently, the sources are stored in A-Cell of the 324 Building. Intense radiation fields from the sources are causing the cell windows and equipment to deteriorate. Originally, it was not intended to store the isotopic heat sources for this length of time in A-cell. The 34 isotopic heat sources are classified as remote handled transuranic wastes. Thirty-one of the isotopic heat sources are sealed, and seals on the three remaining isotopic heat sources have not been verified. However, a decision has been made to place the remaining three isotopic heat sources in the CASTOR cask(s). The Washington State Department of Health (WDOH) has concurred that isotopic heat sources with verified seals or those placed into CASTOR cask(s) can be considered sealed (no potential to emit radioactive air emissions) and are exempt from WAC Chapter 246-247, Radiation Protection-Air Emissions.

NONE

1997-06-01T23:59:59.000Z

66

Ceramic fuel pellets for isotopic heat sources  

DOE Green Energy (OSTI)

The General-Purpose Heat Source (GPHS) will supply power for future space missions. The GPHS fuel pellets are fabricated by hot pressing a blended mixture of /sup 238/PuO/sub 2/ granules prepared from calcined plutonium oxalate. Results of a test program which led to the development of the production process are described.

Rankin, D.T.; Congdon, J.W.; Livingston, J.T.; Duncan, N.D.

1980-01-01T23:59:59.000Z

67

Waste Heat Recovery – Submerged Arc Furnaces (SAF)  

E-Print Network (OSTI)

Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000°F using high voltage electricity along with metallurgical carbon to reduce metal oxides to pure elemental form. The process as currently designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btu’s required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified to recover this heat and convert it to power. The system will then reduce the amount of purchased power by approximately 25% without any additional use of fuel. The cost of this power is virtually unchanged over the life of the project because of the use of capital to displace fuel consumed from the purchased power source.

O'Brien, T.

2008-01-01T23:59:59.000Z

68

Waste water heat recovery appliance. Final report  

SciTech Connect

An efficient convective waste heat recovery heat exchanger was designed and tested. The prototype appliance was designed for use in laundromats and other small commercial operations which use large amounts of hot water. Information on general characteristics of the coin-op laundry business, energy use in laundromats, energy saving resources already in use, and the potential market for energy saving devices in laundromats was collected through a literature search and interviews with local laundromat operators in Fort Collins, Colorado. A brief survey of time-use patterns in two local laundromats was conducted. The results were used, with additional information from interviews with owners, as the basis for the statistical model developed. Mathematical models for the advanced and conventional types were developed and the resulting computer program listed. Computer simulations were made using a variety of parameters; for example, different load profiles, hold-up volumes, wall resistances, and wall areas. The computer simulation results are discussed with regard to the overall conclusions. Various materials were explored for use in fabricating the appliance. Resistance to corrosion, workability, and overall suitability for laundromat installations were considered for each material.

Chapin, H.D.; Armstrong, P.R.; Chapin, F.A.W.

1983-11-21T23:59:59.000Z

69

Definition: Ground Source Heat Pumps | Open Energy Information  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search Dictionary.png Ground Source Heat Pumps A Ground Source Heat Pump is a central building heating and/or cooling system that takes advantage of the relatively constant year-round ground temperature to pump heat to or from the ground.[1][2][3] View on Wikipedia Wikipedia Definition A geothermal heat pump or ground source heat pump (GSHP) is a central heating and/or cooling system that pumps heat to or from the ground. It uses the earth as a heat source (in the winter) or a heat sink (in the summer). This design takes advantage of the moderate temperatures in the ground to boost efficiency and reduce the operational costs of heating and cooling systems, and may be combined with solar heating to form a geosolar system with even greater efficiency. Ground source heat pumps

70

Source separation of household waste: A case study in China  

SciTech Connect

A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference.

Zhuang Ying; Wu Songwei; Wang Yunlong [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China); Wu Weixiang [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)], E-mail: weixiang@zju.edu.cn; Chen Yingxu [Department of Environmental Engineering, Zhejiang University, Hangzhou 310029 (China)

2008-07-01T23:59:59.000Z

71

Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles  

DOE Green Energy (OSTI)

Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

Smith, K.; Thornton, M.

2009-04-01T23:59:59.000Z

72

Method for utilizing decay heat from radioactive nuclear wastes  

DOE Patents (OSTI)

Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

Busey, H.M.

1974-10-14T23:59:59.000Z

73

CHP, Waste Heat & District Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHP Technologies and Applications CHP Technologies and Applications 25 Oct 11 Today's Electric Grid What is CHP * ASHRAE Handbook: "Combined heat and power (CHP). Simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream." * CHP is not a single technology but a suite of technologies that can use a variety of fuels to generate electricity or power at the point of use. * CHP technology can be deployed quickly, cost-effectively, and with few geographic limitations. 11/1/2011 Slide 6 5/20/11 Slide 7 What is CHP? * On-site generation of Power and Thermal Energy from a single fuel source * 'Conventional' grid based generators are located remote from thermal applications while CHP plants are located close to thermal applications

74

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pump Basics Air-Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

75

Air-Source Heat Pump Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pump Basics Source Heat Pump Basics Air-Source Heat Pump Basics August 19, 2013 - 11:03am Addthis Air-source heat pumps transfer heat between the inside of a building and the outside air. How Air-Source Heat Pumps Work This diagram of a split-system heat pump heating cycle shows refrigerant circulating through a closed loop that passes through the wall of a house. Inside the house the refrigerant winds through indoor coils, with a fan blowing across them, and outside the house is another fan and another set of coils, the outdoor coils. A compressor is between the coils on one half of the loop, and an expansion valve is between the coils on the other half. The diagram is explained in the caption. In heating mode, an air-source heat pump evaporates a refrigerant in the outdoor coil; as the liquid evaporates it pulls

76

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

77

High-temperature waste-heat-stream selection and characterization  

Science Conference Proceedings (OSTI)

Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

1983-08-01T23:59:59.000Z

78

Study on the Mode of Power Plant Circulating Water Waste Heat Regenerative Thermal System  

Science Conference Proceedings (OSTI)

Power Plant Circulating Water (PPCW) waste heat recycling is an important way of increasing a power plant’s primary energy ratio. According to the PPCW waste heat regenerative thermal system, the authors propose two modes of heat pump heat regenerative ... Keywords: heat pump, power plant circulating water (PPCW), waste heat recycling, energy saving

Bi Qingsheng; Ma Yanliang; Yang Zhifu

2009-10-01T23:59:59.000Z

79

RANKINE CYCLE WASTE HEAT RECOVERY SYSTEM - Energy Innovation Portal  

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a ...

80

Flowsheets and source terms for radioactive waste projections  

Science Conference Proceedings (OSTI)

Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.

Forsberg, C.W. (comp.)

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Technologies Office: Air-Source Integrated Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

82

The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat  

E-Print Network (OSTI)

The conservation of energy by its recovery from low temperature waste heat is of increasing importance in today's world energy crisis. The Organic Rankine Cycle is a cost efficient and proven method of converting low temperature (200-400o F) waste heat to mechanical and/or electrical energy. Applying the Organic Rankine Cycle technology to typical liquid and mixed component condensing streams is described using actual examples. Selection of the organic working fluid is explored. The Rankine Cycle efficiency is directly dependent upon the temperature difference between its evaporating and condensing phases. The evaporating level is set by the heat source; therefore, to maximize efficiency, it is essential to obtain the lowest condensing temperature practical. Various condensing schemes are discussed emphasizing methods of optimizing the net output of the total system. Several Organic Rankine Cycle commercial applications are summarized with experience and general performance given. The economics and optimization techniques in typical applications including multiple heat sources are discussed.

Sawyer, R. H.; Ichikawa, S.

1980-01-01T23:59:59.000Z

83

Application Research of Evaporative Cooling in the Waste Heat Recovery  

Science Conference Proceedings (OSTI)

Evaporative condenser is one kind of high-efficient and energy-water saving heat exchange equipment, which has been widely applied in many engineering fields. The theory and product characteristic of evaporative condenser is introduced in this paper. ... Keywords: Evaporative condenser, Waste heat recovery, Energy saving, Water saving

Zhijiang Wu; Nan Wang; Gongsheng Zhu

2010-12-01T23:59:59.000Z

84

Renewable energy of waste heat recovery system for automobiles  

Science Conference Proceedings (OSTI)

A system to recover waste heat comprised of eight thermoelectric generators (TEGs) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. In order to estimate the temperature difference between thermoelectric elements

Cheng-Ting Hsu; Da-Jeng Yao; Ke-Jyun Ye; Ben Yu

2010-01-01T23:59:59.000Z

85

Traditional vs. alternative energy house heating source  

Science Conference Proceedings (OSTI)

The article discusses the economic analysis of two different heating systems. The first uses fossil fuel (Liquidized naphtha gas- LNG) to heat the building and domestic hot water. The second uses geothermal energy to do the same job. In both systems ... Keywords: borehole heat exchanger, economic analysis, geothermal energy, heat pump, heating system, net present value

S. Poberžnik; D. Goricanec; J. Krope

2007-05-01T23:59:59.000Z

86

Supplemental heat rejection in ground source heat pumps for residential houses in Texas and other semi-arid regions.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHP) are efficient alternatives to air source heat pumps to provide heating and cooling for conditioned buildings. GSHPs are widely deployed… (more)

Balasubramanian, Siddharth

2012-01-01T23:59:59.000Z

87

Combined Heat and Power, Waste Heat, and District Energy  

Energy.gov (U.S. Department of Energy (DOE))

Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

88

Phase 1 immobilized low-activity waste operational source term  

SciTech Connect

This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

Burbank, D.A.

1998-03-06T23:59:59.000Z

89

Waste Heat Recovery by Organic Fluid Rankine Cycle  

E-Print Network (OSTI)

The use of Organic Rankine Cycle for waste heat recovery presents several characteristics which are analyzed in details. After a short comparison with steam cycles, the Organic Rankine Cycle is described : its simplicity is shown and achievable efficiencies versus heat source temperature are given. Available fluids are presented. The choice of the fluid allows a good adaptation to temperature and power for each application. The most interesting field for Organic Rankine Cycles are low mechanical powers of a few megawatts and medium temperatures, about 500 C/600 C, for flue gas. The very simple technology of turbines is shown. Three examples are presented. The first one is a test loop of 300 thermal kW built in BERTIN & Cie laboratory to experiment a supersonic turbine designed by the same company for organic vapor at 250 C. The second gives the main characteristics of recovery from exhaust gas of Diesel engines. The last deals with possible recovery from air quenching of clinker in cement plants.

Verneau, A.

1979-01-01T23:59:59.000Z

90

Cold End Inserts for Process Gas Waste Heat Boilers Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB)  

E-Print Network (OSTI)

Cold End Inserts for Process Gas Waste Heat Boilers Overview Air Products, operates hydrogen production plants, which utilize large waste heat boilers (WHB) to cool process syngas. The gas enters satisfies all 3 design criteria. · Correlations relating our experimental results to a waste heat boiler

Demirel, Melik C.

91

Air-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps Air-Source Heat Pumps June 24, 2012 - 3:35pm Addthis When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. When properly installed, an air-source heat pump can deliver one-and-a-half to three times more heat energy to a home than the electrical energy it consumes. | Photo courtesy of iStockPhoto/YinYang. What does this mean for me? If you live in a cooling climate, an air-source heat pump is a good choice. If you live in a heating climate, watch for advanced air-source heat pumps coming on the market that operate well in sub-freezing temperatures. An air-source heat pump can provide efficient heating and cooling for your

92

Air source heat pump system for drying application  

Science Conference Proceedings (OSTI)

This paper investigates the performance of an air source heat pump for drying purpose. In order to evaluate the performance analysis; a simulation study has been done. The results of simulation of heat pump dryer for different evaporator temperatures ... Keywords: air source heat pump, coefficient of performance (COP), condenser temperature and compressor work, dryer, evaporator temperature

R. Daghigh; M. H. Ruslan; A. Zaharim; K. Sopian

2010-10-01T23:59:59.000Z

93

Inverse problem of time-dependent heat sources numerical reconstruction  

Science Conference Proceedings (OSTI)

Abstract: This work studies the inverse problem of reconstructing a time-dependent heat source in the heat conduction equation using the temperature measurement specified at an internal point. Problems of this type have important applications in several ... Keywords: 35R30, 49J20, Green function, Heat source, Inverse problem, Landweber iteration, Numerical results

Liu Yang; Mehdi Dehghan; Jian-Ning Yu; Guan-Wei Luo

2011-04-01T23:59:59.000Z

94

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network (OSTI)

Performance of ground source heat pump system in a near-zerosimulation tool for ground- source heat pump system designflow systems and ground source heat pump systems Abstract

Hong, Tainzhen

2010-01-01T23:59:59.000Z

95

Ground-source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2009-07-14T23:59:59.000Z

96

Ground-Source Heat Pumps Applied to Commercial Buildings  

SciTech Connect

Ground-source heat pumps can provide an energy-efficient, cost-effective way to heat and cool commercial facilities. While ground-source heat pumps are well established in the residential sector, their application in larger, commercial-style, facilities is lagging, in part because of a lack of experience with the technology by those in decision-making positions. Through the use of a ground-coupling system, a conventional water-source heat pump design is transformed to a unique means of utilizing thermodynamic properties of earth and groundwater for efficient operation throughout the year in most climates. In essence, the ground (or groundwater) serves as a heat source during winter operation and a heat sink for summer cooling. Many varieties in design are available, so the technology can be adapted to almost any site. Ground-source heat pump systems can be used widely in commercial-building applications and, with proper installation, offer great potential for the commercial sector, where increased efficiency and reduced heating and cooling costs are important. Ground-source heat pump systems require less refrigerant than conventional air-source heat pumps or air-conditioning systems, with the exception of direct-expansion-type ground-source heat pump systems. This chapter provides information and procedures that an energy manager can use to evaluate most ground-source heat pump applications. Ground-source heat pump operation, system types, design variations, energy savings, and other benefits are explained. Guidelines are provided for appropriate application and installation. Two case studies are presented to give the reader a sense of the actual costs and energy savings. A list of manufacturers and references for further reading are included for prospective users who have specific or highly technical questions not fully addressed in this chapter. Sample case spreadsheets are provided in Appendix A. Additional appendixes provide other information on the ground-source heat pump technology.

Parker, Steven A.; Hadley, Donald L.

2006-12-31T23:59:59.000Z

97

High temperature heat pipes for waste heat recovery  

SciTech Connect

Operation of heat pipes in air at temperatures above 1200/sup 0/K has been accomplished using SiC as a shell material and a chemical vapor deposit (CVD) tungsten inner liner for protection of the ceramic from the sodium working fluid. The CVD tungsten has been used as a distribution wick for the gravity assisted heat pipe through the development of a columnar tungsten surface structure, achieved by control of the metal vapor deposition rate. Wick performance has been demonstrated in tests at approximately 2 kW throughput with a 19-mm-i.d. SiC heat pipe. Operation of ceramic heat pipes in repeated start cycle tests has demonstrated their ability to withstand temperature rise rates of greater than 1.2 K/s.

Merrigan, M.A.; Keddy, E.S.

1980-01-01T23:59:59.000Z

98

Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks  

Science Conference Proceedings (OSTI)

This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

WILLIS, W.L.

2000-06-15T23:59:59.000Z

99

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

100

Irregular spacing of heat sources for treating hydrocarbon containing formations  

SciTech Connect

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat pipe support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Futhermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swages end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-01-24T23:59:59.000Z

102

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat pipe support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-04-10T23:59:59.000Z

103

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat pipe support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-12-04T23:59:59.000Z

104

Waste heat recovery system having thermal sleeve support for heat pipe  

SciTech Connect

A system for recovering waste heat from a stream of heated gas is disclosed. The system includes a convection heat transfer chamber, a boiler tank, and a plurality of heat pipes thermally interconnecting the convection heat transfer chamber with the boiler tank. Each of the heat pipes includes an evaporator section which is disposed in heat transfer relation with a stream of heated gas flowing through the convection heat transfer chamber, and a condenser section disposed in heat transfer relation with a volume of water contained within the boiler tank. The boiler tank is provided with a header plate having an array of heat pipe openings through which the heat pipes project. A heat support sleeve is received in each heat pipe opening in sealed engagement with the header plate, with the heat pipes projecting through the support sleeves and thermally interconnecting the convection heat transfer chamber with the boiler tank. An intermediate portion of each heat pipe is received in sealed engagement with its associated support sleeve. In a preferred embodiment, heat transfer through the support sleeve is minimized in an arrangement in which each heat pipe opening is reduced by a stepped bore with the support sleeve connected in threaded, sealed engagement with the stepped bore. Furthermore, in this arrangement, the support sleeve has swaged end portions which project beyond the header plate and engage the heat pipe on opposite sides at points which are remote with respect to the support sleeve/header plate interface. One of the swaged end portions is sealed against the heat pipe in a fluid-tight union within the boiler tank. The support sleeve is radially spaced with respect to the heat pipe, and is also radially spaced with respect to the heat pipe opening whereby heat transfer through the walls of the heat pipe to the support sleeve and to the header plate is minimized by concentric annular air gaps.

McCurley, J.

1984-12-18T23:59:59.000Z

105

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

106

Combined permeable pavement and ground source heat pump systems.  

E-Print Network (OSTI)

??The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in… (more)

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

107

EVALUATION AND OPTIMIZATION RESEARCH OF GROUND SOURCE HEAT PUMP.  

E-Print Network (OSTI)

??Nowadays energy efficiency and environmental protection have got particular attention. After the sustainable development theory had been put forward decades ago. Ground source heat pump… (more)

Zhou, Taian

2011-01-01T23:59:59.000Z

108

Wabash County REMC - Residential Geothermal and Air-source Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal...

109

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Kosciusko REMC - Residential Geothermal and...

110

Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles  

SciTech Connect

Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

Smith, K.; Thornton, M.

2009-04-01T23:59:59.000Z

111

Enhancement of heat transfer for ground source heat pump systems.  

E-Print Network (OSTI)

??Uptake of geothermal heat pump (GSHP) systems has been slow in some parts of the world due to the unpredictable operational performance, large installation space… (more)

Mori, Hiromi

2010-01-01T23:59:59.000Z

112

Cogeneration Waste Heat Recovery at a Coke Calcining Facility  

E-Print Network (OSTI)

PSE Inc. recently completed the design, construction and start-up of a cogeneration plant in which waste heat in the high temperature flue gases of three existing coke calcining kilns is recovered to produce process steam and electrical energy. The heat previously exhausted to the atmosphere is now converted to steam by waste heat recovery boilers. Eighty percent of the steam produced is metered for sale to a major oil refinery, while the remainder passes through a steam turbine generator and is used for deaeration and feedwater heating. The electricity produced is used for the plant auxiliaries and sold to the local utility. Many design concepts were incorporated into the plant which provided for high plant availability, reliability and energy efficiency. This paper will show how these concepts were implemented and incorporated into the detailed design of the plant while making cogeneration a cost effective way to save conventional fuels. Operating data since plant start-up will also be presented.

Coles, R. L.

1986-06-01T23:59:59.000Z

113

Control system for electric water heater with heat pump external heat source  

Science Conference Proceedings (OSTI)

A control system for an electric water heater operatively associated with an external heat source, such as a heat pump. The water heater includes a water storage tank provided with an electric tank heating unit having a tank thermostat which closes in response to water temperature in the tank, allowing a flow of current through the tank heating unit so as to turn it on to heat the water, and which opens when the tank thermostat has been satisfied, interrupting the current flow so as to turn the tank heating unit off. The control system as responsive to the initial current surge through the tank heating unit when the tank thermostat closes to interrupt the current flow to the tank heating unit so as to maintain the heating unit off and to turn on the external heat source and maintain it on until the tank thermostat opens. The initial current surge cleans the contacts of the tank thermostat by burning off any insulating oxide residues which may have formed on them. The control system includes means responsive to abnormal conditions which would prevent the external heat source from heating water effectively for turning off the external heat source and turning on the tank heating unit and maintaining the external heat source off and the tank heating unit on until the tank thermostat is satisfied.

Shaffer Jr., J. E.; Picarello, J. F.

1985-09-10T23:59:59.000Z

114

Optimal Design for a Hybrid Ground-Source Heat Pump  

E-Print Network (OSTI)

Although the advantages of ground-source heat pumps over their conventional alternatives make these systems a very attractive choice for air conditioning, not only for residential buildings but increasingly also for institutional and commercial buildings, a significant barrier to wider application of this technology is a high first cost. When used in cooling-dominated buildings, ground-source heat pumps that utilize vertical, closed-loop ground heat exchangers can experience performance degradation as the entering fluid temperature to the heat pump increases over time due to heat buildup in the borefield. In these cases, it is possible to displace a large portion of the system cost by installing a supplemental heat rejecter to balance the annual heat extraction from the ground. The paper presented has shown that the heat rejection of the GLHEs and the system energy consumption are approached to discuss the ground heat balance with different design procedures and control strategies though the system simulation.

Yu, Z.; Yuan, X.; Wang, B.

2006-01-01T23:59:59.000Z

115

Multi-heat source thermodynamic cycles and demonstrations of their power plants  

SciTech Connect

Being on the analysis of the requirements and the problems existing in the thermodynamic cycles (TC) and their power plants (PPs) using single heat source (SHS) of moderate and low grade, the paper puts forward the theory of electricity generation by using multi-heat sources (MHS), its possibility and advantages of these heat sources (HSs). Proposals of two types of MHS combination cycles, such as solar thermal energy (STE) and geothermal energy (GE), solar-geothermal and fuel burning energy (FBE) or waste heat (WH) are given. The calculation results of these PPs and their corresponding SHS-PPs are listed. MHS-PPs are superior from both technical and economic points of view.

Dai-Ji, H.

1984-08-01T23:59:59.000Z

116

Discussions on Disposal Forms of Auxiliary Heat Source in Surface Water Heat Pump System  

E-Print Network (OSTI)

This paper presents two common forms of auxiliary heat source in surface water heat pump system and puts forward the idea that the disposal forms affect operation cost. It deduces operation cost per hour of the two forms. With a project calculation, it illuminates that the post-located auxiliary heat source cheaper and superior to the fore-located one.

Qian, J.; Sun, D.; Li, X.; Li, G.

2006-01-01T23:59:59.000Z

117

Waste heat recovery in automobile engines : potential solutions and benefits  

E-Print Network (OSTI)

Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

Ruiz, Joaquin G., 1981-

2005-01-01T23:59:59.000Z

118

Heat-source specification 500 watt(e) RTG  

DOE Green Energy (OSTI)

This specification establishes the requirements for a /sup 90/SrF/sub 2/ heat source and its fuel capsule for application in a 500 W(e) thermoelectric generator. The specification covers: fuel composition and quantity; the Hastelloy S fuel capsule material and fabrication; and the quality assurance requirements for the assembled heat source. (LCL)

Not Available

1983-02-01T23:59:59.000Z

119

Salt disposal of heat-generating nuclear waste.  

SciTech Connect

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

120

Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(below 400 degrees F) into electricity. The waste heat stream is diverted through a "hot heat exchanger" inside the system. A cooling stream is simultaneously diverted through the...

