Sample records for waste handling facility

  1. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect (OSTI)

    Albert, R.

    1992-06-30T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  2. WIPP Remote Handled Waste Facility: Performance Dry Run Operations

    SciTech Connect (OSTI)

    Burrington, T. P.; Britain, R. M.; Cassingham, S. T.

    2003-02-24T23:59:59.000Z

    The Remote Handled (RH) TRU Waste Handling Facility at the Waste Isolation Pilot Plant (WIPP) was recently upgraded and modified in preparation for handling and disposal of RH Transuranic (TRU) waste. This modification will allow processing of RH-TRU waste arriving at the WIPP site in two different types of shielded road casks, the RH-TRU 72B and the CNS 10-160B. Washington TRU Solutions (WTS), the WIPP Management and Operation Contractor (MOC), conducted a performance dry run (PDR), beginning August 19, 2002 and successfully completed it on August 24, 2002. The PDR demonstrated that the RHTRU waste handling system works as designed and demonstrated the handling process for each cask, including underground disposal. The purpose of the PDR was to develop and implement a plan that would define in general terms how the WIPP RH-TRU waste handling process would be conducted and evaluated. The PDR demonstrated WIPP operations and support activities required to dispose of RH-TRU waste in the WIPP underground.

  3. Liquid waste certification plan 340 waste handling facility

    SciTech Connect (OSTI)

    HALGREN, D.L.

    1999-04-21T23:59:59.000Z

    This document addresses the discharges from the 340 Facility to the 300 Area Process Sewer and Retention Process Sewer.

  4. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Timothy Solack; Carol Mason

    2012-03-01T23:59:59.000Z

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  5. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  6. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-02-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  7. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-05-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  8. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-02-01T23:59:59.000Z

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  9. Conceptual Safety Design Report for the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2010-05-01T23:59:59.000Z

    A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal for remote-handled LLW from the Idaho National Laboratory and for spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This conceptual safety design report supports the design of a proposed onsite remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization, by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW, by evaluating consequences of postulated accidents, and by discussing the need for safety features that will become part of the facility design.

  10. Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    O. P. Mendiratta; D. K. Ploetz

    2000-02-29T23:59:59.000Z

    ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

  11. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  12. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  13. Low-level waste certification plan for the Lawrence Berkeley Laboratory Hazardous Waste Handling Facility. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-01-10T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan is composed to meet the requirements found in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and follows the suggested outline provided by WHC in the letter of April 26, 1990, to Dr. R.H. Thomas, Occupational Health Division, LBL. LLW is to be transferred to the WHC Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington.

  14. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25T23:59:59.000Z

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  15. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01T23:59:59.000Z

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  16. Hazard Classification of the Remote Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2012-05-01T23:59:59.000Z

    The Battelle Energy Alliance (BEA) at the Idaho National Laboratory (INL) is constructing a new facility to replace remote-handled low-level radioactive waste disposal capability for INL and Naval Reactors Facility operations. Current disposal capability at the Radioactive Waste Management Complex (RWMC) will continue until the facility is full or closed for remediation (estimated at approximately fiscal year 2015). Development of a new onsite disposal facility is the highest ranked alternative and will provide RH-LLW disposal capability and will ensure continuity of operations that generate RH-LLW for the foreseeable future. As a part of establishing a safety basis for facility operations, the facility will be categorized according to DOE-STD-1027-92. This classification is important in determining the scope of analyses performed in the safety basis and will also dictate operational requirements of the completed facility. This paper discusses the issues affecting hazard classification in this nuclear facility and impacts of the final hazard categorization.

  17. National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility

    SciTech Connect (OSTI)

    Peggy Hinman

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

  18. Transpired Solar Collector at NREL's Waste Handling Facility Uses Solar Energy to Heat Ventilation Air (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    The transpired solar collector was installed on NREL's Waste handling Facility (WHF) in 1990 to preheat ventilation air. The electrically heated WHF was an ideal candidate for the this technology - requiring a ventilation rate of 3,000 cubic feet per meter to maintain safe indoor conditions.

  19. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    D. Craig Cooper

    2011-11-01T23:59:59.000Z

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  20. Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320

    SciTech Connect (OSTI)

    Mueth, Joachim [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

    2013-07-01T23:59:59.000Z

    The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

  1. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    J.F. Beesley

    2005-04-21T23:59:59.000Z

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

  2. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09T23:59:59.000Z

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel other directives.

  3. Summary of Conceptual Models and Data Needs to Support the INL Remote-Handled Low-Level Waste Disposal Facility Performance Assessment and Composite Analysis

    SciTech Connect (OSTI)

    A. Jeff Sondrup; Annette L. Schafter; Arthur S. Rood

    2010-09-01T23:59:59.000Z

    An overview of the technical approach and data required to support development of the performance assessment, and composite analysis are presented for the remote handled low-level waste disposal facility on-site alternative being considered at Idaho National Laboratory. Previous analyses and available data that meet requirements are identified and discussed. Outstanding data and analysis needs are also identified and summarized. The on-site disposal facility is being evaluated in anticipation of the closure of the Radioactive Waste Management Complex at the INL. An assessment of facility performance and of the composite performance are required to meet the Department of Energy’s Low-Level Waste requirements (DOE Order 435.1, 2001) which stipulate that operation and closure of the disposal facility will be managed in a manner that is protective of worker and public health and safety, and the environment. The corresponding established procedures to ensure these protections are contained in DOE Manual 435.1-1, Radioactive Waste Management Manual (DOE M 435.1-1 2001). Requirements include assessment of (1) all-exposure pathways, (2) air pathway, (3) radon, and (4) groundwater pathway doses. Doses are computed from radionuclide concentrations in the environment. The performance assessment and composite analysis are being prepared to assess compliance with performance objectives and to establish limits on concentrations and inventories of radionuclides at the facility and to support specification of design, construction, operation and closure requirements. Technical objectives of the PA and CA are primarily accomplished through the development of an establish inventory, and through the use of predictive environmental transport models implementing an overarching conceptual framework. This document reviews the conceptual model, inherent assumptions, and data required to implement the conceptual model in a numerical framework. Available site-specific data and data sources are then addressed. Differences in required analyses and data are captured as outstanding data needs.

  4. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07T23:59:59.000Z

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  5. Issues and Recommendations Arising from the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility Composite Analysis - 13374

    SciTech Connect (OSTI)

    Rood, Arthur S.; Schafer, Annette L.; Sondrup, A. Jeff [Idaho National Laboratory, Battelle Energy Alliance, P.O. Box 1625, Idaho Falls, ID 83401-2107 (United States)] [Idaho National Laboratory, Battelle Energy Alliance, P.O. Box 1625, Idaho Falls, ID 83401-2107 (United States)

    2013-07-01T23:59:59.000Z

    Development of the composite analysis (CA) for the Idaho National Laboratory's (INLs) proposed remote-handled (RH) low-level waste (LLW) disposal facility has underscored the importance of consistency between analyses conducted for site-specific performance assessments (PAs) for LLW disposal facilities, sites regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [1], and residual decontamination and decommissioning (D and D) inventories. Consistency is difficult to achieve because: 1) different legacy sources and compliance time-periods were deemed important for each of the sites evaluated at INL (e.g., 100 years for CERCLA regulated facilities vs. 1,000 years for LLW disposal facilities regulated under U.S. Department of Energy (DOE) Order 435.1 [2]); 2) fate and transport assumptions, parameters, and models have evolved through time at the INL including the use of screening-level parameters vs. site-specific values; and 3) evaluation objectives for the various CERCLA sites were inconsistent with those relevant to either the PA or CA including the assessment of risk rather than effective dose. The proposed single site-wide CA approach would provide needed consistency, allowing ready incorporation of new information and/or facilities in addition to being cost effective in terms of preparation of CAs and review by the DOE. A single site-wide CA would include a central database of all existing INL sources, including those from currently operating LLW facilities, D and D activities, and those from the sites evaluated under CERCLA. The framework presented for the INL RH-LLW disposal facility allows for development of a single CA encompassing air and groundwater impacts. For groundwater impacts, a site-wide MODFLOW/MT3D-MS model was used to develop unit-response functions for all potential sources providing responses for a grid of receptors. Convolution and superposition of the response functions are used to compute groundwater concentrations. A similar approach could be applied for the air pathway where air emissions are stored in a central database and air concentrations for unit releases could be scaled to actual releases. (authors)

  6. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  7. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  8. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  9. An analysis of repository waste-handling operations

    SciTech Connect (OSTI)

    Dennis, A.W.

    1990-09-01T23:59:59.000Z

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs.

  10. Remote-Handled Low Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-10-01T23:59:59.000Z

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  11. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  12. Waste Handling and Disposal Biological Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    plumbing services, EHS personnel wastewater treatment plant personnel, and the general public canWaste Handling and Disposal Biological Safety General Biosafety Practices (GBP) Why You Should Care on the next experiment. Are you working with r/sNA, biological toxins, human materials, needles, plasticware

  13. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  14. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, J.K.; Lindemann, P.E.

    1982-07-19T23:59:59.000Z

    A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  15. System for handling and storing radioactive waste

    DOE Patents [OSTI]

    Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

    1984-01-01T23:59:59.000Z

    A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

  16. Preliminary Hazard Analysis for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Mike Lehto

    2010-10-01T23:59:59.000Z

    The need for remote handled low level waste (LLW) disposal capability has been identified. A new onsite, remote-handled LLW disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled LLW disposal capability for remote-handled LLW that is generated as part of the nuclear mission of the Idaho National Laboratory and from spent nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled LLW in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This document supports the conceptual design for the proposed remote-handled LLW disposal facility by providing an initial nuclear facility hazard categorization and by identifying potential hazards for processes associated with onsite handling and disposal of remote-handled LLW.

  17. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  18. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  19. Remote-Handled Low-Level Waste (RHLLW) Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2010-10-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of fiscal year 2015). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability.

  20. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    SciTech Connect (OSTI)

    NONE

    1990-08-01T23:59:59.000Z

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared.

  1. Nondestructive assay and nondestructive examination of remote-handled transuranic waste at the ORNL waste handling and packaging plant

    SciTech Connect (OSTI)

    Schultz, F.J.; Caldwell, J.T. (Oak Ridge National Lab., TN (USA); Pajarito Scientific Corp. (USA))

    1989-01-01T23:59:59.000Z

    The purpose of this investigation is to examine the use of an electron linear accelerator (LINAC) in the performance of nondestructive assay (NDA) and nondestructive examination (NDE) measurements of remote-handled transuranic wastes. The system will be used to perform waste characterization and certification activities at the Oak Ridge National Laboratory's proposed Waste Handling and Packaging Plant. The NDA and NDE technologies which were developed for contact-handled wastes are inadequate to perform such measurements on high gamma and neutron dose-rate wastes. A single LINAC will provide the interrogating fluxes required for both NDA and NDE measurements of the wastes. 11 refs., 6 figs.

  2. B cell remote-handled waste shipment cask alternatives study

    SciTech Connect (OSTI)

    RIDDELLE, J.G.

    1999-05-26T23:59:59.000Z

    The decommissioning of the 324 Facility B Cell includes the onsite transport of grouted remote-handled radioactive waste from the 324 Facility to the 200 Areas for disposal. The grouted waste has been transported in the leased ATG Nuclear Services 3-82B Radioactive Waste Shipping Cask (3-82B cask). Because the 3-82B cask is a U.S. Nuclear Regulatory Commission (NRC)-certified Type B shipping cask, the lease cost is high, and the cask operations in the onsite environment may not be optimal. An alternatives study has been performed to develop cost and schedule information on alternative waste transportation systems to assist in determining which system should be used in the future. Five alternatives were identified for evaluation. These included continued lease of the 3-82B cask, fabrication of a new 3-82B cask, development and fabrication of an onsite cask, modification of the existing U.S. Department of Energy-owned cask (OH-142), and the lease of a different commercially available cask. Each alternative was compared to acceptance criteria for use in the B Cell as an initial screening. Only continued leasing of the 3-82B cask, fabrication of a new 3-82B cask, and the development and fabrication of an onsite cask were found to meet all of the B Cell acceptance criteria.

  3. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  4. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  5. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  6. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01T23:59:59.000Z

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  7. Independent Oversight Assessment, Salt Waste Processing Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

  8. Chapter 47 Solid Waste Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

  9. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01T23:59:59.000Z

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  10. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16T23:59:59.000Z

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  11. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05T23:59:59.000Z

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  12. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  13. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Silva, M.K.; Neill, R.H.

    1994-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

  14. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-04-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  15. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-04-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  16. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2011-01-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility, the highest ranked alternative, will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  17. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2012-06-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  18. Remote-Handled Low-Level Waste Disposal Project Code of Record

    SciTech Connect (OSTI)

    S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.; D. S. Ferguson, P.E.

    2014-06-01T23:59:59.000Z

    The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by the Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.

  19. Certification document for newly generated contact-handled transuranic waste

    SciTech Connect (OSTI)

    Box, W.D.; Setaro, J.

    1984-01-01T23:59:59.000Z

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP.

  20. Microsoft Word - remote handled waste comment extension.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extends public comment period on the Remote-handled Waste Disposition Project Environmental Assessment Jan. 26, 2009 Media contact: Brad Bugger, (208) 526-0833 In response to a...

  1. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Larson, H L

    2007-09-07T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

  2. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  3. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations, EP-WCRR-WO-DOP-0233 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations, EP-WCRR-WO-DOP-0233 The documents...

  4. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29T23:59:59.000Z

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  5. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego

    2009-06-01T23:59:59.000Z

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  6. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-04-01T23:59:59.000Z

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  7. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2011-03-01T23:59:59.000Z

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  8. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2009-10-01T23:59:59.000Z

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  9. Remote-Handled Low-Level Waste Disposal Project Alternatives Analysis

    SciTech Connect (OSTI)

    David Duncan

    2010-06-01T23:59:59.000Z

    This report identifies, evaluates, and compares alternatives for meeting the U.S. Department of Energy’s mission need for management of remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Each alternative identified in the Mission Need Statement for the Remote-Handled Low-Level Waste Treatment Project is described and evaluated for capability to fulfill the mission need. Alternatives that could meet the mission need are further evaluated and compared using criteria of cost, risk, complexity, stakeholder values, and regulatory compliance. The alternative for disposal of remote-handled low-level waste that has the highest confidence of meeting the mission need and represents best value to the government is to build a new disposal facility at the Idaho National Laboratory Site.

  10. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D T

    2008-06-16T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

  11. Technical Safety Requirements for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05T23:59:59.000Z

    This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

  12. Structural acceptance criteria Remote Handling Building Tritium Extraction Facility

    SciTech Connect (OSTI)

    Mertz, G.

    1999-12-16T23:59:59.000Z

    This structural acceptance criteria contains the requirements for the structural analysis and design of the Remote Handling Building (RHB) in the Tritium Extraction Facility (TEF). The purpose of this acceptance criteria is to identify the specific criteria and methods that will ensure a structurally robust building that will safely perform its intended function and comply with the applicable Department of Energy (DOE) structural requirements.

  13. Remote Handled TRU Waste Status and Activities and Challenges at the Hanford Site

    SciTech Connect (OSTI)

    MCKENNEY, D.E.

    2000-02-01T23:59:59.000Z

    A significant portion of the Department of Energy's forecast volume of remote-handled (RH) transuranic (TRU) waste will originate from the Hanford Site. The forecasted Hanford RH-TRU waste volume of over 2000 cubic meters may constitute over one-third of the forecast inventory of RH-TRU destined for disposal at the Waste Isolation Pilot Plant (WIPP). To date, the Hanford TRU waste program has focused on the retrieval, treatment and certification of the contact-handled transuranic (CH-TRU) wastes. This near-term focus on CH-TRU is consistent with the National TRU Program plans and capabilities. The first shipment of CH-TRU waste from Hanford to the WIPP is scheduled early in Calendar Year 2000. Shipments of RH-TRU from Hanford to the WIPP are scheduled to begin in Fiscal Year 2006 per the National TRU Waste Management Plan. This schedule has been incorporated into milestones within the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). These Tri-Party milestones (designated the ''M-91'' series of milestones) relate to development of project management plans, completion of design efforts, construction and contracting schedules, and initiation of process operations. The milestone allows for modification of an existing facility, construction of a new facility, and/or commercial contracting to provide the capabilities for processing and certification of RH-TRU wastes for disposal at the WIPP. The development of a Project Management Plan (PMP) for TRU waste is the first significant step in the development of a program for disposal of Hanford's RH-TRU waste. This PMP will address the path forward for disposition of waste streams that cannot be prepared for disposal in the Hanford Waste Receiving and Processing facility (a contact-handled, small container facility) or other Site facilities. The PMP development effort has been initiated, and the PMP will be provided to the regulators for their approval by June 30, 2000. This plan will detail the path forward for the Hanford RH-TRU program.

  14. West Valley facility spent fuel handling, storage, and shipping experience

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-11-01T23:59:59.000Z

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

  15. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  16. Remote Handling Equipment for a High-Level Waste Waste Package Closure System

    SciTech Connect (OSTI)

    Kevin M. Croft; Scott M. Allen; Mark W. Borland

    2006-04-01T23:59:59.000Z

    High-level waste will be placed in sealed waste packages inside a shielded closure cell. The Idaho National Laboratory (INL) has designed a system for closing the waste packages including all cell interior equipment and support systems. This paper discusses the material handling aspects of the equipment used and operations that will take place as part of the waste package closure operations. Prior to construction, the cell and support system will be assembled in a full-scale mockup at INL.

  17. Environmental Management Waste Management Facility (EMWMF) at...

    Office of Environmental Management (EM)

    Technical Review Report: Oak Ridge Reservation Review of the Environmental Management Waste Management Facility (EMWMF) at Oak Ridge By Craig H. Benson, PhD, PE; William H....

  18. Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

  19. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    SciTech Connect (OSTI)

    FRENCH, M.S.

    2000-02-08T23:59:59.000Z

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89 million facility under the Project Hanford Management Contract. This paper describes the operating experiences and results obtained during the first year of full operations at WRAP. Interested audiences include personnel involved in TRU waste characterization activities, TRU waste treatment and disposal facilities and TRU waste certification. The conclusions of this paper are that WRAP has proven itself to be a valuable asset for low-level and TRU waste management.

  20. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect (OSTI)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01T23:59:59.000Z

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  1. Waste Management Facilities Cost Information Report

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.

    1992-10-01T23:59:59.000Z

    The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

  2. Viability of Existing INL Facilities for Dry Storage Cask Handling

    SciTech Connect (OSTI)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01T23:59:59.000Z

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  3. Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

  4. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    SciTech Connect (OSTI)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31T23:59:59.000Z

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.

  5. Site Visit Report, Hanford Waste Encapsulation Storage Facility...

    Energy Savers [EERE]

    Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

  6. Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...

    Office of Environmental Management (EM)

    Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

  7. Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...

    Office of Environmental Management (EM)

    Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

  8. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2000-04-25T23:59:59.000Z

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  9. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01T23:59:59.000Z

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  10. Waste Characterization, Reduction, and Repackaging Facility...

    Office of Environmental Management (EM)

    (TSR), ABD-WFM-006, Revision 2.1 Waste Characterization, Reduction, and Repackaging Facility (WCRRF)Technical Safety Requirements (TSR), ABD-WFM-006, Revision 2.1 The...

  11. Overview of hazardous-waste regulation at federal facilities

    SciTech Connect (OSTI)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01T23:59:59.000Z

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  12. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  13. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-08-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  14. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Boyd D. Chirstensen

    2012-04-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  15. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-10-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  16. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2010-05-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  17. Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Gary Mecham

    2009-10-01T23:59:59.000Z

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

  18. Waste Examination Assay Facility operations: TRU waste certification

    SciTech Connect (OSTI)

    Schultz, F.J.; Caylor, B.A.; Coffey, D.E.; Phoenix, L.B.

    1987-01-01T23:59:59.000Z

    The ORNL Waste Examination Assay Facility (WEAF) was established to nondestructively assay (NDA) transuranic (TRU) waste generated at Oak Ridge National Laboratory (ORNL). The present facility charter encompasses the NDA and nondestructive examination (NDE) of both TRU and low-level wastes (LLW). Presently, equipment includes a Neutron Assay System (NAS), a Segmented Gamma Scanner (SGS), a drum-sized Real-Time Radiography (RTR) system, and a Neutron Slab Detector (NSD). The first three instruments are computer interfaced. Approximately 2300 TRU waste drums have been assayed with the NAS and the SGS. Another 3000 TRU and LLW drums have been examined with the RTR unit. Computer data bases have been developed to collate the large amount of data generated during the assays and examinations. 6 refs., 1 tab.

  19. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

    SciTech Connect (OSTI)

    G. Wagenblast

    2000-05-01T23:59:59.000Z

    The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

  20. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  1. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07T23:59:59.000Z

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  2. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  3. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect (OSTI)

    KESSLER, S.F.

    2000-08-10T23:59:59.000Z

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  4. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  5. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility...

  6. The necessity for permanence : making a nuclear waste storage facility

    E-Print Network [OSTI]

    Stupay, Robert Irving

    1991-01-01T23:59:59.000Z

    The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

  7. Hanford facility dangerous waste permit application

    SciTech Connect (OSTI)

    none,

    1991-09-18T23:59:59.000Z

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit.

  8. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  9. DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site

    Broader source: Energy.gov [DOE]

    Idaho Falls, ID – After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

  10. Solid Waste Regulation No. 8- Solid Waste Composting Facilities (Rhode Island)

    Broader source: Energy.gov [DOE]

    Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for...

  11. Anywhere But Here: An Introduction to State Control of Hazardous Waste Facility Location

    E-Print Network [OSTI]

    Tarlock, Dan A.