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MONITORING WASTE HEAT REJECTION TO THE ENVIRONMENT VIA REMOTE SENSING  

Science Conference Proceedings (OSTI)

Nuclear power plants typically use waste heat rejection systems such as cooling lakes and natural draft cooling towers. These systems are designed to reduce cooling water temperatures sufficiently to allow full power operation even during adverse meteorological conditions. After the power plant is operational, the performance of the cooling system is assessed. These assessments usually rely on measured temperatures of the cooling water after it has lost heat to the environment and is being pumped back into the power plant (cooling water inlet temperature). If the cooling system performance is not perceived to be optimal, the utility will collect additional data to determine why. This paper discusses the use of thermal imagery collected from aircraft and satellites combined with numerical simulation to better understand the dynamics and thermodynamics of nuclear power plant waste heat dissipation systems. The ANS meeting presentation will discuss analyses of several power plant cooling systems based on a combination of remote sensing data and hydrodynamic modeling.

Garrett, A

2009-01-13T23:59:59.000Z

122

Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief  

DOE Green Energy (OSTI)

This technical brief is a guide to help plant operators reduce waste heat losses associated with process heating equipment.

Not Available

2004-11-01T23:59:59.000Z

123

Experiment System Analysis of an Indirect Expansion Solar Assisted Water Source Heat Pump Radiant Floor Heating System  

Science Conference Proceedings (OSTI)

A solar assisted water source heat pump for Radiant Floor Heating (SWHP-RFH) experimental system with heat pipe vacuum tube solar collector as heating source and radiant floor as terminal device is proposed in the paper. The Mathematics Model of dynamic ... Keywords: solar energy, water source heat pump, radiant floor heating systems, system dynamic COP

Qu Shilin; Ma Fei; Liu Li; Yue Jie

2009-10-01T23:59:59.000Z

124

Performance analysis of a two-stage variable capacity air source heat pump and a horizontal loop coupled ground source heat pump system.  

E-Print Network (OSTI)

??The thermal performance of a new two-stage variable capacity air source heat pump (ASHP) and a horizontal ground loop ground source heat pump (GSHP) was… (more)

Safa, Amir Alizadeh

2012-01-01T23:59:59.000Z

125

Heat pipe cooling system for underground, radioactive waste storage tanks  

SciTech Connect

An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70/sup 0/F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle.

Cooper, K.C.; Prenger, F.C.

1980-02-01T23:59:59.000Z

126

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network (OSTI)

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat… (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

127

Super Energy Saver Ground Source Heat Pump  

Source: US Energy Information Administration . 11 Managed by UT-Battelle for the U.S. Department of Energy ... GSHPs are very energy efficient, and the market is

128

Energy Basics: Air-Source Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from ductwork that protrudes through a wall or roof. More Information Visit the Energy Saver website for more information about the selection and performance of air-source...

129

Industrial Waste Heat Recovery Opportunities: An Update on Industrial High Temperature Heat Pump Technologies  

Science Conference Proceedings (OSTI)

It is estimated that as much as 20% to 50% of energy consumed is lost via waste heat contained in streams of exhaust gases and hot liquids, as well as through conduction, convection or radiation emanating from the surface of hot equipment. It is also estimated that in some cases, such as industrial furnaces, efficiency improvements resulting from waste heat recovery can improve efficiency by 10% to as much as 50%. This technical update is a continuation of research conducted by the Electric Power ...

2013-12-04T23:59:59.000Z

130

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model  

SciTech Connect

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

2013-02-01T23:59:59.000Z

131

Heat pipe effects in nuclear waste isolation: a review  

SciTech Connect

The existence of fractures favors heat pipe development in a geologic repository as does a partially saturated medium. A number of geologic media are being considered as potential repository sites. Tuff is partially saturated and fractured, basalt and granite are saturated and fractured, salt is unfractured and saturated. Thus the most likely conditions for heat pipe formation occur in tuff while the least likely occur in salt. The relative permeability and capillary pressure dependences on saturation are of critical importance for predicting thermohydraulic behavior around a repository. Mineral redistribution in heat pipe systems near high-level waste packages emplaced in partially saturated formations may significantly affect fluid flow and heat transfer processes, and the chemical environment of the packages. We believe that a combined laboratory, field, and theoretical effort will be needed to identify the relevant physical and chemical processes, and the specific parameters applicable to a particular site. 25 refs., 1 fig.

Doughty, C.; Pruess, K.

1985-12-01T23:59:59.000Z

132

Interfacing primary heat sources and cycles for thermochemical hydrogen production  

DOE Green Energy (OSTI)

Advantages cited for hydrogen production from water by coupling thermochemical cycles with primary heat include the possibility of high efficiencies. These can be realized only if the cycle approximates the criteria required to match the characteristics of the heat source. Different types of cycles may be necessary for fission reactors, for fusion reactors or for solar furnaces. Very high temperature processes based on decomposition of gaseous H/sub 2/O or CO/sub 2/ appear impractical even for projected solar technology. Cycles based on CdO decomposition are potentially quite efficient and require isothermal heat at temperatures that may be available from solar furnaces of fusion reactors. Sulfuric acid and solid sulfate cycles are potentially useful at temperatures available from each heat source. Solid sulfate cycles offer advantages for isothermal heat sources. All cycles under development include concentration and drying steps. Novel methods for improving such operations would be beneficial.

Bowman, M.G.

1980-01-01T23:59:59.000Z

133

Experimental Study on Energy Efficiency of Heat-source Tower Heat Pump Units in Winter Condition  

Science Conference Proceedings (OSTI)

Building energy consumption in China has been increasing rapidly. And a small increase in the operation efficiency of the air-conditioning system can substantially decrease it. In this paper a new type heat pump is developed to improve the performance ... Keywords: Heat-source tower, Heat pump, Seasonal energy efficiency ratio(SEER), Hermal properties

Li Nianping; Zhang Wenjie; Wang Lijie; Liu Qiuke; Hu Jinhua

2011-01-01T23:59:59.000Z

134

Ground Source Heat Pump System Data Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

135

Ground Source Heat Pump System Data Analysis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review Peer Review GSHP System Data Analysis Xiaobing Liu, Ph.D. Oak Ridge National Laboratory liux2@ornl.gov (865-574-2593) 4/3/2013 - GSHP Data Analysis in 1 st phase of U.S.-China CERC-BEE - GSHP ARRA Grantee Data Mining 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: High first cost of ground heat exchangers (GHXs) and lack of knowledge/trust in achievable benefits are major barriers preventing

136

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

137

New waste-heat refrigeration unit cuts flaring, reduces pollution  

Science Conference Proceedings (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

138

Ground-Source Heat Pumps for Domestic and Commercial Applications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Source Heat Pumps for Domestic and Commercial Applications in Europe Speaker(s): Gran Hellstrm Date: May 2, 2006 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

139

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network (OSTI)

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat recovery system consists of a shell and tube heat exchanger (16"? x 14'0") installed in the compressor hot gas discharge line. Water is recirculated from a 23,000-gallon tempered water storage tank to the heat exchanger by a circulating pump at the rate of 100 gallons per minute. All make-up water to the plant hot water system is supplied from this tempered water storage tank, which is maintained at a constant filled level. Tests to determine the actual rate of heat recovery were conducted from October 3, 1979 to October 12, 1979, disclosing an average usage of 147,000 gallons of hot water daily. These tests illustrated a varied heat recovery of from 0.5 to 1.0 million BTU per hour. The deviations were the result of both changing refrigeration demands and compressor operating modes. An average of 16 million BTU per day was realized, resulting in reduced boiler fuel costs of $30,000 annually, based on the present $.80 per gallon #2 fuel oil price. At the total installed cost of $79,000, including test instrumentation, the project was found to be economically viable. The study has demonstrated the technical and economic feasibility of refrigeration waste heat recovery as a positive energy conservation strategy which has broad applications in industry and commerce.

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

140

Economic Analysis of a Waste Water Resource Heat Pump Air-Conditioning System in North China  

E-Print Network (OSTI)

This paper describes the situation of waste water resource in north China and the characteristics and styles of a waste water resource heat pump system, and analyzes the economic feasibility of a waste water resource heat pump air-conditioning system including investment, operating fee and pay-back time. The results show that waste water resource heat pump air-conditioning system has a low investment, low operating fee and short payback time.

Chen, H.; Li, D.; Dai, X.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

Science Conference Proceedings (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

142

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network (OSTI)

The recovery and reuse of industrial waste heat may be limited if an energy source cannot be fully utilized in an otherwise available out of phase or unequal capacity end-use process. This paper summarizes the results of a technical and economic evaluation involving process data from 12 industrial plants to determine if thermal energy storage (TES) systems can be used with commercially available energy management equipment to enhance the recovery and utilization of industrial waste heat. Results showing estimated installed costs, net energy savings, economic benefits, and utility impact are presented at both single plant and industry levels for 14 of 24 applications having after tax ROR's in excess of 20 percent. Maximum energy and cost savings for 9 of these 14 systems are shown to be conditional on the use of TES.

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

143

Hanford tank residual waste – contaminant source terms and release models  

Science Conference Proceedings (OSTI)

Residual waste is expected to be left in 177 underground storage tanks after closure at the U.S. Department of Energy’s Hanford Site in Washington State (USA). In the long term, the residual wastes represent a potential source of contamination to the subsurface environment. Residual materials that cannot be completely removed during the tank closure process are being studied to identify and characterize the solid phases and estimate the release of contaminants from these solids to water that might enter the closed tanks in the future. As of the end of 2009, residual waste from five tanks has been evaluated. Residual wastes from adjacent tanks C-202 and C-203 have high U concentrations of 24 and 59 wt%, respectively, while residual wastes from nearby tanks C-103 and C-106 have low U concentrations of 0.4 and 0.03 wt%, respectively. Aluminum concentrations are high (8.2 to 29.1 wt%) in some tanks (C-103, C-106, and S-112) and relatively low (Technetium leachability is not as strongly dependent on the concentration of Tc in the waste, and it appears to be slightly more leachable by the Ca(OH)2-saturated solution than by the CaCO3-saturated solution. In general, Tc is much less leachable (<10 wt% of the available mass in the waste) than previously predicted. This may be due to the coprecipitation of trace concentrations of Tc in relatively insoluble phases such as Fe oxide/hydroxide solids.

Deutsch, William J.; Cantrell, Kirk J.; Krupka, Kenneth M.; Lindberg, Michael J.; Serne, R. Jeffrey

2011-08-23T23:59:59.000Z

144

Chemical Pretreatment And Enzymatic Hydrolysis Of Mixed Source-Separated Organic (SSO) And Wood Waste.  

E-Print Network (OSTI)

??This paper examines the effectiveness of two pretreatments on Source-Separated Organic waste (SSO) mixed with wood wastes: long term lime for SSO mixed with forestry… (more)

Faye, Michael

2010-01-01T23:59:59.000Z

145

Performance Analysis of Air-Source Variable Speed Heat Pumps and Various Electric Water Heating Options  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis of Air- Analysis of Air- Source Variable Speed Heat Pumps and Various Electric Water Heating Options Jeffrey Munk Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Acknowledgements * Tennessee Valley Authority - David Dinse * U.S. Department of Energy * Roderick Jackson * Tony Gehl * Philip Boudreaux * ZEBRAlliance 3 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Overview * Electric Water Heating Options - Conventional Electric Water Heaters - Heat Pump Water Heaters * Air-Source * Ground-Source - Solar Thermal Water Heater * Variable Speed Heat Pumps - Energy Use Analysis - Measured Performance - Operational Characteristics 4 Managed by UT-Battelle for the U.S. Department of Energy Presentation_name Water Heating Options

146

Available Technologies: Convection Heat Pump  

APPLICATIONS OF TECHNOLOGY: Solar thermal systems; Heating and cooling systems for buildings; Refrigeration; Compressed air source; Recycling waste heat from chimneys

147

Low-Value Waste Gases as an Energy Source  

E-Print Network (OSTI)

Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years. Lower quality streams, often difficult to capture and sometimes limited in quantity, have often not been utilized for their fuel value. Increasing environmental and economic concerns have led to greater interest in utilizing these marginal fuel value waste gas streams as auxiliary fuels. The combustion and heat transfer characteristics of these fuels are different from normal fuels and these differences must be considered when determining if they can be fired successfully in existing furnaces or when designing new furnaces to use them. In addition, because of the difficulties in burning them and the chemical compounds that may be included in them, the potential pollutant emissions from these waste streams is also a significant consideration.

Waibel, R. T.

1996-04-01T23:59:59.000Z

148

Heating and cooling of municipal buildings with waste heat from ground water  

DOE Green Energy (OSTI)

The feasibility of using waste heat from municipal water wells to replace natural gas for heating of the City Hall, Fire Station, and Community Hall in Wilmer, Texas was studied. At present, the 120/sup 0/F well water is cooled by dissipating the excess heat through evaporative cooling towers before entering the distribution system. The objective of the study was to determine the pumping cycle of the well and determine the amount of available heat from the water for a specified period. This data were correlated with the heating and cooling demand of the City's buildings, and a conceptual heat recovery system will be prepared. The system will use part or all of the excess heat from the water to heat the buildings, thereby eliminating the use of natural gas. The proposed geothermal retrofit of the existing natural gas heating system is not economical because the savings in natural gas does not offset the capital cost of the new equipment and the annual operating and maintenance costs. The fuel savings and power costs are a virtual trade-off over the 25-year period. The installation and operation of the system was estimated to cost $105,000 for 25 years which is an unamortized expense. In conclusion, retrofitting the City of Wilmer's municipal buildings is not feasible based on the economic analysis and fiscal projections as presented.

Morgan, D.S.; Hochgraf, J.

1980-10-01T23:59:59.000Z

149

Applications of thermal energy storage to process heat and waste heat recovery in the primary aluminum industry. Final report, September 1977-September 1978  

DOE Green Energy (OSTI)

The results of a study entitled, Applications of Thermal Energy Storage to Process Heat and Waste Heat Recovery in the Primary Aluminum Industry are presented. In this preliminary study, a system has been identified by which the large amounts of low-grade waste energy in the primary pollution control system gas stream can be utilized for comfort heating in nearby communities. Energy is stored in the form of hot water, contained in conventional, insulated steel tanks, enabling a more efficient utilization of the constant energy source by the cyclical energy demand. Less expensive energy storage means (heated ponds, aquifers), when they become fully characterized, will allow even more cost-competitive systems. Extensive design tradeoff studies have been performed. These tradeoff studies indicate that a heating demand equivalent to 12,000 single-family residences can be supplied by the energy from the Intalco plant. Using a 30-year payback criterion (consistent with utility planning practice), the average cost of energy supplied over the system useful life is predicted at one-third the average cost of fossil fuel. The study clearly shows that the utilization of waste energy from aluminum plants is both technically and economically attractive. The program included a detailed survey of all aluminum plants within the United States, allowing the site specific analyses to be extrapolated to a national basis. Should waste heat recovery systems be implemented by 1985, a national yearly savings of 6.5 million barrels of oil can be realized.

Katter, L.B.; Hoskins, R.L.

1979-04-01T23:59:59.000Z

150

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal microearthquakes, and the seismic waves they generate, provide a rich source of information about physical processes associated with Enhanced Geothermal Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we are developing several software packages to enhance the utility of microearthquake data in geothermal operations and EGS experiments. Two of these are: 1. Enhanced

151

Helium release from radioisotope heat sources  

DOE Green Energy (OSTI)

Diffusion of helium in /sup 238/PuO/sub 2/ fuel was characterized as a function of the heating rate and the fuel microstructure. The samples were thermally ramped in an induction furnace and the helium release rates measured with an automated mass spectrometer. The diffusion constants and activation energies were obtained from the data using a simple diffusion model. The release rates of helium were correlated with the fuel microstructure by metallographic examination of fuel samples. The release mechanism consists of four regimes, which are dependent upon the temperature. Initially, the release is controlled by movement of point defects combined with trapping along grain boundaries. This regime is followed by a process dominated by formation and growth of helium bubbles along grain boundaries. The third regime involves volume diffusion controlled by movement of oxygen vacancies. Finally, the release at the highest temperatures follows the diffusion rate of intragranular bubbles. The tendency for helium to be trapped within the grain boundaries diminishes with small grain sizes, slow thermal pulses, and older fuel.

Peterson, D.E.; Early, J.W.; Starzynski, J.S.; Land, C.C.

1984-05-01T23:59:59.000Z

152

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

153

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network (OSTI)

The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the product according to a 1973 report by the Cost of Living Council. Martin Marietta Aerospace, Denver Division, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been completed and illustrates very attractive cost benefits realized from waste heat recovery/thermal storage systems. This paper will identify and quantify the sources of rejected energy in the cement manufacturing process, establish uses of this energy, exhibit various energy storage concepts, and present a methodology for selection of most promising energy storage systems. Two storage systems show the best promise - rock beds and draw salt storage. Thermal performance and detailed economic analyses have been performed on these systems and will be presented. Through use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 1013 BTU per year, or an equivalent of 4.0 x 10 barrels of oil per year, can be conserved. Attractive rates of return on investment of the proposed systems are an incentive for utilization and further development.

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

154

Heat transfer analysis of thermosiphons and U-tube ground source heat pumps.  

E-Print Network (OSTI)

??Ground source thermal energy transport systems have the potential to improve theefficiency of space heating.Two such systems, a thermosiphon and a vertical U-tube system, were… (more)

Nakaoka, Joshua

2012-01-01T23:59:59.000Z

155

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network (OSTI)

Before the year 2000, more than one quarter of U.S. businesses will be firing Alternate Fuels in their boiler systems. And, the trend toward using Process Gases, Flammable Liquids, and Volatile Organic Compounds (VOC's), to supplement fossil fuels, will be considered a key element of the management strategy for industrial power plants. The increase in interest in Alternate Fuels and demand for proven Alternate Fuel technology is being driven by three factors -* The requirement of U.S. firms to compete in a global market. * The improvements in Alternate Fuel technologies. * The increasing federal regulations encompassing more types of waste streams. This paper will provide an overview of the types of waste utilized as fuel sources in packaged boilers and the technology available to successfully handle these waste streams.

Coerper, P.

1992-04-01T23:59:59.000Z

156

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump.  

E-Print Network (OSTI)

??The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump were investigated. The base case tests used a… (more)

Parker, Brandon DeWayne

2012-01-01T23:59:59.000Z

157

Stability of thermal structures with an internal heating source  

E-Print Network (OSTI)

We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at its center. The thermal conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases with distance from the source r approximately as exp(-tau)/(r**2), being tau the optical depth. We find that the influence of the radiation source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

Sanchez, Nestor

2008-01-01T23:59:59.000Z

158

Stability of thermal structures with an internal heating source  

E-Print Network (OSTI)

We study the thermal equilibrium and stability of isobaric, spherical structures having a radiation source located at its center. The thermal conduction coefficient, external heating and cooling rates are represented as power laws of the temperature. The internal heating decreases with distance from the source r approximately as exp(-tau)/(r**2), being tau the optical depth. We find that the influence of the radiation source is important only in the central region, but its effect is enough to make the system thermally unstable above a certain threshold central temperature. This threshold temperature decreases as the internal heating efficiency increases, but, otherwise, it does not depend on the structure size. Our results suggest that a solar-like star migrating into a diffuse interstellar region may destabilize the surrounding medium.

Nestor Sanchez; Eugenio Lopez

2008-03-10T23:59:59.000Z

159

Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements  

Science Conference Proceedings (OSTI)

This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors.

Kocher, D.C.

1991-01-01T23:59:59.000Z

160

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network (OSTI)

grid, the few buildings equipped with Combined Heat andthe grid system. 29 Source: EPA Combined Heat and Powergrid system. 21 Alternatively, a CHP system collects the wasted heat

Ferraina, Steven

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Life cycle assessment of base-load heat sources for district heating system options  

Science Conference Proceedings (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

162

Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump  

E-Print Network (OSTI)

In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air. The most common method of air source heat pump frost removal is reverse-cycle defrost. During the defrosting operation, the heat pump runs in the cooling mode. The defrost process is accomplished by reversing the normal heating mode. In this paper, the effect of the heat storage tank to the air source heat pump defrosting is test. Owing to the existence of the heat storage tank, thermal inertia of the loop is relatively high. The frosting and defrosting course of the air source heat pump have little effect on the room temperature.

Wang, Z.; Gu, J.; Lu, Z.

2006-01-01T23:59:59.000Z

163

Modeling water seepage into heated waste emplacement drifts at Yucca Mountain  

E-Print Network (OSTI)

into drifts at Yucca Mountain, Journal of ContaminantEMPLACEMENT DRIFTS AT YUCCA MOUNTAIN Jens Birkholzer, Sumitfor nuclear waste at Yucca Mountain, Nevada. Heating of rock

Birkholzer, Jens; Mukhopadhyay, Sumitra; Tsang, Yvonne

2003-01-01T23:59:59.000Z

164

Analysis & Tools to Spur Increased Deployment of " Waste Heat"  

Open Energy Info (EERE)

Tools to Spur Increased Deployment of " Waste Heat" Tools to Spur Increased Deployment of " Waste Heat" Rejection/Recycling Hybrid GHP Systems in Hot, Arid or Semiarid Climates Like Texas Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis & Tools to Spur Increased Deployment of " Waste Heat" Rejection/Recycling Hybrid GHP Systems in Hot, Arid or Semiarid Climates Like Texas Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description As GHP systems offer substantial energy efficiency by leveraging earth's intrinsic thermal capacitance, they could play a pivotal role in achieving the DoE's Building Technologies Pro-gram's "zero energy" goal in heavily cooling-dominated climates. Moreover, SHR-augmented GHP systems, in particular, could play a vital role in reducing building energy consumption and limiting greenhouse gas (GHG) emissions in heavily cooling dominated states, like Texas, which are experiencing large increases in population and correspondingly, peak electricity demand. If only 0.1% of Texas,' Arizona's, New Mexico's and Nevada's nearly 15 million-or 15,000-homes were to install new (or convert their existing HVAC or heat pump system to) a full or hybrid GHP system, it would result in between $400 and $800 million USD of new economic activity, most of which would be domestic. Moreover, these 15,000 homes would cut their annual energy consumption-and concomitant GHG emissions-by roughly 40-70%; on average they would save about $1,000 USD in annual operating costs, collectively saving about $15 million USD annually. A conservative GHP industry estimate is that at least 900 people would be directly employed for every 10,000 GHP units installed.

165

Advanced Variable Speed Air-Source Integrated Heat Pump  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

166

Advanced Variable Speed Air-Source Integrated Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

variable speed air-source variable speed air-source integrated heat pump (AS-IHP) - CRADA Van D. Baxter Oak Ridge National Laboratory vdb@ornl.gov; 865-574-2104 April 3, 2013 Development of advanced HVAC/WH system options for efficient residential or small commercial buildings, new const. or retrofit * ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030 IHP concept - all HVAC & WH services integrated into

167

Prandtl Number Dependent Natural Convection with Internal Heat Sources  

SciTech Connect

Natural convection plays an important role in determining the thermal load from debris accumulated in the reactor vessel lower head during a severe accident. Recently, attention is being paid to the feasibility of external vessel flooding as a severe accident management strategy and to the phenomena affecting the success path for retaining the molten core material inside the vessel. The heat transfer inside the molten core material can be characterized by the strong buoyancy-induced flows resulting from internal heating due to decay of fission products. The thermo-fluid dynamic characteristics of such flow depend strongly on the thermal boundary conditions. The spatial and temporal variation of heat flux on the pool wall boundaries and the pool superheat are mainly characterized by the natural convection flow inside the molten pool. In general, the natural convection heat transfer phenomena involving the internal heat generation are represented by the modified Rayleigh number (Ra’), which quantifies the internal heat source and hence the strength of the buoyancy force. In this study, tests were conducted in a rectangular section 250 mm high, 500 mm long and 160 mm wide. Twenty-four T-type thermocouples were installed in the test section to measure temperatures. Four T-type thermocouples were used to measure the boundary temperatures. The thermocouples were placed in designated locations after calibration. A direct heating method was adopted in this test to simulate the uniform heat generation. The experiments covered a range of Ra' between 1.5x106 and 7.42x1015 and the Prandtl number (Pr) between 0.7 and 6.5. Tests were conducted with water and air as simulant. The upper and lower boundary conditions were maintained uniform. The results demonstrated feasibility of the direct heating method to simulate uniform volumetric heat generation. Particular attentions were paid to the effect of Pr on natural convection heat transfer within the rectangular pool.

Kang Hee Lee; Seung Dong Lee; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

2004-06-01T23:59:59.000Z

168

Performance limits of power cycles using low temperature heat sources  

Science Conference Proceedings (OSTI)

A systematic analysis of a Rankine cycle using R134a as the working fluid and a finite (314.5 kg/s) low temperature (100 °C) heat source shows that, for any fixed net power output, the evaporation pressure has upper and lower limits which depend ... Keywords: energy analysis, exergy analysis, finite size thermodynamics, optimisation

Mohammed Khennich; Nicolas Galanis

2010-02-01T23:59:59.000Z

169

Efficient energy supply from ground coupled heat transfer source  

Science Conference Proceedings (OSTI)

The increasing demands of Energy for industrial production and urban facilities, asks for new strategies for Energy sources. In recent years an important problem is to have some energy storage, energy production and energy consumption which fulfill some ... Keywords: heat, thermal aquifer, thermal energy

Maurizio Carlini; Sonia Castellucci

2010-03-01T23:59:59.000Z

170

Commercial Air-Source Heat Pumps, Purchasing Specifications for Energy-Efficient Products (Fact Sheet)  

SciTech Connect

Energy efficiency purchasing specifications for federal procurements of commercial air-source heat pumps.

Not Available

2011-02-11T23:59:59.000Z

171

Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

Donna P. Guillen

2012-07-01T23:59:59.000Z

172

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.

Not Available

2011-10-01T23:59:59.000Z

173

Waste Heat Recovery in Cement Plants By Fluidized Beds  

E-Print Network (OSTI)

Not too many years ago energy costs and efficiencies were virtually ignored by corporate decision makers. The prevailing attitude was 'my business is manufacturing and my capital is best spent improving and expanding my manufacturing capacity.' With energy now contributing a significant fraction of the overall product cost in many industries, there is general recognition that control of fuel and electric costs is just as important to remaining competitive as is improving manufacturing methods. This is particularly true in the cement industry. Cement manufacture consists of mining and grinding rocks, melting them to form clinkers, then grinding those clinkers to a powder. Through recovery of waste heat and inclusion of technology such as flash calciners, the industry has reduced the fuel requirement per ton of cement from about 7 million Btu per ton in old plants to less than 3 million Btu per ton in the most modern plants.

Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

1984-01-01T23:59:59.000Z

174

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

175

Multi-Source Hydronic Heat Pump System Performance Test Bed  

E-Print Network (OSTI)

An extensive independent evaluation recently was completed of the Multi-Source Hydronic Heat Pump (MSHHP) system, a proprietary heating, ventilating and air conditioning (HVAC) system developed by Meckler Systems Group. The MSHHP tests were conducted on a unique test bed designed and constructed by National Technical Systems (NTS) through a research and development grant program funded by Southern California Edison Company. This paper outlines testing methods and results, including evaluations of peak power and energy savings allowed by the innovative system. The main difference between the MSHHP and a conventional HVAC system is use of a chilled water "diversity" cooling loop interconnecting air to water coils (located at each water source heat pump unit) with a central chilled water storage tank. The MSHHP system uses significantly less energy than a conventional HVAC system, and lowers peak demand by shifting required electrical energy consumption to lower-cost, off-peak and mid-peak rates. Lower heat pump capacities are a main feature of the MSHHP. This is accomplished by pre-cooling return air from the zone space, a process that also allows the heat pump to operate at a higher Coefficient of Performance (COP), thereby contributing to further energy savings.

Meckler, M.

1984-01-01T23:59:59.000Z

176

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-05-10T23:59:59.000Z

177

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-07-30T23:59:59.000Z

178

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2005-03-03T23:59:59.000Z

179

Dynamic modeling and multivariable control of organic Rankine cycles in waste heat utilizing processes  

Science Conference Proceedings (OSTI)

In this paper, the dynamics of organic Rankine cycles (ORCs) in waste heat utilizing processes is investigated, and the physical model of a 100 kW waste heat utilizing process is established. In order to achieve both transient performance and steady-state ... Keywords: Linear quadratic regulator, Organic Rankine cycles, Process control

Jianhua Zhang; Wenfang Zhang; Guolian Hou; Fang Fang

2012-09-01T23:59:59.000Z

180

POTENTIAL REQUIREMENTS FOR FISSION PRODUCTS AS HEAT AND RADIATION SOURCES  

SciTech Connect

An outline is presented of the potential applications and quantity requiremerts of fission products for the period 1964 to 1968. These applications include military, governmert, and civilian heat sources; irradiation processing; and food irradiation. The potential requirements for 1964 to 1968 are 273 MC / sup 90/Sr and 351 MC /sup 137/Cs. An evaluation is made of the applications of heat-producing isotopes in Coast Guard navigational buoys, lights, and beacons; undersea electronic systems; and weather stations. Costs were determined for conventional methods of power generation and compared to radioisotope power generation. Fuel requiremerts and break-even fuel costs for isotopic power are tabulated. (D.L.C.)

1964-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate  

SciTech Connect

This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

Mittereder, N.; Poerschke, A.

2013-11-01T23:59:59.000Z

182

Simulation Study of Heat Transportation in an Aquifer about Well-water-source Heat Pump  

E-Print Network (OSTI)

The study of groundwater reinjection, pumping and heat transportation in an aquifer plays an important theoretical role in ensuring the stability of deep-well water reinjection and pumping as well as smooth reinjection. Based on the related conception of underground hydrogeology and the rationale of seepage flow mechanics, a geologic conceptual model of doublet reinjection and a seepage flow model of heat transportation are proposed in this paper. The temperature distribution in the temperature field was obtained by a coupled method of the heat transportation equation and groundwater seepage flow equation fitting for the seepage-affected section. The temperature changes in aquifer and heat storage efficiency are analyzed under different working conditions. All the work referenced above provided references for the popularization and evaluation of well-water source heat pump.

Cong, X.; Liu, Y.; Yang, W.

2006-01-01T23:59:59.000Z

183

Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study  

SciTech Connect

Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

Bernstad, Anna, E-mail: anna.bernstad@chemeng.lth.se [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Cour Jansen, Jes la [Dep. of Chem. Eng., Faculty of Eng., Lund University, Lund (Sweden); Aspegren, Henrik [VA SYD, City of Malmoe (Sweden)

2011-03-15T23:59:59.000Z

184

Development of a Residential Ground-Source Integrated Heat Pump  

Science Conference Proceedings (OSTI)

A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

Rice, C Keith [ORNL; Baxter, Van D [ORNL; Hern, Shawn [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL; Shen, Bo [ORNL

2013-01-01T23:59:59.000Z

185

Study of Operating Control Strategies for Hybrid Ground Source Heat Pump System with Supplemental Cooling Tower  

Science Conference Proceedings (OSTI)

Ground source heat pump for cooling-dominated commercial buildings may utilize supplemental cooling towers to reduce system first cost and to improve system performance. The use of hybrid ground source heat pump (HGSP) can reduce the size of the ground-loop ... Keywords: hybrid ground source heat pump, supplement heat rejection, control strategies, operating performance

Wang Jinggang; Gao Xiaoxia; Yin Zhenjiang; Li Fang

2009-07-01T23:59:59.000Z

186

Modeling and Experimental Research on Ground-Source Heat Pump in Operation by Neural Network  

Science Conference Proceedings (OSTI)

Ground source Heat Pump(GSHP) is becoming the more and more focus of the worldˇŻs attention as a HVAC technique of energy saving and environment protection. This paper first introduced the experiment for Ground-Source water/water Heat Pump. The heat ... Keywords: Ground-Source Heat Pump(GSHP), Neural Network(NN) Predication modeling

Jianping Chen; Zhiwei Lian; Lizheng Tan; Weifeng Zhu; Weiqiang Zhang

2011-02-01T23:59:59.000Z

187

Laboratory Testing of the Heating Capacity of Air-Source Heat Pumps at Low Outdoor Temperature Conditions  

Science Conference Proceedings (OSTI)

Air-source heat pump systems offer an alternative to the common heating, ventilating, and air conditioning (HVAC) configuration of single split unitary air conditioners with gas heating. In simple terms, heat pumps are traditional air conditioning units with the added capability of running in reverse as required by the building load. Thus, where the traditional air conditioning unit has an indoor evaporator to remove heat from the space and an outdoor condenser to reject heat to the ambient environment, ...

2010-12-22T23:59:59.000Z

188

Coupled Model for Heat and Water Transport in a High Level Waste Repository  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coupled Model for Heat and Water Transport in a High Level Waste Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt Coupled Model for Heat and Water Transport in a High Level Waste Repository in Salt This report summarizes efforts to simulate coupled thermal-hydrological-chemical (THC) processes occurring within a generic hypothetical high-level waste (HLW) repository in bedded salt; chemical processes of the system allow precipitation and dissolution of salt with elevated temperatures that drive water and water vapor flow around hot waste packages. Characterizing salt backfill processes is an important objective of the exercise. An evidence-based algorithm for mineral dehydration is also applied in the modeling. The Finite Element Heat and Mass transfer code (FEHM) is used to simulate coupled thermal,

189

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-07-01T23:59:59.000Z

190

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2004-01-01T23:59:59.000Z

191

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-05-01T23:59:59.000Z

192

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

DOE Green Energy (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2006-02-01T23:59:59.000Z

193

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

194

Aquifer thermal energy storage costs with a seasonal heat source.  

SciTech Connect

The cost of energy supplied by an aquifer thermal energy storage (ATES) system from a seasonal heat source was investigated. This investigation considers only the storage of energy from a seasonal heat source. Cost estimates are based upon the assumption that all of the energy is stored in the aquifer before delivery to the end user. Costs were estimated for point demand, residential development, and multidistrict city ATES systems using the computer code AQUASTOR which was developed specifically for the economic analysis of ATES systems. In this analysis the cost effect of varying a wide range of technical and economic parameters was examined. Those parameters exhibiting a substantial influence on ATES costs were: cost of purchased thermal energy; cost of capital; source temperature; system size; transmission distance; and aquifer efficiency. ATES-delivered energy costs are compared with the costs of hot water heated by using electric power or fuel-oils. ATES costs are shown as a function of purchased thermal energy. Both the potentially low delivered energy costs available from an ATES system and its strong cost dependence on the cost of purchased thermal energy are shown. Cost components for point demand and multi-district city ATES systems are shown. Capital and thermal energy costs dominate. Capital costs, as a percentage of total costs, increase for the multi-district city due to the addition of a large distribution system. The proportion of total cost attributable to thermal energy would change dramatically if the cost of purchased thermal energy were varied. It is concluded that ATES-delivered energy can be cost competitive with conventional energy sources under a number of economic and technical conditions. This investigation reports the cost of ATES under a wide range of assumptions concerning parameters important to ATES economics. (LCL)

Reilly, R.W.; Brown, D.R.; Huber, H.D.

1981-12-01T23:59:59.000Z

195

Establishing the Technical Basis for Disposal of Heat-generating Waste in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Establishing the Technical Basis for Disposal of Heat-generating Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt The report summarizes available historic tests and the developed technical basis for disposal of heat-generating waste in salt, and the means by which a safety case for disposal of heat generating waste at a generic salt site can be initiated from the existing technical basis. Though the basis for a salt safety case is strong and has been made by the German repository program, RD&D programs continue in order to help reduce uncertainty, to improve understanding of certain complex processes, to demonstrate operational concepts, to confirm performance expectations, and to improve modeling capabilities utilizing the latest software platforms.

196

Ground-source heat pump case studies and utility programs  

DOE Green Energy (OSTI)

Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The case studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.

Lienau, P.J.; Boyd, T.L.; Rogers, R.L.

1995-04-01T23:59:59.000Z

197

Nondestructive inspection of General Purpose Heat Source (GPHS) girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using iridium capsules, TIG welded, to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Since experience in the past had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of the capsule weld is required. A ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors that exceeded the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M.A.H.; George, T.G.; Lynch, C. [and others

1998-12-31T23:59:59.000Z

198

Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources  

E-Print Network (OSTI)

In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

Pradipta, Rezy

2012-01-01T23:59:59.000Z

199

A comparison of ground source heat pumps and micro-combined heat and power as residential greenhouse gas reduction strategies  

E-Print Network (OSTI)

Both ground source heat pumps operating on electricity and micro-combined heat and power systems operating on fossil fuels offer potential for the reduction of green house gas emissions in comparison to the conventional ...

Guyer, Brittany (Brittany Leigh)

2009-01-01T23:59:59.000Z

200

Watching Liquids Separate at White Heat | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A New Spin on Inducing Chirality in Pre-biological Molecules A New Spin on Inducing Chirality in Pre-biological Molecules How Ancient Rock Got Off to a Hot Start A Quantum of Vibration in an Unexpected Place A Virus That Can Infect Lung Cancer Cells Imaging Plant Viruses Could Yield New Ways to Safeguard Crops Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Watching Liquids Separate at White Heat OCTOBER 30, 2008 Bookmark and Share Floating liquid droplet (inset) imaged at white heat on APS x-ray beamline 11-ID-C (main photo). Using temperatures approaching those found on the surface of the sun and intense x-ray beams from two synchrotron x-ray facilities, including the Advanced Photon Source at Argonne National Laboratory, researchers have

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Low Temperature Heat Source Utilization Current and Advanced Technology  

SciTech Connect

Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

Anderson, James H. Jr.; Dambly, Benjamin W.

1992-06-01T23:59:59.000Z

202

Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground Source Heat Pump Demonstration Projects to someone by E-mail Ground Source Heat Pump Demonstration Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Ground Source Heat Pump Demonstration Projects on AddThis.com...

203

Group Velocity and the Linear Response of Stratified Fluids to Internal Heat or Mass Sources  

Science Conference Proceedings (OSTI)

A steadily maintained line heat or mass source turned on in an unbounded, steadily moving, uniformly stratified flow will in general create ever-increasing vertical displacements of the fluid. Lin and Smith viewed a maintained heat source as a ...

Chris Bretherton

1988-01-01T23:59:59.000Z

204

Advanced modeling of vertical ground source heat pumps using finite element techniques.  

E-Print Network (OSTI)

??Increasing energy demand and environmental pollution in United States has been led toward using renewable energy sources over recent decades. Ground-source heat pump systems are… (more)

Komari Zadeh, Seyed Omid

2011-01-01T23:59:59.000Z

205

Facility HVAC System Conversion to Ground Source Heat Pump Geothermal...  

Open Energy Info (EERE)

ventilators will utilize the hot water to "temper" outdoor air ventilation. Although the heat pump modules can provide both heating and cooling, the space requires heating only....

206

Impact of Alkali Source on Vitrification of SRS High Level Waste  

SciTech Connect

The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for {approx}20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can be reduced significantly by washing the solids to remove soluble species. The ''washing strategy'' for future sludge batches can be controlled to limit the soluble sodium remaining in the waste stream while balancing the alkali content of the frit to maintain acceptable glass properties as well as improve melter processing characteristics.

LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

2005-09-08T23:59:59.000Z

207

Study on Hybrid Solar Energy and Ground-Source Heat Pump System  

Science Conference Proceedings (OSTI)

Aim at the weakness of more influenced by the environment etc. factor and the heat flow density lower when the solar energy was make use of heating, so the design method of the hybrid solar energy and ground-source heat pump is proposed, and the operating ... Keywords: solar energy, ground-source, heat pump, coefficient of performance

Liu Yi; Li Bing-xi; Zhou Yi; Fu Zhong-bin; Xu Xin-hai

2009-10-01T23:59:59.000Z

208

Waste Heat Recovery from Industrial Smelting Exhaust Gas  

Science Conference Proceedings (OSTI)

For a cost efficient capture of more valuable heat (higher exergy), heat exchangers should operate on the exhaust gases upstream of the gas treatment plants.

209

Comparison of heat pump system and boiler plant for one-family house : Heat sources in one-family house.  

E-Print Network (OSTI)

??The aim of this work is to look through, compare and choose the cheapest heat source for typical new Finnish one-family house. We will speak… (more)

Kaydalova, Natalia

2010-01-01T23:59:59.000Z

210

Estimation of residual MSW heating value as a function of waste component recycling  

Science Conference Proceedings (OSTI)

Recycling of packaging wastes may be compatible with incineration within integrated waste management systems. To study this, a mathematical model is presented to calculate the fraction composition of residual municipal solid waste (MSW) only as a function of the MSW fraction composition at source and recycling fractions of the different waste materials. The application of the model to the Lisbon region yielded results showing that the residual waste fraction composition depends both on the packaging wastes fraction at source and on the ratio between that fraction and the fraction of the same material, packaging and non-packaging, at source. This behaviour determines the variation of the residual waste LHV. For 100% of paper packaging recycling, LHV reduces 4.2% whereas this reduction is of 14.4% for 100% of packaging plastics recycling. For 100% of food waste recovery, LHV increases 36.8% due to the moisture fraction reduction of the residual waste. Additionally the results evidence that the negative impact of recycling paper and plastic packaging on the LHV may be compensated by recycling food waste and glass and metal packaging. This makes packaging materials recycling and food waste recovery compatible strategies with incineration within integrated waste management systems.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)], E-mail: ViriatoSemiao@ist.utl.pt

2008-12-15T23:59:59.000Z

211

Design and development of eco-friendly alcohol engine fitted with waste heat recovery system  

Science Conference Proceedings (OSTI)

The present paper discusses the design and development of an eco-friendly alcohol engine fitted with the waste heat recovery system as a remedial alternative to the existing commonly used internal combustion engine. With the present trends in Internal ...

G. Vijayan Iyer; Nikos E. Mastorakis

2006-06-01T23:59:59.000Z

212

Mild Hybrid System in Combination with Waste Heat Recovery for Commercial Vehicles.  

E-Print Network (OSTI)

?? Performance of two different waste heat recovery systems (one based on Rankine cycle and the other one using thermoelectricity) combined with non-hybrid, mild-hybrid and… (more)

Namakian, Mohsen

2013-01-01T23:59:59.000Z

213

Water distillation using waste engine heat from an internal combustion engine  

E-Print Network (OSTI)

To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

Mears, Kevin S

2006-01-01T23:59:59.000Z

214

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Kosciusko REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Maximum of two rebates per household Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Geothermal System: $250 Air-Source Heat Pump: $150 Electric Water Heater: $75 - $125 Provider Kosciusko REMC Kosciusko REMC offers rebates (as bill credits) to residential members for the purchase and installation of high efficiency air-source heat pumps, geothermal heat pumps, and electric water heaters. For each purchase of an

215

Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wabash County REMC - Residential Geothermal and Air-source Heat Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program Wabash County REMC - Residential Geothermal and Air-source Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal: $750 Air Source Heat Pumps: $625 One rebate per house Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Air Source Heat Pumps: $125 - $625/ton Geothermal Heat Pumps: $150 - $750/ton Water Heater: $100 Provider Wabash County REMC Wabash Rural Electric Membership Cooperative (REMC) is a member-owned electric distribution organization that provides service to customers in north-central Indiana. To encourage energy efficiency, Wabash County REMC

216

A JOULE-HEATED MELTER TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect

This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of joule-heated ceramic lined melters and their application to Hanford's low-activity waste.

KELLY SE

2011-04-07T23:59:59.000Z

217

Parametric Analyses of Heat Removal from High Level Waste Tanks  

Science Conference Proceedings (OSTI)

The general thermal hydraulics program GOTH-SNF was used to predict the thermal response of the waste in tanks 241-AY-102 and 241-AZ-102 when mixed by two 300 horsepower mixer pumps. This mixing was defined in terms of a specific waste retrieval scenario. Both dome and annulus ventilation system flow are necessary to maintain the waste within temperature control limits during the mixing operation and later during the sludge-settling portion of the scenario are defined.

TRUITT, J.B.

2000-06-05T23:59:59.000Z

218

Discussion of an Optimization Scheme for the Ground Source Heat Pump System of HVAC  

E-Print Network (OSTI)

With the implementation of the global sustainable development strategy, people pay more attention to renewable energy resources such as ground source heat pumps. The technology of ground source heat pump is widely applied to heat and cold. It is critical and important to know how to choose the terminal and make it workable. This paper makes a technical and economic comparison of various heating terminals (with the example of a north residential district which adopts ground source heat pump as the cold and heat source) and gets the optimum scheme.

Mu, W.; Wang, S.; Pan, S.; Shi, Y.

2006-01-01T23:59:59.000Z

219

A Spin on Technology: Extracting Value from Wasted Heat | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Spin on Technology: Extracting Value from Wasted Heat A Spin on Technology: Extracting Value from Wasted Heat A Spin on Technology: Extracting Value from Wasted Heat November 12, 2010 - 2:12pm Addthis Ener-G-Rotors has developed a system that converts hot water and steam into electricity. | File photo Ener-G-Rotors has developed a system that converts hot water and steam into electricity. | File photo Joshua DeLung What are the key facts? This new system allows manufacturers to convert heated wastewater and steam to energy. $834,000 Recovery Act tax credit is helping Ener-G-Rotors startup to commercialize their product. A three year return on investment equals $42,000 savings on average each year using the GEN4 System. Wastewater and steam can be a challenging resource for manufacturers to manage. The heated wastewater and steam are either lost or must be cooled

220

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

Science Conference Proceedings (OSTI)

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

DOE Green Energy (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

222

A capital cost comparison of commercial ground-source heat pump systems  

DOE Green Energy (OSTI)

The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.

Rafferty, K.

1994-06-01T23:59:59.000Z

223

Sources of heavy metal contamination in Swedish wood waste used for combustion  

SciTech Connect

In this paper, wood waste (RWW) recovered for heat production in Sweden was studied. Previous research has concluded that RWW contains elevated amounts of heavy metals, causing environmental problems during waste management. This study extends previous work on RWW by analysing which pollution sources cause this contamination. Using existing data on the metal contents in various materials, and the amounts of these materials in RWW, the share of the elevated amounts of metals in RWW that these materials explain was quantified. Six different materials occurring in RWW were studied and the results show that they explain from 70% to 100% of the amounts of arsenic, chromium, lead, copper and zinc in RWW. The most important materials contributing to contamination of RWW are surface-treated wood, industrial preservative-treated wood, plastic and galvanised fastening systems. These findings enable the development and evaluation of strategies aiming to decrease pollution and resource loss from handling RWW. It is argued that source separation and measures taken further downstream from the generation site, such as treatment, need to be combined to substantially decrease the amount of heavy metals in RWW.