    1981-01-01T23:59:59.000Z

    State Control Of Hazardous- Waste Facility Location A. Danautonomy over the location of hazardous-waste managementa hazardous-waste facility-siting process is the location of

  12. Audit Report on "Waste Processing and Recovery Act Acceleration Efforts for Contact-Handled Transuranic Waste at the Hanford Site"

    SciTech Connect (OSTI)

    None

    2010-05-01T23:59:59.000Z

    The Department of Energy's Office of Environmental Management's (EM), Richland Operations Office (Richland), is responsible for disposing of the Hanford Site's (Hanford) transuranic (TRU) waste, including nearly 12,000 cubic meters of radioactive contact-handled TRU wastes. Prior to disposing of this waste at the Department's Waste Isolation Pilot Plant (WIPP), Richland must certify that it meets WIPP's waste acceptance criteria. To be certified, the waste must be characterized, screened for prohibited items, treated (if necessary) and placed into a satisfactory disposal container. In a February 2008 amendment to an existing Record of Decision (Decision), the Department announced its plan to ship up to 8,764 cubic meters of contact-handled TRU waste from Hanford and other waste generator sites to the Advanced Mixed Waste Treatment Project (AMWTP) at Idaho's National Laboratory (INL) for processing and certification prior to disposal at WIPP. The Department decided to maximize the use of the AMWTP's automated waste processing capabilities to compact and, thereby, reduce the volume of contact-handled TRU waste. Compaction reduces the number of shipments and permits WIPP to more efficiently use its limited TRU waste disposal capacity. The Decision noted that the use of AMWTP would avoid the time and expense of establishing a processing capability at other sites. In May 2009, EM allocated $229 million of American Recovery and Reinvestment Act of 2009 (Recovery Act) funds to support Hanford's Solid Waste Program, including Hanford's contact-handled TRU waste. Besides providing jobs, these funds were intended to accelerate cleanup in the short term. We initiated this audit to determine whether the Department was effectively using Recovery Act funds to accelerate processing of Hanford's contact-handled TRU waste. Relying on the availability of Recovery Act funds, the Department changed course and approved an alternative plan that could increase costs by about $25 million by processing Hanford TRU-waste on-site rather than at AMWTP. Further, under the newly adopted alternative approach, the Department would fail to achieve the previously anticipated reductions in volume associated with the use of existing AMWTP waste compaction capabilities.

  13. Oak Ridge National Laboratory contact-handled Transuranic Waste Certification Program plan

    SciTech Connect (OSTI)

    Smith, J.H.; Smith, M.A.

    1990-08-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is required by Department of Energy (DOE) Order 5820.2A to package its transuranic (TRU) waste to comply with waste acceptance criteria (WAC) for the Waste Isolation Pilot Plant (WIPP). TRU wastes are defined in DOE Order 5820.A as those radioactive wastes that are contaminated with alpha-emitting transuranium radionuclides having half-lives greater than 20 years and concentrations greater than 100 nCi/g at the time of the assay. In addition, ORNL handles U{sup 233}, Cm{sup 244}, and Cf{sup 252} as TRU waste radionuclides. The ORNL Transuranic Waste Certification Program was established to ensure that all TRU waste at ORNL is packaged to meet the required transportation and storage criteria for shipping to and storage at the WIPP. The objective of this document is to describe the methods that will be used at ORNL to package contact handled-transuranic (CH-TRU) waste to meet the criteria set forth in the WIPP certification requirements documents. This document addresses newly generated (NG) CH-TRU waste. Stored CH-TRU will be repackaged. This document is organized to provide a brief overview of waste generation operations at ORNL, along with details on data management for CH-TRU waste. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. Techniques used for waste data collection, records control, and data archiving are defined. Procedures for the procurement and handling of waste containers are also described along with related quality control methods. 11 refs., 3 figs.

  14. Simple Waste Solutions for Complex Facilities - 12433

    SciTech Connect (OSTI)

    King, Terry I. [Washington Closure Hanford, Richland, Washington 99352 (United States); Stephan, Clifford J. [Lucas Engineering and Management Services, Richland Washington 99352 (United States)

    2012-07-01T23:59:59.000Z

    The buildings in the 300 Area, including several Category 3 nuclear facilities are undergoing deactivation, decommissioning, decontamination and demolition (D4) by Washington Closure Hanford (WCH) as part of the River Corridor Closure Contract (RCCC). The D4 process has generated a wide variety of low-level radioactive and low-level radioactive mixed waste as well as TRU. The Hanford Site-wide Transportation Safety Document (TSD) has been successfully utilized to transport waste streams that otherwise would not be able to be shipped. The TSD accomplished this by establishing a comprehensive set of onsite transportation and packaging performance standards and risk-based standards. The requirements and standards presented are equivalent to DOT and NRC standards (10 CFR 71). (authors)

  15. Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste

    SciTech Connect (OSTI)

    R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

    2010-02-01T23:59:59.000Z

    This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

  16. Excavation and Repackaging of Retrievably-Stored, Remote-Handled Transuranic Waste at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Skinner, R. [US DOE, Oak Ridge Operations, Oak Ridge, TN (United States); Bolling, D. [Washington Safety Management Solutions, LLC, Oak Ridge, TN (United States); Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Turner, D. [Visionary Solutions, LLC, Oak Ridge, TN (United States)

    2008-07-01T23:59:59.000Z

    Between 1972 and 1981, remote-handled transuranic (RH-TRU) wastes generated at Oak Ridge National Laboratory (ORNL) were retrievably stored through shallow land burial in a series of 22 earthen trenches in the northern portion of Solid Waste Storage Area 5 in ORNL's Melton Valley. A Dispute Resolution Agreement signed by the Tennessee Department of Environment and Conservation and DOE specified removal of the buried (stored) waste to allow for repackaging, processing, and offsite disposal at an appropriate facility. A total of 204 concrete casks were successfully retrieved and over-packed from the 22-trench area between November 2004 and June 2006. Wastes originally stored in boxes, drums or placed without packaging was also recovered and repackaged. The repackaged wastes were transported to a nearby temporary storage facility at ORNL pending processing at DOE's Transuranic Waste Processing Center. In summary: The objective of the MVTRU Waste Retrieval Project was to satisfy conditions of the Dispute Resolution Agreement. This remedial action consisted of removal of all buried waste containers and loose items from the 22-trench area. The TRU waste casks were placed in steel overpacks, while other waste boxes, drums, and loose items were placed in steel drums or boxes. The over-packed waste was placed in an approved staging area until it can be accepted for treatment at the ORNL TRU Waste Processing Facility and ultimately disposed. A total of 204 casks were indicated by historical records to have been buried in the 22-Trench area, and 204 casks were found and over-packed during the retrieval operations. The historical records also indicated that some 18 steel or wood boxes, 12 steel drums, and approximately 15 m{sup 3} of loose waste were buried in the trenches. The contents of approximately 12 boxes, 3 drums, and approximately the expected 15 m{sup 3} quantity of loose waste were retrieved and over-packed. One significant deviation from the actions described in the Dispute Resolution Agreement occurred during the excavation of Trench 13. Pyrophoric material was encountered and a reaction occurred, causing a brief flame in the excavator bucket. No personnel contamination or radioactive material release occurred. The waste buried in Trench 13, consisting of approximately eight 208-liter (55-gal) drums and one 114-liter (30-gal) drum, was stabilized in-place due to risks associated with the retrieval and handling of this pyrophoric material. The Dispute Resolution Agreement completion date was revised to allow this material to remain stabilized in place as interim storage until a disposition path is established. The baseline schedule called for site mobilization and preparation to begin in November 2003, soil excavation and waste retrieval to be completed by March 2006, and site restoration and demobilization to be complete by April 2006, with the draft letter of completion submitted in May 2006. Soil excavation and waste retrieval were completed in March 2006 as planned, and no significant deviations to the baseline schedule were encountered. (authors)

  17. The Mixed Waste Management Facility. Preliminary design review

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  18. Los Alamos National Laboratory Hazardous Waste Facility Permit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan CommentSuggestion Form Instructions for completing the form: Please reference the section in the plan that your...

  19. Waste receiving and processing facility module 1 auditable safetyanalysis

    SciTech Connect (OSTI)

    Bottenus, R.J.

    1997-02-01T23:59:59.000Z

    The Waste Receiving and Processing Facility Module 1 Auditable Safety Analysis analyzes postulated accidents and determines controls to prevent the accidents or mitigate the consequences.

  20. LLaannggeerrhhaannss LLaabb PPrroottooccoollss Handling of Dead Fish at Yates Mill Facility

    E-Print Network [OSTI]

    Langerhans, Brian

    LLaannggeerrhhaannss LLaabb PPrroottooccoollss Handling of Dead Fish at Yates Mill Facility If a study fish is found dead, preserve it and return it to the lab for DRILL recording. If you are going to DCL shortly after finding the fish: 1. Put it in a plastic bag and bring it to DCL. 2. Put

  1. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect (OSTI)

    Jooho, W.; Baldwin, G. T.

    2005-04-01T23:59:59.000Z

    One critical aspect of any denuclearization of the Democratic People’s Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for “complete, verifiable and irreversible dismantlement,” or “CVID.” It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

  2. High level waste facilities -- Continuing operation or orderly shutdown

    SciTech Connect (OSTI)

    Decker, L.A.

    1998-04-01T23:59:59.000Z

    Two options for Environmental Impact Statement No action alternatives describe operation of the radioactive liquid waste facilities at the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. The first alternative describes continued operation of all facilities as planned and budgeted through 2020. Institutional control for 100 years would follow shutdown of operational facilities. Alternatively, the facilities would be shut down in an orderly fashion without completing planned activities. The facilities and associated operations are described. Remaining sodium bearing liquid waste will be converted to solid calcine in the New Waste Calcining Facility (NWCF) or will be left in the waste tanks. The calcine solids will be stored in the existing Calcine Solids Storage Facilities (CSSF). Regulatory and cost impacts are discussed.

  3. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  4. Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities

    SciTech Connect (OSTI)

    Rausch, J.; Henderson, R.W. [NUKEM Technologies GmbH, Alzenau (Germany); Penkov, V. [State Enterprise Ignalina Nuclear Power Plant, Visaginas (Lithuania)

    2008-07-01T23:59:59.000Z

    A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

  5. Residue disposal from waste-to-energy facilities

    SciTech Connect (OSTI)

    Walsh, P.; O'Leary, P.; Cross, F.

    1987-05-01T23:59:59.000Z

    When considering a waste-to-energy project, some local officials believe that waste-to-energy is a complete alternative to landfilling. While these projects can reduce waste volume substantially, the process will still produce residues that must be properly handled in order to protect the environment. All systems produce fly ash and bottom ash, and some systems also produce wastewater. This article discusses alternative methods for addressing these residue control problems.

  6. EIS-0082: Defense Waste Processing Facility, Savannah River Plant

    Broader source: Energy.gov [DOE]

    The Office of Defense Waste and Byproducts Management developed this EIS to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility at the SRP site.

  7. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01T23:59:59.000Z

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  8. Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment ofSystemsCertification and Waste Information

  9. Waste sampling and characterization facility complex safety analysis

    SciTech Connect (OSTI)

    Meloy, R.T., Westinghouse Hanford

    1996-06-04T23:59:59.000Z

    The Waste Sampling and Characterization Facility is a `Non-Nuclear, Radiological Facility. This document demonstrates, by analysis, that WSCF can meet the chemical and radiological inventory limits for a radiological facility. It establishes control that ensures those inventories are maintained below threshold values to preserve the `Non- Nuclear, Radiological` classification.

  10. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    SciTech Connect (OSTI)

    Coenenberg, J.G.

    1997-08-15T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

  11. Material selection for Multi-Function Waste Tank Facility tanks

    SciTech Connect (OSTI)

    Larrick, A.P.; Blackburn, L.D.; Brehm, W.F.; Carlos, W.C.; Hauptmann, J.P. [Westinghouse Hanford Co., Richland, WA (United States); Danielson, M.J.; Westerman, R.E. [Pacific Northwest Lab., Richland, WA (United States); Divine, J.R. [ChemMet Ltd., West Richland, WA (United States); Foster, G.M. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1995-03-01T23:59:59.000Z

    This paper briefly summarizes the history of the materials selection for the US Department of Energy`s high-level waste carbon steel storage tanks. It also provides an evaluation of the materials for the construction of new tanks at the evaluation of the materials for the construction of new tanks at the Multi-Function Waste Tank Facility. The evaluation included a materials matrix that summarized the critical design, fabrication, construction, and corrosion resistance requirements: assessed. each requirement: and cataloged the advantages and disadvantages of each material. This evaluation is based on the mission of the Multi-Function Waste Tank Facility. On the basis of the compositions of the wastes stored in Hanford waste tanks, it is recommended that tanks for the Multi-Function Waste Tank Facility be constructed of ASME SA 515, Grade 70, carbon steel.

  12. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-08-01T23:59:59.000Z

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  13. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  14. Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

  15. Pretreatment options for waste-to-energy facilities

    SciTech Connect (OSTI)

    Diaz, L.F.; Savage, G.M. [CalRecovery, Inc., Hercules, CA (United States)

    1996-12-31T23:59:59.000Z

    This paper describes various options available for processing MSW before the material is introduced to waste-to-energy facilities. Specifically, the paper reviews the type of equipment currently available for the recovery of resources from the waste stream. In addition, the paper discusses other matters which in many cases are ignored but are extremely important for the design of the processes. Some of these matters include the use of reliable waste characterization data during conceptual design and definition of the properties and specifications of the recovered materials and/or energy forms (e.g., RDF). Finally, the paper discusses other factors that have a critical impact on the facility such as potential environmental consequences of pretreatment of the waste prior to its combustion in waste-to-energy facilities.

  16. Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178

    SciTech Connect (OSTI)

    Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

  17. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  18. Idaho Site Launches Corrective Actions Before Restarting Waste Treatment Facility

    Broader source: Energy.gov [DOE]

    IDAHO FALLS, Idaho – The Idaho site and its cleanup contractor have launched a series of corrective actions they will complete before safely resuming startup operations at the Integrated Waste Treatment Unit (IWTU) following an incident in June that caused the new waste treatment facility to shut down.

  19. DISSOLUTION & RESUSPENSION OF STORED RADIOACTIVE WASTE & ON SITE TRANSPORT & HANDLING FOR CONDITIONING FOR WASTE RETRIEVAL

    SciTech Connect (OSTI)

    GIBBONS, P.W.

    2001-08-13T23:59:59.000Z

    The four primary functions in a waste retrieval system are as follows: accessing all of the waste within the tank configuration; mobilizing all of the waste, which can have varying physical properties; removing the bulk and residual mobilized waste; and transferring the waste to storage or processing equipment. Selection of retrieval and transfer systems must include all of these functions. Limitations on any one of these areas affect the whole process. This section categorizes according to function many available retrieval and transfer processes, with positive attributes and limitations. Additional information on these systems is referenced in the annexes.

  20. Westinghouse Cementation Facility of Solid Waste Treatment System - 13503

    SciTech Connect (OSTI)

    Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

    2013-07-01T23:59:59.000Z

    During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

  1. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  2. Waste Heat Recovery from Refrigeration in a Meat Processing Facility

    E-Print Network [OSTI]

    Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

    1980-01-01T23:59:59.000Z

    A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

  3. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  4. Summary - Environmental Management Waste Management Facility...

    Office of Environmental Management (EM)

    remedial actions at Oak Ridge. As noted in the recommendations, compaction assessment, waste settlement and impact on the cover should have a focused review to ensure long term...

  5. Industrial Solid Waste Landfill Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law...

  6. ENVIRONMENTAL SAMPLING USING LOCATION SPECIFIC AIR MONITORING IN BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.; Hanks, D.; Degange, J.; Brant, H.; Hall, G.; Cable-Dunlap, P.; Anderson, B.

    2011-06-07T23:59:59.000Z

    Since the introduction of safeguards strengthening measures approved by the International Atomic Energy Agency (IAEA) Board of Governors (1992-1997), international nuclear safeguards inspectors have been able to utilize environmental sampling (ES) (e.g. deposited particulates, air, water, vegetation, sediments, soil and biota) in their safeguarding approaches at bulk uranium/plutonium handling facilities. Enhancements of environmental sampling techniques used by the IAEA in drawing conclusions concerning the absence of undeclared nuclear materials or activities will soon be able to take advantage of a recent step change improvement in the gathering and analysis of air samples at these facilities. Location specific air monitoring feasibility tests have been performed with excellent results in determining attribute and isotopic composition of chemical elements present in an actual test-bed sample. Isotopic analysis of collected particles from an Aerosol Contaminant Extractor (ACE) collection, was performed with the standard bulk sampling protocol used throughout the IAEA network of analytical laboratories (NWAL). The results yielded bulk isotopic values expected for the operations. Advanced designs of air monitoring instruments such as the ACE may be used in gas centrifuge enrichment plants (GCEP) to detect the production of highly enriched uranium (HEU) or enrichments not declared by a State. Researchers at Savannah River National Laboratory in collaboration with Oak Ridge National Laboratory are developing the next generation of ES equipment for air grab and constant samples that could become an important addition to the international nuclear safeguards inspector's toolkit. Location specific air monitoring to be used to establish a baseline environmental signature of a particular facility employed for comparison of consistencies in declared operations will be described in this paper. Implementation of air monitoring will be contrasted against the use of smear ES when used during unannounced inspections, design information verification, limited frequency unannounced access, and complementary access visits at bulk handling facilities. Analysis of technical features required for tamper indication and resistance will demonstrate the viability of successful application of the system in taking ES within a bulk handling location. Further exploration of putting this technology into practice is planned to include mapping uranium enrichment facilities for the identification of optimal for installation of air monitoring devices.

  7. Radioactive Waste Storage Facility at the Armenian NPP - 12462

    SciTech Connect (OSTI)

    Grigoryan, G.; Amirjanyan, A.; Gondakyan, Y. [Nuclear and Radiation Safety Center (NRSC), 4 Tigran Mets, 375010 Yerevan (Armenia); Stepanyan, A. [Armenian Nuclear Regulatory Authority(ANRA), 4 Tigran Mets, 375010 Yerevan (Armenia)

    2012-07-01T23:59:59.000Z

    We present a detailed contaminant transfer dynamics model for radionuclide in geosphere and biosphere medium. The model describes the transport of radionuclides using full equation for the processes of advection, diffusion, decay and sorption. The overall objective is to establish, from a post-closure radiological safety point of view, whether it is practical to convert an existing radioactive waste storage facility at Armenian NPP, to a waste disposal facility. The calculation includes: - Data sources for: the operational waste-source term; options for refurbishment and completion of the waste storage facility as a waste disposal facility; the site and its environs; - Development of an assessment context for the safety assessment, and identification of waste treatment options; - A description of the conceptual and mathematical models, and results calculated for the base case scenario relating to the release of contaminants via the groundwater pathway and also precipitation especially important for this site. The results of the calculations showed that the peak individual dose is < 7 E-8 Sv/y arising principally from I-129 after 700 years post closure. Other significant radionuclides, in terms of their contribution to the total dose are I-129, Tc-99 and in little C-14 (U- 234 and Po-210 are not relevant). The study does not explore all issues that might be expected to be presented in a safety case for a near surface disposal facility it mainly focuses on post- closure dose impacts. Most emphasis has been placed on the development of scenarios and conceptual models rather than the presentation and analyses of results and confidence building (only deterministic results are presented). The calculations suggest that, from a perspective the conversion of the waste-storage facility is feasible such that all the predicted doses are well below internationally recognized targets, as well as provisional Armenian regulatory objectives. This conclusion applies to the disposal of the ANPP present and future arising of L/ILW operating wastes. (authors)

  8. Characterization of the Old Hydrofracture Facility (OHF) waste tanks located at ORNL

    SciTech Connect (OSTI)

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-04-01T23:59:59.000Z

    The Old Hydrofracture Facility (OHF) is located in Melton Valley within Waste Area Grouping (WAG) 5 and includes five underground storage tanks (T1, T2, T3, T4, and T9) ranging from 13,000 to 25,000 gal. capacity. During the period of 1996--97 there was a major effort to re-sample and characterize the contents of these inactive waste tanks. The characterization data summarized in this report was needed to address waste processing options, examine concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and to provide the data needed to meet DOT requirements for transporting the waste. This report discusses the analytical characterization data collected on both the supernatant and sludge samples taken from three different locations in each of the OHF tanks. The isotopic data presented in this report supports the position that fissile isotopes of uranium ({sup 233}U and {sup 235}U) do not satisfy the denature ratios required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). The fissile isotope of plutonium ({sup 239}Pu and {sup 241}Pu) are diluted with thorium far above the WAC requirements. In general, the OHF sludge was found to be hazardous (RCRA) based on total metal content and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the OHF sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  9. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect (OSTI)

    TRINER, G.C.

    1999-11-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  10. Low-level radioactive waste disposal facility closure

    SciTech Connect (OSTI)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01T23:59:59.000Z

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  11. Waste management facilities cost information for hazardous waste. Revision 1

    SciTech Connect (OSTI)

    Shropshire, D.; Sherick, M.; Biagi, C.

    1995-06-01T23:59:59.000Z

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing hazardous waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  12. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19T23:59:59.000Z

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  13. Hanford facility dangerous waste permit application, 616 Nonradioactive dangerous waste storage facility

    SciTech Connect (OSTI)

    Price, S.M.

    1997-04-30T23:59:59.000Z

    This chapter provides information on the physical, chemical, and biological characteristics of the waste stored at the 616 NRDWSF. A waste analysis plan is included that describes the methodology used for determining waste types.

  14. Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan

    SciTech Connect (OSTI)

    SIMMONS, F.M.

    2000-12-01T23:59:59.000Z

    This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  15. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect (OSTI)

    NONE

    1988-04-01T23:59:59.000Z

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  16. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 2: Solid waste retrieval facilities -- Phase 1, detail design drawings

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 2 provides the complete set of the Detail Design drawings along with a listing of the drawings. Once approved by WHC, these drawings will be issued and baselined for the Title 3 construction effort.