Krook, J. [Department of Mechanical Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden)]. E-mail: joakr@ikp.liu.se; Martensson, A. [Department of Mechanical Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden); Eklund, M. [Department of Mechanical Engineering, Linkoeping University, SE-581 83 Linkoeping (Sweden)

2006-07-01T23:59:59.000Z

224

Ground Source Integrated Heat Pump (GS-IHP) Development  

SciTech Connect

Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

2013-05-24T23:59:59.000Z

225

Solid waste as an energy source for the Northeast  

DOE Green Energy (OSTI)

This report, one of a series prepared for the BNL study of the Energy Future of the Northeastern United States, presents an assessment of the potential contribution of energy recovery from municipal refuse to energy supply in the region. A brief review of the present and likely future quantity and composition of municipal refuse and the technologies available for energy recovery (Chapters II and III) is followed by a comparison of the potential contributions to energy supply of the various recovery options including direct firing in utility boilers, pyrolysis to oil or gas, and steam generation for industrial process heat or district space heating (Chapter IV). The relationship of refuse energy recovery to market conditions for alternative energy sources is considered in Chapter V, which also includes an analysis of the impact of haul costs, interest rates, and delivered prices of the major fuels. Institutional barriers to implementation of energy recovery are reviewed in Chapter VI, and the environmental implications of the concept are addressed in Chapter VII. In the concluding chapters, scenarios of energy recovery are developed for 1985 and 2000, and the sensitivity of overall energy yield to projections and assumptions is examined. Although even under the most optimistic assumptions, refuse energy recovery is found to contribute only some 5 percent of total regional consumption, the economic and environmental benefits, coupled with the increasing difficulty of finding other refuse disposal alternatives, make energy recovery a very attractive policy choice for helping to relieve future energy supply difficulties in the Northeast. (auth)

Meier, P.M.; McCoy, T.H.

1976-06-01T23:59:59.000Z

226

Air-Source Heat Pumps for Residential and Light Commercial Space Conditioning Applications  

Science Conference Proceedings (OSTI)

This technology brief provides the latest information on current and emerging air-source heat pump technologies for space heating and space cooling of residential and light commercial buildings. Air-source heat pumps provide important options that can reduce ownership costs while reducing noise and enhancing reliability and customer comfort. The tech brief also describes new air-source heat pumps with an important load shaping and demand response option.

2008-12-15T23:59:59.000Z

227

Tabulation of Fundamental Assembly Heat and Radiation Source Files  

Science Conference Proceedings (OSTI)

The purpose of this calculation is to tabulate a set of computer files for use as input to the WPLOAD thermal loading software. These files contain details regarding heat and radiation from pressurized water reactor (PWR) assemblies and boiling water reactor (BWR) assemblies. The scope of this calculation is limited to rearranging and reducing the existing file information into a more streamlined set of tables for use as input to WPLOAD. The electronic source term files used as input to this calculation were generated from the output files of the SAS2H/ORIGIN-S sequence of the SCALE Version 4.3 modular code system, as documented in References 2.1.1 and 2.1.2, and are included in Attachment II.

T. deBues; J.C. Ryman

2006-10-25T23:59:59.000Z

228

Characterization of Pu-238 heat source granule containment  

SciTech Connect

The Milliwatt Radioisotopic Thermoelectric Generator (RTG) provides power for permissive-action links. These nuclear batteries convert thermal energy to electrical energy using a doped silicon-germanium thermopile. The thermal energy is provided by a heat source made of {sup 238}Pu, in the form of {sup 238}PuO{sub 2} granules. The granules are contained in 3 layers of encapsulation. A thin T-111 liner surrounds the {sup 238}PuO{sub 2} granules and protects the second layer (strength member) from exposure to the fuel granules. The T-111 strength member contains the fuel under impact condition. An outer clad of Hastelloy-C protects the T-111 from oxygen embrittlement. The T-111 strength member is considered the critical component in this {sup 238}PuO{sub 2} containment system. Any compromise in the strength member is something that needs to be characterized. Consequently, the T-111 strength member is characterized upon it's decommissioning through Scanning Electron Microscopy (SEM), and Metallography. SEM is used in Secondary Electron mode to reveal possible grain boundary deformation and/or cracking in the region of the strength member weld. Deformation and cracking uncovered by SEM are further characterized by Metallography. Metallography sections are mounted and polished, observed using optical microscopy, then documented in the form of photomicrographs. SEM may further be used to examine polished Metallography mounts to characterize elements using the SEM mode of Energy Dispersive X-ray Spectroscopy (EDS). This paper describes the characterization of the metallurgical condition of decommissioned RTG heat sources.

Richardson Ii, P D [Los Alamos National Laboratory; Thronas, D L [Los Alamos National Laboratory; Romero, J P [Los Alamos National Laboratory; Sandoval, F E [Los Alamos National Laboratory; Neuman, A D [Los Alamos National Laboratory; Duncan, W S [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

229

MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE  

E-Print Network (OSTI)

for cooling-dominated commercial buildings utilize supplemental heat rejecters such as cooling towers, fluid of supplemental heat rejecters for cooling dominated buildings allows the design of smaller borehole fields. Heat

230

The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System  

E-Print Network (OSTI)

Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from the fume hood ducts at the Intalco aluminum reduction plant and transmits the energy to commercial, residential, and institutional users in Bellingham, Washington for space and hot water heating.

McCabe, J.; Olszewski, M.

1980-01-01T23:59:59.000Z

231

Waste Heat Doesn't Have to be a Waste of Money- The American & Efird Heat Recovery Project: A First for the Textile Industry  

E-Print Network (OSTI)

In 1989 American & Efird, Inc., decided to upgrade their heat recovery system at its Dyeing & Finishing Plant in Mt. Holly, North Carolina. They chose an electric industrial process heat pump to enhance heat recovery and to lower operating costs. This application of the industrial process heat pump was the first of its kind in the American textile industry and was the result of a three year cooperative effort between American & Efird, Inc. and Duke Power Company. This innovative application of heat pump technology has allowed American & Efird to gain additional boiler capacity, lower waste water discharge temperatures and achieve significant energy savings. Duke Power will gain an additional 572,000 KWH in annual sales, of which approximately 70 percent will occur during off-peak hours, and American & Efird will enjoy lower overall energy costs.

Smith, S. W.

1991-06-01T23:59:59.000Z

232

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network (OSTI)

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

233

ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system  

Science Conference Proceedings (OSTI)

The aim of this study is to demonstrate the comparison of an artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) for the prediction performance of a vertical ground source heat pump (VGSHP) system. The VGSHP system using ... Keywords: Adaptive neuro-fuzzy inference system, Coefficient of performance, Ground source heat pump, Membership functions, Vertical heat exchanger

Hikmet Esen; Mustafa Inalli

2010-12-01T23:59:59.000Z

234

Economical Analysis of a Groundwater Source Heat Pump with Water Thermal Storage System  

E-Print Network (OSTI)

The paper is based on a chilled and heat source for the building which has a total area of 140000m2 in the suburb of Beijing. By comparing the groundwater source heat pump of water thermal storage (GHPWTS) with a conventional chilled and heat source scheme in economical, technical, and environmental aspects, it is determined that the scheme of the groundwater source heat pump has better energy efficiency than others. The GHPWTS can take full advantage of the heat source from groundwater and benefit of electricity difference pricing during a day. Its character is a combination of a strength and another strength. It is the lowest cycle cost of all chide and heat source schemes. The GHPWTS has the best economic benefit and runs stably and reliably. Its advantage is clearly compared with other schemes. There is a real value for the project that is similar to the characteristic of this project and the condition of the water source.

Zhou, Z.; Xu, W.; Li, J.; Zhao, J.; Niu, L.

2006-01-01T23:59:59.000Z

235

ADVANCES IN MODELING OF GROUND-SOURCE HEAT  

E-Print Network (OSTI)

] K. C. Toh, X. Y. Chen, and J. C. Chai, "Numerical computation of fluid flow and heat transfer journal and conference papers. His current research interests include heat transfer and fluid-flow to substantially increase the heat transfer coefficient when a fluid is passing through microchannels. Heat sinks

236

Waste Heat Recovery Trial from Aluminum Reduction Cell Exhaust ...  

Science Conference Proceedings (OSTI)

By using heat exchangers with in-line and staggered tube arrangements placed before fume treatment plant (FTP) we will be able to recover enough amount of ...

237

Surface Pressure Response to Elevated Tidal Heating Sources: Comparison of Earth and Mars  

Science Conference Proceedings (OSTI)

Modern atmospheric tidal theory has shown that the dominance of the terrestrial semidiurnal surface pressure oscillation, relative to its diurnal counterpart, is the result of the elevated heating source generated by solar heating of ...

Richard W. Zurek

1980-05-01T23:59:59.000Z

238

Ground source heat storage and thermo-physical response of soft clay  

E-Print Network (OSTI)

Ground source heat storage can condition buildings with reduced consumption of fossil fuels, an important issue in modem building design. However, seasonal heat storage can cause soil temperature fluctuations and possibly ...

Saxe, Shoshanna Dawn

2009-01-01T23:59:59.000Z

239

Waste heat from kitchen cuts hot water electricity 23%  

SciTech Connect

Heat recovered from the Hamburger Hamlet's kitchen in Bethesada, Maryland and used to pre-heat the million gallons of hot water used annually reduced hot water costs 23% and paid off the investment in 1.5 years. Potomac Electric initiated the installation of an air-to-water heat pump in the restaurant kitchen above the dishwasher at a cost of about $5300, with the restaurant obliged to reimburse the utility if performance was satisfactory. Outside water recirculates through storage tanks and the ceiling heat pump until it reaches the required 140/sup 0/F. The amount of electricity needed to bring the preheated water to that temperature was $3770 lower after the installation. Cooled air exhausted from the heat pump circulates throughout the kitchen.

Barber, J.

1984-05-21T23:59:59.000Z

240

Field Test of High Efficiency Residential Buildings with Ground-source and Air-source Heat Pump Systems  

SciTech Connect

This paper describes the field performance of space conditioning and water heating equipment in four single-family residential structures with advanced thermal envelopes. Each structure features a different, advanced thermal envelope design: structural insulated panel (SIP); optimum value framing (OVF); insulation with embedded phase change materials (PCM) for thermal storage; and exterior insulation finish system (EIFS). Three of the homes feature ground-source heat pumps (GSHPs) for space conditioning and water heating while the fourth has a two-capacity air-source heat pump (ASHP) and a heat pump water heater (HPWH). Two of the GCHP-equipped homes feature horizontal ground heat exchange (GHX) loops that utillize the existing foundation and utility service trenches while the third features a vertical borehole with vertical u-tube GHX. All of the houses were operated under the same simulated occupancy conditions. Operational data on the house HVAC/Water heating (WH) systems are presented and factors influencing overall performance are summarized.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Simulation of Hybrid Ground Source Heat Pump Systems and Experimental Validation  

E-Print Network (OSTI)

Hybrid ground source heat pump systems incorporate both ground loop heat exchangers and auxiliary heat rejecters, such as cooling towers, fluid coolers, cooling ponds, or pavement heating systems. The design of the hybrid ground source heat pump system involves many degrees of freedom; e.g. the size of the cooling tower interacts with the control strategy, the ground loop heat exchanger design, and other parameters. This paper presents a simulation of such a system using a direct contact evaporative cooling tower as the supplemental heat rejecter. The simulation is performed in a component-based modeling environment using component models of a vertical ground loop heat exchanger, plate frame heat exchanger, cooling tower, circulating pumps, and heat pumps. Seven months (March to September 2005) of five-minutely experimental data from a hybrid ground source heat pump system were used for validation purposes. The source side of the system consists of two packaged water-to-water heat pumps, a three-borehole ground loop heat exchanger, and a direct contact evaporative cooling tower, isolated by a plate frame heat exchanger. The load side serves two small buildings with hydronic heating and cooling. Experimental validations of each component simulation and the entire system simulation are presented.

Jason E. Gentry; Jeffrey D. Spitler; Daniel E. Fisher; Xiaowei Xu

2006-01-01T23:59:59.000Z

242

Technology and fabrication of plutonium-238 radionuclide heat sources  

Science Conference Proceedings (OSTI)

This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner {open_quote}{open_quote}power{close_quote}{close_quote} capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature. {copyright} {ital 1996 American Institute of Physics.}

Malikh, Y.A.; Aldoshin, A.I. [Production Association Mayak, 31 Lenin Street, Ozyorsk, 456780 (Russia); Danilkin, E.A. [The State Scientific Center of Russia, 5 Rogov Street, Moscow (Russia)

1996-03-01T23:59:59.000Z

243

Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

5. Water-Heating Energy Sources, Number of Buildings, 1999" 5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1456,795,574,"Q","Q","Q" "5,001 to 10,000 ..............",1110,778,317,429,"Q","Q","Q" "10,001 to 25,000 .............",708,574,265,274,14,9,31

244

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

245

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network (OSTI)

a two-year research program in heat transfer and viscoelastic fluid flows, after working for some time Sciences), Fluid Mechanics, Heat Transfer and related (815) 753-9975 Page 1 of 2WSEAS Conferences: www on HEAT and MASS TRANSFER (HMT'09) [Download a Map of the area (16 Kbytes)] [Download a Map of the city

246

Milliwatt generator heat source. Quarterly technical progress report, April 16, 1976--July 15, 1976  

Science Conference Proceedings (OSTI)

Activities at MRC associated with the Milliwatt Generator Heat Source efforts over the period April 16, 1976, to July 15, 1976, are presented below.

Amos, W.R.

1996-07-01T23:59:59.000Z

247

Trends in "Green" Design - making ground source heat pumps the system of choice.  

E-Print Network (OSTI)

??Ground source heat pump systems have been around for nearly 50 years. The efficiencies that can be achieved today are difficult to match with any… (more)

Hasler, Fred L.

2008-01-01T23:59:59.000Z

248

Implementation and validation of a Ground Source Heat Pump model in MATLAB.  

E-Print Network (OSTI)

??The aim of the project is the implementation of a simple Ground-Source Heat Pump (GSHP) system model in MATLAB. The program is able to run… (more)

Casetta, Damien

2012-01-01T23:59:59.000Z

249

Dynamic modeling and control of hybrid ground source heat pump systems.  

E-Print Network (OSTI)

??Ground source heat pump (GSHP) systems are one of the fastest growing applications of renewable energy in the world with annual increases of 10% over… (more)

Chen, Chang

2008-01-01T23:59:59.000Z

250

Viability Of Hybrid Ground Source Heat Pump System With Solar Thermal Collectors.  

E-Print Network (OSTI)

??This thesis presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental… (more)

Rad, Farzin M.

2009-01-01T23:59:59.000Z

251

Simulation of Photovoltaic Panel Production as Complement to Ground Source Heat Pump System.  

E-Print Network (OSTI)

?? This master thesis presents a new technological combination of two environmentally friendly sources of energy in order to provide DHW, and space heating. Solar… (more)

Badri, Seyed Ali Mohammad

2013-01-01T23:59:59.000Z

252

Analysis & Tools to Spur Increased Deployment of " Waste Heat...  

Open Energy Info (EERE)

nearly 15 million-or 15,000-homes were to install new (or convert their existing HVAC or heat pump system to) a full or hybrid GHP system, it would result in between 400...

253

Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Waste Heat into Power: Ener-G-Rotors and the Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program Turning Waste Heat into Power: Ener-G-Rotors and the Entrepreneurial Mentorship Program March 16, 2011 - 4:55pm Addthis Ener-G-Rotors' 5kW prototype system | courtesy of Ener-G-Rotors Ener-G-Rotors' 5kW prototype system | courtesy of Ener-G-Rotors April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs If you've ever driven by an industrial plant, you've probably noticed big white plumes rising from the tops of the facilities. While it might look like smoke or pollution at first glance, most of the time those white plumes are comprised of steam and heat, or what Ener-G-Rotors CEO Michael Newell calls waste heat. Mike and the researchers of Ener-G-Rotors are finding ways to use this

254

Commercial laundry heat recovery system  

SciTech Connect

In a commercial laundry that is connected to a source of fresh water and generates heated waste water, a method is described for recovering heat from the heated waste comprising the steps of: (a) pumping the heated waste water through a heat exchanger; (b) introducing fresh water into the heat exchanger to receive heat from the waste water through a heat transfer effected by the heat exchanger; (c) withdrawing a first proportion of the heated fresh water at a first temperature; (d) conveying the first proportion of the heated fresh water to cold water storage tank; (e) withdrawing a second proportion of the heated fresh water at a second temperature higher than the first temperature; (f) conveying the second proportion of the heated fresh water to a hot water storage tank.

Kaufmann, R.O.

1986-07-29T23:59:59.000Z

255

Waste-heat disposal from US Geothermal Power Plants: an update  

DOE Green Energy (OSTI)

Some of the more interesting and significant methods that are currently being studied in the US for reducing waste heat dissipation system costs and water consumption are: (1) allowing plant power output to vary with ambient conditions; (2) use of ammonia to transport waste heat from the turbine condenser to air-cooled coils; (3) development of a plastic-membrane type wet/dry tower; (4) marketing of steam turbines that can tolerate a wider range of back pressures: (5) use of circulating water storage to delay heat dissipation until more favorable ambient conditions exist; (6) development of tubes with enhanced heat transfer surfaces to reduce condenser capital costs; and (7) use of evaporative condensers to reduce costs in binary cycles. Many of these projects involve large-scale tests that are now fully installed and producing some preliminary data.

Robertson, R.C.

1982-01-01T23:59:59.000Z

256

Thermoelectric Coatings for Waste Heat Recovery and Photo ...  

An energy harvesting system for collecting energy from sources of thermal energy that exist in the environment and convert the energy to electricity. The system has N ...

257

Purification of {sup 238}PuO{sub 2} scrap for heat source fuel  

SciTech Connect

The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover and purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments on neutralized solutions of plutonium-238 resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel.

Schulte, L.D.; Purdy, G.M.; Jarvinen, G.D.; Ramsey, K.; Silver, G.L.; Espinoza, J.; Rinehart, G.H.

1997-10-01T23:59:59.000Z

258

State of the Art of Air-source Heat Pump for Cold Regions  

E-Print Network (OSTI)

In this paper, research on air source heat pump systems for cold regions in recent years is first summarized and compared. These systems can be divided into three kinds: a single-stage compression heat pump, liquid/vapor injection heat pump, and a two-stage heat pump. Finally, our research with a two-stage compression variable frequency air source heat pump is presented. A two-control-model with the priority target as COP or heating capacity is advanced. The experimental results show that the COP of this heat pump system is over 2, the compressor discharge temperature under 120, and the heating capacity can meet the heating load needed when the condensing temperature is 50 and outdoor air temperature is over -18.

Tian, C.; Liang, N.

2006-01-01T23:59:59.000Z

259

An MHD heat source based on intermetallic reactions  

DOE Green Energy (OSTI)

The main objective of this program was the development of an MHD heat source of potential use in Space - Based Multi Megawatt, MHD Power Systems. The approach is based on extension of high temperature chemical/ion release technology developed by the General Sciences, Incorporated (GSI) team and successfully applied in other Space Applications. Solid state reactions have been identified which can deliver energy densities and electrons in excess of those from high energy explosives as well as other conventional fuels. The use of intermetallic reactions can be used to generate hot hydrogen plasma from the reaction, to create a high level of seedant ionization, can be packaged as a cartridge type fuels for discrete pulses. The estimated weight for energizing a (100 MW - 1000 sec) Pulsed MHD Power System can range from 12 to 25 {times} 10{sup 3} kg depending on reaction system and strength of the magnetic field. The program consisted of two major tasks with eight subtasks designed to systematically evaluate these concepts in order to reduce fuel weight requirements. Laboratory measurements on energy release, reaction product identification and levels of ionization were conducted in the first task to screen candidate fuels. The second task addressed the development of a reaction chamber in which conductivity, temperature and pressure were measured. Instrumentation was developed to measure these parameters under high temperature pulsed conditions in addition to computer programs to reduce the raw data. Measurements were conducted at GSI laboratories for fuel weights of up to 120 grams and at the Franklin Research Center* for fuel weights up to 1 kilogram. The results indicate that fuel weight can be scaled using modular packaging. Estimates are presented for fuel weight requirements. 15 refs.

Sadjian, H.; Zavitsanos, P. (General Sciences, Inc., Souderton, PA (United States)); Marston, C.H. (Villanova Univ., PA (United States))

1991-05-06T23:59:59.000Z

260

Compact Ceramic Heat Exchangers for Corrosive Waste Gas Applications  

E-Print Network (OSTI)

The development of large ceramic heat exchangers is described and performance data given for units installed on steel industry soaking pits in the U.K. Operational experience since 1973 confirms that ceramic heat exchangers capable of operating with high airside pressures have long lives and low maintenance even when operating with dirty gases at 1350 deg. C and preheating combustion air to 800 deg. C. The design of compact units suitable for factory assembly is also described. Units have been developed for low temperature corrosive gas situations and have been applied to the pottery industry and are being developed for coal fired air heaters for the food industry.

Laws, W. R.; Reed, G. R.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Energy and Water Recovery Technology from Low Grade Waste Heat  

SciTech Connect

The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.

Dexin Wang

2011-12-19T23:59:59.000Z

262

Influence of Heat Source Cooling Limitation on ORC System Layout ...  

Science Conference Proceedings (OSTI)

... compensates for the temperature loss induced by a second heat exchanger. ... Abart CDS - a New Compact Multi-pollutant Pot Gas and Alumina Handling ...

263

Optimal Ground-Source Heat Pump System Design Geothermal Project...  

Open Energy Info (EERE)

design tool with a groundwater flow and heat transport modeling software allowing the modeling of vertical and pondlake loops in different climate zones and building types in the...

264

Estimation of heat load in waste tanks using average vapor space temperatures  

SciTech Connect

This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

Crowe, R.D.; Kummerer, M.; Postma, A.K.

1993-12-01T23:59:59.000Z

265

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop  

Science Conference Proceedings (OSTI)

This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

Donna Post Guillen

2012-11-01T23:59:59.000Z

266

Efficiency, Economic and Environmental Assessment of Ground Source Heat Pumps in Central Pennsylvania  

Science Conference Proceedings (OSTI)

The energy use of a ground-source heat pump (GSP) for heating, cooling and hot water in a Central Pennsylvania residence (namely, the author's house) is analyzed, compared to a simulation of electricity and a heating-oil furnace (with electric cooling) ...