  17. Technical Safety Requirements for the B695 Segment of the Decontamination and Waste Treatment Facility

    SciTech Connect (OSTI)

    Larson, H L

    2007-09-07T23:59:59.000Z

    This document contains Technical Safety Requirements (TSRs) for the Radioactive and Hazardous Waste Management (RHWM) Division's B695 Segment of the Decontamination and Waste Treatment Facility (DWTF) at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the B695 Segment of the DWTF. The TSRs are derived from the Documented Safety Analysis (DSA) for the B695 Segment of the DWTF (LLNL 2004). The analysis presented there determined that the B695 Segment of the DWTF is a low-chemical hazard, Hazard Category 3, nonreactor nuclear facility. The TSRs consist primarily of inventory limits as well as controls to preserve the underlying assumptions in the hazard analyses. Furthermore, appropriate commitments to safety programs are presented in the administrative controls section of the TSRs. The B695 Segment of the DWTF (B695 and the west portion of B696) is a waste treatment and storage facility located in the northeast quadrant of the LLNL main site. The approximate area and boundary of the B695 Segment of the DWTF are shown in the B695 Segment of the DWTF DSA. Activities typically conducted in the B695 Segment of the DWTF include container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. B695 is used to store and treat radioactive, mixed, and hazardous waste, and it also contains equipment used in conjunction with waste processing operations to treat various liquid and solid wastes. The portion of the building called Building 696 Solid Waste Processing Area (SWPA), also referred to as B696S in this report, is used primarily to manage solid radioactive waste. Operations specific to the SWPA include sorting and segregating low-level waste (LLW) and transuranic (TRU) waste, lab-packing, sampling, and crushing empty drums that previously contained LLW. A permit modification for B696S was submitted to DTSC in January 2004 to store and treat hazardous and mixed waste. Upon approval of the permit modification, B696S rooms 1007, 1008, and 1009 will be able to store hazardous and mixed waste for up to 1 year. Furthermore, an additional drum crusher and a Waste Packaging Unit will be permitted to treat hazardous and mixed waste. RHWM generally processes LLW with no, or extremely low, concentrations of transuranics (i.e., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., {sup 90}Sr, {sup 137}Cs, {sup 3}H. Chapter 5 of the DSA documents the derivation of TSRs and develops the operational limits that protect the safety envelope defined for this facility. The DSA is applicable to the handling of radioactive waste stored and treated in the B695 Segment of the DWTF. Section 5 of the TSR, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the B695 Segment of the DWTF. A basis explanation follows each of the requirements described in Section 5.5, Specific Administrative Controls. The basis explanation does not constitute an additional requirement, but is intended as an expansion of the logic and reasoning behind development of the requirement. Programmatic Administrative Controls are addressed in Section 5.6.

  18. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    SciTech Connect (OSTI)

    W. Mahlon Heileson

    2006-10-01T23:59:59.000Z

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  19. A Bulk Tungsten Tile for JET: Derivation of Power-Handling Performance and Validation of the Thermal Model, in the MARION Facility

    E-Print Network [OSTI]

    A Bulk Tungsten Tile for JET: Derivation of Power-Handling Performance and Validation of the Thermal Model, in the MARION Facility

  20. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    SciTech Connect (OSTI)

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28T23:59:59.000Z

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  1. Part 1: Participatory Ergonomics Approach to Waste Container Handling Utilizing a Multidisciplinary Team

    SciTech Connect (OSTI)

    Zalk, D.M.; Tittiranonda, P.; Burastero, S.; Biggs, T.W.; Perry, C.M.; Tageson, R.; Barsnick, L.

    2000-02-07T23:59:59.000Z

    This multidisciplinary team approach to waste container handling, developed within the Grassroots Ergonomics process, presents participatory ergonomic interpretations of quantitative and qualitative aspects of this process resulting in a peer developed training. The lower back, shoulders, and wrists were identified as frequently injured areas, so these working postures were a primary focus for the creation of the workers' training. Handling procedures were analyzed by the team to identify common cycles involving one 5 gallon (60 pounds), two 5 gallons (60 and 54 pounds), 30 gallon (216 pounds), and 55 gallon (482 pounds) containers: lowering from transporting to/from transport vehicles, loading/unloading on transport vehicles, and loading onto pallet. Eleven experienced waste container handlers participated in this field analysis. Ergonomic exposure assessment tools measuring these field activities included posture analysis, posture targeting, Lumbar Motion Monitor{trademark} (LMM), and surface electromyography (sEMG) for the erector spinae, infraspinatus, and upper trapezius muscles. Posture analysis indicates that waste container handlers maintained non-neutral lower back postures (flexion, lateral bending, and rotation) for a mean of 51.7% of the time across all activities. The right wrist was in non-neutral postures (radial, ulnar, extension, and flexion) a mean of 30.5% of the time and the left wrist 31.4%. Non-neutral shoulder postures (elevation) were the least common, occurring 17.6% and 14.0% of the time in the right and left shoulders respectively. For training applications, each cycle had its own synchronized posture analysis and posture target diagram. Visual interpretations relating to the peak force modifications of the posture target diagrams proved to be invaluable for the workers' understanding of LMM and sEMG results (refer to Part II). Results were reviewed by the team's field technicians and their interpretations were developed into ergonomic training that address the issues originally raised. This training includes intervention methods, ergonomic tools used, dam acquired, and effects of waste container handling techniques on lower back, shoulder, and wrists and methods to help proactively reduce injuries associated with this profession.

  2. Hazardous Waste Facility Permit Public Comments to Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION COMMENT POST? 2.0 & 4.0 1. Fix broken links on pages 3 and 4 for the HWA permit. Yes 2.0 2. Revise a sentence on page 4 to: "Limits on LANL waste facilities may be...

  3. Screening Level Risk Assessment for the New Waste Calcining Facility

    SciTech Connect (OSTI)

    M. L. Abbott; K. N. Keck; R. E. Schindler; R. L. VanHorn; N. L. Hampton; M. B. Heiser

    1999-05-01T23:59:59.000Z

    This screening level risk assessment evaluates potential adverse human health and ecological impacts resulting from continued operations of the calciner at the New Waste Calcining Facility (NWCF) at the Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Engineering and Environmental Laboratory (INEEL). The assessment was conducted in accordance with the Environmental Protection Agency (EPA) report, Guidance for Performing Screening Level Risk Analyses at Combustion Facilities Burning Hazardous Waste. This screening guidance is intended to give a conservative estimate of the potential risks to determine whether a more refined assessment is warranted. The NWCF uses a fluidized-bed combustor to solidify (calcine) liquid radioactive mixed waste from the INTEC Tank Farm facility. Calciner off volatilized metal species, trace organic compounds, and low-levels of radionuclides. Conservative stack emission rates were calculated based on maximum waste solution feed samples, conservative assumptions for off gas partitioning of metals and organics, stack gas sampling for mercury, and conservative measurements of contaminant removal (decontamination factors) in the off gas treatment system. Stack emissions were modeled using the ISC3 air dispersion model to predict maximum particulate and vapor air concentrations and ground deposition rates. Results demonstrate that NWCF emissions calculated from best-available process knowledge would result in maximum onsite and offsite health and ecological impacts that are less then EPA-established criteria for operation of a combustion facility.

  4. Geosynthetic Clay Liner applications in waste disposal facilities

    SciTech Connect (OSTI)

    McGrath, L.T.; Creamer, P.D. [RMT, Inc., Madison, WI (United States)

    1995-12-31T23:59:59.000Z

    Geosynthetic Clay Liners (GCLs) are becoming a popular alternative to compacted clay barrier layers, and represent the state of the art in waste disposal facility design. They possess many of the same qualities of compacted clay barrier layers while occupying only a small fraction of the airspace. This is a very attractive feature to waste disposal facility owners and operators. There are many manufacturers of GCLs in the marketplace, providing numerous products that can be used in a wide variety of applications. Designing for the constructing with a GCL an be a challenging task; stability issues must be evaluated, selecting the appropriate product should be considered, comprehensive specifications are needed to ensure proper product selection and installation, and steps must be taken during installation to prevent damage to the GCL. Perhaps most importantly, state regulatory agencies must be convinced that GCLs will provide long-term protection equivalent to a clay barrier layer. This paper will discuss design considerations, specification guidelines, installation criteria, construction quality assurance guidelines and regulatory issues pertaining to GCL. The paper will also present three brief case histories of relevant GCL applications in waste disposal facility design and construction. The purpose of the paper is to demonstrate that GCLs are a viable alternative to compacted clay barrier layers and to provide useful information in designing, specifying and installing them in waste disposal facilities.

  5. EA-1848: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran...

    Broader source: Energy.gov (indexed) [DOE]

    8: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran, Storey County, NV EA-1848: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran, Storey County, NV June 1, 2011 EA-1848:...

  6. Hanford facility dangerous waste permit application, general information portion

    SciTech Connect (OSTI)

    Hays, C.B.

    1998-05-19T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).

  7. Cask system design guidance for robotic handling

    SciTech Connect (OSTI)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01T23:59:59.000Z

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs.

  8. Hight-Level Waste & Facilities Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbetand ModelingHigh-Level Waste (HLW) and

  9. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge fileHazardous Waste

  10. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-12-31T23:59:59.000Z

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  11. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01T23:59:59.000Z

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  12. Preliminary assessment of radiological doses in alternative waste management systems without an MRS facility

    SciTech Connect (OSTI)

    Schneider, K.J.; Pelto, P.J.; Daling, P.M.; Lavender, J.C.; Fecht, B.A.

    1986-06-01T23:59:59.000Z

    This report presents generic analyses of radiological dose impacts of nine hypothetical changes in the operation of a waste management system without a monitored retrievable storage (MRS) facility. The waste management activities examined in this study include those for handling commercial spent fuel at nuclear power reactors and at the surface facilities of a deep geologic repository, and the transportation of spent fuel by rail and truck between the reactors and the repository. In the reference study system, the radiological doses to the public and to the occupational workers are low, about 170 person-rem/1000 metric ton of uranium (MTU) handled with 70% of the fuel transported by rail and 30% by truck. The radiological doses to the public are almost entirely from transportation, whereas the doses to the occupational workers are highest at the reactors and the repository. Operating alternatives examined included using larger transportation casks, marshaling rail cars into multicar dedicated trains, consolidating spent fuel at the reactors, and wet or dry transfer options of spent fuel from dry storage casks. The largest contribution to radiological doses per unit of spent fuel for both the public and occupational workers would result from use of truck transportation casks, which are smaller than rail casks. Thus, reducing the number of shipments by increasing cask sizes and capacities (which also would reduce the number of casks to be handled at the terminals) would reduce the radiological doses in all cases. Consolidating spent fuel at the reactors would reduce the radiological doses to the public but would increase the doses to the occupational workers at the reactors.

  13. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    SciTech Connect (OSTI)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

    2003-02-26T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

  14. Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

    1991-12-01T23:59:59.000Z

    This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

  15. Hanford facility dangerous waste permit application, PUREX storage tunnels

    SciTech Connect (OSTI)

    Haas, C. R.

    1997-09-08T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).

  16. International low level waste disposal practices and facilities

    SciTech Connect (OSTI)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19T23:59:59.000Z

    The safe management of nuclear waste arising from nuclear activities is an issue of great importance for the protection of human health and the environment now and in the future. The primary goal of this report is to identify the current situation and practices being utilized across the globe to manage and store low and intermediate level radioactive waste. The countries included in this report were selected based on their nuclear power capabilities and involvement in the nuclear fuel cycle. This report highlights the nuclear waste management laws and regulations, current disposal practices, and future plans for facilities of the selected international nuclear countries. For each country presented, background information and the history of nuclear facilities are also summarized to frame the country's nuclear activities and set stage for the management practices employed. The production of nuclear energy, including all the steps in the nuclear fuel cycle, results in the generation of radioactive waste. However, radioactive waste may also be generated by other activities such as medical, laboratory, research institution, or industrial use of radioisotopes and sealed radiation sources, defense and weapons programs, and processing (mostly large scale) of mineral ores or other materials containing naturally occurring radionuclides. Radioactive waste also arises from intervention activities, which are necessary after accidents or to remediate areas affected by past practices. The radioactive waste generated arises in a wide range of physical, chemical, and radiological forms. It may be solid, liquid, or gaseous. Levels of activity concentration can vary from extremely high, such as levels associated with spent fuel and residues from fuel reprocessing, to very low, for instance those associated with radioisotope applications. Equally broad is the spectrum of half-lives of the radionuclides contained in the waste. These differences result in an equally wide variety of options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34 countries actively planning reactors, as of September 2010: 14 indicate a strong intention to precede w

  17. Mixed and low-level waste treatment facility project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  18. Environmental Management Waste Management Facility Waste Lot Profile 155.5 for K-1015-A Laundry Pit, East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs, Raymer J.E.

    2008-06-12T23:59:59.000Z

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2003. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, to resolve ORR milestone issues, and to establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. The disposal of the K-1015 Laundry Pit waste will be executed in accordance with the 'Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone, 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOB/ORAH-2161&D2) and the 'Waste Handling Plan for the Consolidated Soil and Waste Sites with Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee' (DOE/OR/01-2328&D1). This waste lot consists of a total of approximately 50 cubic yards of waste that will be disposed at the Environmental Management Waste Management Facility (EMWMF) as non-containerized waste. This material will be sent to the EMWMF in dump trucks. This profile is for the K-1015-A Laundry Pit and includes debris (e.g., concrete, metal rebar, pipe), incidental soil, plastic and wood, and secondary waste (such as plastic sheeting, hay bales and other erosion control materials, wooden pallets, contaminated equipment, decontamination materials, etc.).

  19. Materials and Security Consolidation Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Not Listed

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Security Consolidation Center facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  20. Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-09-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  1. Research and Education Campus Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    L. Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory Research and Education Campus facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  2. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect (OSTI)

    Sexton, L.

    2012-06-06T23:59:59.000Z

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA).

  3. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    SciTech Connect (OSTI)

    Brown, D.F.

    1994-10-17T23:59:59.000Z

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  4. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01T23:59:59.000Z

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  5. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect (OSTI)

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26T23:59:59.000Z

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  6. Waste Management facilities fault tree databank 1995 status report

    SciTech Connect (OSTI)

    Minnick, W.V.; Wellmaker, K.A.

    1995-08-16T23:59:59.000Z

    The Safety Information Management and Analysis Group (SIMA) of the Safety Engineering Department (SED) maintains compilations of incidents that have occurred in the Separations and Process Control, Waste Management, Fuel Fabrication, Tritium and SRTC facilities. This report records the status of the Waste Management (WM) Databank at the end of CY-1994. The WM Databank contains more than 35,000 entries ranging from minor equipment malfunctions to incidents with significant potential for injury or contamination of personnel. This report documents the status of the WM Databank including the availability, training, sources of data, search options, Quality Assurance, and usage to which these data have been applied. Periodic updates to this memorandum are planned as additional data or applications are acquired.

  7. Design and construction of the defense waste processing facility project at the Savannah River Plant

    SciTech Connect (OSTI)

    Baxter, R G

    1986-01-01T23:59:59.000Z

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

  8. Waste Sampling and Characterization Facility (WSCF). Maintenance Implementation Plan

    SciTech Connect (OSTI)

    Bozich, J.L.

    1993-07-01T23:59:59.000Z

    This Maintenance Implementation Plan has been developed for maintenance functions associated with the Waste Sampling and Characterization Facility (WSCF). This plan is developed from the guidelines presented by Department of Energy (DOE) Order 4330.4A, Maintenance Management Program (DOE 1990), Chapter II. The objective of this plan is to provide baseline information for establishing and identifying WHC conformance programs and policies applicable to implementation of DOE order 4330.4A guidelines. In addition, this maintenance plan identifies the actions necessary to develop a cost-effective and efficient maintenance program at WSCF.

  9. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  10. Waste Handeling Building Conceptual Study

    SciTech Connect (OSTI)

    G.W. Rowe

    2000-11-06T23:59:59.000Z

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable, and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.

  11. Voluntary Protection Program Onsite Review, Waste Sampling and Characterization Facility- May 2007

    Broader source: Energy.gov [DOE]

    Evaluation of Waste Sampling and Characterization Facility to make the final decision regarding the company’s continued participation in DOE-VPP as a Star site.

  12. SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock

    E-Print Network [OSTI]

    McDonald, Kirk

    SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W remote handling techniques and tools for replacing target system components. During the past year and analytical data. These included a welded-tube heat exchanger, an electromagnetic flow meter, a hydraulically

  13. Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029

    SciTech Connect (OSTI)

    B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

    2013-09-01T23:59:59.000Z

    This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

  14. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect (OSTI)

    Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

    2012-07-01T23:59:59.000Z

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

  15. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  16. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect (OSTI)

    JOHNSTON GA

    2008-01-15T23:59:59.000Z

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

  17. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect (OSTI)

    Arnold, Patrick [NSTec] [NSTec

    2014-02-14T23:59:59.000Z

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  18. Defense Waste Processing Facility wasteform and canister description: Revision 2

    SciTech Connect (OSTI)

    Baxter, R.G.

    1988-12-01T23:59:59.000Z

    This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

  19. EA-1793: Replacement Capability for Disposal of Remote-handled Low-level Waste Generated at the Department of Energy's Idaho Site

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of replacement capability for disposal of remote-handled low-level radioactive waste (LLW) generated at the Idaho National Laboratory (INL) site beginning in October 2017.

  20. Fast facility spent-fuel and waste assay instrument. [Fluorinel Dissolution and Fuel Storage (FAST) Facility

    SciTech Connect (OSTI)

    Eccleston, G.W.; Johnson, S.S.; Menlove, H.O.; Van Lyssel, T.; Black, D.; Carlson, B.; Decker, L.; Echo, M.W.

    1983-01-01T23:59:59.000Z

    A delayed-neutron assay instrument was installed in the Fluorinel Dissolution and Fuel Storage Facility at Idaho National Engineering Laboratory. The dual-assay instrument is designed to measure both spent fuel and waste solids that are produced from fuel processing. A set of waste standards, fabricated by Los Alamos using uranium supplied by Exxon Nuclear Idaho Company, was used to calibrate the small-sample assay region of the instrument. Performance testing was completed before installation of the instrument to determine the effects of uranium enrichment, hydrogenous materials, and neutron poisons on assays. The unit was designed to measure high-enriched uranium samples in the presence of large neutron backgrounds. Measurements indicate that the system can assay low-enriched uranium samples with moderate backgrounds if calibrated with proper standards.

  1. Waste Acceptance Decisions and Uncertainty Analysis at the Oak Ridge Environmental Management Waste Management Facility

    SciTech Connect (OSTI)

    Redus, K. S.; Patterson, J. E.; Hampshire, G. L.; Perkins, A. B.

    2003-02-25T23:59:59.000Z

    The Waste Acceptance Criteria (WAC) Attainment Team (AT) routinely provides the U.S. Department of Energy (DOE) Oak Ridge Operations with Go/No-Go decisions associated with the disposition of over 1.8 million yd3 of low-level radioactive, TSCA, and RCRA hazardous waste. This supply of waste comes from 60+ environmental restoration projects over the next 15 years planned to be dispositioned at the Oak Ridge Environmental Management Waste Management Facility (EMWMF). The EMWMF WAC AT decision making process is accomplished in four ways: (1) ensure a clearly defined mission and timeframe for accomplishment is established, (2) provide an effective organization structure with trained personnel, (3) have in place a set of waste acceptance decisions and Data Quality Objectives (DQO) for which quantitative measures are required, and (4) use validated risk-based forecasting, decision support, and modeling/simulation tools. We provide a summary of WAC AT structure and performance. We offer suggestions based on lessons learned for effective transfer to other DOE.

  2. Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for...

  3. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  4. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    SciTech Connect (OSTI)

    Gemar, D.W.; O'Leary, C.D.

    1984-03-23T23:59:59.000Z

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins.

  5. Transuranic (Tru) waste volume reduction operations at a plutonium facility

    SciTech Connect (OSTI)

    Cournoyer, Michael E [Los Alamos National Laboratory; Nixon, Archie E [Los Alamos National Laboratory; Dodge, Robert L [Los Alamos National Laboratory; Fife, Keith W [Los Alamos National Laboratory; Sandoval, Arnold M [Los Alamos National Laboratory; Garcia, Vincent E [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA 55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Size-reduction operations on glovebox equipment are a common activity when a process has been discontinued and the room is being modified to support a new customer. The Actin ide Processing Group at TA-55 uses one-meter-long glass columns to process plutonium. Disposal of used columns is a challenge, since they must be size-reduced to get them out of the glovebox. The task is a high-risk operation because the glass shards that are generated can puncture the bag-out bags, leather protectors, glovebox gloves, and the worker's skin when completing the task. One of the Lessons Learned from these operations is that Laboratory management should critically evaluate each hazard and provide more effective measures to prevent personnel injury. A bag made of puncture-resistant material was one of these enhanced controls. We have investigated the effectiveness of these bags and have found that they safely and effectively permit glass objects to be reduced to small pieces with a plastic or rubber mallet; the waste can then be easily poured into a container for removal from the glove box as non-compactable transuranic (TRU) waste. This size-reduction operation reduces solid TRU waste generation by almost 2% times. Replacing one-time-use bag-out bags with multiple-use glass crushing bags also contributes to reducing generated waste. In addition, significant costs from contamination, cleanup, and preparation of incident documentation are avoided. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost-effectiveness, and formality of glovebox operations. In this report, the technical issues, associated with implementing this process improvement are addressed, the results discussed, effectiveness of Lessons Learned evaluated, and waste savings presented.

  6. SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities

    E-Print Network [OSTI]

    Stephens, Larry M.

    SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

  7. Life-Cycle Cost Study for a Low-Level Radioactive Waste Disposal Facility in Texas

    SciTech Connect (OSTI)

    B. C. Rogers; P. L. Walter (Rogers and Associates Engineering Corporation); R. D. Baird

    1999-08-01T23:59:59.000Z

    This report documents the life-cycle cost estimates for a proposed low-level radioactive waste disposal facility near Sierra Blanca, Texas. The work was requested by the Texas Low-Level Radioactive Waste Disposal Authority and performed by the National Low-Level Waste Management Program with the assistance of Rogers and Associates Engineering Corporation.

  8. Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements

    SciTech Connect (OSTI)

    French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

    2011-01-21T23:59:59.000Z

    Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

  9. EIS-0287: Idaho High-Level Waste & Facilities Disposition

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid...

  10. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  11. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  12. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    SciTech Connect (OSTI)

    Brown, C M

    1980-07-01T23:59:59.000Z

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing.

  13. Waste management facilities cost information for transportation of radioactive and hazardous materials

    SciTech Connect (OSTI)

    Feizollahi, F.; Shropshire, D.; Burton, D.