2009-01-01T23:59:59.000Z

267

February 1992 R. H. Johnson 353 Heat and Moisture Sources and Sinks of Asian Monsoon  

E-Print Network (OSTI)

February 1992 R. H. Johnson 353 Heat and Moisture Sources and Sinks of Asian Monsoon Precipitating The structure and properties of ,heat and moisture sources and sinks of the Asian monsoon are reviewed. Results by the Asian monsoon, with the detailed structure of this distribution determined in large part by a wide

Johnson, Richard H.

268

Designing, selecting and installing a residential ground-source heat pump system  

Science Conference Proceedings (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

269

Nuclear heat-load limits for above-grade storage of solid transuranium wastes  

SciTech Connect

Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190/sup 0/F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450/sup 0/F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265/sup 0/F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative.

Clontz, B.G.

1978-06-01T23:59:59.000Z

270

Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air  

Energy.gov (U.S. Department of Energy (DOE))

Revised fact sheet describes the transpired solar collector that was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

271

Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint  

DOE Green Energy (OSTI)

Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

Smith, K.; Thornton, M.

2007-12-01T23:59:59.000Z

272

Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle  

SciTech Connect

The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

Fuller, Robert L.

2005-04-20T23:59:59.000Z

273

COMBINED HEAT AND POWER FOR A COLLEGE CAMPUS THE HARRISONBURG, VIRGINIA WASTE-TO-ENERGY FACILITY  

E-Print Network (OSTI)

of installing the super-heaters, cooling towers, condensers and auxiliary equipment needed to make and cooling needs of the campus. This facility also has a small turbine that can be brought on line to produce Madison University central heating & cooling system. This facility uses a mass-burn style waste combustion

Columbia University

274

Waste Heat Recovery From Stacks Using Direct-Contact Condensing Heat Exchange  

E-Print Network (OSTI)

Flue gases exiting the stack of a boiler create thermal losses normally amounting to 15 to 20 percent of the high heating value of the fuel fired. By capturing and using this lost energy using condensing heat recovery, the overall efficiency of the system can be raised to over 95 percent. This paper reviews the origins of stack heat losses, direct contact condensing heat recovery processes, the Rocket Research Company CON-X condensing recuperator equipment and systems, site specific case studies and fuels and condensate acidity. A detailed example of the determination of the magnitude of stack heat losses is presented along with a methodology for the reader to make a preliminary heat recovery evaluation.

Thorn, W. F.

1986-06-01T23:59:59.000Z

275

Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report  

DOE Green Energy (OSTI)

The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

2007-09-01T23:59:59.000Z

276

Experimental Study on Operating Characteristic of the System of Ground Source Heat Pump Combined with Floor Radiant Heating of Capillary Tube  

Science Conference Proceedings (OSTI)

At first, the article presented particularly the working theory of the system of ground source heat pump combined with floor radiant heating of capillary tube, the characteristic of soil layers and the arrangement form of capillary tube mat and the floor ... Keywords: Ground source heat pump, Capillary tube, Radiant heating, Characteristic, Experiment

Yunzhun Fu; Cai Yingling; Jing Li; Yeyu Wang

2009-10-01T23:59:59.000Z

277

Status of waste heat utilization and dual-purpose plant projects  

SciTech Connect

From joint meeting of the American Nuclear Society and the Atomic Industrial Forum and Nuclear Energy Exhibition; San Francisco, California, USA (11 Nov 1973). The use of power plant thermal effluents, in the form of warm water or steam, to heat buildings for raising both plant and animal food crops, in aquaculture to produce fish and seafood, in outdoor agriculture, and in industry for distilling water and processing chemicals is discussed and illustrated. Facilities engaged in studying each of these waste heat applications and the results of such studies are described. It is concluded that rising energy costs and diminishing natural supplies of food will provide the incentive for the funther development of commercial uses of waste heat from power plants. (LC L)

Beall, S.E. Jr.; Yarosh, M.M.

1973-01-01T23:59:59.000Z

278

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network (OSTI)

Today energy sources are decreasing and saving energy conservation becomes more important. Therefore, it becomes an important investigative direction how to use reproducible energy sources in the HVAC field. The feasibility and necessity of using solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter.

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

279

Design of organic Rankine cycles for conversion of waste heat in a polygeneration plant  

E-Print Network (OSTI)

Organic Rankine cycles provide an alternative to traditional steam Rankine cycles for the conversion of low grade heat sources, where steam cycles are known to be less efficient and more expensive. This work examines organic ...

DiGenova, Kevin (Kevin J.)

2011-01-01T23:59:59.000Z

280

Cascaded organic rankine cycles for waste heat utilization  

Science Conference Proceedings (OSTI)

A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

Radcliff, Thomas D. (Vernon, CT); Biederman, Bruce P. (West Hartford, CT); Brasz, Joost J. (Fayetteville, NY)

2011-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

/sup 238/PuO/sub 2/ surface contamination of radioisotopic heat sources  

DOE Green Energy (OSTI)

Surface contamination and cleaning characteristics of two radioisotopic heat sources are discussed. The Milliwatt Generator is a small (4/sup 1///sub 2/ W) heat source which is successfully cleaned by hand in a series of hot acid baths.The Multi-Hundred Watt Isotopic Heat Source presents additional problems in removing the surface contamination because of its large size (100 W) and its grit-blasted surface. A study has characterized the behavior of the Pu during aging of the surface at the heat source service temperature of 1350/sup 0/C. Results from this study show that normal decontamination effectively removes the superficial Pu but does not extract the Pu which is deep within the grit-blasted structure. Subsequent heating results in migration of microcurie amounts of Pu out of the grit-blasted surface.

Schaeffer, D.R.; Brewer, C.Q.

1978-01-01T23:59:59.000Z

282

Harvesting Energy from Abundant, Low Quality Sources of Heat  

The basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to ...

283

Harvesting Energy from Abundant, Low Quality Sources of Heat ...  

The basic concept of energy harvesting is to collect energy from solar or other free sources of thermal energy that exist in the environment and convert them to ...

284

Evaluation of water source heat pumps for the Juneau, Alaska Area  

Science Conference Proceedings (OSTI)

The purposes of this project were to evaluate the technical and economic feasibility of water source heat pumps (WSHP) for use in Juneau, Alaska and to identify potential demonstration projects to verify their feasibility. Information is included on the design, cost, and availability of heat pumps, possible use of seawater as a heat source, heating costs with WSHP and conventional space heating systems, and life cycle costs for WSHP-based heating systems. The results showed that WSHP's are technically viable in the Juneau area, proper installation and maintenance is imperative to prevent equipment failures, use of WSHP would save fuel oil but increase electric power consumption. Life cycle costs for WSHP's are about 8% above that for electric resistance heating systems, and a field demonstration program to verify these results should be conducted. (LCL)

Jacobsen, J.J.; King, J.C.; Eisenhauer, J.L.; Gibson, C.I.

1980-07-01T23:59:59.000Z

285

Heat-pipe effect on the transport of gaseous radionuclides released from a nuclear waste container  

SciTech Connect

When an unsaturated porous medium is subjected to a temperature gradient and the temperature is sufficiently high, vadose water is heated and vaporizes. Vapor flows under its pressure gradient towards colder regions where it condenses. Vaporization and condensation produce a liquid saturation gradient, creating a capillary pressure gradient inside the porous medium. Condensate flows towards the hot end under the influence of a capillary pressure gradient. This is a heat pipe in an unsaturated porous medium. We study analytically the transport of gaseous species released from a spent-fuel waste package, as affected by a time-dependent heat pipe in an unsaturated rock. For parameter values typical of a potential repository in partially saturated fractured tuff at Yucca Mountain, we found that a heat pipe develops shortly after waste is buried, and the heat-pipe`s spatial extent is time-dependent. Water vapor movements produced by the heat pipe can significantly affect the migration of gaseous radionuclides. 12 refs., 6 figs., 1 tab.

Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

1990-11-01T23:59:59.000Z

286

Hybrid Ground Source Heat Pump System Simulation Using Visual Modeling Tool For Hvacsim  

E-Print Network (OSTI)

This paper presents a simulation of a hybrid ground source heat pump system, performed using a new graphical user interface for HVACSIM+. Hybrid ground source heat pump systems incorporate both ground loop heat exchangers and supplemental heat rejecters, such as cooling towers, cooling ponds, or pavement heating systems. HVACSIM+ capabilities have recently been extended by the addition of ground loop heat exchanger models, water-to-water and waterto-air heat pump models, pavement heating system models, and heat rejection pond models. New component models are discussed and a hybrid ground source heat pump system with heated pavement as a supplemental cooler is simulated using the visual modeling tool. First, though, an introduction to a new graphical user interface for HVACSIM+ is given. The user interface that originally came with the program could not be characterized as user-friendly. The new graphical interface allows users to develop system models by hooking components together. Provisions for controlling the simulation, setting the component parameters, editing the boundary file, and plotting the output are also included.

M. H. Khan; A. Varanasi; J. D. Spitler; D. E. Fisher; R. D. Delahoussaye

2003-01-01T23:59:59.000Z

287

Waste collection in developing countries - Tackling occupational safety and health hazards at their source  

Science Conference Proceedings (OSTI)

Waste management procedures in developing countries are associated with occupational safety and health risks. Gastro-intestinal infections, respiratory and skin diseases as well as muscular-skeletal problems and cutting injuries are commonly found among waste workers around the globe. In order to find efficient, sustainable solutions to reduce occupational risks of waste workers, a methodological risk assessment has to be performed and counteractive measures have to be developed according to an internationally acknowledged hierarchy. From a case study in Addis Ababa, Ethiopia suggestions for the transferral of collected household waste into roadside containers are given. With construction of ramps to dump collected household waste straight into roadside containers and an adaptation of pushcarts and collection procedures, the risk is tackled at the source.

Bleck, Daniela, E-mail: bleck.daniela@baua.bund.de [Federal Institute for Occupational Safety and Health, Germany (BAuA), Friedrich Henkel Weg 1-25, 44149 Dortmund (Germany); Wettberg, Wieland, E-mail: wettberg.wieland@baua.bund.de [Federal Institute for Occupational Safety and Health, Germany (BAuA), Friedrich Henkel Weg 1-25, 44149 Dortmund (Germany)

2012-11-15T23:59:59.000Z

288

Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Variable Speed Air-Source Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project Advanced Variable Speed Air-Source Integrated Heat Pumps Research Project The U.S. Department of Energy is currently conducting research into advanced variable speed air-source integrated heat pumps (AS-IHPs). Project Description This project seeks to develop AS-IHP products for the larger air-source system market. Development focuses on a fully variable capacity or variable speed AS-IHP option. Project Partners Research is being undertaken through a cooperative research and development agreement (CRADA) between the Department of Energy, Oak Ridge National Laboratory, and a CRADA partner. Project Goals The goal of this project is the development of a fully variable-speed version of an AS-IHP product that can provide heating, ventilation, and air

289

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost of underground water has also been considered. The economics of the heat pump and other cooling and heating sources has been compared and then several simple methods to improve the thermal economics of the underground water heat pump system have been put forward.

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

290

Design of a tube bank waste heat reclaimer for residential heating systems  

SciTech Connect

Forced convection tube bank heat reclaimers are analyzed in detail for residential natural gas and oil-fired furnaces that are controlled by natural draft. Optimum reclaimer designs are obtained based on improved system efficiency, and considerations regarding manufacturing costs. Each reclaimer meets safety restrictions regarding allowable system pressure losses and minimum chimney gas temperatures. Reclaimer size and overall weight are also considered. Computer-generated solutions aid in determining heat recovery as a function of furnace fuel, furnace efficiency, ambient temperature, flue pipe size, and chimney height. The analysis considers a range of furnace efficiencies from 50 to 80%, and ambient temperatures from 0 to 60/sup 0/F, which are values considered typical for most domestic combustion heating equipment. Flue pipe sizes range from 4 to 6 inches in diameter and are 2 to 4 feet long. Chimney sizes range from 5 to 7 inches in equivalent diameter and include draft heights from 15 to 35 feet. The piping sizes correspond to furnace input capacities ranging from 50,000 to 170,000 Btu/h. For many domestic heating systems, the potential exists to recover the lost heat by as much as 30%, and to reduce fuel costs by as much as 15% by installing a flue pipe heat reclaimer.

Gretsinger, K.M.; Elias, T.I.

1987-01-01T23:59:59.000Z

291

Municipal waste water as a source of cooling water for California electric power plants. Final report  

SciTech Connect

This report discusses sources of municipal waste water for potential use as cooling water in California power plants. It notes the major factors which affect this practice. Municipal treatment facilities in California with discharge volumes deemed adequate to supply new power plants are identified. Also included is a summary of the experiences of several utilities in California and other western states with existing or planned applications of municipal waste water in power plant cooling towers.

MacDonald, T.

1980-05-01T23:59:59.000Z

292

Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition  

SciTech Connect

This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

Hadley, Donald L.

2001-03-01T23:59:59.000Z

293

Pennsylvania Source Term Tracking System. National Low-Level Waste Management Program  

SciTech Connect

The Pennsylvania Source Term Tracking System tabulates surveys received from radioactive waste generators in the Commonwealth of radioactive waste is collected each quarter from generators using the Low-Level Radioactive Waste Management Quarterly Report Form (hereafter called the survey) and then entered into the tracking system data base. This personal computer-based tracking system can generate 12 types of tracking reports. The first four sections of this reference manual supply complete instructions for installing and setting up the tracking system on a PC. Section 5 presents instructions for entering quarterly survey data, and Section 6 discusses generating reports. The appendix includes samples of each report.

1992-08-01T23:59:59.000Z

294

SIMULATION AND OPTIMAL CONTROL OF HYBRID GROUND SOURCE HEAT  

E-Print Network (OSTI)

.7 Annual hourly building load for the office building in Tulsa, OK................ 240 Figure 6.8 Main Figure 7.1 Office building loads for El Paso, TX.16 System loads and heat pump power consumptions of office and motel #12;xx building in Tulsa, OK

295

PARAMETER ESTIMATION BASED MODELS OF WATER SOURCE HEAT PUMPS  

E-Print Network (OSTI)

, Singapore. ©2006, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (www operating refrigerant pressure limits). A design goal must therefore be to control the rise or drop exponent is dependent on the refrigerant type; the values of the isentropic exponents are obtained from

296

Refinery Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP) Recovers LPG's and Gasoline, Saves Energy, and Reduces Air Pollution  

E-Print Network (OSTI)

A first-of-its-kind Waste Heat Ammonia Absorption Refrigeration Plant (WHAARP™) was installed by Planetec Utility Services Co., Inc. in partnership with Energy Concepts Co. at Ultramar Diamond Shamrock's 30,000 barrel per day refinery in Denver, Colorado. The refrigeration unit is designed to provide refrigeration for two process units at the refinery while utilizing waste heat as the energy source. The added refrigeration capacity benefits the refinery by recovering salable products, debottlenecking process units, avoiding additional electrical demand, and reducing the refinery Energy Intensity Index. In addition, the WHAARP unit lowers air pollutant emissions by reducing excess fuel gas that is combusted in the refinery flare. A comprehensive utility and process efficiency Master Plan developed for the Denver refinery by Planetec provided the necessary platform for implementing this distinctive project. The $2.3 million WHAARP system was paid for in part by a $760,000 grant from the U.S. Department of Energy, as part of their "Industry of the Future Program". Total combined benefits are projected to be approximately $1 million/year with a 1.6 year simple payback including the grant funding.

Brant, B.; Brueske, S.; Erickson, D.; Papar, R.

1998-04-01T23:59:59.000Z

297

Alternate energy source usage for in situ heat treatment processes  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for providing power to one or more subsurface heaters is described herein. The system may include an intermittent power source; a transformer coupled to the intermittent power source, and a tap controller coupled to the transformer. The transformer may be configured to transform power from the intermittent power source to power with appropriate operating parameters for the heaters. The tap controller may be configured to monitor and control the transformer so that a constant voltage is provided to the heaters from the transformer regardless of the load of the heaters and the power output provided by the intermittent power source.

Stone, Jr., Francis Marion (Cut-N-Shoot, TX); Goodwin, Charles R. (League City, TX); Richard, Jr., James (Kingwood, TX)

2011-03-22T23:59:59.000Z

298

The Apparent Water Vapor Sinks and Heat Sources Associated with the Intraseasonal Oscillation of the Indian Summer Monsoon  

Science Conference Proceedings (OSTI)

The possibility of using remote sensing retrievals to estimate apparent water vapor sinks and heat sources is explored. The apparent water vapor sinks and heat sources are estimated from a combination of remote sensing, specific humidity, and ...

Sun Wong; Eric J. Fetzer; Baijun Tian; Bjorn Lambrigtsen; Hengchun Ye

2011-08-01T23:59:59.000Z

299

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

300

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

302

Incorporating Cold Cap Behavior in a Joule-heated Waste Glass Melter Model  

SciTech Connect

In this paper, an overview of Joule-heated waste glass melters used in the vitrification of high level waste (HLW) is presented, with a focus on the cold cap region. This region, in which feed-to-glass conversion reactions occur, is critical in determining the melting properties of any given glass melter. An existing 1D computer model of the cold cap, implemented in MATLAB, is described in detail. This model is a standalone model that calculates cold cap properties based on boundary conditions at the top and bottom of the cold cap. Efforts to couple this cold cap model with a 3D STAR-CCM+ model of a Joule-heated melter are then described. The coupling is being implemented in ModelCenter, a software integration tool. The ultimate goal of this model is to guide the specification of melter parameters that optimize glass quality and production rate.

Varija Agarwal; Donna Post Guillen

2013-08-01T23:59:59.000Z

303

Application Prospect Analysis of the Surface Water Source Heat-Pump in China  

E-Print Network (OSTI)

Surface water resources in China are rather abundant and it can be use as the heat or cool source for heat pump. The winter surface water temperatures of 17 typical cities are investigated in December, and they are all distributed in the interval of 2~5?. The critical technical issue in the surface water heat pump is how to extract the freezing latent heat. The urban surface water supplying areas of 102 large or median cities in China are measured and counted. The supply area ratio, and mean heating or cooling need index are calculated separately and the 102 cities are classified by the three parameters. The data indicate that surface water can supply heat and cool source for 42.1% of the urban waterside buildings in China.

Zhang, C.; Zhuang, Z.; Huang, L.; Li, X.; Li, G.; Sun, D.

2006-01-01T23:59:59.000Z

304

Ground Source Heat Pump Data Mining Research Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground Source Heat Pump Data Mining Ground Source Heat Pump Data Mining Research Project Ground Source Heat Pump Data Mining Research Project The U.S. Department of Energy is currently conducting research into ground source heat pump (GSHP) data mining. This project seeks to build public awareness of GSHP technology through the development of case studies outlining costs and benefits. Project Description This project seeks to produce in-depth case studies on the costs and benefits of American Recovery and Reinvestment Act -funded GSHP demonstration projects, including cross-cutting summaries of lessons learned and best practices for design, installation, and operation. Project Partners Research is being undertaken between the Department of Energy and Oak Ridge National Laboratory. Project Goals

305

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground-Source Heat Pumps Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

306

Covered Product Category: Ground-Source Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps Covered Product Category: Ground-Source Heat Pumps October 7, 2013 - 10:32am Addthis ENERGY STAR Qualified Products FEMP provides acquisition guidance across a variety of product categories, including ground-source heat pumps (GSHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

307

Covered Product Category: Residential Air-Source Heat Pumps | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Air-Source Heat Pumps Residential Air-Source Heat Pumps Covered Product Category: Residential Air-Source Heat Pumps October 7, 2013 - 10:35am Addthis ENERGY STAR logo FEMP provides acquisition guidance across a variety of product categories, including residential air-source heat pumps (ASHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases

308

Covered Product Category: Residential Air-Source Heat Pumps | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air-Source Heat Pumps Air-Source Heat Pumps Covered Product Category: Residential Air-Source Heat Pumps October 7, 2013 - 10:35am Addthis ENERGY STAR logo FEMP provides acquisition guidance across a variety of product categories, including residential air-source heat pumps (ASHPs), which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most manufacturers display the ENERGY STAR label on complying models. For a model not displaying this label, check the manufacturer's literature to determine if it meets the efficiency requirements outlined by ENERGY STAR. Performance Requirements for Federal Purchases For the most up-to-date efficiency levels required by ENERGY STAR, look for

309

Interhemispheric teleconnections from tropical heat sources in intermediate and simple models  

Science Conference Proceedings (OSTI)

The mechanisms that control the interhemispheric teleconnections from tropical heat sources are investigated using an intermediate complexity model (a Quasi-Equilibrium Tropical Circulation Model, QTCM) and a simple linear two-level model with dry ...

X. Ji; J. D. Neelin; S.-K. Lee; C. R. Mechoso

310

A Numerical Study of Stratified Airflow over Mesoscale Heat Sources with Application to Carolina Coastal Frontogenesis  

Science Conference Proceedings (OSTI)

This paper presents the results from a numerical investigation of the responses of stratified airflow to prescribed near-surface mesoscale axisymmetric (circular) and elongated (elliptical) heat sources under uniform basic wind conditions using a ...

Lian Xie; Yuh-Lang Lin

1996-12-01T23:59:59.000Z

311

Axisymmetric Circulations Forced by Heat and Momentum Sources: A Simple Model Applicable to the Venus Atmosphere  

Science Conference Proceedings (OSTI)

The parametric behavior of an axially symmetric circulation induced by heat and momentum sources is analyzed in the context of a simple Boussinesq model. Implications for the Venus atmosphere are examined in the light of recent data.

Arthur Y. Hou

1984-12-01T23:59:59.000Z

312

Comparison of the Global Meridional Ekman Heat Flux Estimated from Four Wind Sources  

Science Conference Proceedings (OSTI)

The variability in the meridional Ekman heat flux estimated using wind data from four different sources is examined. The wind vectors are obtained from the European Remote Sensing (ERS), Quick Scatterometer (Quikscat), and Special Sensor ...

Olga T. Sato; Paulo S. Polito

2005-01-01T23:59:59.000Z

313

The Response of Balanced Hurricanes to Local Sources of Heat and Momentum  

Science Conference Proceedings (OSTI)

Eliassen's (1951) diagnostic technique is used to calculate the secondary circulation induced by point sources of heat and momentum in balanced, hurricane-like vortices. Scale analysis reveals that such responses are independent of the horizontal ...

Lloyd J. Shapiro; Huch E. Willoughby

1982-02-01T23:59:59.000Z

314

Detecting sources of heat loss in residential buildings from infrared imaging  

E-Print Network (OSTI)

Infrared image analysis was conducted to determine the most common sources of heat loss during the winter in residential buildings. 135 houses in the greater Boston and Cambridge area were photographed, stitched, and tallied ...

Shao, Emily Chen

2011-01-01T23:59:59.000Z

315

Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)  

DOE Green Energy (OSTI)

In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

Franco-Ferreira, E.A. [Westinghouse Savannah River Company, SC (United States); George, T.G. [Los Alamos National Laboratory, CA (United States)

1995-02-28T23:59:59.000Z

316

EA-1211: Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal for relocation and storage of the isotopic heat sources at the U.S. Department of Energy Hanford Site in Richland, Washington.