    1995-06-01T23:59:59.000Z

    This report contains cost information on the U.S. Department of Energy (DOE) Complex waste streams that will be addressed by DOE in the programmatic environmental impact statement (PEIS) project. It describes the results of the task commissioned by DOE to develop cost information for transportation of radioactive and hazardous waste. It contains transportation costs for most types of DOE waste streams: low-level waste (LLW), mixed low-level waste (MLLW), alpha LLW and alpha MLLW, Greater-Than-Class C (GTCC) LLW and DOE equivalent waste, transuranic (TRU) waste, spent nuclear fuel (SNF), and hazardous waste. Unit rates for transportation of contact-handled (<200 mrem/hr contact dose) and remote-handled (>200 mrem/hr contact dose) radioactive waste are estimated. Land transportation of radioactive and hazardous waste is subject to regulations promulgated by DOE, the U.S. Department of Transportation (DOT), the U.S. Nuclear Regulatory Commission (NRC), and state and local agencies. The cost estimates in this report assume compliance with applicable regulations.

  14. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  15. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Biggs, J.

    1995-12-31T23:59:59.000Z

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  16. Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL

    SciTech Connect (OSTI)

    Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

    1990-09-01T23:59:59.000Z

    The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

  17. Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

  18. Developing operating procedures for a low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Sutherland, A.A.; Miner, G.L.; Grahn, K.F.; Pollard, C.G. [Rogers and Associates Engineering Corp., Salt Lake City, UT (United States)

    1993-10-01T23:59:59.000Z

    This document is intended to assist persons who are developing operating and emergency procedures for a low-level radioactive waste disposal facility. It provides 25 procedures that are considered to be relatively independent of the characteristics of a disposal facility site, the facility design, and operations at the facility. These generic procedures should form a good starting point for final procedures on their subjects for the disposal facility. In addition, this document provides 55 annotated outlines of other procedures that are common to disposal facilities. The annotated outlines are meant as checklists to assist the developer of new procedures.

  19. Decommissioning and Dismantling of Liquid Waste Storage and Liquid Waste Treatment Facility from Paldiski Nuclear Site, Estonia

    SciTech Connect (OSTI)

    Varvas, M. [AS ALARA, Leetse tee 21, Paldiski, 76806 (Estonia); Putnik, H. [Delegation of the European Commission to Russia, Kadashevskaja nab. 14/1 119017 Moscow (Russian Federation); Nirvin, B.; Pettersson, S. [SKB, Box 5864, Stockholm, SE-102 40 (Sweden); Johnsson, B. [Studsvik RadWaste, Nykoping, SE-611 82 (Sweden)

    2006-07-01T23:59:59.000Z

    The Paldiski Nuclear Facility in Estonia, with two nuclear reactors was owned by the Soviet Navy and was used for training the navy personnel to operate submarine nuclear reactors. After collapse of Soviet Union the Facility was shut down and handed over to the Estonian government in 1995. In co-operation with the Paldiski International Expert Reference Group (PIERG) decommission strategy was worked out and started to implement. Conditioning of solid and liquid operational waste and dismantling of contaminated installations and buildings were among the key issues of the Strategy. Most of the liquid waste volume, remained at the Facility, was processed in the frames of an Estonian-Finnish co-operation project using a mobile wastewater purification unit NURES (IVO International OY) and water was discharged prior to the site take-over. In 1999-2002 ca 120 m{sup 3} of semi-liquid tank sediments (a mixture of ion exchange resins, sand filters, evaporator and flocculation slurry), remained after treatment of liquid waste were solidified in steel containers and stored into interim storage. The project was carried out under the Swedish - Estonian co-operation program on radiation protection and nuclear safety. Contaminated installations in buildings, used for treatment and storage of liquid waste (Liquid Waste Treatment Facility and Liquid Waste Storage) were then dismantled and the buildings demolished in 2001-2004. (authors)

  20. Thirty-year solid waste generation forecast for facilities at SRS

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

  1. Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility

    Broader source: Energy.gov [DOE]

    WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

  2. EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with...

  3. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-29T23:59:59.000Z

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells.

  4. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect (OSTI)

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07T23:59:59.000Z

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  5. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Landon, L.F. (comp.)

    1980-05-01T23:59:59.000Z

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  6. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01T23:59:59.000Z

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  7. Groundwater impact assessment report for the 1325-N Liquid Waste Disposal Facility

    SciTech Connect (OSTI)

    Alexander, D.J.; Johnson, V.G.

    1993-09-01T23:59:59.000Z

    In 1943 the Hanford Site was chosen as a location for the Manhattan Project to produce plutonium for use in nuclear weapons. The 100-N Area at Hanford was used from 1963 to 1987 for a dual-purpose, plutonium production and steam generation reactor and related operational support facilities (Diediker and Hall 1987). In November 1989, the reactor was put into dry layup status. During operations, chemical and radioactive wastes were released into the area soil, air, and groundwater. The 1325-N LWDF was constructed in 1983 to replace the 1301-N Liquid Waste Disposal Facility (1301-N LWDF). The two facilities operated simultaneously from 1983 to 1985. The 1301-N LWDF was retired from use in 1985 and the 1325-N LWDF continued operation until April 1991, when active discharges to the facility ceased. Effluent discharge to the piping system has been controlled by administrative means. This report discusses ground water contamination resulting from the 1325-N Liquid Waste Disposal facility.

  8. Advanced conceptual design report solid waste retrieval facility, phase I, project W-113

    SciTech Connect (OSTI)

    Smith, K.E.

    1994-03-21T23:59:59.000Z

    Project W-113 will provide the equipment and facilities necessary to retrieve suspect transuranic (TRU) waste from Trench 04 of the 218W-4C burial ground. As part of the retrieval process, waste drums will be assayed, overpacked, vented, head-gas sampled, and x-rayed prior to shipment to the Phase V storage facility in preparation for receipt at the Waste Receiving and Processing Facility (WRAP). Advanced Conceptual Design (ACD) studies focused on project items warranting further definition prior to Title I design and areas where the potential for cost savings existed. This ACD Report documents the studies performed during FY93 to optimize the equipment and facilities provided in relation to other SWOC facilities and to provide additional design information for Definitive Design.

  9. Special case waste located at Oak Ridge National Laboratory facilities: Survey report

    SciTech Connect (OSTI)

    Forgy, J.R. Jr.

    1995-11-01T23:59:59.000Z

    Between October 1994 and October 1995, a data base was established at the Oak Ridge National Laboratory (ORNL) to provide a current inventory of the radioactive waste materials, located at ORNL, for which the US Department of Energy (DOE) has no definite planned disposal alternatives. DOE refers to these waste materials as special case waste. To assist ORNL and DOE management in future planning, an inventory system was established and a baseline inventory prepared. This report provides the background of the ORNL special case waste survey project, as well as special case waste category definitions, both current and anticipated sources and locations of special case waste materials, and the survey and data management processes. Special case waste will be that waste material which, no matter how much practical characterization, treatment, and packaging is made, will never meet the acceptance criteria for permanent disposal at ORNL, and does not meet the criteria at a currently planned off-site permanent disposal facility.

  10. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  11. The release of technetium from defense waste processing facility glasses

    SciTech Connect (OSTI)

    Ebert, W.L.; Wolf, S.F.; Bates, J.K.

    1995-12-31T23:59:59.000Z

    Laboratory tests are being, conducted using two radionuclide-doped Defense Waste Processing, Facility (DWPF) glasses (referred to as SRL 13IA and SRL 202A) to characterize the effects of the glass surface area/solution volume (SN) ratio on the release and disposition of {Tc} and several actinide elements. Tests are being conducted at 90{degrees}C in a tuff ground water solution at SN ratios of 10, 2000, and 20,000 m{sup {minus}1} and have been completed through 1822 days. The formation of certain alteration phases in tests at 2000 and 20,000 m{sup {minus}1} results in an increase in the dissolution rates of both classes. The release of {Tc} parallels that of B and Na under most test conditions and its release increases when alteration phases form. However, in tests with SRL 202A glass at 20,000 ,{sup {minus}1}, the {Tc} concentration in solution decreases coincidentally with an increase in the nitrite/nitrate ratio that indicates a decrease in the solution Eh. This may have occurred due to radiolysis, glass dissolution, the formation of alteration phases, or vessel interactions. Technetium that was reduced from {Tc}(VII) to {Tc}(IV) may have precipitated, thou-h the amount of {Tc} was too low to detect any {Tc}-bearing phases. These results show the importance of conducting long-term tests with radioactive glasses to characterize the behavior of radionuclides, rather than relying on the observed behavior of nonradioactive surrogates.

  12. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    SciTech Connect (OSTI)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06T23:59:59.000Z

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  13. Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1

    SciTech Connect (OSTI)

    Groth, B.D.

    1995-01-11T23:59:59.000Z

    The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

  14. Evaluation of Groundwater Impacts to Support the National Environmental Policy Act Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Annette Schafer, Arthur S. Rood, A. Jeffrey Sondrup

    2011-12-23T23:59:59.000Z

    Groundwater impacts have been analyzed for the proposed remote-handled low-level waste disposal facility. The analysis was prepared to support the National Environmental Policy Act environmental assessment for the top two ranked sites for the proposed disposal facility. A four-phase screening and analysis approach was documented and applied. Phase I screening was site independent and applied a radionuclide half-life cut-off of 1 year. Phase II screening applied the National Council on Radiation Protection analysis approach and was site independent. Phase III screening used a simplified transport model and site-specific geologic and hydrologic parameters. Phase III neglected the infiltration-reducing engineered cover, the sorption influence of the vault system, dispersion in the vadose zone, vertical dispersion in the aquifer, and the release of radionuclides from specific waste forms. These conservatisms were relaxed in the Phase IV analysis which used a different model with more realistic parameters and assumptions. Phase I screening eliminated 143 of the 246 radionuclides in the inventory from further consideration because each had a half-life less than 1 year. An additional 13 were removed because there was no ingestion dose coefficient available. Of the 90 radionuclides carried forward from Phase I, 57 radionuclides had simulated Phase II screening doses exceeding 0.4 mrem/year. Phase III and IV screening compared the maximum predicted radionuclide concentration in the aquifer to maximum contaminant levels. Of the 57 radionuclides carried forward from Phase II, six radionuclides were identified in Phase III as having simulated future aquifer concentrations exceeding maximum contaminant limits. An additional seven radionuclides had simulated Phase III groundwater concentrations exceeding 1/100th of their respective maximum contaminant levels and were also retained for Phase IV analysis. The Phase IV analysis predicted that none of the thirteen remaining radionuclides would exceed the maximum contaminant levels for either site location. The predicted cumulative effective dose equivalent from all 13 radionuclides also was less than the dose criteria set forth in Department of Energy Order 435.1 for each site location. An evaluation of composite impacts showed one site is preferable over the other based on the potential for commingling of groundwater contamination with other facilities.

  15. EIS-0084: Incineration Facility for Radioactively Contaminated PCBs and Other Wastes, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Uranium Enrichment and Assessment prepared this statement to assess the environmental impacts of the construction and operation of the proposed Oak Ridge Gaseous Diffusion Plant, an incineration facility to dispose of radioactively contaminated polychlorinated biophenyls, as well as combustible waste from the Paducah, Portsmouth and Oak Ridge facilities.

  16. Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-08-31T23:59:59.000Z

    This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

  17. CRAD, Radiological Controls- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  18. CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  19. CRAD, Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  20. CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  1. CRAD, Emergency Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  2. CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  3. CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  4. CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  5. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  6. CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  7. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01T23:59:59.000Z

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  8. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  9. A Strategy for Quantifying Radioactive Material in a Low-Level Waste Incineration Facility

    SciTech Connect (OSTI)

    Hochel, R.C. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-03-01T23:59:59.000Z

    One of the methods proposed by the U.S. Department of Energy (DOE) for the volume reduction and stabilization of a variety of low-level radioactive wastes (LLW) is incineration. Many commercial incinerators are in operation treating both non-hazardous and hazardous wastes. These can obtain volume reductions factors of 50 or more for certain wastes, and produce a waste (ash) that can be easily stabilized if necessary by vitrification or cementation. However, there are few incinerators designed to accommodate radioactive wastes. One has been recently built at the Savannah River Site (SRS) near Aiken, SC and is burning non-radioactive hazardous waste and radioactive wastes in successive campaigns. The SRS Consolidated Incineration Facility (CIF) is RCRA permitted as a Low Chemical Hazard, Radiological facility as defined by DOE criteria (Ref. 1). Accordingly, the CIF must operate within specified chemical, radionuclide, and fissile material inventory limits (Ref. 2). The radionuclide and fissile material limits are unique to radiological or nuclear facilities, and require special measurement and removal strategies to assure compliance, and the CIF may be required to shut down periodically in order to clean out the radionuclide inventory which builds up in various parts of the facility.

  10. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect (OSTI)

    Busching, K.R., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  11. Solid Waste Disposal Resource Recovery Facilities Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes local governing bodies to form joint agencies to advance the collection, transfer, processing of solid waste, recovery of resources, and sales of recovered resources in...

  12. Technological options for management of hazardous wastes from US Department of Energy facilities

    SciTech Connect (OSTI)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01T23:59:59.000Z

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  13. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE’s Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  14. EIS-0110: Central Waste Disposal Facility for Low-Level Radioactive Waste, Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS assesses the environmental impacts of alternatives for the disposal of low-level waste and by-product materials generated by the three major plants on the Oak Ridge Reservation (ORR). In addition to the no-action alternative, two classes of alternatives are evaluated: facility design alternatives and siting alternatives.

  15. Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1994-06-01T23:59:59.000Z

    DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  16. Disposal of radioactive waste from nuclear research facilities

    E-Print Network [OSTI]

    Maxeiner, H; Kolbe, E

    2003-01-01T23:59:59.000Z

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  17. Idaho High-Level Waste & Facilities Disposition, Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2002-10-11T23:59:59.000Z

    This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. After considering comments on the Draft EIS (DOE/EIS-0287D), as well as information on available treatment technologies, DOE and the State of Idaho have identified separate preferred alternatives for waste treatment. DOE's preferred alternative for waste treatment is performance based with the focus on placing the wastes in forms suitable for disposal. Technologies available to meet the performance objectives may be chosen from the action alternatives analyzed in this EIS. The State of Idaho's Preferred Alternative for treating mixed transuranic waste/SBW and calcine is vitrification, with or without calcine separations. Under both the DOE and State of Idaho preferred alternatives, newly generated liquid waste would be segregated after 2005, stored or treated directly and disposed of as low-level, mixed low-level, or transuranic waste depending on its characteristics. The objective of each preferred alternative is to enable compliance with the legal requirement to have INEEL HLW road ready by a target date of 2035. Both DOE and the State of Idaho have identified the same preferred alternative for facilities disposition, which is to use performance-based closure methods for existing facilities and to design new facilities consistent with clean closure methods.

  18. Covanta Announces Contracts for Lee County, Florida Waste-to-Energy Facility Wednesday February 8, 3:51 pm ET

    E-Print Network [OSTI]

    Columbia University

    serves as an integral component of the comprehensive solid waste management plan of Lee County, which of a community's integrated solid waste management plan. Lee County's decision to expand its facility reinforces and commercial solid waste generated in the County. Waste is converted first to steam and then to electricity

  19. EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence...

  20. Central Characterization Program (CCP) Contact-Handled (CH) TRU...

    Office of Environmental Management (EM)

    and Waste Information SystemWaste Data System (WWISWDS) Data Entry Central Characterization Program (CCP) Contact-Handled (CH) TRU Waste Certification and Waste Information...

  1. Disposing of Waste in ICCBL/NSRB Screening Facility The rules outlined below are applicable for most projects, but the screening facility

    E-Print Network [OSTI]

    Mitchison, Tim

    or at iccb_screen@hms.harvard.edu Solid Biological Waste Small sharps container (located on benchtop of here after proper treatment (see below). When box is 2/3 full, please notify staff. BSL2 waste binsDisposing of Waste in ICCBL/NSRB Screening Facility The rules outlined below are applicable

  2. Using a contingent valuation approach for improved solid waste management facility: Evidence from Kuala Lumpur, Malaysia

    SciTech Connect (OSTI)

    Afroz, Rafia, E-mail: rafia_afroz@yahoo.com [Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (Malaysia); Masud, Muhammad Mehedi [Department of Economics, Faculty of Economics and Management Science, International Islamic University Malaysia (Malaysia)

    2011-04-15T23:59:59.000Z

    This study employed contingent valuation method to estimate the willingness to pay (WTP) of the households to improve the waste collection system in Kuala Lumpur, Malaysia. The objective of this study is to evaluate how household WTP changes when recycling and waste separation at source is made mandatory. The methodology consisted of asking people directly about their WTP for an additional waste collection service charge to cover the costs of a new waste management project. The new waste management project consisted of two versions: version A (recycling and waste separation is mandatory) and version B (recycling and waste separation is not mandatory). The households declined their WTP for version A when they were asked to separate the waste at source although all the facilities would be given to them for waste separation. The result of this study indicates that the households were not conscious about the benefits of recycling and waste separation. Concerted efforts should be taken to raise environmental consciousness of the households through education and more publicity regarding waste separation, reducing and recycling.

  3. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17T23:59:59.000Z

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  4. Recommendations for erosion-corrosion allowance for Multi-Function Waste Tank Facility tanks

    SciTech Connect (OSTI)

    Carlos, W.C.; Brehm, W.F.; Larrick, A.P. [Westinghouse Hanford Co., Richland, WA (United States); Divine, J.R. [ChemMet, Ltd., West Richland, WA (United States)

    1994-10-01T23:59:59.000Z

    The Multi-Function Waste Tank Facility carbon steel tanks will contain mixer pumps that circulate the waste. On the basis of flow characteristics of the system and data from the literature, an erosion allowance of 0.075 mm/y (3 mil/year) was recommended for the tank bottoms, in addition to the 0.025 mm/y (1 mil/year) general corrosion allowance.

  5. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.

  6. Air pollution control systems and technologies for waste-to-energy facilities

    SciTech Connect (OSTI)

    Getz, N.P.; Amos, C.K. Jr.; Siebert, P.C. (Roy F. Weston, Inc., Burlington, MA (US))

    1991-01-01T23:59:59.000Z

    One of the primary topics of concern to those planning, developing, and operating waste-to-energy (W-T-E) (also known as municipal waste combustors (MWCs)) facilities is air emissions. This paper presents a description of the state-of-the-art air pollution control (APC) systems and technology for particulate, heavy metals, organics, and acid gases control for W-T-E facilities. Items covered include regulations, guidelines, and control techniques as applied in the W-T-E industry. Available APC technologies are viewed in detail on the basis of their potential removal efficiencies, design considerations, operations, and maintenance costs.

  7. Decommissioning and waste disposal methods for an uranium mill facility in Spain

    SciTech Connect (OSTI)

    Santiago, J.L. [ENRESA, Madrid (Spain); Sanchez, M. [INITEC, Madrid (Spain)

    1993-12-31T23:59:59.000Z

    In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill tailings pile is being stabilized in place. Mill equipment, buildings and process facilities have been dismantled and demolished and the resulting metal wastes and debris will be placed in the pile. The tailings mass is being reshaped by flattening the sideslopes and a cover system will be placed over the pile. This paper describes the technical procedures used for the remediation and closure of the Andujar mill site and in particular discusses the approaches used for the dismantling and demolition of the processing facilities and the disposal of the metal wastes and demolition debris.

  8. The Mixed Waste Management Facility. Design basis integrated operations plan (Title I design)

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    The Mixed Waste Management Facility (MWMF) will be a fully integrated, pilotscale facility for the demonstration of low-level, organic-matrix mixed waste treatment technologies. It will provide the bridge from bench-scale demonstrated technologies to the deployment and operation of full-scale treatment facilities. The MWMF is a key element in reducing the risk in deployment of effective and environmentally acceptable treatment processes for organic mixed-waste streams. The MWMF will provide the engineering test data, formal evaluation, and operating experience that will be required for these demonstration systems to become accepted by EPA and deployable in waste treatment facilities. The deployment will also demonstrate how to approach the permitting process with the regulatory agencies and how to operate and maintain the processes in a safe manner. This document describes, at a high level, how the facility will be designed and operated to achieve this mission. It frequently refers the reader to additional documentation that provides more detail in specific areas. Effective evaluation of a technology consists of a variety of informal and formal demonstrations involving individual technology systems or subsystems, integrated technology system combinations, or complete integrated treatment trains. Informal demonstrations will typically be used to gather general operating information and to establish a basis for development of formal demonstration plans. Formal demonstrations consist of a specific series of tests that are used to rigorously demonstrate the operation or performance of a specific system configuration.

  9. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    L. Desotell; D. Wieland; V. Yucel; G. Shott; J. Wrapp

    2008-03-01T23:59:59.000Z

    The U.S. Department of Energy, National Security Administration Nevada Site Office (NNSA/NSO) is planning to close the 92-Acre Area of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada. Closure planning for this facility must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. This paper provides a brief background of the Area 5 RWMS, identifies key closure issues, and presents the closure strategy. Disposals have been made in 25 shallow excavated pits and trenches and 13 Greater Confinement Disposal (GCD) boreholes at the 92-Acre Area since 1961. The pits and trenches have been used to dispose unclassified low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform waste, and to store classified low-level and low-level mixed materials. The GCD boreholes are intermediate-depth disposal units about 10 feet (ft) in diameter and 120 ft deep. Classified and unclassified high-specific activity LLW, transuranic (TRU), and mixed TRU are disposed in the GCD boreholes. TRU waste was also disposed inadvertently in trench T-04C. Except for three disposal units that are active, all pits and trenches are operationally covered with 8-ft thick alluvium. The 92-Acre Area also includes a Mixed Waste Disposal Unit (MWDU) operating under Resource Conservation and Recovery Act (RCRA) Interim Status, and an asbestiform waste unit operating under a state of Nevada Solid Waste Disposal Site Permit. A single final closure cover is envisioned over the 92-Acre Area. The cover is the evapotranspirative-type cover that has been successfully employed at the NTS. Closure, post-closure care, and monitoring must meet the requirements of the following regulations: U.S. Department of Energy Order 435.1, Title 40 Code of Federal Regulations (CFR) Part 191, Title 40 CFR Part 265, Nevada Administrative Code (NAC) 444.743, RCRA requirements as incorporated into NAC 444.8632, and the Federal Facility Agreement and Consent Order (FFACO). A grouping of waste disposal units according to waste type, location, and similarity in regulatory requirements identified six closure units: LLW Unit, Corrective Action Unit (CAU) 111 under FFACO, Asbestiform LLW Unit, Pit 3 MWDU, TRU GCD Borehole Unit, and TRU Trench Unit. The closure schedule of all units is tied to the closure schedule of the Pit 3 MWDU under RCRA.

  10. Waste Encapsulation and Storage Facility (WESF) Quality Assurance Program Plan (QAPP)

    SciTech Connect (OSTI)

    ROBINSON, P.A.

    2000-04-17T23:59:59.000Z

    This Quality Assurance Plan describes how the Waste Encapsulation and Storage Facility (WESF) implements the quality assurance (QA) requirements of the Quality Assurance Program Description (QAPD) (HNF-Mp-599) for Project Hanford activities and products. This QAPP also describes the organizational structure necessary to successfully implement the program. The QAPP provides a road map of applicable Project Hanford Management System Procedures, and facility specific procedures, that may be utilized by WESF to implement the requirements of the QAPD.

  11. Managing commercial low-level radioactive waste beyond 1992: Transportation planning for a LLW disposal facility

    SciTech Connect (OSTI)

    Quinn, G.J. [Wastren, Inc. (United States)

    1992-01-01T23:59:59.000Z

    This technical bulletin presents information on the many activities and issues related to transportation of low-level radioactive waste (LLW) to allow interested States to investigate further those subjects for which proactive preparation will facilitate the development and operation of a LLW disposal facility. The activities related to transportation for a LLW disposal facility are discussed under the following headings: safety; legislation, regulations, and implementation guidance; operations-related transport (LLW and non-LLW traffic); construction traffic; economics; and public involvement.

  12. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    SciTech Connect (OSTI)

    Sasser, K.

    1994-06-01T23:59:59.000Z

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  13. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect (OSTI)

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09T23:59:59.000Z

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

  14. Former Hazardous Waste Management Facility -Perimeter Soils Update

    E-Print Network [OSTI]

    Homes, Christopher C.

    Division #12;2 Background Cesium -137 contamination found outside the Former Hazardous Waste Management of dispersed contamination in areas southeast of the FHWMF outside the scope of the targeted clean up (LISF). #12;#12;Path Forward Discrete areas of contamination within LISF footprint have been cleaned up

  15. Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities

    SciTech Connect (OSTI)

    Young, J C; Johnson, L D

    1980-09-01T23:59:59.000Z

    Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

  16. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect (OSTI)

    Smith, M.; Iverson, D.

    2010-12-08T23:59:59.000Z

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  17. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect (OSTI)

    CANTALOUB, M.G.

    2000-10-20T23:59:59.000Z

    At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: (1) The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. (2) Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 200 grams (g). (3) The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. (4) PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 g/cc. (5) PDP Plutonium source weights ranged from 0.030 g to 318 g, in both empty and combustibles matrix drums. (6) The GEA system design density correction mass absorption coefficient table (MAC) is Lucite, a material representative of combustible waste. (7) Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

  18. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect (OSTI)

    CANTALOUB, M.G.

    2000-05-22T23:59:59.000Z

    At the WRAP facility, there are two identical imaging passive/active neutron (IPAN) assay systems and two identical gamma energy assay (GEA) systems. Currently, only the GEA systems are used to characterize waste, therefore, only the GEA systems are addressed in this document. This document contains the limiting factors relating to the waste drum analysis for shipments destined for WIPP. The TMU document provides the uncertainty basis in the NDA analysis of waste containers at the WRAP facility. The defined limitations for the current analysis scheme are as follows: The WRAP waste stream debris is from the Hanford Plutonium Finishing Plant's process lines, primarily combustible materials. Plutonium analysis range is from the minimum detectable concentration (MDC), Reference 6, to 160 grams (8). The GEA system calibration density ranges from 0.013 g/cc to 1.6 g/cc. PDP Plutonium drum densities were evaluated from 0.065 g/cc to 0.305 gkc. PDP Plutonium source weights ranged from 0.030 g to 3 18 g, in both empty and combustibles matrix drums. The GEA system design density correction macroscopic absorption cross section table (MAC) is Lucite, a material representative of combustible waste. Drums with material not fitting the debris waste criteria are targeted for additional calculations, reviews, and potential re-analysis using a calibration suited for the waste type.

  19. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15T23:59:59.000Z

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  20. Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site

    SciTech Connect (OSTI)

    Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L. [Bechtel Nevada Corp., Las Vegas, NV (United States); Karney, C.C. [Dept. of Energy, Las Vegas, NV (United States); Kremer, J.L.

    1998-01-01T23:59:59.000Z

    This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging.

  1. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-16T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  2. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Arnold, P. M.

    2013-02-21T23:59:59.000Z

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  3. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect (OSTI)

    Starkey, J.G.

    1993-05-01T23:59:59.000Z

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  4. F-Area Hazardous Waste Management Facility Semiannual Correction Action Report, Vol. I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-11-18T23:59:59.000Z

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site is routinely monitored for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  5. Closure Plan for the E-Area Low-Level Waste Facility

    SciTech Connect (OSTI)

    Cook, J.R.

    2000-10-30T23:59:59.000Z

    A closure plan has been developed to comply with the applicable requirements of the U.S. Department of Energy Order 435.2 Manual and Guidance. The plan is organized according to the specifications of the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans.

  6. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    SciTech Connect (OSTI)

    GRIFFIN PW

    2009-08-27T23:59:59.000Z

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  7. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  8. Maximization of revenues for power sales from a solid waste resources recovery facility

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives were thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.

  9. Cogeneration Waste Heat Recovery at a Coke Calcining Facility

    E-Print Network [OSTI]

    Coles, R. L.

    and performance summary at the plant design point is shown in Figure 1. GENERAL DESCRIPTION OF THE PLANT The plant has three steam generation units. Each boiler is a natural circulation, single pressure level waste heat recovery boiler. Two of the boilers..." per ANSI/ASME PTC 4 4-1981, Gas Turbine Heat Recovery Steam Generator' All units tested above their design value. The turbine generator set was tested using station instrumentation to verify it was performin at its design point. The overall plant...

  10. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCO OverviewRepository | DepartmentSEA-04:Department ofżQUÉFuture |Waste

  11. Waste Treatment Facility Passes Federal Inspection, Completes Final

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads|of Energy WashingtonWaste Isolation PilotMilestone,

  12. Hazardous Waste Facility Permit Public Comments to Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTI Comparison T.Hazardous Waste

  13. Hazardous Waste Facility Permit Public Comments to Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanford LEED&soilASTI-SORTI Comparison T.Hazardous Waste

  14. Working with SRNL - Our Facilities- Waste Treatment Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresentedMetalWaste Treatment Laboratories

  15. Regional Waste Systems Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreviewAl., 2005) |RGGI Jump to:Waste Systems

  16. Savannah River Site - Salt Waste Processing Facility Independent Technical Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | Department ofEnergySaraKSALT WASTE

  17. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Wilhite, E

    2008-03-31T23:59:59.000Z

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

  18. Construction Begins on New Waste Processing Facility | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesville EnergyDepartment.AttachmentEnergyGenerating Facility

  19. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  20. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  1. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29T23:59:59.000Z

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  2. Waste receiving and processing facility module 1, detailed design report

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

  3. Hanford facility dangerous waste permit application, general information portion. Revision 3

    SciTech Connect (OSTI)

    Sonnichsen, J.C.

    1997-08-21T23:59:59.000Z

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit, which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).

  4. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    SciTech Connect (OSTI)

    Bissani, M; Fischer, R; Kidd, S; Merrigan, J

    2006-04-03T23:59:59.000Z

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility, waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.

  5. Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSARDevelopmentalEfficiency | Department ofEnergySaraKSALT WASTE

  6. Low-level radioactive mixed waste land disposal facility -- Permanent disposal

    SciTech Connect (OSTI)

    Erpenbeck, E.G.; Jasen, W.G.

    1993-03-01T23:59:59.000Z

    Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

  7. Identification of the source of methane at a hazardous waste treatment facility using isotopic analysis

    SciTech Connect (OSTI)

    Hackley, K.C.; Liu, C.L. (Illinois State Geological Survey, Peabody, IL (United States)); Trainor, D.P. (Dames and Moore, Madison, WI (United States))

    1992-01-01T23:59:59.000Z

    Isotopic analyses have been used to determine the source of methane in subsurface sediments at a hazardous waste treatment facility in the Lake Calumet area of Chicago, Illinois. The study area is surrounded by landfills and other waste management operations and has a long history of waste disposal. The facility property consists of land constructed of approximately 15 feet of fill placed over lake sediments. The fill is underlain by successively older lacustrine and glacial till deposits to a maximum depth of approximately 80 feet. During a subsurface investigation of the site performed for a RCRA Facility Investigation of former solid waste management units (SWMUs) in the fill, significant quantities of methane were encountered in the natural deposits. Gas samples were collected from the headspace of 11 piezometers screened at depths of approximately 30, 40, and 50 feet beneath the surface. Methane concentrations up to 75% by volume were observed in some of the piezometers. Stable isotope analyses were completed on methane and associated CO[sub 2] separated from the gas samples. Radiocarbon (C-14) analyses were also completed on several of the samples. The delta C-13 results for the intermediate and deep zones are indicative of methane produced by microbial reduction of CO[sub 2]. The methane occurring in the shallow zone appears to be a mixture of methane from the intermediate zone and methane produced by microbial fermentation of naturally (nonanthropogenic) buried organic matter within the shallow lacustrine sediments. According to the isotopic and chemical results, the methane does not appear to be related to gas generation from nearby landfills or from organic wastes previously placed in the former facility SWMUs.

  8. Model training curriculum for Low-Level Radioactive Waste Disposal Facility Operations

    SciTech Connect (OSTI)

    Tyner, C.J.; Birk, S.M.

    1995-09-01T23:59:59.000Z

    This document is to assist in the development of the training programs required to be in place for the operating license for a low-level radioactive waste disposal facility. It consists of an introductory document and four additional appendixes of individual training program curricula. This information will provide the starting point for the more detailed facility-specific training programs that will be developed as the facility hires and trains new personnel and begins operation. This document is comprehensive and is intended as a guide for the development of a company- or facility-specific program. The individual licensee does not need to use this model training curriculum as written. Instead, this document can be used as a menu for the development, modification, or verification of customized training programs.

  9. Design of the Long-term Waste Management Facility for Historic LLRW Port Hope Project - 13322

    SciTech Connect (OSTI)

    Campbell, Don; Barton, David [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada)] [Conestoga-Rovers and Associates, 651 Colby Drive, Waterloo, Ontario N2V 1C2 (Canada); Case, Glenn [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)] [Atomic Energy of Canada Limited, 115 Toronto Road, Port Hope, Ontario L1A 3S4 (Canada)

    2013-07-01T23:59:59.000Z

    The Municipality of Port Hope is located on the northern shores of Lake Ontario approximately 100 km east of Toronto, Ontario, Canada. Starting in the 1930's, radium and later uranium processing by Eldorado Gold Mines Limited (subsequently Eldorado Nuclear Limited) (Eldorado) at their refinery in Port Hope resulted in the generation of process residues and wastes that were disposed of indiscriminately throughout the Municipality until about the mid-1950's. These process residues contained radium (Ra- 226), uranium, arsenic and other contaminants. Between 1944 and 1988, Eldorado was a Federal Crown Corporation, and as such, the Canadian Federal Government has assumed responsibility for the clean-up and long-term management of the historic waste produced by Eldorado during this period. The Port Hope Project involves the construction and development of a new long-term waste management facility (LTWMF), and the remediation and transfer of the historic wastes located within the Municipality of Port Hope to the new LTWMF. The new LTWMF will consist of an engineered above-ground containment mound designed to contain and isolate the wastes from the surrounding environment for the next several hundred years. The design of the engineered containment mound consists of a primary and secondary composite base liner system and composite final cover system, made up of both natural materials (e.g., compacted clay, granular materials) and synthetic materials (e.g., geo-synthetic clay liner, geo-membrane, geo-textiles). The engineered containment mound will cover an area of approximately 13 hectares and will contain the estimated 1.2 million cubic metres of waste that will be generated from the remedial activities within Port Hope. The LTWMF will also include infrastructure and support facilities such as access roads, administrative offices, laboratory, equipment and personnel decontamination facilities, waste water treatment plant and other ancillary facilities. Preliminary construction activities for the Port Hope LTWMF commenced in 2012 and are scheduled to continue over the next few years. The first cell of the engineered containment mound is scheduled to be constructed in 2015 with waste placement into the Port Hope LTWMF anticipated over the following seven year period. (authors)

  10. Processing liquid radioactive waste by centrifuge and indrum dehydration facility at NPP Philippsburg

    SciTech Connect (OSTI)

    Grundke, E.; Blaser, W. [NPP Philippsburg (Germany)

    1993-12-31T23:59:59.000Z

    Until 1989 the evaporator and filter concentrates have been treated by concreting. The centrifuge facility is used for the liquid waste from laundry, showers and also for processing filter concentrates and evaporator feedwater. The hot high pressure compacting of filter concentrates gives a volume reduction by a factor of 6. The evaporator concentrate is drained in a 200 l drum and this drum is heated by an external heating device. The indrum-dehydration facility reduces the treated volume by a factor of 12 compared with the former cementation.

  11. Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Edwards, T; Mahannah, R.

    2011-07-05T23:59:59.000Z

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000 instruments also allow the DWPF to maintain current service contracts, which support routine preventive maintenance and emergency support for larger problems such as component failure. One of the three new systems was set up in the DWPF Lab trailers in January of 2007 to be used for the development of methods and procedures. This system will continue to be used for training, new method development and potential improvements to current methods. The qualification of the other two ICS-3000 instruments is to be a phased effort. This effort is to be supported by the Applied Computational Engineering and Statistical (ACES) group of the Savannah River National Laboratory (SRNL) as authorized by the Technical Task Request (TTR) and as directed by the corresponding Task Technical and Quality Assurance (TT&QA) plan. The installation of the first 'rad' system into the M-13 Lab module required modifications to both the Lab module and to the radiohood. The installation was completed in July 2008. The testing of this system was conducted as directed by the TT&QA plan. The purpose of this technical report is to provide a review of the data generated by these tests that will lead to the recommendation for the qualification of the M-13 ICS-3000 instrument. With the successful qualification of this first ICS-3000, plans will be developed for the installation of the second 'rad' system in the M-14 Lab module later in fiscal year 2009. When the second 'rad' ICS-3000 system is installed, the DX-500 systems will be removed and retired from service.

  12. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect (OSTI)

    Swenson, Michael C.

    2001-09-30T23:59:59.000Z

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  13. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect (OSTI)

    Swenson, Michael Clair

    2001-09-01T23:59:59.000Z

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  14. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Herman, C

    2006-09-20T23:59:59.000Z

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  15. Waste encapsulation storage facility (WESF) standards/requirements identification document (S/RIDS)

    SciTech Connect (OSTI)

    Maddox, B.S., Westinghouse Hanford

    1996-07-29T23:59:59.000Z

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ES{ampersand}H) standards/requirements for the Waste Encapsulation Storage Facility (WESF). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  16. Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility

    Broader source: Energy.gov [DOE]

    Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

  17. Modelling of post-fragmentation waste stream processing within UK shredder facilities

    SciTech Connect (OSTI)

    Coates, Gareth [Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)], E-mail: G.Coates@lboro.ac.uk; Rahimifard, Shahin [Centre for Sustainable Manufacturing and Reuse/Recycling Technologies (SMART), Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2009-01-15T23:59:59.000Z

    With the introduction of producer responsibility legislation within the UK (i.e., waste electrical and electronic equipment directive and end-of-life vehicles directive), specific recycling and recovery targets have been imposed to improve the sustainability of end-of-life products. With the introduction of these targets, and the increased investment in post-fragmentation facilities, automated material separation technologies are playing an integral role within the UK's end-of-life waste management strategy. Post-fragmentation facilities utilise a range of purification technologies that target certain material attributes (e.g., density, magnetism, volume) to isolate materials from the shredded waste stream. High ferrous prices have historically meant that UK facilities have been primarily interested in recovering iron and steel, establishing processing routes that are very effective at removing these material types, but as a consequence are extremely rigid and inflexible. With the proliferation of more exotic materials within end-of-life products, combined with more stringent recycling targets, there is therefore a need to optimise the current waste reclamation processes to better realise effort-to-value returns. This paper provides a background as to the current post-fragmentation processing adopted within the UK, and describes the development of a post-fragmentation modelling approach, capable of simulating the value-added processing that a piece of automated separation equipment can have on a fragmented waste stream. These include the modelling of the inefficiencies of the technology, the effects of material entanglement on separation, determination of typical material sizing and an appreciation for compositional value. The implementation of this approach within a software decision-support system is described, before the limitations, calibration and further validation of the approach are discussed.

  18. Environmental Assessment for Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared pursuant to the implementing regulations to the National Environmental Policy Act (NEPA), which require federal agencies to assess the environmental impacts of a proposed action to determine whether that action requires the preparation of an Environmental Impact Statement (EIS) or if a Finding of No Significant Impact (FONSI) can be issued. The Pantex Plant does not possess permanent containerized waste staging facilities with integral secondary containment or freeze protection. Additional deficiencies associated with some existing staging facilities include: no protection from precipitation running across the staging pads; lack of protection against weathering; and facility foundations not capable of containing leaks, spills or accumulated precipitation. These shortcomings have raised concerns with respect to requirements under Section 3001 of the Resource Conservation and Recovery Act (RCRA). Deficiencies for these waste staging areas were also cited by a government audit team (Tiger Team) as Action Items. The provision for the staging of hazardous, mixed, and low level waste is part of the no-action altemative in the Programmatic Environmental Impact Statement for the integrated ER/WM program. Construction of this proposed project will not prejudice whether or not this integration will occur, or how.

  19. Environmental Health and Safety September 14, 2012 Version 2.4 UC Irvine Construction Related Hazardous Waste

    E-Print Network [OSTI]

    George, Steven C.

    Hazardous Waste Scope Some construction related wastes are hazardous and require special handling. Examples Tritium Exit Signs Incorrect documentation, transportation, tracking and disposal of hazardous wastes can (UCOP) approved hazardous waste disposal facilities. EH&S will provide a qualified person to inspect

  20. Computer code input for thermal hydraulic analysis of Multi-Function Waste Tank Facility Title II design

    SciTech Connect (OSTI)

    Cramer, E.R.

    1994-10-01T23:59:59.000Z

    The input files to the P/Thermal computer code are documented for the thermal hydraulic analysis of the Multi-Function Waste Tank Facility Title II design analysis.

  1. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  2. Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Snyder, K.E. [Lockheed Environmental Systems and Technologies, Co., Las Vegas, NV (United States); Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1995-02-01T23:59:59.000Z

    At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period.

  3. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio)

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  4. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    SciTech Connect (OSTI)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01T23:59:59.000Z

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  5. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    SciTech Connect (OSTI)

    CHANG, ROBERT

    2006-02-02T23:59:59.000Z

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

  6. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart [U.S. Environmental Protection Agency (United States)] [U.S. Environmental Protection Agency (United States)

    2013-07-01T23:59:59.000Z

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  7. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  8. Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development

    SciTech Connect (OSTI)

    Not Available

    1988-12-01T23:59:59.000Z

    This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

  9. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect (OSTI)

    WILLS, C.E.

    2000-02-24T23:59:59.000Z

    The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of Hanford's transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization (Reference 1). Various programs exist to ensure the validity of waste characterization data; all of these cite the need for clearly defined knowledge of uncertainty, associated with any measurements taken. All measurements have an inherent uncertainty associated with them. The combined effect of all uncertainties associated with a measurement is referred to as the Total Measurement Uncertainty (TMU). The NDA measurement uncertainties can be numerous and complex. In addition to system-induced measurement uncertainty, other factors contribute to the TMU, each associated with a particular measurement. The NDA measurements at WRAP are based on processes (radioactive decay and induced fission) which are statistical in nature. As a result, the proper statistical summation of the various uncertainty components is essential. This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary. This report also includes the data flow paths for the analytical process in the radiometric determinations.

  10. The mixed waste management facility. Project baseline revision 1.2

    SciTech Connect (OSTI)

    Streit, R.D.; Throop, A.L.

    1995-04-01T23:59:59.000Z

    Revision 1.2 to the Project Baseline (PB) for the Mixed Waste Management Facility (MWMF) is in response to DOE directives and verbal guidance to (1) Collocate the Decontamination and Waste Treatment Facility (DWTF) and MWMF into a single complex, integrate certain and overlapping functions as a cost-saving measure; (2) Meet certain fiscal year (FY) new-BA funding objectives ($15.3M in FY95) with lower and roughly balanced funding for out years; (3) Reduce Total Project Cost (TPC) for the MWMF Project; (4) Include costs for all appropriate permitting activities in the project TPC. This baseline revision also incorporates revisions in the technical baseline design for Molten Salt Oxidation (MSO) and Mediated Electrochemical Oxidation (MEO). Changes in the WBS dictionary that are necessary as a result of this rebaseline, as well as minor title changes, at WBS Level 3 or above (DOE control level) are approved as a separate document. For completeness, the WBS dictionary that reflects these changes is contained in Appendix B. The PB, with revisions as described in this document, were also the basis for the FY97 Validation Process, presented to DOE and their reviewers on March 21-22, 1995. Appendix C lists information related to prior revisions to the PB. Several key changes relate to the integration of functions and sharing of facilities between the portion of the DWTF that will house the MWMF and those portions that are used by the Hazardous Waste Management (HWM) Division at LLNL. This collocation has been directed by DOE as a cost-saving measure and has been implemented in a manner that maintains separate operational elements from a safety and permitting viewpoint. Appendix D provides background information on the decision and implications of collocating the two facilities.

  11. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01T23:59:59.000Z

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  12. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    SciTech Connect (OSTI)

    Wiese, E. C.

    1998-11-23T23:59:59.000Z

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  13. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives

    SciTech Connect (OSTI)

    Perkoulidis, G. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Papageorgiou, A., E-mail: giou6@yahoo.g [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Karagiannidis, A. [Laboratory of Heat Transfer and Environmental Engineering, Department of Mechanical Engineering, Aristotle University of Thessaloniki, Box 483, GR-54124 Thessaloniki (Greece); Kalogirou, S. [Waste to Energy Research and Technology Council (Greece)

    2010-07-15T23:59:59.000Z

    The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased recycling efforts would not diminish the potential for incineration with energy recovery from waste and neither would have adverse impacts on the gate fee of the Waste-to-Energy plant. In general, the study highlighted the need for efficient planning in solid waste management, by taking into account multiple criteria and parameters and utilizing relevant tools and methodologies into this context.