317

ORNL/TM-2008/232 Geothermal (Ground-Source) Heat Pumps  

E-Print Network (OSTI)

pump water heater and ClimateMaster TrilogyTM 40 Q-ModeTM geothermal (ground- source) integrated heat buildings on the flexible research platforms. · The greatest barrier preventing wider use of geothermal

Oak Ridge National Laboratory

318

Water flow calorimetry measurements of heat loads for a volume production H/sup -/ source  

DOE Green Energy (OSTI)

The design of volume-production H/sup -/ sources requires the knowledge of heat loads on the source components. The arc and filament heater power input to a 20 cm diameter x 23 cm long source can be 50 kW or higher, practically all of which is absorbed in the cooling water. Water flow calorimetry measurements were made to determine the heat loads on the bucket walls, grid no. 1, and magnetic filter rods. The measurements are presented for two different filament locations, for three different values of arc power, and for three values of source gas pressure. 1 ref., 4 figs., 2 tabs.

Purgalis, P.; Ackerman, G.; Kwan, J.; Wells, R.P.

1987-10-01T23:59:59.000Z

319

Interactions of /sup 238/PuO/sub 2/ heat sources with terrestrial and aquatic environments. Interim summary  

DOE Green Energy (OSTI)

Observations and some conclusions made of the interactions of /sup 238/PuO/sub 2/ heat sources with terrestrial and aquatic environments may be used in predicting heat source behavior in the event of contact of these heat sources with land or ocean and in assessing the risk to the environment. These studies indicate that plutonium transport from the heat sources is mostly a physical process involving the movement of extremely fine particles rather than the chemical migration of plutonium ions.

Patterson, J.H.; Steinkruger, F.J.; Matlack, G.M.

1980-09-01T23:59:59.000Z

320

Energy recovery during expansion of compressed gas using power plant low-quality heat sources  

SciTech Connect

A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

Ochs, Thomas L. (Albany, OR); O' Connor, William K. (Lebanon, OR)

2006-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

322

The Atmospheric Heat Source over the Tibetan Plateau: May–August 1979  

Science Conference Proceedings (OSTI)

Estimates of the time and space variability of the atmospheric heat source over Tibet are presented for the summer of 1979. These estimates rely on new data from the People's Republic of China allowing a better assessment of the surface heat ...

Longxun Chen; Elmar R. Reiter; Zhiqiang Feng

1985-10-01T23:59:59.000Z

323

A Linear Model Study of Cross-Equatorial Flow Forced by Summer Monsoon Heat Sources  

Science Conference Proceedings (OSTI)

A linear model of the steady response of a stratified fluid to isolated heat sources on a sphere is developed. The model is used to examine the response to diabatic heating associated with summer monsoon precipitation in India and to low-level ...

Keith D. Sashegyi; John E. Geisler

1987-07-01T23:59:59.000Z

324

The Heat Sources and Sinks of the 1986–87 El Nińo  

Science Conference Proceedings (OSTI)

The heat balance of the coupled tropical ocean–atmosphere system during the Earth Radiation Budget Experiment (ERBE) period (1985–89) is analyzed in an attempt to better understand the heat sources and sinks of the 1986–87 El Nińo. The analysis ...

De-Zheng Sun

2000-10-01T23:59:59.000Z

325

Feasibility Study of Using Ground Source Heat Pumps in Two Buildings  

E-Print Network (OSTI)

. The building is located near the end of the central steam distribution system. Steam from the central steam and Mt. Olympus BOQ) presently heated by steam from the central steam plant. Ground source heat pump, it was assumed that natural gas-fired water heaters would replace the steam converters that presently provide hot

Oak Ridge National Laboratory

326

Life Cycle cost Analysis of Waste Heat Operated Absorption Cooling Systems for Building HVAC Applications  

E-Print Network (OSTI)

In this paper, life cycle cost analysis (LCCA) of waste heat operated vapour absorption air conditioning system (VARS) incorporated in a building cogeneration system is presented and discussed. The life cycle cost analysis (LCCA) based on present worth cost (PWC) method, which covers the initial costs, operating costs, maintenance costs, replacement costs and salvage values is the useful tool to merit various cooling and power generation systems for building applications. A life cycle of 23 years was used to calculate the PWC of the system for annual operating hours of 8760 and the same is compared with the electric based vapour compression chiller (VCRS) of same capacity. The life cycle cost (LCC) of waste heat operated absorption chiller is estimated to be US $ 1.5 million which is about 71.5 % low compared to electric powered conventional vapour compression chiller. From the analysis it was found that the initial cost of VARS system was 125 % higher than that of VCRS, while the PWC of operating cost of VARS was 78.2 % lower compared to VCRS. The result shows that the waste heat operated VARS would be preferable from the view point of operating cost and green house gas emission reduction.

Saravanan, R.; Murugavel, V.

2010-01-01T23:59:59.000Z

327

Organic Rankine Cycle Systems for Waste Heat Recovery in Refineries and Chemical Process Plants  

E-Print Network (OSTI)

The design of a low temperature Rankine cycle system using R-113 working fluid for recovery and conversion of process waste heat is described for typical applications in oil refineries and chemical plants. The system is designed to produce electric power from waste heat available in a temperature range from 180oF to 400oF. The design of a new ORC turbo generator uniquely adapted to applications of this type is presented. The unit has been designed for power outputs from 3/4 to 2 1/2 MW and turbine inlet temperatures from 170 to 260oF. The machine design has eliminated the need for shaft seals, shaft couplings and the usual lube oil console normally required for turbine-generator units. Results of prototype tests of a 1 MW unit are presented. A product package and recommended division of responsibilities between purchaser, A&E company and supplier is presented for installations in refineries and process plants. The product package covers the electrical power range from 3/4 to 5 MW and waste heat streams from 20 to 130 million BTU/hr.

Meacher, J. S.

1981-01-01T23:59:59.000Z

328

Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles  

SciTech Connect

Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cycles can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.

Haihua Zhao; Per F. Peterson

2012-10-01T23:59:59.000Z

329

Ground and Water Source Heat Pump Performance and Design for Southern Climates  

E-Print Network (OSTI)

Ground and water source heat pump systems have very attractive performance characteristics when properly designed and installed. These systems typically consist of a water-to-air or water-to-water heat pump linked to a closed loop vertical or horizontal ground-coupling, an open groundwater loop, or a surface water loop. This paper discusses system performance characteristics, component selection procedures presently being used, improvements currently being considered and future possibilities for improved efficiency and reliability. Optimum designs require proper matching of the heat pump unit to the water circulation system, the building space heating/cooling load and water heating requirements. General trends resulting from system and component choices will be discussed. Water heating methods with these heat pumps will be considered.

Kavanaugh, S.

1988-01-01T23:59:59.000Z

330

Foundation heat exchangers for residential ground source heat pump systems Numerical modeling and experimental validation  

Science Conference Proceedings (OSTI)

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data-heat pump entering fluid temperatures typically within 1 C (1.8 F) - with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Xing, Lu [Oklahoma State University; Cullin, James [Oklahoma State University; Spitler, Jeffery [Oklahoma State University; Im, Piljae [ORNL; Fisher, Daniel [Oklahoma State University

2011-01-01T23:59:59.000Z

331

Study of the design Method of an Efficient Ground Source Heat Pump Thermal Source System in a Cold Area  

E-Print Network (OSTI)

The ground source heat pump (GSHP) system-an energy efficiency and environment friendly system-is becoming popular in many parts of China. However, an imbalance usually exists between the annual heat extracted from and rejected to the ground due to the different heating and cooling load of a building, which will consistently deteriorate the heat pump efficiency leading even to the breakdown of the heat pump. This paper brings forward a design method of adding supplemental heat rejection equipment, a cooling tower, in the system to solve the problem in a cold area. Taking an office building in Beijing as an example, the authors simulate the GSHP system with two different connection methods between the cooling tower and vertical buried-pipe heat exchangers (in series and in parallel) using TRNSYS simulation software, and put forward several design schemes that can ensure the whole system continually operates with high efficiency. This also makes it possible to perform a more detailed economic optimization of the GSHP-based system in the future.

Shu, H.; Duanmu, L.; Hua, R.; Zou, Y.; Du, G.

2006-01-01T23:59:59.000Z

332

COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM  

DOE Green Energy (OSTI)

In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

333

Thermionic converter with differentially heated cesium-oxygen source and method of operation  

DOE Green Energy (OSTI)

A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

1998-12-01T23:59:59.000Z

334

Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

335

Municipal solid waste source-separated collection in China: A comparative analysis  

Science Conference Proceedings (OSTI)

A pilot program focusing on municipal solid waste (MSW) source-separated collection was launched in eight major cities throughout China in 2000. Detailed investigations were carried out and a comprehensive system was constructed to evaluate the effects of the eight-year implementation in those cities. This paper provides an overview of different methods of collection, transportation, and treatment of MSW in the eight cities; as well as making a comparative analysis of MSW source-separated collection in China. Information about the quantity and composition of MSW shows that the characteristics of MSW are similar, which are low calorific value, high moisture content and high proportion of organisms. Differences which exist among the eight cities in municipal solid waste management (MSWM) are presented in this paper. Only Beijing and Shanghai demonstrated a relatively effective result in the implementation of MSW source-separated collection. While the six remaining cities result in poor performance. Considering the current status of MSWM, source-separated collection should be a key priority. Thus, a wider range of cities should participate in this program instead of merely the eight pilot cities. It is evident that an integrated MSWM system is urgently needed. Kitchen waste and recyclables are encouraged to be separated at the source. Stakeholders involved play an important role in MSWM, thus their responsibilities should be clearly identified. Improvement in legislation, coordination mechanisms and public education are problematic issues that need to be addressed.

Tai Jun [Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Shanghai Environmental Engineering Design Research Institute, Shanghai 200232 (China); Zhang Weiqian [Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Che Yue, E-mail: yche@des.ecnu.edu.cn [Shanghai Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Feng Di [Shanghai Environmental Engineering Design Research Institute, Shanghai 200232 (China)

2011-08-15T23:59:59.000Z

336

2011 CERN Waste Heat EN-CV February 28th 2011 Power Dissipated by the Cooling Towers  

E-Print Network (OSTI)

2011 CERN Waste Heat EN-CV February 28th 2012 1 2011 Power Dissipated by the Cooling Towers The cooling circuits at CERN use evaporative open cooling towers to discharge into the atmosphere the heat towers per complex depend on the amount of cooling power required. LHC one cooling tower per even LHC

Wu, Sau Lan

337

Numerical Simulation of a Latent Heat Storage System of a Solar-Aided Ground Source Heat Pump  

E-Print Network (OSTI)

In this study, the rectangular phase change storage tank (PCST) linked to a solar-aided ground source heat pump (SAGSHP) system is investigated experimentally and theoretically. The container of the phase change material (PCM) is the controlling unit of the phase change heat transfer model. It was solved numerically by an enthalpy-based finite difference method and was validated by experimental data. CaCl2•6H2O was used as the PCM in the latent heat storage system of SAGSHP system. In the tank, the PCMs are encapsulated in plastic kegs that are setting on the serpentine coil. The experiments were performed from March 12 to April 10, 2004 in the heating season of the transition period. In order to reflect the effects of the system, two days were chosen to compare the numerical results with experimental data. The inlet and outlet temperature of the water in the PCST, temperature of PCM and storage and emission heat of PCST were measured. The trends of the variation of numerical results and experimental data were in close agreement. Numerical results can reflect the operation mode of the system very well.

Wang, F.; Zheng, M.; Li, Z.; Lei, B.

2006-01-01T23:59:59.000Z

338

Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes  

Science Conference Proceedings (OSTI)

Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluat

Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

2012-12-03T23:59:59.000Z

339

Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat  

Science Conference Proceedings (OSTI)

BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

None

2010-09-01T23:59:59.000Z

340

DOELEA-1211 Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOELEA-1211 DOELEA-1211 - Environmental Assessment Relocation and Storage of Isotopic Heat Sources, Hanford Site, Richland, Washington U.S. Department of Energy Richland, Washington June 1997 DOE/EA-1211 ENVIRONMENTAL ASSESSMENT FOR THE RELOCATION AND STORAGE OF ISOTOPIC HEAT SOURCES HANFORD SITE RICHLAND, WASHINGTON JUNE 1997 U.S. DEPARTMENT OF ENERGY NCHLAND, WASHINGTON Portions of this document may be iiIegiile in electronic image products. Images are produced from the best available original dornmeut DOWEA- 1 2 1 1 U.S. Department of Energy Preface PREFACE This environmental assessment (EA) has been prep- to assess potentia environmental impacts associated with the U.S. Department of Energy proposed action: Relocation and storage of the isotopic heat sources.

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions  

DOE Green Energy (OSTI)

In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone.

Zielinski, R.E.; Stacy, E.; Burgan, C.E.

342

An evaluation of alternate production methods for Pu-238 general purpose heat source pellets  

DOE Green Energy (OSTI)

For the past half century, the National Aeronautics and Space Administration (NASA) has used Radioisotope Thermoelectric Generators (RTG) to power deep space satellites. Fabricating heat sources for RTGs, specifically General Purpose Heat Sources (GPHSs), has remained essentially unchanged since their development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the applicable fields of chemistry, manufacturing and control systems. This paper evaluates alternative processes that could be used to produce Pu 238 fueled heat sources. Specifically, this paper discusses the production of the plutonium-oxide granules, which are the input stream to the ceramic pressing and sintering processes. Alternate chemical processes are compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product.

Mark Borland; Steve Frank

2009-06-01T23:59:59.000Z

343

Wool-waste as organic nutrient source for container-grown plants  

SciTech Connect

A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) in pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.

Zheljazkov, Valtcho D. [Mississippi State University, North Mississippi Research and Extension Center, Verona, MS 38879 (United States)], E-mail: vj40@pss.msstate.edu; Stratton, Glenn W. [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Pincock, James [Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3 (Canada); Butler, Stephanie [Department of Plant and Animal Sciences and Department of Environmental Sciences, Nova Scotia Agricultural College, Truro, NS, B2N 5E3 (Canada); Jeliazkova, Ekaterina A. [Mississippi State University, Department of Plant and Soil Sciences, Mississippi State, MS 39762 (United States); Nedkov, Nedko K. [Research Institute for Roses and Aromatic Crops, 49 Osvobojdenie Blv., Kazanluk (Bulgaria); Gerard, Patrick D. [Department of Applied Economics and Statistics, Clemson University, Clemson, SC 29634 (United States)

2009-07-15T23:59:59.000Z

344

General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47  

DOE Green Energy (OSTI)

The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

Reimus, M.A.H.; George, T.G.

1995-12-01T23:59:59.000Z

345

Municipal waste water as a source of cooling water for California electric power plants  

SciTech Connect

The results of an investigation of sources of municipal waste water for potential use as cooling water in California power plants and the major factors which affect this practice are presented. Municipal treatment facilities in California with discharge volumes deemed adequate to supply new power plants are identified. Also included is a summary of the experiences of several utilities in California and other western states with existing or planned applications of municipal waste water in power plant cooling towers. Due to limited supplies of high-quality water, municipal waste water is increasingly viewed as an alternative source of supply for a variety of water uses, including electric power plant evaporative cooling. In California, enough municipal effluent is discharged to the ocean to conceivably supply the total projected cooling water needs of new power plants for the next 20 years or more. A number of existing applications of such waste water for power plant cooling, including several California cases, demonstrate the technical feasibility of its use for this purpose. However, a combination of economic, environmental, and geographic factors reduce the likelihood of widespread use of this alternative for meeting anticipated large increases in power plant water requirements in the state. The most important factors are: the long distances involved; the public health concerns; added costs and environmental effects; and unreliability of supply quality.

McDonald, T.

1980-05-01T23:59:59.000Z

346

Source terms for analysis of accidents at a high level waste repository  

SciTech Connect

This paper describes an approach to identifying source terms from possible accidents during the preclosure phase of a high-level nuclear waste repository. A review of the literature on repository safety analyses indicated that source term estimation is in a preliminary stage, largely based on judgement-based scoping analyses. The approach developed here was to partition the accident space into domains defined by certain threshold values of temperature and impact energy density which may arise in potential accidents and specify release fractions of various radionuclides, present in the waste form, in each domain. Along with a more quantitative understanding of accident phenomenology, this approach should help in achieving a clearer perspective on scenarios important to preclosure safety assessments of geologic repositories. 18 refs., 3 tabs.

Mubayi, V.; Davis, R.E.; Youngblood, R.

1989-01-01T23:59:59.000Z

347

Comparing Aircraft-Based Remotely Sensed Energy Balance Fluxes with Eddy Covariance Tower Data Using Heat Flux Source Area Functions  

Science Conference Proceedings (OSTI)

In an effort to better evaluate distributed airborne remotely sensed sensible and latent heat flux estimates, two heat flux source area (footprint) models were applied to the imagery, and their pixel weighting/integrating functionality was ...

JoséL. Chávez; Christopher M. U. Neale; Lawrence E. Hipps; John H. Prueger; William P. Kustas

2005-12-01T23:59:59.000Z

348

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network (OSTI)

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation for the Missouri Division of Energy, identifies and evaluates technological options and describes the current status of various energy resource conservation technologies applicable industry and the economic, institutional and regulatory factors which could affect the implementation and use of these energy technologies. An industrial energy manual has been prepared, identifying technologies with significant potential for application in a specific company or plant. Six site-specific industrial case studies have been performed for industries considered suitable for cogeneration, waste heat recovery or alternative fuel use. These case studies, selected after a formal screening process, evaluate actual plant conditions and economics for Missouri industrial establishments. It is hoped that these case studies will show, by example, some of the elements that make energy resource conservation technologies economically a technically feasible in the real world.

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

349

Waste Heat Energy Harvesting Using Olsen Cycle on PZN-5.5PT Single Crystals  

E-Print Network (OSTI)

thermal energy that would otherwise be wasted. In 2009, anthe energy consumed in the United States was wasted in the

McKinley, Ian Meeker; Kandilian, Razmig; Pilon, Laurent

2012-01-01T23:59:59.000Z

350

Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission  

SciTech Connect

General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a {sup 238}Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds.

Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

1998-12-31T23:59:59.000Z

351

Influence of External Heat Source on Transcritical CO2 Refrigeration System  

Science Conference Proceedings (OSTI)

Synthetic refrigerants such as CFCs and HCFCs are harmful to the ozone and could cause greenhouse effect. Refrigerant alternatives research is very urgent. CO2 as a natural working fluid has zero ODP and its GWP=1, is receiving more and more attention ... Keywords: Coefficient of Performance, Experimental Investigation, Heat Source, Transcritical CO2 Refrigeration System

Liu Yingfu; Xiao Jian; Jin Guangya

2012-07-01T23:59:59.000Z

352

Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition  

NLE Websites -- All DOE Office Websites (Extended Search)

E E N E R G Y M A N A G E M E N T P R O G R A M and exterior to the facility, are typically less than those for conventional systems. Potential Application The technology has been shown to be techni- cally valid and economically attractive in many applications. It is efficient and effective. This Federal Technology Alert reports on the collec- tive experience of heat pump users and evalua- tors and provides application guidance. An estimated 400,000 ground-source heat pumps are operating in the private and public sector, although most of these systems operate in resi- dential applications. A ground-source heat pump system can be applied in virtually any category of climate or building. The large num- ber of installations testifies to the stability of this technology. The reported problems can

353

General-Purpose Heat Source Safety Verification Test series: SVT-7 through SVT-10  

SciTech Connect

The General-Purpose Heat Source (GPHS) is a modular component of the radioisotope thermoelectric generator that will supply power for the Galileo and Ulysses (formerly ISPM) space missions. The GPHS provides power by transmitting the heat of /sup 238/PuO/sub 2/ ..cap alpha..-decay to an array of thermoelectric elements. Because the possibility of an orbital abort always exists, the heat source was designed and constructed to minimize plutonia release in any accident environment. The Safety Verification Test (SVT) series was formulated to evaluate the effectiveness of GPHS plutonia containment after atmospheric reentry and Earth impact. The first report (covering SVT-1 through SVT-6) described the results of flat and side-on module impacts. This report describes module impacts at angles of 15/sup 0/ and 30/sup 0/.

George, T.G.; Pavone, D.

1985-09-01T23:59:59.000Z

354

Ground-Source Heat Pumps Applied to Federal Facilities, Second Edition  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and exterior to the facility, are typically less and exterior to the facility, are typically less than those for conventional systems. Potential Application The technology has been shown to be techni- cally valid and economically attractive in many applications. It is efficient and effective. This Federal Technology Alert reports on the collec- tive experience of heat pump users and evalua- tors and provides application guidance. An estimated 400,000 ground-source heat pumps are operating in the private and public sector, although most of these systems operate in resi- dential applications. A ground-source heat pump system can be applied in virtually any category of climate or building. The large num- ber of installations testifies to the stability of this technology. The reported problems can usually be attributed to faulty design or

355

An Evaluation of Shadow Shielding for Lunar System Waste Heat Rejection  

E-Print Network (OSTI)

Shadow shielding is a novel and practical concept for waste heat rejection from lunar surface spacecraft systems. A shadow shield is a light shield that shades the radiator from parasitic thermal radiation emanating from the sun or lunar surface. Radiator size and mass can reduce if the radiator is not required to account for parasitic heat loads in addition to system energy rejection requirements. The lunar thermal environment can be very harsh towards radiative heat rejection. Parasitic heat loads force the radiator to expand in size and mass to compensate. On the Moon, there are three types: surface infrared, solar insulation, and albedo. This thesis tests shadow shielding geometry and its effect on the radiator and nuclear reactor in a reactor-powered Carnot heat engine. Due to the nature of cooling by radiative heat transfer, the maximum shaft work a Carnot system can produce and the minimal required radiator area occurs when the Carnot efficiency is 25%. First, a case for shadow shielding is made using an isothermal, control radiator model in Thermal Desktop. Six radiator temperatures and three latitudes are considered in the tests. Test variables in this section include radiator shapes and shade geometry. The simulations found that shadow shielding is best suited for a low-temperature radiator at the lunar equator. Optimized parabolic shade geometry includes a focus right above or at the top of the radiator and full to three-quarters shade height. The most useful rectangular radiator shape for shadow shielding is that which has a low height and long width. All simulations were conducted using a shade with a 10 kg/m2 area mass. A sensitivity study was conducted for different shade area masses using high and low values found in the literature. The shade is the most useful when the shade's area mass is less than or equal to that of the radiator. If the shade mass is below this threshold, the shade would be applicable to all radiator temperatures tested. Optimized shade and radiator geometry results were then factored into a second model where the radiator is comprised of heat pipes which is similar to radiators from actual system designs. Further simulations were conducted implementing the SAFE-4001 fast fission nuclear reactor design. The study found that shadow shielding allowed the system to use a low-temperature radiator where other configurations were not viable because shadow shielding drastically improves radiative heat transfer from the radiator, but at the consequence of raising radiator mass.

Worn, Cheyn

2012-05-01T23:59:59.000Z

356

Development of a High Performance Air Source Heat Pump for the US Market  

SciTech Connect

Heat pumps present a significant advantage over conventional residential heating technologies due to higher energy efficiencies and less dependence on imported oil. The US development of heat pumps dates back to the 1930 s with pilot units being commercially available in the 1950 s. Reliable and cost competitive units were available in the US market by the 1960 s. The 1973 oil embargo led to increased interest in heat pumps prompting significant research to improve performance, particularly for cold climate locations. Recent increasing concerns on building energy efficiency and environmental emissions have prompted a new wave of research in heat pump technology with special emphasis on reducing performance degradation at colder outdoor air temperatures. A summary of the advantages and limitations of several performance improvement options sought for the development of high performance air source heat pump systems for cold climate applications is the primary focus of this paper. Some recommendations for a high performance cold climate heat pump system design most suitable for the US market are presented.