  14. Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12

    SciTech Connect (OSTI)

    Davenport M.

    2009-04-15T23:59:59.000Z

    Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered vegetation but are generally open and accessible. With limited exception, all materials contained in the scrap yard have been removed and disposed at the EMWMF. Soils that underlay the original waste storage area in EUs 29 and 31 as well as soils that underlay the scrap piles in EUs 30 and 32 show substantially elevated radioactivity. In addition to soils present at the site, remaining portions of foundations/floor slabs for Bldgs. K-725, K-726, and K-736 as well as the unnamed pad at the northeast corner of the site constructed to support the sort and segregation operations at the K-770 Scrap Removal Project in 2006 and several other small, unnamed concrete pads are included in this waste lot. While many of these foundations/floor slabs will be removed because they are contaminated, some of the smaller unamed concrete pads will be removed in order to access contaminated soils that are around and under the pads and regrade the site. Appendix E contains a map showing the areas of soil and concrete pads that are expected to be excavated. Soils in the areas indicated on this map will be removed to approximately one foot below the surface. (This corresponds to the soil interval sampled and analyzed to characterize this waste lot.) Contaminants present in the soils are directly derived from metallic debris and rubbish handled by the waste storage operations, are concentrated in the top few inches, and include the predominant constituents of concern associated with the metallic waste already disposed at EMWMF. Additionally, some residual metallic debris remains embedded in the shallow soils that underlay the former debris piles. This residual metallic debris is eligible for disposal in the EMWMF WAC criteria as defined in Waste Profile for: Disposal of the Scrap Removal Project Waste Lot 65.1 East Tennessee Technology Park, Oak Ridge, Tennessee (BJC 2004a). This waste, however, has been included in Waste Lot 4.12 to conform to the more rigorous profiling requirements currently contained in Waste Acceptance Criteria Attainment Team Project Execution Plan Environmental Manag

  15. Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

  16. Report on the handling of safety information concerning flammable gases and ferrocyanide at the Hanford waste tanks

    SciTech Connect (OSTI)

    Not Available

    1990-07-01T23:59:59.000Z

    This report discusses concerns safety issues, and management at Hanford Tank Farm. Concerns center on the issue of flammable gas generation which could ignite, and on possible exothermic reactions of ferrocyanide compounds which were added to single shell tanks in the 1950's. It is believed that information concerning these issues has been mis-handled and the problems poorly managed. (CBS)

  17. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect (OSTI)

    Komilis, Dimitrios, E-mail: dkomilis@env.duth.gr [Laboratory of Solid and Hazardous Waste Management, Dept. of Environmental Engineering, Democritus University of Thrace, Xanthi 671 00 (Greece); Fouki, Anastassia [Hellenic Open University, Patras (Greece); Papadopoulos, Dimitrios [APOTEFROTIRAS S.A., Ano Liossia, 192 00 Elefsina (Greece)

    2012-07-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  18. Environmental Management Waste Management Facility Proxy Waste Lot Profile 6.999 for Building K-25 West Wing, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Rigsby V.P.

    2009-02-12T23:59:59.000Z

    In 1989, the Oak Ridge Reservation (ORR), which includes the East Tennessee Technology Park (ETTP), was placed on the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) National Priorities List. The Federal Facility Agreement (FFA) (DOE 1992), effective January 1, 1992, now governs environmental restoration activities conducted under CERCLA at the ORR. Following signing of the FFA, U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), and the state of Tennessee signed the Oak Ridge Accelerated Cleanup Plan Agreement on June 18, 2002. The purpose of this agreement is to define a streamlined decision-making process to facilitate the accelerated implementation of cleanup, resolve ORR milestone issues, and establish future actions necessary to complete the accelerated cleanup plan by the end of fiscal year 2008. While the FFA continues to serve as the overall regulatory framework for remediation, the Accelerated Cleanup Plan Agreement supplements existing requirements to streamline the decision-making process. Decontamination and decommissioning (D&D) activities of Bldg. K-25, the original gaseous diffusion facility, is being conducted by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. The planned CERCLA action covering disposal of building structure and remaining components from the K-25 building is scheduled as a non-time-critical CERCLA action as part of DOE's continuous risk reduction strategy for ETTP. The K-25 building is proposed for D&D because of its poor physical condition and the expense of surveillance and maintenance activities. The K-25/K-27 D&D Project proposes to dispose of the commingled waste listed below from the K-25 west side building structure and remaining components and process gas equipment and piping at the Environmental Management Waste Management Facility (EMWMF) under waste disposal proxy lot (WPXL) 6.999: (1) Building structure (e.g. concrete floors [excluding basement slab], roofing, structural steel supports, interior walls, and exterior walls) and support system components including the recirculation cooling water (RCW); electrical; communication; fire protection; ventilation; process coolant; process lube oil; utilities such as steam, water and drain lines; (2) Process Piping; (3) Seal Exhaust Headers; (4) Seal Exhaust Traps; (5) Process Valves; (6) Differential Blind Multipliers (DBM)/Partial Blind Multipliers (PBM); and (7) Aftercoolers (also known as Intercell coolers). Converters and compressors while components of the process gas system, are not included in this commingled waste lot. On January 6, 2009, a meeting was held with EPA, TDEC, DOE and the team for the sole purpose of finalizing the objectives, format, and content of WPXL 6.999. The objective of WPXL 6.999 was to provide a crosswalk to the building structure and the PGE components profiles. This was accomplished by providing tables with references to the specific section of the individual profiles for each of the WLs. There are two building profiles and eight PGE profiles. All of the waste identified in the individual profiles will be commingled, shipped, and disposed exclusively under WPXL 6.999. The individual profiles were provided to the EPA and Tennessee Department of Environment and Conservation (TDEC) for information purposes only. This summary WPXL 6.999 will be submitted to EPA, TDEC, and DOE for review and approval. The format agreed upon by the regulators and DOE form the basis for WPXL 6.999. The agreed format is found on pages v and vi of the CONTENTS section of this profile. The disposal of this waste will be executed in accordance with the Action Memorandum for the Decontamination and Decommissioning of the K-25 and K-27 Buildings, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2002), Removal Action Work Plan for the K-25 and K-27 Buildings, Process Equipment Removal and Demolition, K-25/K-27 Project, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2008a); Waste Handling Plan for Demolition of the K-25 and K-27 Bui

  19. First Commercial US Mixed Waste Vitrification Facility: Permits, Readiness Reviews, and Delisting of Final Wasteform

    SciTech Connect (OSTI)

    Pickett, J.B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Norford, S.W.; Diener, G.A.

    1998-06-01T23:59:59.000Z

    Westinghouse Savannah River Co. (WSRC) contracted GTS Duratek (Duratek) to construct and operate the first commercial vitrification facility to treat an F-006 mixed (radioactive/hazardous) waste in the United States. The permits were prepared and submitted to the South Carolina state regulators by WSRC - based on a detailed design by Duratek. Readiness Assessments were conducted by WSRC and Duratek at each major phase of the operation (sludge transfer, construction, cold and radioactive operations, and a major restart) and approved by the Savannah River Department of Energy prior to proceeding. WSRC prepared the first `Upfront Delisting` petition for a vitrified mixed waste. Lessons learned with respect to the permit strategy, operational assessments, and delisting from this `privatization` project will be discussed.

  20. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2000-06-30T23:59:59.000Z

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  1. Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities

    SciTech Connect (OSTI)

    Wolsink, Maarten, E-mail: M.P.Wolsink@uva.n [Department of Geography, Planning and International Development Studies, University of Amsterdam, Nieuwe Prinsengracht 130, 1018 VZ Amsterdam (Netherlands)

    2010-09-15T23:59:59.000Z

    The construction of new infrastructure is hotly contested. This paper presents a comparative study on three environmental policy domains in the Netherlands that all deal with legitimising building and locating infrastructure facilities. Such infrastructure is usually declared essential to environmental policy and claimed to serve sustainability goals. They are considered to serve (proclaimed) public interests, while the adverse impact or risk that mainly concerns environmental values as well is concentrated at a smaller scale, for example in local communities. The social acceptance of environmental policy infrastructure is institutionally determined. The institutional capacity for learning in infrastructure decision-making processes in the following three domains is compared: 1.The implementation of wind power as a renewable energy innovation; 2.The policy on space-water adaptation, with its claim to implement a new style of management replacing the current practice of focusing on control and 'hard' infrastructure; 3.Waste policy with a focus on sound waste management and disposal, claiming a preference for waste minimization (the 'waste management hierarchy'). All three cases show a large variety of social acceptance issues, where the appraisal of the impact of siting the facilities is confronted with the desirability of the policies. In dealing with environmental conflict, the environmental capacity of the Netherlands appears to be low. The policies are frequently hotly contested within the process of infrastructure decision-making. Decision-making on infrastructure is often framed as if consensus about the objectives of environmental policies exists. These claims are not justified, and therefore stimulating the emergence of environmental conflicts that discourage social acceptance of the policies. Authorities are frequently involved in planning infrastructure that conflicts with their officially proclaimed policy objectives. In these circumstances, they are often confronted with local actors who support alternatives that are in fact better in tune with the new policy paradigm.

  2. 1999 Annual Mixed Waste Management Facility Groundwater Correction - Action Report (Volumes I, II, and III)

    SciTech Connect (OSTI)

    Chase, J.

    2000-06-14T23:59:59.000Z

    This Corrective Action Report (CAR) for the Mixed Waste Management Facility (MWMF) is being prepared to comply with the Resource Conservation and Recovery Act (RCRA) Permit Number SC1 890 008 989, dated October 31, 1999. This CAR compiles and presents all groundwater sampling and monitoring activities that are conducted at the MWMF. As set forth in previous agreements with South Carolina Department of Health and Environmental Control (SCDHEC), all groundwater associated with the Burial Ground Complex (BGC) (comprised of the MWMF, Low-Level Radioactive Waste Disposal Facility, and Old Radioactive Waste Burial Ground) will be addressed under this RCRA Permit. This CAR is the first to be written for the MWMF and presents monitoring activities and results as an outcome of Interim Status and limited Permitted Status activities. All 1999 groundwater monitoring activities were conducted while the MWMF was operated during Interim Status. Changes to the groundwater monitoring program were made upon receipt of the RCRA Permit, where feasible. During 1999, 152 single-screened and six multi-screened groundwater monitoring wells at the BGC monitored groundwater quality in the uppermost aquifer as required by the South Carolina Hazardous Waste Management Regulations (SCHWMR), settlement agreements 87-52-SW and 91-51-SW, and RCRA Permit SC1 890 008 989. However, overall compliance with the recently issued RCRA Permit could not be implemented until the year 2000 due to the effective date of the RCRA Permit and scheduling of groundwater monitoring activities. Changes have been made to the groundwater monitoring network to meet Permit requirements for all 2000 sampling events.

  3. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29T23:59:59.000Z

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  4. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Glover, T.

    1999-11-23T23:59:59.000Z

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  5. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory`s (INEL`s) Waste Experimental Reduction Facility (WERF) was conducted by EG&G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report.

  6. Tank 42 sludge-only process development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect (OSTI)

    Lambert, D.P.

    2000-03-22T23:59:59.000Z

    Defense Waste Processing Facility (DWPF) requested the development of a sludge-only process for Tank 42 sludge since at the current processing rate, the Tank 51 sludge has been projected to be depleted as early as August 1998. Testing was completed using a non-radioactive Tank 42 sludge simulant. The testing was completed under a range of operating conditions, including worst case conditions, to develop the processing conditions for radioactive Tank 42 sludge. The existing Tank 51 sludge-only process is adequate with the exception that 10 percent additional acid is recommended during sludge receipt and adjustment tank (SRAT) processing to ensure adequate destruction of nitrite during the SRAT cycle.

  7. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive Liquid Waste Treatment Facility

  8. An Evaluation of Long-Term Performance of Liner Systems for Low-Level Waste Disposal Facilities

    SciTech Connect (OSTI)

    Arthur S. Rood; Annette L. Schafer; A. Jeffrey Sondrup

    2011-03-01T23:59:59.000Z

    Traditional liner systems consisting of a geosynthetic membrane underlying a waste disposal facility coupled with a leachate collection system have been proposed as a means of containing releases of low-level radioactive waste within the confines of the disposal facility and thereby eliminating migration of radionuclides into the vadose zone and groundwater. However, this type of hydraulic containment liner system is only effective as long as the leachate collection system remains functional or an overlying cover limits the total infiltration to the volumetric pore space of the disposal system. If either the leachate collection system fails, or the overlying cover becomes less effective during the 1,000’s of years of facility lifetime, the liner may fill with water and release contaminated water in a preferential or focused manner. If the height of the liner extends above the waste, the waste will become submerged which could increase the release rate and concentration of the leachate. If the liner extends near land surface, there is the potential for contamination reaching land surface creating a direct exposure pathway. Alternative protective liner systems can be engineered that eliminate radionuclide releases to the vadose zone during operations and minimizing long term migration of radionuclides from the disposal facility into the vadose zone and aquifer. Non-traditional systems include waste containerization in steel or composite materials. This type of system would promote drainage of clean infiltrating water through the facility without contacting the waste. Other alternatives include geochemical barriers designed to transmit water while adsorbing radionuclides beneath the facility. Facility performance for a hypothetical disposal facility has been compared for the hydraulic and steel containerization liner alternatives. Results were compared in terms of meeting the DOE Order 435.1 low-level waste performance objective of 25 mrem/yr all-pathways dose during the 1) institutional control period (0-100 years), compliance period (0-1000 years) and post-compliance period (>1000 years). Evaluation of the all pathway dose included the dose from ingestion and irrigation of contaminated groundwater extracted from a well 100 meters downgradient, in addition to the dose received from direct contact of radionuclides deposited near the surface resulting from facility overflow. Depending on the disposal facility radionuclide inventory, facility design, cover performance, and the location and environment where the facility is situated, the dose from exposure via direct contact of near surface deposited radionuclides can be much greater than the dose received via transport to the groundwater and subsequent ingestion.

  9. Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2

    SciTech Connect (OSTI)

    Hall, L.R.

    1995-05-30T23:59:59.000Z

    This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

  10. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect (OSTI)

    Streit, R.D.; Couture, S.A.

    1995-03-01T23:59:59.000Z

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  11. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    SciTech Connect (OSTI)

    HUMPHRYS, K.L.

    1999-11-03T23:59:59.000Z

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  12. Decommissioning of facilities and encapsulation of wastes for an uranium mill site in Spain

    SciTech Connect (OSTI)

    Santiago, J.L. [Enresa, Madrid (Spain); Sanchez, M. [Initec, Madrid (Spain)

    1994-12-31T23:59:59.000Z

    In the south of Spain on the outskirts of the town of Andujar an inactive uranium mill tailings site is being remediated in place. Mill equipment, buildings and process facilities have been dismantled and demolished and the resulting metal wastes and debris have been placed in the tailings pile. The tailings mass has been reshaped by flattening the sideslopes to improve stability and a cover system has been placed over the pile. Remedial action works started in February 1991 and will be completed by March 1994. This paper describes the progress of the remediation works for the closure of the Andujar mill site and in particular discusses the approaches used for the dismantling and demolition of the processing facilities and the stabilization of the tailings pile.

  13. Remote-handled transuranic system assessment. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document identifies the necessary actions for addressing current questions concerning the safe and efficient disposal of remote-handled transuranic wastes that have been generated through Department of Energy activities. In addition, this document presents summaries of existing information and analyses regarding the potential alternatives for disposing of remote-handled (RH) transuranic (TRU) waste at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP). A further discussion of DOE`s approach for addressing RH-TRU issues is contained in the document, Waste Isolation Pilot Plant Remote-Handled Transuranic Waste Disposal Strategy, DOE/WIPP-95-1090 (DOE, 1995a). Of this stored and projected inventory, approximately 30% can be characterized with current technology and subsequently certified to meet the waste acceptance criteria for disposal at WIPP; characterization of the remaining 70% will require the use of alternative techniques. At most of the generator sites, characterization equipment and facilities need to be procured in order for the sites to certify waste for shipment either to WIPP or to an interim site. If surface dose rates are too high, the use of non-invasive techniques such as non-destructive examination (NDE) and non-destructive assay (NDA) may be precluded. Characterization methods using NDA can be effectively used on RH-TRU wastes with surface dose rates of less than 1.0 rem/hr (neutron); NDE methods are effective on waste with surface dose rates of less than 10 rem/hr (gamma). The ability to use current NDE technology on waste with surface dose rates above 10 rem/hr will need to be demonstrated. Alternate characterization techniques, such as examination within a hot cell, could be used for the remaining waste; however, such techniques are labor intensive and would require additional effort to gather assay data. Improvements in characterization capabilities are being pursued through future technology development initiatives.

  14. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01T23:59:59.000Z

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  15. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A. [Los Alamos National Laboratory

    2007-01-04T23:59:59.000Z

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

  16. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    SciTech Connect (OSTI)

    Jantzen, C.; Johnson, F.

    2012-06-05T23:59:59.000Z

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  17. Environmental impact assessment for a radioactive waste facility: A case study

    SciTech Connect (OSTI)

    Devgun, J.S.

    1990-01-01T23:59:59.000Z

    A 77-ha site, known as the Niagara Falls Storage Site and located in northwestern New York State, holds about 190, 000 m{sup 3} of soils, wastes, and residues contaminated with radium and uranium. The facility is owned by the US Department of Energy. The storage of residues resulting from the processing of uranium ores started in 1944, and by 1950 residues from a number of plants were received at the site. The residues, with a volume of about 18,000 m{sup 3}, account for the bulk of the radioactivity, which is primarily due to Ra-226; because of the extraction of uranium from the ore, the amount of uranium remaining in the residues is quite small. An analysis of the environmental impact assessment and environmental compliance actions taken to date at this site and their effectiveness are discussed. This case study provides an illustrative example of the complexity of technical and nontechnical issues for a large radiative waste facility. 11 refs., 7 figs., 2 tabs.

  18. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    SciTech Connect (OSTI)

    West, K.A.

    1988-11-01T23:59:59.000Z

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  19. Unvented Drum Handling Plan

    SciTech Connect (OSTI)

    MCDONALD, K.M.

    2000-08-01T23:59:59.000Z

    This drum-handling plan proposes a method to deal with unvented transuranic drums encountered during retrieval of drums. Finding unvented drums during retrieval activities was expected, as identified in the Transuranic (TRU) Phase I Retrieval Plan (HNF-4781). However, significant numbers of unvented drums were not expected until excavation of buried drums began. This plan represents accelerated planning for management of unvented drums. A plan is proposed that manages unvented drums differently based on three categories. The first category of drums is any that visually appear to be pressurized. These will be vented immediately, using either the Hanford Fire Department Hazardous Materials (Haz. Mat.) team, if such are encountered before the facilities' capabilities are established, or using internal capabilities, once established. To date, no drums have been retrieved that showed signs of pressurization. The second category consists of drums that contain a minimal amount of Pu isotopes. This minimal amount is typically less than 1 gram of Pu, but may be waste-stream dependent. Drums in this category are assayed to determine if they are low-level waste (LLW). LLW drums are typically disposed of without venting. Any unvented drums that assay as TRU will be staged for a future venting campaign, using appropriate safety precautions in their handling. The third category of drums is those for which records show larger amounts of Pu isotopes (typically greater than or equal to 1 gram of Pu). These are assumed to be TRU and are not assayed at this point, but are staged for a future venting campaign. Any of these drums that do not have a visible venting device will be staged awaiting venting, and will be managed under appropriate controls, including covering the drums to protect from direct solar exposure, minimizing of container movement, and placement of a barrier to restrict vehicle access. There are a number of equipment options available to perform the venting. The preferred option is to use equipment provided by a commercial vendor during the first few years of retrieval and venting. This is based on a number of reasons. First, retrieval funding is uncertain. Using a commercial vendor will allow DOE-RL to avoid the investment and maintenance costs if retrieval is not funded. Second, when funding can be identified, retrieval will likely be performed with minimal initial throughput and intermittent operations. Again, costs can be saved by using contracted vendor services only as needed, rather than supporting Hanford equipment full time. When full-scale retrieval begins and the number of drums requiring venting increases significantly, then use of the Hanford container venting system (CVS) should be considered.

  20. Acceleration of Los Alamos National Laboratory transuranic waste disposition

    SciTech Connect (OSTI)

    O'Leary, G.A.; Palmer, B.A.; Starke, T.P.; Phelps, A.K. [Los Alamos National Security, L.L.C., Los Alamos National Laboratory, Los Alamos, NM (United States)

    2007-07-01T23:59:59.000Z

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuranic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dis-positioning the transuranic waste inventory requires retrieval of the containers from above and below- ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LANL does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contractor in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquarters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approach include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safely remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Reduction Fa

  1. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect (OSTI)

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)] [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

    2013-07-01T23:59:59.000Z

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  2. FRIT OPTIMIZATION FOR SLUDGE BATCH PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K.

    2009-01-28T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  3. RECOMMENDED FRIT COMPOSITION FOR INITIAL SLUDGE BATCH 5 PROCESSING AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Fox, K; Tommy Edwards, T; David Peeler, D

    2008-06-25T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) Frit Development Team recommends that the Defense Waste Processing Facility (DWPF) utilize Frit 418 for initial processing of high level waste (HLW) Sludge Batch 5 (SB5). The extended SB5 preparation time and need for DWPF feed have necessitated the use of a frit that is already included on the DWPF procurement specification. Frit 418 has been used previously in vitrification of Sludge Batches 3 and 4. Paper study assessments predict that Frit 418 will form an acceptable glass when combined with SB5 over a range of waste loadings (WLs), typically 30-41% based on nominal projected SB5 compositions. Frit 418 has a relatively high degree of robustness with regard to variation in the projected SB5 composition, particularly when the Na{sub 2}O concentration is varied. The acceptability (chemical durability) and model applicability of the Frit 418-SB5 system will be verified experimentally through a variability study, to be documented separately. Frit 418 has not been designed to provide an optimal melt rate with SB5, but is recommended for initial processing of SB5 until experimental testing to optimize a frit composition for melt rate can be completed. Melt rate performance can not be predicted at this time and must be determined experimentally. Note that melt rate testing may either identify an improved frit for SB5 processing (one which produces an acceptable glass at a faster rate than Frit 418) or confirm that Frit 418 is the best option.