Abdelaziz, Omar [ORNL; Shen, Bo [ORNL; Gao, Zhiming [ORNL; Baxter, Van D [ORNL; Iu, Ipseng [ORNL

2011-01-01T23:59:59.000Z

357

An Environment Friendly Energy Recovery Technology: Municipal Solid Waste Gasification  

Science Conference Proceedings (OSTI)

Energy from waste, is a perspective source to replace fossil fuels in the future, municipal solid waste (MSW) gasification is a new technique for waste treatment. MSW can be combusted directly to generate heat and electricity, and by means of gasification ... Keywords: municipal solid waste, gasification, incineration

Lei Ma; Chuanhua Liao; Yuezhao Zhu; Haijun Chen; Yanghuiqin Ding

2011-01-01T23:59:59.000Z

358

Two component absorption/phase separation chemical heat pump to provide temperature amplification to waste heat streams  

DOE Patents (OSTI)

A chemical heat pump that utilizes liquid/liquid phase separation rather than evaporation to separate two components in a heat of mixing chemical heat pump process. 3 figs.

Scott, T.C.; Kaplan, S.I.

1987-09-04T23:59:59.000Z

359

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources  

DOE Green Energy (OSTI)

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

2010-09-01T23:59:59.000Z

360

Potential GTCC LLW sealed radiation source recycle initiatives. National Low-Level Waste Management Program  

SciTech Connect

This report suggests 11 actions that have the potential to facilitate the recycling (reuse or radionuclide) of surplus commercial sealed radiation sources that would otherwise be disposed of as greater-than-Class C low-level radioactive waste. The suggestions serve as a basis for further investigation and discussion between the Department of Energy, Nuclear Regulatory Commission, Agreement States, and the commercial sector. Information is also given that describes sealed sources, how they are used, and problems associated with recycling, including legal concerns. To illustrate the nationwide recycling potential, Appendix A gives the estimated quantity and application information for sealed sources that would qualify for disposal in commercial facilities if not recycle. The report recommends that the Department of Energy initiate the organization of a forum to explore the suggested actions and other recycling possibilities.

Fischer, D.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The impact of NRC guidance on concentration averaging on low level waste sealed source disposal - 11424  

SciTech Connect

As part of its ongoing efforts to revise the Nuclear Regulatory Commission's (NRC) current position on blending to be risk-informed and performance based and its current review of the low-level waste classification codified in 10 CFR 61.55, the Nuclear Regulatory Commission (NRC) has stated that it may review the 1995 'Branch Technical Position on Concentration Averaging and Encapsulation' (BTP), which is still commonly used today. Such a review will have timely advantages, given the lack of commercial disposal availability within the United States for radioactive sealed sources that are in wide beneficial use across the country. The current application of the BTP guidance has resulted in an effective cap on commercial disposal for sources larger than 1.1 TBq (30 Ci). This paper will analyze how the BTP has been implemented with respect to sealed sources, what the implications have been for commercial disposal availability, and whether alternative packaging configurations could be considered for disposal.

Whitworth, Julia [Los Alamos National Laboratory; Stewart, Bill [Los Alamos National Laboratory; Cuthbertson, Abigail [DOE

2011-01-20T23:59:59.000Z

362

General-Purpose Heat Source: Research and development program: Cold-Process Verification Test Series  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs and individual GPHS capsules fueled with {sup 238}UO{sub 2} ({sup 235}U-depleted) to a variety of explosive overpressure and impact events. In the early 1990s, Los Alamos National Laboratory (LANL) resumed fabrication of {sup 238}UO{sub 2} GPHS pellets. The Cold-Process Verification (CPV) Test Series was designed to compare the response of GPHS heat sources loaded with recently fabricated hot- and cold-pressed {sup 238}UO{sub 2} pellets to the response of urania pellets used in the Galileo and Ulysses performance tests. This report documents eleven bare-capsule impacts and one impact of a fully loaded GPHS module. All of the failures observed in the bare-clad impact tests were similar to failures observed in previous safety tests. No failures occurred in the module impact test.

Reimus, M.A.H.; George, T.G.

1996-06-01T23:59:59.000Z

363

Thulium heat source for high-endurance and high-energy density power systems  

DOE Green Energy (OSTI)

We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

1991-05-01T23:59:59.000Z

364

RADIOACTIVE WASTE MANAGEMENT IN THE USSR: A REVIEW OF UNCLASSIFIED SOURCES, 1963-1990  

SciTech Connect

The Soviet Union operates a vast and growing radioactive waste management system. Detailed information on this system is rare and a general overall picture only emerges after a review of a great deal of literature. Poor waste management practices and slow implementation of environmental restoration activities have caused a great deal of national concern. The release of information on the cause and extent of an accident involving high-level waste at the Kyshtym production reactor site in 1957, as well as other contamination at the site, serve to highlight past Soviet waste management practices. As a result, the area of waste management is now receiving greater emphasis, and more public disclosures. Little is known about Soviet waste management practices related to uranium mining, conversion, and fuel fabrication processes. However, releases of radioactive material to the environment from uranium mining and milling operations, such as from mill tailings piles, are causing public concern. Official Soviet policy calls for a closed fuel cycle, with reprocessing of power reactor fuel that has been cooled for five years. For power reactors, only VVER-440 reactor fuel has been reprocessed in any significant amount, and a decision on the disposition of RBMK reactor fuel has been postponed indefinitely. Soviet reprocessing efforts are falling behind schedule; thus longer storage times for spent fuel will be required, primarily at multiple reactor stations. Information on reprocessing in the Soviet Union has been severely limited until 1989, when two reprocessing sites were acknowledged by the Soviets. A 400-metric ton (MT) per year reprocessing facility, located at Kyshtym, has been operational since 1949 for reprocessing production reactor fuel. This facility is reported to have been reprocessing VVER-440 and naval reactor fuel since 1978, with about 2000 MT of VVER-440 fuel being reprocessed by July 1989. A second facility, located near Krasnoyarsk and having a 1500 MT per year capacity as the first of several modules, was about 30% completed by July 1989. The completion of this plant was subsequently "indefinitely postponed." The initial reprocessing scheme at the Kyshtym site used sodium uranyl acetate precipitation from fuel dissolved in nitric acid solutions. The basic method~ ology now appears to be based on the conventional PUREX process. Dry reprocessing on a pilot or laboratory scale has been under way in Dimitrovgrad since 1984, and a larger unit is now being built, according to the French CEA. Perhaps significantly, much research is being done on partitioning high-level waste into element fractions. The Soviets appear to have the technology to remove radioactive noble gases released during reprocessing operations; however, there are no indications of its implementation. Millions of curies of liquid low- and intermediate-level wastes have been disposed of by well injection into underground areas where they were supposedly contained by watertight rock strata. Some gaseous wastes were also disposed of by well injection. This practice is not referred to in recent literature and thus may not be widely used today. Rather, it appears that these waste streams are now first treated to reduce volume, and then solidified using bitumen or concrete. These solidified liquid wastes from Soviet nuclear power reactor operations, along with solid wastes, are disposed of in shallow-land burial sites located at most large power reactor stations. In addition, 35 shallow-land burial sites have been alluded to by the Soviets for disposal of industrial, medical, and research low-level wastes as well as ionization sources. Research on tritium-bearing and other gaseous wastes is mentioned, as well as a waste minimization program aimed at reducing the volume of waste streams by 30%. The Soviets have announced that their high-level waste management plan is to 1) store liquid wastes for 3-5 years; 2) incorporate the waste into glass (at a final glass volume of 100-150 liters/MT of fuel reprocessed); 3) set it aside in air-cooled storage

Bradley, D. J.; Schneider, K. J.

1990-03-01T23:59:59.000Z

365

RADIOACTIVE WASTE MANAGEMENT IN THE USSR: A REVIEW OF UNCLASSIFIED SOURCES, 1963-1990  

Science Conference Proceedings (OSTI)

The Soviet Union operates a vast and growing radioactive waste management system. Detailed information on this system is rare and a general overall picture only emerges after a review of a great deal of literature. Poor waste management practices and slow implementation of environmental restoration activities have caused a great deal of national concern. The release of information on the cause and extent of an accident involving high-level waste at the Kyshtym production reactor site in 1957, as well as other contamination at the site, serve to highlight past Soviet waste management practices. As a result, the area of waste management is now receiving greater emphasis, and more public disclosures. Little is known about Soviet waste management practices related to uranium mining, conversion, and fuel fabrication processes. However, releases of radioactive material to the environment from uranium mining and milling operations, such as from mill tailings piles, are causing public concern. Official Soviet policy calls for a closed fuel cycle, with reprocessing of power reactor fuel that has been cooled for five years. For power reactors, only VVER-440 reactor fuel has been reprocessed in any significant amount, and a decision on the disposition of RBMK reactor fuel has been postponed indefinitely. Soviet reprocessing efforts are falling behind schedule; thus longer storage times for spent fuel will be required, primarily at multiple reactor stations. Information on reprocessing in the Soviet Union has been severely limited until 1989, when two reprocessing sites were acknowledged by the Soviets. A 400-metric ton (MT) per year reprocessing facility, located at Kyshtym, has been operational since 1949 for reprocessing production reactor fuel. This facility is reported to have been reprocessing VVER-440 and naval reactor fuel since 1978, with about 2000 MT of VVER-440 fuel being reprocessed by July 1989. A second facility, located near Krasnoyarsk and having a 1500 MT per year capacity as the first of several modules, was about 30% completed by July 1989. The completion of this plant was subsequently "indefinitely postponed." The initial reprocessing scheme at the Kyshtym site used sodium uranyl acetate precipitation from fuel dissolved in nitric acid solutions. The basic method~ ology now appears to be based on the conventional PUREX process. Dry reprocessing on a pilot or laboratory scale has been under way in Dimitrovgrad since 1984, and a larger unit is now being built, according to the French CEA. Perhaps significantly, much research is being done on partitioning high-level waste into element fractions. The Soviets appear to have the technology to remove radioactive noble gases released during reprocessing operations; however, there are no indications of its implementation. Millions of curies of liquid low- and intermediate-level wastes have been disposed of by well injection into underground areas where they were supposedly contained by watertight rock strata. Some gaseous wastes were also disposed of by well injection. This practice is not referred to in recent literature and thus may not be widely used today. Rather, it appears that these waste streams are now first treated to reduce volume, and then solidified using bitumen or concrete. These solidified liquid wastes from Soviet nuclear power reactor operations, along with solid wastes, are disposed of in shallow-land burial sites located at most large power reactor stations. In addition, 35 shallow-land burial sites have been alluded to by the Soviets for disposal of industrial, medical, and research low-level wastes as well as ionization sources. Research on tritium-bearing and other gaseous wastes is mentioned, as well as a waste minimization program aimed at reducing the volume of waste streams by 30%. The Soviets have announced that their high-level waste management plan is to 1) store liquid wastes for 3-5 years; 2) incorporate the waste into glass (at a final glass volume of 100-150 liters/MT of fuel reprocessed); 3) set it aside in air-cooled storage

Bradley, D. J.; Schneider, K. J.

1990-03-01T23:59:59.000Z

366

IMPLEMENTING HEAT SEALED BAG RELIEF & HYDROGEN & METANE TESTING TO REDUCE THE NEED TO REPACK HANFORD TRANSURANIC (TRU) WASTE  

DOE Green Energy (OSTI)

The Department of Energy's site at Hanford has a significant quantity of drums containing heat-sealed bags that required repackaging under previous revisions of the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC) before being shipped to the Waste Isolation Pilot Plant (WIPP). Since glovebox repackaging is the most rate-limiting and resource-intensive step for accelerating Hanford waste certification, a cooperative effort between Hanford's TRU Program and the WIPP site significantly reduced the number of drums requiring repackaging. More specifically, recent changes to the TRAMPAC (Revision 19C), allow relief for heat-sealed bags having more than 390 square inches of surface area. This relief is based on data provided by Hanford on typical Hanford heat-sealed bags, but can be applied to other sites generating transuranic waste that have waste packaged in heat-sealed bags. The paper provides data on the number of drums affected, the attendant cost savings, and the time saved. Hanford also has a significant quantity of high-gram drums with multiple layers of confinement including heat-scaled bags. These higher-gram drums are unlikely to meet the decay-heat limits required for analytical category certification under the TRAMPAC. The combination of high-gram drums and accelerated reprocessing/shipping make it even more difficult to meet the decay-heat limits because of necessary aging requirements associated with matrix depletion. Hydrogen/methane sampling of headspace gases can be used to certify waste that does not meet decay-heat limits of the more restrictive analytical category using the test category. The number of drums that can be qualified using the test category is maximized by assuring that the detection limit for hydrogen and methane is as low as possible. Sites desiring to ship higher-gram drums must understand the advantages of using hydrogen/methane sampling and shipping under the test category. Headspace gas sampling, as specified by the WIPP Waste Analysis Plan, provides the sample necessary for hydrogen/methane analysis. Most Hanford drums are not equipped with a filter through which a headspace gas sample can be obtained. A pneumatic system is now used to insert ''dart'' filters. The filters were developed by the vendor and approved for WIPP certification at the request of the Hanford Site. The same pneumatic system is used to install septum-type sample ports to allow the headspace to be sampled. Together, these steps allow the Hanford Site to avoid repackaging a large percentage of drums, and thus accelerate certification of waste destined for WIPP.

MCDONALD, K.M.

2005-01-20T23:59:59.000Z

367

Calculation of Airflow over an Isolated Heat Source with Application to the Dynamics of V-Shaped Clouds  

Science Conference Proceedings (OSTI)

The stably stratified airflow over a three-dimensional elevated heat source is investigated using the linearized equations of motion. A low-level upward motion can be produced for airflow over a prescribed, isolated heat source for a wide variety ...

Yuh-Lang Lin

1986-11-01T23:59:59.000Z

368

Research on the Applicability of Solar Energy-Ground Source Heat Pump in Different Regions of China  

Science Conference Proceedings (OSTI)

The development potential of solar energy resource, cLimatic characteristics and soil temperature conditions are various in different areas of China, which brings some difficulties in the promotion and appLication of solar energy-ground source heat pump ... Keywords: Solar energy-ground source heat pump (GSHP), Solar radiation, Sharacteristics of soil thermal storage, Geographic features

Dongyi Zhou; Chu-ping Shi; Wen-hua Yuan

2011-08-01T23:59:59.000Z

369

The most important thing you can do is be conscious of your energy usage, particularly with your AC and heating. Every added degree wastes gobs of  

E-Print Network (OSTI)

and heating. Every added degree wastes gobs of energy, which can go unnoticed since you pay a flat utilities you whether an action, such as leaving your computer on, will waste energy. For more information with the lights on. Tuition going towards this energy waste could be spent more productively if we use lights only

Dobbins, Ian G.

370

Evolution of the Loop-Top Source of Solar Flares--Heating and Cooling Processes  

E-Print Network (OSTI)

We present a study of the spatial and spectral evolution of the loop-top (LT) sources in a sample of 6 flares near the solar limb observed by {\\it RHESSI}. A distinct coronal source, which we identify as the LT source, was seen in each of these flares from the early ``pre-heating'' phase through the late decay phase. Spectral analyses reveal an evident steep power-law component in the pre-heating and impulsive phases, suggesting that the particle acceleration starts upon the onset of the flares. In the late decay phase the LT source has a thermal spectrum and appears to be confined within a small region near the top of the flare loop, and does not spread throughout the loop, as is observed at lower energies. The total energy of this source decreases usually faster than expected from the radiative cooling but much slower than that due to the classical Spitzer conductive cooling along the flare loop. These results indicate the presence of a distinct LT region, where the thermal conductivity is suppressed significantly and/or there is a continuous energy input. We suggest that plasma wave turbulence could play important roles in both heating the plasma and suppressing the conduction during the decay phase of solar flares. With a simple quasi-steady loop model we show that the energy input in the gradual phase can be comparable to that in the impulsive phase and demonstrate how the observed cooling and confinement of the LT source can be used to constrain the wave-particle interaction.

Yan Wei Jiang; Siming Liu; Wei Liu; Vahe Petrosian

2005-08-24T23:59:59.000Z

371

A Novel Integrated Frozen Soil Thermal Energy Storage and Ground-Source Heat Pump System  

E-Print Network (OSTI)

In this paper, a novel integrated frozen soil thermal energy storage and ground-source heat pump (IFSTS&GSHP) system in which the GHE can act as both cold thermal energy storage device and heat exchanger for GSHP is first presented. The IFSTS&GSHP system can serve as cold energy thermal storage at night, produce chilled water in the daytime in summer and provide hot water for heating in winter. This is followed by its schematic and characteristic description. Then the various operation modes of such system according to different operational strategies are demonstrated in sequence. The system, firstly seen in open literature, is energy-saving, environmental-friendly and promising in the field of air-conditioning systems, and will help solve the problems currently existing with the GSHP system and ITES air conditioning system.

Jiang, Y.; Yao, Y.; Rong, L.; Ma, Z.

2006-01-01T23:59:59.000Z

372

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

373

Heat source component development program. Quaterly report, January--March, 1977  

DOE Green Energy (OSTI)

This is the third in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. The heat sources will for the most part be used in advanced static and dynamic power conversion systems. These reports replace the informal monthly technical letter reports previously prepared. The specific components development efforts which are described are: improved selective and nonselective vents for helium release from the fuel containment; an improved reentry member and an improved impact member, singly and combined. The unitized reentry-impact member (RIM) is under development to be used as a bifunctional ablator. Finally, thermochemical supporting studies are reported.

Pardue, W.M. (comp.)

1977-04-01T23:59:59.000Z

374

Peak Demand Reduction with Dual-Source Heat Pumps Using Municipal Water  

E-Print Network (OSTI)

The objective of this project was to examine a dual-source (air and/or water-coupled) heat pump concept which would reduce or eliminate the need for supplemental electrical resistance heating (strip heaters). The project examined two system options: switching on demand between completely air-source and completely water-coupled or using a concurrent partial water-coupled and partial air-coupled mode operation. The water supply for the water-coupled mode of operation would be the municipal water system. An estimate of the economic worth of this system concept was made by examining the incremental cost to install such a system against the expected savings associated with these systems.

Morehouse, J. H.; Khan, J. A.; Connor, L. N.; Pal, D.

1992-05-01T23:59:59.000Z

375

Using the sun and waste wood to heat a central Ohio home. Final technical report  

DOE Green Energy (OSTI)

The description of a house in Ohio built on a south facing slope with two levels above ground on the north, east, and west sides and three levels exposed to the southern winter Sun is presented. The floor plan, a general history of the project, the operation of the system, the backup heat source (wood), the collection of data, and the procedure for determining actual heat loss are described. Additionally, the calculation of the solar contribution percentage and the amount of mass to be included in the greenhouse and problems with an indirect gain wall are discussed. The location of the wood stove in the system is noted. The east wall temperature data are given. Soil temperature, air infiltration, thermal comfort, and energy usage are discussed. (MCW).

Not Available

1981-01-01T23:59:59.000Z

376

Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report  

Science Conference Proceedings (OSTI)

This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

2007-07-01T23:59:59.000Z

377

Development of an integrated building load-ground source heat pump model as a test bed to assess short- and long-term heat pump and ground loop performance.  

E-Print Network (OSTI)

??Ground source heat pumps (GSHP) have the ability to significantly reduce the energy required to heat and cool buildings. Historically, deployment of GSHP's in the… (more)

Gaspredes, Jonathan Louis

2012-01-01T23:59:59.000Z

378

Finite Volume Based Computer Program for Ground Source Heat Pump System  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ?Finite Volume Based Computer Program for Ground Source Heat Pump Systems.? The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP systems.

Menart, James A. [Wright State University] [Wright State University

2013-02-22T23:59:59.000Z

379

Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems  

SciTech Connect

This report is a compilation of the work that has been done on the grant DE-EE0002805 entitled ���¢��������Finite Volume Based Computer Program for Ground Source Heat Pump Systems.���¢������� The goal of this project was to develop a detailed computer simulation tool for GSHP (ground source heat pump) heating and cooling systems. Two such tools were developed as part of this DOE (Department of Energy) grant; the first is a two-dimensional computer program called GEO2D and the second is a three-dimensional computer program called GEO3D. Both of these simulation tools provide an extensive array of results to the user. A unique aspect of both these simulation tools is the complete temperature profile information calculated and presented. Complete temperature profiles throughout the ground, casing, tube wall, and fluid are provided as a function of time. The fluid temperatures from and to the heat pump, as a function of time, are also provided. In addition to temperature information, detailed heat rate information at several locations as a function of time is determined. Heat rates between the heat pump and the building indoor environment, between the working fluid and the heat pump, and between the working fluid and the ground are computed. The heat rates between the ground and the working fluid are calculated as a function time and position along the ground loop. The heating and cooling loads of the building being fitted with a GSHP are determined with the computer program developed by DOE called ENERGYPLUS. Lastly COP (coefficient of performance) results as a function of time are provided. Both the two-dimensional and three-dimensional computer programs developed as part of this work are based upon a detailed finite volume solution of the energy equation for the ground and ground loop. Real heat pump characteristics are entered into the program and used to model the heat pump performance. Thus these computer tools simulate the coupled performance of the ground loop and the heat pump. The price paid for the three-dimensional detail is the large computational times required with GEO3D. The computational times required for GEO2D are reasonable, a few minutes for a 20 year simulation. For a similar simulation, GEO3D takes days of computational time. Because of the small simulation times with GEO2D, a number of attractive features have been added to it. GEO2D has a user friendly interface where inputs and outputs are all handled with GUI (graphical user interface) screens. These GUI screens make the program exceptionally easy to use. To make the program even easier to use a number of standard input options for the most common GSHP situations are provided to the user. For the expert user, the option still exists to enter their own detailed information. To further help designers and GSHP customers make decisions about a GSHP heating and cooling system, cost estimates are made by the program. These cost estimates include a payback period graph to show the user where their GSHP system pays for itself. These GSHP simulation tools should be a benefit to the advancement of GSHP system

James A Menart, Professor

2013-02-22T23:59:59.000Z

380

Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission  

SciTech Connect

The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

Schock, Alfred

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The feasibility of retrieving nuclear heat sources from orbit with the space shuttle  

SciTech Connect

Spacecraft launched for orbital missions have a finite orbital lifetime. Current estimates for the lifetime of the nine nuclear powered U.S. satellites now in orbit range from 150 years to 10{sup 6} years. Orbital lifetime is determined primarily by altitude, solar activity, and the satellite ballistic coefficient. There is also the potential of collision with other satellites or space debris, which would reduce the lifetime in orbit. These orbiting power sources contain primarily Pu-238 and Pu-239 as the fuel material. Pu-238 has an approximate 87-year half life and so considerable amounts of daughter products are present after a few tens of years. In addition, there are minor but possibly significant amounts of impurity isotopes present with their own decay chains. Radioisotopic heat sources have been designed to evolving criteria since the first launches. Early models were designed to burn up upon reentry. Later designs were designed to reenter intact. After tens or hundreds of years in orbit, the ability of any orbiting heat source to reenter intact and impact while maintaining containment integrity is in doubt. Such ability could only be verified by design to provide protection in the case of early mission failures such as launch aborts, failure to achieve orbit, or the attainment of only a short orbit. With the development of the Space Shuttle there exists the potential ability to recover heat sources in orbit after their missions are completed. Such retrieval could allow the risk of eventual reentry burnup or impact with atmospheric dispersion and subsequent radiation doses to the public to be avoided.