  4. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Mishima, J.

    1988-12-01T23:59:59.000Z

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  5. Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505

    SciTech Connect (OSTI)

    Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

    2013-07-01T23:59:59.000Z

    One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

  6. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    SciTech Connect (OSTI)

    Jasen, W.G.

    1998-01-07T23:59:59.000Z

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  7. Customer service model for waste tracking at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M [Los Alamos National Laboratory; Montoya, Andrew J [Los Alamos National Laboratory; Ashbaugh, Andrew E [Los Alamos National Laboratory

    2010-11-10T23:59:59.000Z

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  8. Chemical inventory control program for mixed and hazardous waste facilities at SRS

    SciTech Connect (OSTI)

    Ades, M.J.; Vincent, A.M. III

    1997-07-01T23:59:59.000Z

    Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins.

  9. Supplement Analysis for the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30T23:59:59.000Z

    In October 2002, DOE issued the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE 2002) that provided an analysis of the potential environmental consequences of alternatives/options for the management and disposition of Sodium Bearing Waste (SBW), High-Level Waste (HL W) calcine, and HLW facilities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Engineering and Environmental Laboratory (INEEL), now known as the Idaho National Laboratory (INL) and referred to hereafter as the Idaho Site. Subsequent to the issuance of the Final EIS, DOE included the requirement for treatment of SBW in the Request for Proposals for Environmental Management activities on the Idaho Site. The new Idaho Cleanup Project (ICP) Contractor identified Steam Reforming as their proposed method to treat SBW; a method analyzed in the Final EIS as an option to treat SBW. The proposed Steam Reforming process for SBW is the same as in the Final EIS for retrieval, treatment process, waste form and transportation for disposal. In addition, DOE has updated the characterization data for both the HLW Calcine (BBWI 2005a) and SBW (BBWI 2004 and BBWI 2005b) and identified two areas where new calculation methods are being used to determine health and safety impacts. Because of those changes, DOE has prepared this supplement analysis to determine whether there are ''substantial changes in the proposed action that are relevant to environmental concerns'' or ''significant new circumstances or information'' within the meaning of the Council of Environmental Quality and DOE National Environmental Policy Act (NEPA) Regulations (40 CFR 1502.9 (c) and 10 CFR 1021.314) that would require preparation of a Supplemental EIS. Specifically, this analysis is intended to determine if: (1) the Steam Reforming Option identified in the Final EIS adequately bounds impacts from the Steam Reforming Process proposed by the new ICP Contractor using the new characterization data, (2) the new characterization data is significantly different than the data presented in the Final EIS, (3) the new calculation methods present a significant change to the impacts described in the Final EIS, and (4) would the updated characterization data cause significant changes in the environmental impacts for the action alternatives/options presented in the Final EIS. There are no other aspects of the Final EIS that require additional review because DOE has not identified any additional new significant circumstances or information that would warrant such a review.

  10. Public Invited to Comment on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy invites the public to read and comment on a draft environmental assessment it has prepared, for a proposal to provide a replacement capability for continued disposal of remote-handled low-level radioactive waste that is generated at the Idaho National Laboratory site.

  11. ISIS Facility: Facility Design Challenges

    E-Print Network [OSTI]

    McDonald, Kirk

    ­ Cooling ­ Radiation Damage & Rad Accelerated Corrosion ­ Remote Handling/Radioactive Waste ­ Remote are assumed. 2. Hot Cell / Remote Handling ­ All mercury target and process components must be contained in nature to a similar solid target. · PROCESS EQUIPMENT: Remote handling requirements of mercury pump, HX

  12. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12T23:59:59.000Z

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  13. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect (OSTI)

    Renfro, G.G.

    1994-12-20T23:59:59.000Z

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  14. Comparative approaches to siting low-level radioactive waste disposal facilities

    SciTech Connect (OSTI)

    Newberry, W.F.

    1994-07-01T23:59:59.000Z

    This report describes activities in nine States to select site locations for new disposal facilities for low-level radioactive waste. These nine States have completed processes leading to identification of specific site locations for onsite investigations. For each State, the status, legal and regulatory framework, site criteria, and site selection process are described. In most cases, States and compact regions decided to assign responsibility for site selection to agencies of government and to use top-down mapping methods for site selection. The report discusses quantitative and qualitative techniques used in applying top-down screenings, various approaches for delineating units of land for comparison, issues involved in excluding land from further consideration, and different positions taken by the siting organizations in considering public acceptance, land use, and land availability as factors in site selection.

  15. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters.

  16. Overview on backfill materials and permeable reactive barriers for nuclear waste disposal facilities.

    SciTech Connect (OSTI)

    Moore, Robert Charles; Hasan, Ahmed Ali Mohamed; Holt, Kathleen Caroline; Hasan, Mahmoud A. (Egyptian Atomic Energy Authority, Cairo, Egypt)

    2003-10-01T23:59:59.000Z

    A great deal of money and effort has been spent on environmental restoration during the past several decades. Significant progress has been made on improving air quality, cleaning up and preventing leaching from dumps and landfills, and improving surface water quality. However, significant challenges still exist in all of these areas. Among the more difficult and expensive environmental problems, and often the primary factor limiting closure of contaminated sites following surface restoration, is contamination of ground water. The most common technology used for remediating ground water is surface treatment where the water is pumped to the surface, treated and pumped back into the ground or released at a nearby river or lake. Although still useful for certain remediation scenarios, the limitations of pump-and-treat technologies have recently been recognized, along with the need for innovative solutions to ground-water contamination. Even with the current challenges we face there is a strong need to create geological repository systems for dispose of radioactive wastes containing long-lived radionuclides. The potential contamination of groundwater is a major factor in selection of a radioactive waste disposal site, design of the facility, future scenarios such as human intrusion into the repository and possible need for retrieving the radioactive material, and the use of backfills designed to keep the radionuclides immobile. One of the most promising technologies for remediation of contaminated sites and design of radioactive waste repositories is the use of permeable reactive barriers (PRBs). PRBs are constructed of reactive material(s) to intercept and remove the radionuclides from the water and decontaminate the plumes in situ. The concept of PRBs is relatively simple. The reactive material(s) is placed in the subsurface between the waste or contaminated area and the groundwater. Reactive materials used thus far in practice and research include zero valent iron, hydroxyapatite, magnesium oxide, and others. As the contaminant moves through the reactive material, the contaminant is either sorbed by the reactive material or chemically reacts with the material to form a less harmful substance. Because of the high risk associated with failure of a geological repository for nuclear waste, most nations favor a near-field multibarrier engineered system using backfill materials to prevent release of radionuclides into the surrounding groundwater.

  17. F-Area Hazardous Waste Management Facility Correction Action Report, Third and Fourth Quarter 1998, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-23T23:59:59.000Z

    The groundwater in the uppermost aquifer beneath the F-Area Hazardous Waste Management Facility (HWMF), also known as the F-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  18. M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

  19. H-Area Hazardous Waste Management Facility Corrective Action Report, Third and Fourth Quarter 1998, Volumes I and II

    SciTech Connect (OSTI)

    Chase, J.

    1999-04-23T23:59:59.000Z

    The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah Site (SRS) is monitored periodically for selected hazardous and radioactive constituents. This report presents the results of the required groundwater monitoring program.

  20. Modeling of batch operations in the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect (OSTI)

    Smith, F.G.

    1995-02-01T23:59:59.000Z

    A computer model is in development to provide a dynamic simulation of batch operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF will chemically treat high level waste materials from the site tank farm and vitrify the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. Separate models have been developed for each of these process units using the SPEEDUP{trademark} software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since the SPEEDUP software is designed for dynamic modeling of continuous processes, considerable effort was required to devise batch process algorithms. This effort was successful and the models are able to simulate batch operations and the dynamic behavior of the process. In this paper, we will describe the SPC model in some detail and present preliminary results from a few simulation studies.

  1. Life cycle assessment of the environmental emissions of waste-to-energy facilities

    SciTech Connect (OSTI)

    Besnainou, J.; Landfield, A. [Ecobalance, Inc., Rockville, MD (United States)

    1997-12-01T23:59:59.000Z

    Over the past ten years, environmental issues have become an increasing priority for both government and industry alike. In the U.S. as well as in Europe, the emphasis has gradually shifted from a site specific focus to a product specific focus. For this reason, tools are needed to scientifically assess the overall environmental performance of products and/or industrial systems. Life Cycle Assessment (LCA) belongs to that category of tools, and is used to perform this study. In numerous industrial countries, LCA is now recognized, and is rapidly becoming the tool of preference, to successfully provide quantitative and scientific analyses of the environmental impacts of industrial systems. By providing an unbiased analysis of entire systems, LCA has shown that the reality behind widely held beliefs regarding {open_quotes}green{close_quotes} issues, such as reusable vs. one way products, and {open_quotes}natural{close_quotes} vs. synthetic products, were far more complex than expected, and sometimes not as {open_quotes}green{close_quotes} as assumed. This paper describes the modeling and assumptions of an LCA, commissioned by the Integrated Waste Services Association (IWSA), that summarizes the environmental emissions of waste-to-energy facilities, and compares them to the environmental emissions generated by major combustible energy sources of the northeast part of the United States (NE). The geographical boundary for this study is, therefore, the NE US.

  2. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  3. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect (OSTI)

    Gilles, Michael L.; Gilmour, John C. [Savannah River Nuclear Solutions, LLC (United States)] [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01T23:59:59.000Z

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  4. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect (OSTI)

    Amerine, D.B.

    1982-09-01T23:59:59.000Z

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  5. Managing low-level radioactive waste in a democratic society: Requirements and accommodations

    SciTech Connect (OSTI)

    Ortciger, T. [Illinois Dept. of Nuclear Safety, Springfield, IL (United States); Ayers, M. [Sangamon State Univ., Springfield, IL (United States)

    1993-12-31T23:59:59.000Z

    This paper will focus on public policy needs to ensure the involvement of the general public in effective decision-making related to the handling of low-level radioactive waste. It highlights difficulties experienced in involving the public in siting low-level radioactive waste disposal facilities. It reviews the process recently developed by Illinois to locate a disposal facility and discusses that process`s potential as a general model for siting such facilities and involving citizens in a democratic fashion.

  6. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect (OSTI)

    Ann M. Beauchesne

    2000-01-01T23:59:59.000Z

    Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.

  7. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

  8. Oak Ridge National Laboratory Transuranic Waste Certification Program

    SciTech Connect (OSTI)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01T23:59:59.000Z

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

  9. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    SciTech Connect (OSTI)

    Saueressig, D.G.

    1998-05-20T23:59:59.000Z

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  10. Enterprise Assessments Operational Awareness Record, Waste Treatment...

    Broader source: Energy.gov (indexed) [DOE]

    system (LMH), the melter equipment support handling system (LSH), the radioactive solid waste handling system (RWH), and the radioactive liquid waste disposal system (RLD)....

  11. Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)

    SciTech Connect (OSTI)

    Smith, Frank G.; Phifer, Mark A.

    2014-01-22T23:59:59.000Z

    The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

  12. Transfer and transport of solid waste with case studies of facilities in northern New Jersey and New York City

    SciTech Connect (OSTI)

    Peterson, C.; Towne, C.

    1995-09-01T23:59:59.000Z

    Transfer stations are used to consolidate the waste from collection vehicles for its transport to a disposal site that can be a waste-to-energy facility and/or a landfill. Separation of materials for recycling and/or composting may also be done at a transfer station. Transfer stations are developed and used primarily when the travel time to a disposal site is too far for a collection truck to transport waste in an economic manner. Travel time includes the actual transport time and the unloading time at a disposal site. Local factors such as the capacity of collection trucks, wage rates, and the size of collection crews will affect the economics of direct haul versus transfer haul. The various types of approaches used to transfer and transport wastes are reviewed in this paper.

  13. Safe handling of potential peroxide forming compounds and their corresponding peroxide yielded derivatives.

    SciTech Connect (OSTI)

    Sears, Jeremiah Matthew; Boyle, Timothy J.; Dean, Christopher J.

    2013-06-01T23:59:59.000Z

    This report addresses recent developments concerning the identification and handling of potential peroxide forming (PPF) and peroxide yielded derivative (PYD) chemicals. PPF chemicals are described in terms of labeling, shelf lives, and safe handling requirements as required at SNL. The general peroxide chemistry concerning formation, prevention, and identification is cursorily presented to give some perspective to the generation of peroxides. The procedure for determining peroxide concentrations and the proper disposal methods established by the Hazardous Waste Handling Facility are also provided. Techniques such as neutralization and dilution are provided for the safe handling of any PYD chemicals to allow for safe handling. The appendices are a collection of all available SNL documentation pertaining to PPF/PYD chemicals to serve as a single reference.

  14. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

  15. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Sections 4 through 9: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`s) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  16. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  17. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 2. Introduction

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Contents: Overview; Facility Background; Risk Assessment History at WTI; Peer Review Comments and Key Assumptions; and References.

  18. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    SciTech Connect (OSTI)

    Rabin, M.S.

    1992-08-01T23:59:59.000Z

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

  19. Concentration of remote-handled, transuranic, sodium nitrate-based sludge using agitated thin-film evaporators

    SciTech Connect (OSTI)

    Walker, J.F. Jr.; Youngblood, E.L.; Berry, J.B. (Oak Ridge National Lab., TN (USA)); Pen, Ben-Li (Institute of Nuclear Energy Research, Lung-Tan (Taiwan))

    1991-01-01T23:59:59.000Z

    The Waste Handling and Packaging Plant (WHPP) is being designed at Oak Ridge National Laboratory (ORNL) to prepared transuranic waste for final disposal. Once operational, this facility will process, package, and certify remote-handled transuranic waste for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. One of the wastes that will be handled at WHIPP is the transuranic sludge currently stored at ORNL in eight 50,000-gal underground tanks. The use of an Agitated Thin-Film Evaporator (ATFE) for concentration of this waste is being investigated. Tests have shown that the ATFE can be used to produce a thick slurry, a powder, or a fused salt. A computer model developed at the Savannah River Plant (SRP) to simulate the operation of ATFE's on their waste is being modified for use on the ORNL transuranic sludge. This paper summarizes the results of the test with the ATFEs to date, discusses the changes in the SRP model necessary to use this model with the ORNL waste, and compares the results of the model with the actual data taken from the operation of ATFEs at vendors' test facilities. 8 refs., 1 fig., 3 tabs.

  20. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    SciTech Connect (OSTI)

    Bonner, C.; Schanfein, M.; Estep, R. [and others

    1999-03-01T23:59:59.000Z

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques.

  1. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect (OSTI)

    Winkel, B.V.

    1995-03-03T23:59:59.000Z

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  2. Enhancing RESRAD-OFFSITE for Low Level Waste Disposal Facility Performance Assessment

    Broader source: Energy.gov [DOE]

    Abstract: The RESRAD-OFFSITE code was developed to evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The primary contamination, which is the source of all releases modeled by the code, is assumed to be a layer of soil. The code considers the release of contamination from the source to the atmosphere, to surface runoff, and to groundwater. The radionuclide leaching was modeled as a first order (without transport) release using radionuclide distribution coefficient and infiltration rate calculated from water balance (precipitation, surface runoff, evapotranspiration, etc.). Recently, a new source term model was added the RESRAD-OFFSITE code so that it can be applied to the evaluation of Low Level Waste (LLW) disposal facility performance assessment. This new improved source term model include (1) first order with transport, (2) equilibrium desorption (rinse) release, and (3) uniform release (constant dissolution). With these new source release options, it is possible to simulate both uncontainerized (soil) contamination and containerized (waste drums) contamination. A delay time in the source release was also added to the code. This allows modeling the LLW container degradation as a function of time. The RESRAD-OFFSITE code also allows linking to other codes using improved flux and concentration input options. Additional source release model such as diffusion release may be added later. In addition, radionuclide database with 1252 radionuclides (ICRP 107) and the corresponding dose coefficients (DCFPAK 3.02) and the Department of Energy’s new gender- and age-averaged Reference Person dose coefficients (DOE-STD-1196-2011) which is based on the US census data will be added to the next version of RESRAD-OFFSITE code

  3. Centrifuge modeling of radioactive waste migration through backfill in a near surface disposal facility

    SciTech Connect (OSTI)

    Gurumoorthy, C.; Kusakabe, O. [Geotechnical Engineering Division, Tokyo Institute of Technology, 2-12-1 Ookayama Meguroku, Tokyo 1528552 (Japan)

    2007-07-01T23:59:59.000Z

    Investigations on the performance of backfill barrier in Near Surface Disposal Facility (NSDF) for radioactive wastes are important to ensure the long term safety of such disposal option. Favorable condition to delay migration of radionuclides from disposed waste to far fields is diffusion process. However, advective dispersion/diffusion mechanism plays an important role due to changes in backfill over a period of time. In order to understand these mechanisms, detailed laboratory experiments are usually conducted for developing mathematical models to assess the behaviour of backfill. However, these experiments are time consuming and suffer with the limitations due to material complexity. Also, there are constraints associated with validation of theoretical predictions due to intricacy of boundary conditions as well as the time scale is quite different as compared to the time required for completion of the processes in the field. Keeping in view these aspects, centrifuge modeling technique has been adopted by various researchers to model and understand various geo-environment problems in order to provide a link between the real life situation termed as the 'Prototype' and its model, which is exposed to a higher gravitational field. An attempt has been made in this paper to investigate the feasibility of this technique to model advective dispersion/diffusion mechanism of radionuclides through saturated Bentonite-Sand (B:S) backfill. Various stages of centrifuge modeling are highlighted. Column tests were conducted in the centrifuge to evaluate the hydraulic conductivity of B:S mixture under prototype NSDF stress conditions. Results showed that steady state hydraulic conductivity under saturated conditions was 2.86 10{sup -11} m/sec. Studies indicate the feasibility of centrifuge modeling technique and usefulness to model advective diffusion of radionuclides through B:S backfill. (authors)

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  5. Large Precipitate Hydrolysis Aqueous (PHA) Heel Process Development for the Defense Waste Processing Facility (DWPF)

    SciTech Connect (OSTI)

    Lambert, D.P. [Westinghouse Savannah River Company, AIKEN, SC (United States); Boley, C.S.; Jacobs, R.A.

    1998-06-04T23:59:59.000Z

    A modification to the Precipitate Hydrolysis flowsheet used in DWPF Waste Qualification Runs has been developed.

  6. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect (OSTI)

    K. Winterholler

    2007-01-31T23:59:59.000Z

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  7. SPECIAL ANALYSIS AIR PATHWAY MODELING OF E-AREA LOW-LEVEL WASTE FACILITY

    SciTech Connect (OSTI)

    Hiergesell, R.; Taylor, G.

    2011-08-30T23:59:59.000Z

    This Special Analysis (SA) was initiated to address a concern expressed by the Department of Energy's Low Level Waste Disposal Facility Federal Review Group (LFRG) Review Team during their review of the 2008 E-Area Performance Assessment (PA) (WSRC, 2008). Their concern was the potential for overlapping of atmospheric plumes, emanating from the soil surface above SRS LLW disposal facilities within the E-Area, to contribute to the dose received by a member of the public during the Institutional Control (IC) period. The implication of this concern was that the dose to the maximally-exposed individual (MEI) located at the SRS boundary might be underestimated during this time interval. To address this concern a re-analysis of the atmospheric pathway releases from E-Area was required. In the process of developing a new atmospheric release model (ARM) capable of addressing the LFRG plume overlap concern, it became obvious that new and better atmospheric pathway disposal limits should be developed for each of the E-Area disposal facilities using the new ARM. The scope of the SA was therefore expanded to include the generation of these new limits. The initial work conducted in this SA was to develop a new ARM using the GoldSim{reg_sign} program (GTG, 2009). The model simulates the subsurface vapor diffusion of volatile radionuclides as they release from E-Area disposal facility waste zones and migrate to the land surface. In the process of this work, many new features, including several new physical and chemical transport mechanisms, were incorporated into the model. One of the most important improvements was to incorporate a mechanism to partition volatile contaminants across the water-air interface within the partially saturated pore space of the engineered and natural materials through which vapor phase transport occurs. A second mechanism that was equally important was to incorporate a maximum concentration of 1.9E-07 Ci/m{sup 3} of {sup 14}CO{sub 2} in the air-filled pores of cementitious materials. The ARM also combines the individual transport models constructed for each E-Area disposal facility into a single model, and was ultimately used to analyze the LFRG concern regarding the potential for atmospheric plume overlap at the SRS boundary during the IC period. To evaluate the plume overlap issue, a conservative approach was adopted whereby the MEI at the SRS boundary was exposed to the releases from all E-Area disposal facilities simultaneously. This is equivalent to a 100% overlap of all atmospheric plumes emanating from E-Area. Should the dose received from this level of atmospheric plume overlap still fall below the permissible exposure level of 10 mrem/yr, then the LFRG concern would be alleviated. The structuring of the ARM enables this evaluation to be easily performed. During the IC period, the peak of the 'total plume overlap dose' was computed to be 1.9E-05 mrem/yr, which is five orders of magnitude lower than the 10 mrem/yr PA performance objective for the atmospheric release pathway. The main conclusion of this study is that for atmospheric releases from the E-Area disposal facilities, plume overlap does not cause the total dose to the MEI at the SRS boundary during the IC to exceed the Performance Assessment (PA) performance objective. Additionally, the potential for plume overlap was assessed in the post-Institutional Control period. Atmospheric plume overlap is less likely to occur during this period but conceivably could occur if the prevailing wind direction shifted so as to pass directly over all EArea disposal facilities and transport airborne radionuclides to the MEI at the 100 m point of compliance (POC). This concern was also demonstrated of little concern, as the maximum plume overlap dose was found to be 1.45E+00 mrem/yr (or {approx}15% of the performance measure) during this period and under these unlikely conditions.

  8. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    SciTech Connect (OSTI)

    Fox, K.; Edwards, T.

    2012-05-08T23:59:59.000Z

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  10. ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Best, D.

    2010-08-04T23:59:59.000Z

    The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

  11. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31T23:59:59.000Z

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  12. DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site

    Broader source: Energy.gov [DOE]

    In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energy’s Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energy’s Idaho Site.