Pyatt, D.W.; Englehart, R.W.

1980-01-01T23:59:59.000Z

382

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Moyer, M.W. [Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Placr, A. [Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-01T23:59:59.000Z

383

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-15T23:59:59.000Z

384

Focus group discussions among owners and non-owners of ground source heat pumps  

SciTech Connect

This research was sponsored by the Office of Buildings and Community Systems and conducted by the Pacific Northwest Laboratory as part of an ongoing effort to enhance the commercial use of federally developed technology. Federal dollars have supported research on the development of ground source heat pumps (GSHP) for several years. Though several companies currently sell GSHP's for residential use, their share of the total heating and air conditioning business remains less than one percent. Large manufacturing companies with national distribution have not yet added GSHP equipment to their product line. GSHP's use only about one half (Braud 1987) to one third (Bose 1987) of the energy needed to operate conventional furnaces and air conditioners. Consequently, a high level of market penetration by the GSHP offers direct benefits to both utility companies and individual users of the systems. Widespread use of these highly efficient systems will reduce both total energy consupmtion, and problems associated with high levels of energy use during peak periods. This will allow utility companies to delay capital expenditures for new facilities to meet the growing energy demand during peak periods. The cost effective use of electricity also reduces the likelihood of homeowners switching to a different fuel source for heating. 5 refs.

Roberson, B.F.

1988-07-01T23:59:59.000Z

385

Heat pipe array heat exchanger  

DOE Patents (OSTI)

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

386

Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3  

SciTech Connect

The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.

NATHAN HANCOCK

2013-01-13T23:59:59.000Z

387

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

388

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

389

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

390

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

391

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

392

Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

Osborne, P.L.; Kuhaida, A.J., Jr.

1996-09-01T23:59:59.000Z

393

GPHS (General Purpose Heat Source) uranium oxide encapsulations supporting satellite safety tests  

SciTech Connect

General Purpose Heat Source (GPHS) simulant-fueled capsules were assembled, welded, nondestructively examined, and shipped to Los Alamos National Laboratory (LANL) for satellite safety tests. Simulant-fueled iridium capsules contain depleted uranium oxide pellets that serve as a stand-in for plutonium-238 oxide pellets. Information on forty seven capsules prepared during 1987 and 1988 is recorded in this memorandum along with a description of the processes used for encapsulation and evaluation. LANL expects to use all capsules for destructive safety tests, which are under way. Test results so far have demonstrated excellent integrity of the Savannah River capsule welds. 10 refs., 5 figs., 3 tabs.

Kanne, W.R.

1989-04-24T23:59:59.000Z

394

Formation of graphene layers by vacuum sublimation of silicon carbide using a scanning heat source  

Science Conference Proceedings (OSTI)

The kinetics of surface graphitization during dissociative vacuum evaporation of silicon carbide, under the effect of a scanning heat source, is studied. A model of the process is developed. The model provides a means for theoretically treating the dynamics of formation and the number of residual carbon atomic layers. The vapor stoichiometric coefficient which ensures the minimization of the number of structural defects in graphene, is optimized at the sublimation temperature: {theta} = 1/{eta}(T{sub max}). The proposed method can be used as a basis for graphene production technology.

Dmitriev, A. N.; Cherednichenko, D. I., E-mail: cheredni@fep.tti.sfedu.ru [Southern Federal University, Taganrog Technological Institute (Russian Federation)

2011-12-15T23:59:59.000Z

395

Proposed Design for a Coupled Ground-Source Heat Pump/Energy Recovery Ventilator System to Reduce Building Energy Demand.  

E-Print Network (OSTI)

??The work presented in this thesis focuses on reducing the energy demand of a residential building by using a coupled ground-source heat pump/energy recovery ventilation… (more)

McDaniel, Matthew Lee

2011-01-01T23:59:59.000Z

396

Experimental Study of an Artificial Thermal Plume in the Boundary Layer. Part I: Flow Characteristics near the Heat Source  

Science Conference Proceedings (OSTI)

The work reported here describes the environmental impact of emitting about 1000 MW of dry heat from a concentrated source into the atmosphere. It is based on a large field program conducted jointly by the Centre de Recherches Atmosphériques and ...

B. Bénech; J. Noilhan; A. Druilhet; J. M. Brustet; C. Charpentier

1986-04-01T23:59:59.000Z

397

Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part I: Observations  

Science Conference Proceedings (OSTI)

The trend in the atmospheric heat source over the Tibetan Plateau (TP) during the last four decades is evaluated using historical observations at 74 meteorological stations in the period of 1961–2003 and satellite radiation data from 1983 to ...

Anmin Duan; Guoxiong Wu

2008-07-01T23:59:59.000Z

398

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

399

Heating System Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating System Basics Heating System Basics Heating System Basics August 16, 2013 - 2:32pm Addthis A variety of heating technologies are available today. You can learn more about what heating systems and heat pumps are commonly used today and how they work below. To learn how to use these technologies in your own home, see the Home Heating Systems section on Energy Saver. Furnaces and Boilers Furnaces heat air and distribute the heated air through a building using ducts. Boilers heat water, providing either hot water or steam for heating. Wood and Pellet Heating Provides a way to heat a building using biomass or waste sources. Electric Resistance Heating Can be supplied by centralized electric furnaces or by heaters in each room. Active Solar Heating Uses the sun to heat either air or liquid and can serve as a supplemental

400

Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part II: Connection with Climate Warming  

Science Conference Proceedings (OSTI)

In Part I the authors have shown that heating sources in spring over the Tibetan Plateau (TP), and in particular the sensible heat flux (SHF), exhibit a significant weakening trend since the mid-1980s that is induced mainly by decreased surface ...

Anmin Duan; Guoxiong Wu

2009-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H  

Science Conference Proceedings (OSTI)

This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

402

Industrial and Commercial Heat Pump Applications in the United States  

E-Print Network (OSTI)

The energy crisis of 1973 accelerated the development of large-scale heat pumps in the United States. Since that time, the commercial, institutional, and industrial applications of heat pumps for waste heat recovery have expanded. This paper reviews the trends in heat pump cycle developments and discusses both the closed vapor compression cycle and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial process water heating-- are discussed. Typical installations include commercial applications in hotels, high-rise apartments and condominiums, and office buildings. Institutional installations discussed include hospitals, universities, wastewater treatment plants, and airport terminals. Industrial applications largely center on food processing industries, feedwater heating, metal fabricating, and other industries. Reference is also made to other applications and alternative energy sources now gaining acceptance, including groundwater/geothermal water.

Niess, R. C.

1986-06-01T23:59:59.000Z

403

HYBRID GROUND SOURCE HEAT PUMP SYSTEM SIMULATION USING VISUAL MODELING TOOL FOR HVACSIM+  

E-Print Network (OSTI)

incorporate both ground loop heat exchangers and supplemental heat rejecters, such as cooling towers, cooling-to-air heat pump (Yavuzturk 2000), heated pavement systems (Chiasson, et al. 2000a), shallow cooling ponds

404

Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools  

SciTech Connect

One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

Scott Hackel; Amanda Pertzborn

2011-06-30T23:59:59.000Z

405

Environmental assessment of general-purpose heat source safety verification testing  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) was prepared to identify and evaluate potential environmental, safety, and health impacts associated with the Proposed Action to test General-Purpose Heat Source (GPHS) Radioisotope Thermoelectric Generator (RTG) assemblies at the Sandia National Laboratories (SNL) 10,000-Foot Sled Track Facility, Albuquerque, New Mexico. RTGs are used to provide a reliable source of electrical power on board some spacecraft when solar power is inadequate during long duration space missions. These units are designed to convert heat from the natural decay of radioisotope fuel into electrical power. Impact test data are required to support DOE`s mission to provide radioisotope power systems to NASA and other user agencies. The proposed tests will expand the available safety database regarding RTG performance under postulated accident conditions. Direct observations and measurements of GPHS/RTG performance upon impact with hard, unyielding surfaces are required to verify model predictions and to ensure the continual evolution of the RTG designs that perform safely under varied accident environments. The Proposed Action is to conduct impact testing of RTG sections containing GPHS modules with simulated fuel. End-On and Side-On impact test series are planned.

NONE

1995-02-01T23:59:59.000Z

406

Explosion overpressure test series: General-Purpose Heat Source development: Safety Verification Test program  

SciTech Connect

The General-Purpose Heat Source (GPHS) is a modular, radioisotope heat source that will be used in radioisotope thermoelectric generators (RTGs) to supply electric power for space missions. The first two uses will be the NASA Galileo and the ESA Ulysses missions. The RTG for these missions will contain 18 GPHS modules, each of which contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. A series of Safety Verification Tests (SVTs) was conducted to assess the ability of the GPHS modules to contain the plutonia in accident environments. Because a launch pad or postlaunch explosion of the Space Transportation System vehicle (space shuttle) is a conceivable accident, the SVT plan included a series of tests that simulated the overpressure exposure the RTG and GPHS modules could experience in such an event. Results of these tests, in which we used depleted UO/sub 2/ as a fuel simulant, suggest that exposure to overpressures as high as 15.2 MPa (2200 psi), without subsequent impact, does not result in a release of fuel.

Cull, T.A.; George, T.G.; Pavone, D.

1986-09-01T23:59:59.000Z

407

Leachability of heavy metals from growth media containing source-separated municipal solid waste compost  

Science Conference Proceedings (OSTI)

The leaching of heavy metals in source-separated municipal solid waste (MSW) compost was determined by irrigation leaching of growth medium, admixed with varying amounts of compost, used for container grown plants. Perennial flowers (black-eyed Susan, Rudbeckia hirta L.) were grown in 2-L containers filled with the growth medium for a 10-wk period. Rainfall was supplemented with overhead irrigation to supply 2 cm of water per day. Leachates collected over each 2-wk period were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn using atomic spectrometry. Concentrations of the heavy metals in the leachates increased with increasing proportions of MSW compost in the growth medium, but decreased with time of leaching. Leaching of the metals occurred at relatively high concentrations initially, followed by continued leaching at low concentrations. The initial leaching of heavy metals is attributed to their soluble or exchangeable forms and the subsequent slow leaching to the solid compounds. The concentrations of the heavy metals remained below the current drinking water standards in all treatments throughout the leaching period. The results thus suggest that contamination of groundwater with heavy metals from source-separated MSW compost applied as a soil amendment should be negligible, as the low concentrations in the leachates leaving the surface soil would be further attenuated by the subsoil. 29 refs., 6 figs., 1 tab.

Sawhney, B.L.; Bugbee, G.J.; Stilwell, D.E. [Connecticut Agricultural Experimental Station, New Haven, CT (United States)

1994-07-01T23:59:59.000Z

408

Decommissioning and safety issues of liquid-mercury waste generated from high power spallation sources with particle accelerators  

E-Print Network (OSTI)

Large spallation sources are intended to be constructed in Europe (EURISOL nuclear physics facility and ESS-European Spallation Source). These facilities accumulate more than 20 metric tons of irradiated mercury in the target, which has to be treated as highly radioactive and chemo-toxic waste. Because solids are the only appropriate (immobile) form for this radiotoxic and toxic type of waste solidification is required for irradiated mercury. Our irradiation experimental studies on mercury waste revealed that mercury sulfide is a reasonable solid for disposal and shows larger stability in assumed accidents with water ingress in a repository compared to amalgams. For preparation of mercury sulfide a wet process is more suitable than a dry one. It is easier to perform under hot cell conditions and allows complete Hg-conversion. Embedding HgS in a cementitious matrix increases its stability.

Chiriki, S; Odoj, R; Moormann, R; Hinssen, H. K; Bukaemskiy, A

2009-01-01T23:59:59.000Z

409

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Science Conference Proceedings (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

410

Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source  

SciTech Connect

Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T. [Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba, 263-8555 (Japan); Bio-Nano Electronics Research Centre, Toyo Univ., 2100 Kuzirai, Kawagoe, Saitama, 350-8585 (Japan); Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

2012-11-06T23:59:59.000Z

411

Energy Basics: Heat Pump Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating Heat...

412

A combined power and ejector refrigeration cycle for low temperature heat sources  

Science Conference Proceedings (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

413

Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.  

DOE Green Energy (OSTI)

We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

2012-01-01T23:59:59.000Z

414

PARAMETRIC STUDY OF GROUND SOURCE HEAT PUMP SYSTEM FOR HOT AND HUMID CLMATE  

DOE Green Energy (OSTI)

The U-tube sizes and varied thermal conductivity with different grout materials are studied based on the benchmark residential building in Hot-humid Pensacola, Florida. In this study, the benchmark building is metered and the data is used to validate the simulation model. And a list of comparative simulation cases with varied parameter value are simulated to study the importance of pipe size and grout to the ground source heat pump energy consumption. The simulation software TRNSYS [1] is employed to fulfill this task. The results show the preliminary energy saving based on varied parameters. Future work needs to be conducted for the cost analysis, include the installation cost from contractor and materials cost.

Jiang Zhu; Yong X. Tao

2011-11-01T23:59:59.000Z

415

Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs  

SciTech Connect

The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

1995-03-16T23:59:59.000Z

416

Heat source component development program. Quarterly report, July--September, 1976  

DOE Green Energy (OSTI)

This is the first in a series of quarterly reports describing the results of several experimental programs being conducted at Battelle-Columbus to develop components for advanced radioisotope heat source applications. These reports replace the informal monthly technical letter reports previously prepared and are being utilized so that more cohesive presentation of results can be achieved. In addition, a series of summary management monthly reports was initiated in July of 1976 to permit NRA assessment of contractual progress. The specific components development efforts which are described are: a selective vent for helium release from the fuel containment, an improved reentry member and an improved impact member; the latter two items will hopefully be combined into a single ''bifunctional'' member material concept which is designated ''RIM'' (an acronym for Reentry Impact Member). Finally, supportive studies of a thermochemical nature are reported.

Pardue, W.M. (comp.)

1976-10-01T23:59:59.000Z

417

Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs  

SciTech Connect

The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

1995-03-16T23:59:59.000Z

418

Numerical Simulation of a Displacement Ventilation System with Multi-heat Sources and Analysis of Influential Factors  

E-Print Network (OSTI)

Displacement ventilation (DV) is a promising ventilation concept due to its high ventilation efficiency. In this paper, the application of the CFD method, the velocity and temperature fields of three-dimensional displacement ventilation systems with double heat sources are numerically simulated. The model is verified by experimental data. The results of the study show that thermal stratification characteristics exist in indoor temperature fields. The paper also analyzes the influence of different influential factors, e.g., the distance between heat sources, temperature of heat source, heat characteristics of the wall and outdoor temperature. It was found that the human requirement for comfort is satisfied easily when the distance between heat sources is long. Under the conditions simulated in this paper, when the distance was more than 0.8m, the temperature distribution tended to be average and steady, and it did not change as the distance changed. Second, the temperature change of the thermal current has a large influence on the indoor temperature. The rise in thermal current temperature makes the vertical temperature gradient in the room increase. The upper temperature of the room becomes higher, as does the height of the high temperature air level that lies in the upper part of the room. Finally, both the heat loss of the surrounding structure and the change in outdoor temperature have a large influence on indoor temperature. However, it does not influence the thermal stratification characteristics of DV. The only thing that has changed is the thermal stratification height.

Wu, X.; Gao, J.; Wu, W.

2006-01-01T23:59:59.000Z

419

Elementary Heating Events - Magnetic Interactions Between Two Flux Sources. III Energy Considerations  

E-Print Network (OSTI)

The magnetic field plays a crucial role in heating the solar corona, but the exact energy release mechanism(s) is(are) still unknown. Here, we investigate in detail, the process of magnetic energy release in a situation where two initially independent flux systems are forced into each other. Work done by the foot point motions goes in to building a current sheet in which magnetic reconnection takes place. The scaling relations of the energy input and output are determined as functions of the driving velocity and the strength of fluxes in the independent flux systems. In particular, it is found that the energy injected into the system is proportional to the distance travelled not the rate of travel. Similarly, the rate of Joule dissipation is related to the distance travelled. Hence, rapidly driven foot points lead to bright, intense, but short-lived events, whilst slowly driven foot points produce weaker, but longer-lived brightenings. Integrated over the lifetime of the events both would produce the same heating if all other factors were the same. A strong overlying field has the affect of creating compact flux lobes from the sources. These appear to lead to a more rapid injection of energy, as well as a more rapid release of energy. Thus, the stronger the overlying field the more compact and more intense the heating. This means observers must know the rate of movement of the magnetic fragments involved in an events, as well as determine the strength and orientation of the surrounding field to be able to predict anything about the energy dissipated.

K. Galsgaard; C. E. Parnell

2005-01-27T23:59:59.000Z

420

General-Purpose Heat Source Safety Verification Test program: Edge-on flyer plate tests  

DOE Green Energy (OSTI)

The radioisotope thermoelectric generator (RTG) that will supply power for the Galileo and Ulysses space missions contains 18 General-Purpose Heat Source (GPHS) modules. The GPHS modules provide power by transmitting the heat of STYPu -decay to an array of thermoelectric elements. Each module contains four STYPuO2-fueled clads and generates 250 W(t). Because the possibility of a launch vehicle explosion always exists, and because such an explosion could generate a field of high-energy fragments, the fueled clads within each GPHS module must survive fragment impact. The edge-on flyer plate tests were included in the Safety Verification Test series to provide information on the module/clad response to the impact of high-energy plate fragments. The test results indicate that the edge-on impact of a 3.2-mm-thick, aluminum-alloy (2219-T87) plate traveling at 915 m/s causes the complete release of fuel from capsules contained within a bare GPHS module, and that the threshold velocity sufficient to cause the breach of a bare, simulant-fueled clad impacted by a 3.5-mm-thick, aluminum-alloy (5052-T0) plate is approximately 140 m/s.

George, T.G.

1987-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste heat sources" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Use of oxides in thermochemical water-splitting cycles for solar heat sources. Copper oxides  

DOE Green Energy (OSTI)

Several oxides can be decomposed to oxygen and a lower oxide at temperatures that might be feasible with a solar heat source. Heat might be directly transmitted to the solid through an air window, rather than quartz, with release of oxygen to the atmosphere. The cycle utilizing CuO, I/sub 2/, and Mg (OH)/sub 2/ is similar to the previous Co/sub 3/O/sub 4/ - CoO cycle. We are concentrating on the reformation of CuO. At 448 K the rate is favorable; for example, the yield rises about linearly with time to 92% at 1.17 h and more slowly thereafter. The only difficulty is the formation of CuI as a metastable intermediate. The oxidation of CuI is thermodynamically very favorable, but its rate limits completion. Excess Mg(OH)/sub 2/ appears to increase the rate but not to the point where IO/sub 3//sup -/ oxidation of CuI competes with oxidation of Cu/sub 2/O. Nevertheless, the batch runs suggest that about 98% of the maximum possible MgI/sub 2/ could be formed. Cuprous iodide complexes formed in the concentrated MgI/sub 2/ may give the necessary improvement by providing a solution path for their oxidation by iodate. Work of others pertaining to the cycle is briefly discussed.

Jones, W.M.; Bowman, M.G.

1984-01-01T23:59:59.000Z

422

Second law analysis of advanced power generation systems using variable temperature heat sources  

SciTech Connect

Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

423

Geothermal (Ground-Source) Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers  

Science Conference Proceedings (OSTI)

More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pump systems (GHPs), sometimes called ground-source heat pump or Geo-Exchange systems, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national energy and climate strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE s request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential and other benefits, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in a report along with conclusions and recommendations. This paper summarizes the key information from the report.

Hughes, Patrick [ORNL

2009-01-01T23:59:59.000Z

424

Geothermal(Ground-Source)Heat Pumps: Market Status, Barriers to Adoption, and Actions to Overcome Barriers  

Science Conference Proceedings (OSTI)

More effective stewardship of our resources contributes to the security, environmental sustainability, and economic well-being of the nation. Buildings present one of the best opportunities to economically reduce energy consumption and limit greenhouse gas emissions. Geothermal heat pumps (GHPs), sometimes called ground-source heat pumps, have been proven capable of producing large reductions in energy use and peak demand in buildings. However, GHPs have received little attention at the policy level as an important component of a national strategy. Have policymakers mistakenly overlooked GHPs, or are GHPs simply unable to make a major contribution to the national goals for various reasons? This brief study was undertaken at DOE's request to address this conundrum. The scope of the study includes determining the status of global GHP markets and the status of the GHP industry and technology in the United States, assembling previous estimates of GHP energy savings potential, identifying key barriers to application of GHPs, and identifying actions that could accelerate market adoption of GHPs. The findings are documented in this report along with conclusions and recommendations.

Hughes, Patrick [ORNL

2008-12-01T23:59:59.000Z

425

Waste Area Grouping 2 Remedial Investigation Phase 1 Seep Task data report: Contaminant source area assessment  

Science Conference Proceedings (OSTI)

This report presents the findings of the Waste Area Grouping (WAG) 2, Phase 1 Remedial Investigation (RI) Seep Task efforts during 1993 and 1994 at Oak Ridge National Laboratory (ORNL). The results presented here follow results form the first year of sampling, 1992, which are contained in the Phase 1 RI report for WAG 2 (DOE 1995a). The WAG 2 Seep Task efforts focused on contaminants in seeps, tributaries, and main streams within the White Oak Creek (WOC) watershed. This report is designed primarily as a reference for contaminants and a resource for guiding remedial decisions. Additional in-depth assessments of the Seep Task data may provide clearer understandings of contaminant transport from the different source areas in the WOC watershed. WAG 2 consists of WOC and its tributaries downstream of the ORNL main plant area, White Oak Lake, the White Oak Creek Embayment of the Clinch River, and the associated flood plains and subsurface environment. The WOC watershed encompasses ORNL and associated WAGs. WAG 2 acts as an integrator for contaminant releases from the contaminated sites at ORNL and as the conduit transporting contaminants to the Clinch River. The main objectives of the Seep Task were to identify and characterize seeps, tributaries and source areas that are responsible for the contaminant releases to the main streams in WAG 2 and to quantify their input to the total contaminant release from the watershed at White Oak Dam (WOD). Efforts focused on {sup 90}Sr, {sup 3}H, and {sup 137}Cs because these contaminants pose the greatest potential human health risk from water ingestion at WOD. Bimonthly sampling was conducted throughout the WOC watershed beginning in March 1993 and ending in August 1994. Samples were also collected for metals, anions, alkalinity, organics, and other radionuclides.

Hicks, D.S.

1996-03-01T23:59:59.000Z