  13. Spring 2009 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post-Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann M.

    2009-05-31T23:59:59.000Z

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under and approved Hazardous Waste Management Act/Resource Conservation and Recovery Act Closure plan. Vessels and spaces were grouted and then covered with a concrete cap. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment.

  14. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  15. ALL-PATHWAYS DOSE ANALYSIS FOR THE PORTSMOUTH ON-SITE WASTE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Smith, F.; Phifer, M.

    2014-04-10T23:59:59.000Z

    A Portsmouth On-Site Waste Disposal Facility (OSWDF) All-Pathways analysis has been conducted that considers the radiological impacts to a resident farmer. It is assumed that the resident farmer utilizes a farm pond contaminated by the OSWDF to irrigate a garden and pasture and water livestock from which food for the resident farmer is obtained, and that the farmer utilizes groundwater from the Berea sandstone aquifer for domestic purposes (i.e. drinking water and showering). As described by FBP 2014b the Hydrologic Evaluation of Landfill Performance (HELP) model (Schroeder et al. 1994) and the Surface Transport Over Multiple Phases (STOMP) model (White and Oostrom 2000, 2006) were used to model the flow and transport from the OSWDF to the Points of Assessment (POAs) associated with the 680-ft elevation sandstone layer (680 SSL) and the Berea sandstone aquifer. From this modeling the activity concentrations radionuclides were projected over time at the POAs. The activity concentrations were utilized as input to a GoldSimTM (GTG 2010) dose model, described herein, in order to project the dose to a resident farmer over time. A base case and five sensitivity cases were analyzed. The sensitivity cases included an evaluation of the impacts of using a conservative inventory, an uncased well to the Berea sandstone aquifer, a low waste zone uranium distribution coefficient (Kd), different transfer factors, and reference person exposure parameters (i.e. at 95 percentile). The maximum base case dose within the 1,000 year assessment period was projected to be 1.5E-14 mrem/yr, and the maximum base case dose at any time less than 10,000 years was projected to be 0.002 mrem/yr. The maximum projected dose of any sensitivity case was approximately 2.6 mrem/yr associated with the use of an uncased well to the Berea sandstone aquifer. This sensitivity case is considered very unlikely because it assumes leakage from the location of greatest concentration in the 680 SSL in to the Berea sandstone aquiver over time and does not conform to standard private water well construction practices. The bottom-line is that all predicted doses from the base case and five sensitivity cases fall well below the DOE all-pathways 25 mrem/yr Performance Objective.

  16. Environmental Management Waste Management Facility (EMWMF) Site-Specific Health and Safety Plan, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Flynn, N.C. Bechtel Jacobs

    2008-04-21T23:59:59.000Z

    The Bechtel Jacobs Company LLC (BJC) policy is to provide a safe and healthy workplace for all employees and subcontractors. The implementation of this policy requires that operations of the Environmental Management Waste Management Facility (EMWMF), located one-half mile west of the U.S. Department of Energy (DOE) Y-12 National Security Complex, be guided by an overall plan and consistent proactive approach to environment, safety and health (ES&H) issues. The BJC governing document for worker safety and health, BJC/OR-1745, 'Worker Safety and Health Program', describes the key elements of the BJC Safety and Industrial Hygiene (IH) programs, which includes the requirement for development and implementation of a site-specific Health and Safety Plan (HASP) where required by regulation (refer also to BJC-EH-1012, 'Development and Approval of Safety and Health Plans'). BJC/OR-1745, 'Worker Safety and Health Program', implements the requirements for worker protection contained in Title 10 Code of Federal Regulations (CFR) Part 851. The EMWMF site-specific HASP requirements identifies safe operating procedures, work controls, personal protective equipment, roles and responsibilities, potential site hazards and control measures, site access requirements, frequency and types of monitoring, site work areas, decontamination procedures, and outlines emergency response actions. This HASP will be available on site for use by all workers, management and supervisors, oversight personnel and visitors. All EMWMF assigned personnel will be briefed on the contents of this HASP and will be required to follow the procedures and protocols as specified. The policies and procedures referenced in this HASP apply to all EMWMF operations activities. In addition the HASP establishes ES&H criteria for the day-to-day activities to prevent or minimize any adverse effect on the environment and personnel safety and health and to meet standards that define acceptable waste management practices. The HASP is written to make use of past experience and best management practices to eliminate or minimize hazards to workers or the environment from events such as fires, falls, mechanical hazards, or any unplanned release to the environment.

  17. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect (OSTI)

    Koopman, D. C.

    2013-01-22T23:59:59.000Z

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

  18. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    SciTech Connect (OSTI)

    Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

    1998-03-01T23:59:59.000Z

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

  19. Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Edwards, T.; Mahannah, R.

    2011-07-05T23:59:59.000Z

    The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

  20. Stabilization of high and low solids Consolidated Incinerator Facility (CIF) waste with super cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-01-11T23:59:59.000Z

    This report details solidification activities using selected Mixed Waste Focus Area technologies with the High and Low Solid waste streams. Ceramicrete and Super Cement technologies were chosen as the best possible replacement solidification candidates for the waste streams generated by the SRS incinerator from a list of several suggested Mixed Waste Focus Area technologies. These technologies were tested, evaluated, and compared to the current Portland cement technology being employed. Recommendation of a technology for replacement depends on waste form performance, process flexibility, process complexity, and cost of equipment and/or raw materials.

  1. Closure Strategy for a Waste Disposal Facility with Multiple Waste Types and Regulatory Drivers at the Nevada Test Site

    SciTech Connect (OSTI)

    D. Wieland, V. Yucel, L. Desotell, G. Shott, J. Wrapp

    2008-04-01T23:59:59.000Z

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) plans to close the waste and classified material storage cells in the southeast quadrant of the Area 5 Radioactive Waste Management Site (RWMS), informally known as the '92-Acre Area', by 2011. The 25 shallow trenches and pits and the 13 Greater Confinement Disposal (GCD) borings contain various waste streams including low-level waste (LLW), low-level mixed waste (LLMW), transuranic (TRU), mixed transuranic (MTRU), and high specific activity LLW. The cells are managed under several regulatory and permit programs by the U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP). Although the specific closure requirements for each cell vary, 37 closely spaced cells will be closed under a single integrated monolayer evapotranspirative (ET) final cover. One cell will be closed under a separate cover concurrently. The site setting and climate constrain transport pathways and are factors in the technical approach to closure and performance assessment. Successful implementation of the integrated closure plan requires excellent communication and coordination between NNSA/NSO and the regulators.

  2. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  3. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  4. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Mahannah, R.; Edwards, T.

    2013-06-04T23:59:59.000Z

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the “go/no-go” CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a “go/no-go” CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the “go/no-go” decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the “go/no-go” criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

  5. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15T23:59:59.000Z

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a ''go/no-go'' CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the ''go/no-go'' decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the ''go/no-go'' criteria developed from the sludge simulant testing was conservative for these samples taken from Sludge Batch 7b (SB7b), the sludge batch currently being processed. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

  6. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

    2012-04-17T23:59:59.000Z

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

  7. Lessons learned -- a comparison of the proposed on-site waste management facilities at the various Department of Energy sites

    SciTech Connect (OSTI)

    Ciocco, J. [Dept. of Energy, Germantown, MD (United States); Singh, D. [Booz Allen and Hamilton, Germantown, MD (United States); Survochak, S. [DOE RFETS, Golden, CO (United States); Elo, M. [Burns and Roe, Germantown, MD (United States)

    1996-12-31T23:59:59.000Z

    The Department of Energy Sites (DOE) are faced with the challenge of managing several categories of waste generated from past or future cleanup activities, such as 11(e)2 byproduct material, low-level radioactive (LL), low-level radioactive mixed (LLM), transuranic (TRU), high level radioactive (HL), and hazardous waste (HW). DOE must ensure safe and efficient management of these wastes while complying with all applicable federal and state laws. Proposed waste management strategies for the EM-40 Environmental Restoration (ER) program at these sites indicate that on-site disposal is becoming a viable option. For purposes of this paper, on-site disposal cells managed by the EM-40 program at Hanford, Weldon Spring, Fernald Environmental Management Project (FEMP) and Rocky Flats were compared. Programmatic aspects and design features were evaluated to determine what comparisons can be made, and to identify benefits lessons learned that may be applicable to other sites. Based on comparative analysis, it can be concluded that the DOE EM-40 disposal cells are very unique. Stakeholders played a major role in the decision to locate the various DOE on-site disposal facilities. The disposal cells will be used to manage 11(e)2 by-product materials, LL, LLM, and/or HLW. The analysis further suggests that the design criteria are comparable. Lessons learned relative to the public involvement activities at Weldon Spring, and the design approach at Hanford should be considered when planning future on-site disposal facilities at DOE sites. Further, a detailed analysis of progress made at Hanford should be evaluated for application at sites such as Rocky Flats that are currently planning on-site disposal facilities.

  8. University of California, Irvine Environmental Health and Safety www.ehs.uci.edu Questions Call: (949) 824-6200 Version 1.0 Facilities maintenance generates a variety of wastes that are regulated as a hazardous waste by local, state, and federal

    E-Print Network [OSTI]

    George, Steven C.

    as a hazardous waste by local, state, and federal laws. A waste is considered a hazardous waste if it contains. Common Types Of Facilities Maintenance Operations Hazardous Waste Include: · Antifreeze · Lubricants if your waste is hazardous visit http://www.ehs.uci.edu/programs/enviro/hwasteguidelines.html. Hazardous

  9. Preconceptual design for a Monitored Retrievable Storage (MRS) transfer facility

    SciTech Connect (OSTI)

    Woods, W.D.; Jowdy, A.K. (Parsons (Ralph M.) Co., Pasadena, CA (USA)); Smith, R.I. (Pacific Northwest Lab., Richland, WA (USA))

    1990-09-01T23:59:59.000Z

    The contract between the DOE and the utilities specifies that the DOE will receive spent fuel from the nuclear utilities in 1998. This study investigates the feasibility of employing a simple Transfer Facility which can be constructed quickly, and operate while the full-scale MRS facilities are being constructed. The Transfer Facility is a hot cell designed only for the purpose of transferring spent fuel assemblies from the Office of Civilian Radioactive Waste Management (OCRWM) transport casks (shipped from the utility sites) into onsite concrete storage casks. No operational functions other than spent fuel assembly transfers and the associated cask handling, opening, and closing would be performed in this facility. Radioactive waste collected in the Transfer Facility during operations would be stored until the treatment facilities in the full-scale MRS facility became operational, approximately 2 years after the Transfer Facility started operation. An alternate wherein the Transfer Facility was the only waste handling building on the MRS site was also examined and evaluated. 6 figs., 26 tabs.

  10. EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

    Office of Environmental Management (EM)

    EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic wastesodium...

  11. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  12. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    SciTech Connect (OSTI)

    Chavis, D.M.

    1992-05-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  13. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

  14. PEGASUS, a European research project on the effects of gas in underground storage facilities for radioactive waste

    SciTech Connect (OSTI)

    Haijtink, B.; McMenamin, T. [Commission of the European Communities, Brussels (Belgium)

    1993-12-31T23:59:59.000Z

    Whereas the subject of gas generation and possible gas release from radioactive waste repositories has gained in interest on the international scene, the Commission of the European Communities has increased its research efforts on this issue. In particular in the 4th five year R and D program on Management and Storage of Radioactive Waste (1990--1994), a framework has been set up in which research efforts on the subject of gas generation and migration, supported by the CEC, are brought together and coordinated. In this project, called PEGASUS, Project on the Effects of GAS in Underground Storage facilities for radioactive waste, about 20 organizations and research institutes from 7 European countries are involved. The project covers both experimental and theoretical studies of the processes of gas formation and possible gas release from the different waste types, LLW, ILW and HLW, under typical repository conditions in suitable geological formations as clay, salt and granite. In this paper an overview is given of the various studies undertaken in the project as well as some first results presented.

  15. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin [Office of Groundwater and Soil Remediation, U.S. Department of Energy, Washington, DC 20585 (United States); Wellman, Dawn [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Deeb, Rula; Hawley, Elisabeth [ARCADIS U.S., Inc., Emeryville, CA 94608 (United States)

    2012-07-01T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  16. Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility at the INL Site

    SciTech Connect (OSTI)

    Idaho Cleanup Project

    2006-06-01T23:59:59.000Z

    The Waste Calcining Facility (WCF) is located at the Idaho Nuclear Technology and Engineering Center. In 1998, the WCF was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the WCF to ensure continued protection of human health and the environment. The post-closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report.

  17. RCRA, superfund and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs) and provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It gives the part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in part 258 to the corresponding requirements for hazardous waste TSDFs in part 264, which are generally more stringent.

  18. H-Area Hazardous Waste Management Facility groundwater monitoring report. Third and fourth quarters 1996, Volume 1

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The groundwater in the uppermost aquifer beneath the H-Area Hazardous Waste Management Facility (HWMF), also known as the H-Area Seepage Basins, at the Savannah River Site (SRS) is monitored periodically for various hazardous and radioactive constituents as required by Module III, Section D, of the 1995 Resource Conservation and Recovery ACT (RCRA) Renewal Permit (South Carolina Hazardous and Mixed Waste Permit SC1-890-008-989), effective October 5, 1995. Currently, the H-Area HWMF monitoring network consists of 130 wells of the HSB series and 8 wells of the HSL series screened in the three hydrostratigraphic units that make up the uppermost aquifer beneath the H-Area HWMF. This report presents the results of the required groundwater monitoring program as identified in provision IIIDH.11.c

  19. The Current and Future Marketplace for Waste-To-Energy Cogeneration Facilities in the United States

    E-Print Network [OSTI]

    Jacobs, S.

    , it is believed that 425 plants and projects will be in existence by the end of 1996. Representing a total capacity of 260,000 tons per day, by 1996 over 36% of all municipal solid waste generated in the United States will be incinerated by waste-to-energy...

  20. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    SciTech Connect (OSTI)

    Crawford, C.; Bannochie, C.

    2014-05-12T23:59:59.000Z

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. ? The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. ? Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 ?m and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. ? Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter

  1. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  2. A cask maintenance facility feasibility study

    SciTech Connect (OSTI)

    Rennich, M.J.; Medley, L.G.; Attaway, C.R.

    1989-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is developing a transportation system for spent nuclear fuel (SNF) and defense high level waste (HLW) as a part of the Federal Waste Management System (FWMS). In early 1988, a feasibility study was undertaken to design a stand-alone, ''green field'' facility for maintaining the FWMS casks. The feasibility study provided an initial layout facility design, an estimate of the construction cost, and an acquisition schedule for a Cask Maintenance Facility (CMF). The study also helped to define the interfaces between the transportation system and the waste generators, the repository, and a Monitored Retrievable Storage (MRS) facility. The data, design, and estimated costs resulting from the study have been organized for use in the total transportation system decision-making process. Most importantly, the feasibility study also provides a foundation for continuing design and planning efforts. Fleet servicing facility studies, operational studies from current cask system operators, a definition of the CMF system requirements, and the experience of others in the radioactive waste transportation field were used as a basis for the feasibility study. In addition, several cask handling facilities were visited to observe and discuss cask operations to establish the functions and methods of cask maintenance expected to be used in the facility. Finally, a peer review meeting was held at Oak Ridge, Tennessee in August, 1988, in which the assumptions, design, layout, and functions of the CMF were significantly refined. Attendees included representatives from industry, the repository and transportation operations.

  3. Information related to low-level mixed waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement

    SciTech Connect (OSTI)

    Wilkins, B.D.; Dolak, D.A.; Wang, Y.Y.; Meshkov, N.K.

    1996-12-01T23:59:59.000Z

    This report was prepared to support the analysis of risks and costs associated with the proposed treatment of low-level mixed waste (LLMW) under management of the US Department of Energy (DOE). The various waste management alternatives for treatment of LLMW have been defined in the DOE`s Office of Waste Management Programmatic Environmental Impact Statement. This technical memorandum estimates the waste material throughput expected at each proposed LLMW treatment facility and analyzes potential radiological and chemical releases at each DOE site resulting from treatment of these wastes. Models have been developed to generate site-dependent radiological profiles and waste-stream-dependent chemical profiles for these wastes. Current site-dependent inventories and estimates for future generation of LLMW have been obtained from DOE`s 1994 Mixed Waste Inventory Report (MWIR-2). Using treatment procedures developed by the Mixed Waste Treatment Project, the MWIR-2 database was analyzed to provide waste throughput and emission estimates for each of the different waste types assessed in this report. Uncertainties in the estimates at each site are discussed for waste material throughputs and radiological and chemical releases.

  4. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  5. Issues in the review of a license application for an above grade low-level radioactive waste disposal facility

    SciTech Connect (OSTI)

    Ringenberg, J.D. [Nebraska Dept. of Environmental Quality, NE (United States)

    1993-03-01T23:59:59.000Z

    In December 1987, Nebraska was selected by the Central Interstate Compact (CIC) Commission as the host state for the construction of a low-level radioactive waste disposal facility. After spending a year in the site screening process, the Compact`s developer, US Ecology, selected three sites for detailed site characterization. These sites were located in Nemaha, Nuckolls and Boyd Counties. One year later the Boyd County site was selected as the preferred site and additional site characterization studies were undertaken. On July 29, 1990, US Ecology submitted a license application to the Nebraska Department of Environmental Control (now Department of Environmental Quality-NDEQ). This paper will present issues that the NDEQ has dealt with since Nebraska`s selection as the host state for the CIC facility.

  6. Linking RESRAD-OFFSITE and HYDROGEOCHEM Model for Performance Assessment of Low-Level Radioactive Waste Disposal Facility - 13429

    SciTech Connect (OSTI)

    Lin, Wen-Sheng [Hydrotech Research Institute, National Taiwan University, Taiwan (China)] [Hydrotech Research Institute, National Taiwan University, Taiwan (China); Yu, Charley; Cheng, Jing-Jy; Kamboj, Sunita; Gnanapragasam, Emmanuel [Argonne National Laboratory, Argonne, IL 60439 (United States)] [Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, Chen-Wuing [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China)] [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan (China); Li, Ming-Hsu [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)] [Institute of Hydrological and Oceanic Sciences, National Central University, Taiwan (China)

    2013-07-01T23:59:59.000Z

    Performance assessments are crucial steps for the long-term radiological safety requirements of low-level waste (LLW) disposal facility. How much concentration of radionuclides released from the near-field to biosphere and what radiation exposure levels of an individual can influence on the satisfactory performance of the LLW disposal facility and safety disposal environment. Performance assessment methodology for the radioactive waste disposal consists of the reactive transport modeling of safety-concerned radionuclides released from the near-field to the far-field, and the potential exposure pathways and the movements of radionuclides through the geosphere, biosphere and man of which the accompanying dose. Therefore, the integration of hydrogeochemical transport model and dose assessment code, HYDROGEOCHEM code and RESRAD family of codes is imperative. The RESRAD family of codes such as RESRAD-OFFSITE computer code can evaluate the radiological dose and excess cancer risk to an individual who is exposed while located within or outside the area of initial (primary) contamination. The HYDROGEOCHEM is a 3-D numerical model of fluid flow, thermal, hydrologic transport, and biogeochemical kinetic and equilibrium reactions in saturated and unsaturated media. The HYDROGEOCHEM model can also simulate the crucial geochemical mechanism, such as the effect of redox processes on the adsorption/desorption, hydrogeochemical influences on concrete degradation, adsorption/desorption of radionuclides (i.e., surface complexation model) between solid and liquid phase in geochemically dynamic environments. To investigate the safety assessment of LLW disposal facility, linking RESRAD-OFFSITE and HYDROGEOCHEM model can provide detailed tools of confidence in the protectiveness of the human health and environmental impact for safety assessment of LLW disposal facility. (authors)

  7. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 2. Introduction. Draft report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This volume provides a description of the facility, and its location and setting in the three-state area of Ohio, Pennsylvania, and West Virginia; an overview of previous risk assessments conducted by U.S. EPA for this site, including the preliminary assessment of inhalation exposure and the screening-level risk analyses of indirect exposure; and a summary of comments provided by the Peer Review Panel on the Project Plan.

  8. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  9. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect (OSTI)

    Greenhalgh, W.O.

    1994-08-08T23:59:59.000Z

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream.

  10. Potential for selenium migration at a lignite power plant solid waste disposal facility

    E-Print Network [OSTI]

    Hall, Steven Douglas

    1986-01-01T23:59:59.000Z

    . All groundwater that recharges on the disposal site is slightly saline and flows east, probably discharging into the Gibbons Creek Reservoir. Selenium, arsenic, boron, iron, manganese, and sulfate in the lignite waste effluent exceed either EPA... ( 1975) drinking water standards or EPA (1973) recommended livestock water standards. Since the natural groundwater contains higher concentrations of selenium, iron, manganese, and sulfate than the waste effluent, only arsenic and boron should...

  11. Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement

    SciTech Connect (OSTI)

    Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

    1996-12-01T23:59:59.000Z

    This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

  12. National Biomedical Tracer Facility: Project definition study

    SciTech Connect (OSTI)

    Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

    1995-05-31T23:59:59.000Z

    The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

  13. Development of Risk Insights for Regulatory Review of a Near-Surface Disposal Facility for Radioactive Waste

    SciTech Connect (OSTI)

    Esh, D.W.; Ridge, A.C.; Thaggard, M. [U.S. Nuclear Regulatory Commission, Mail Stop T7J8, Washington, DC 20555 (United States)

    2006-07-01T23:59:59.000Z

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)

  14. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07T23:59:59.000Z

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  15. Economic evaluation of volume reduction for Defense transuranic waste

    SciTech Connect (OSTI)

    Brown, C.M.

    1981-07-01T23:59:59.000Z

    This study evaluates the economics of volume reduction of retrievably stored and newly generated DOE transuranic waste by comparing the costs of reduction of the waste with the savings possible in transportation and disposal of the waste. The report develops a general approach to the comparison of TRU waste volume reduction costs and cost savings, establishes an initial set of cost data, and develops conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled newly generated, and retrievably stored DOE transuranic waste. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal, and transportation savings with volume reduction and the volume reduction techniques and savings.

  16. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  17. 1995 solid waste 30-year container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; DeForest, T.J.; Patridge, M.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-07-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container category. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU-TRUM) waste. These volumes and their associated container categories will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1995 through FY 2024. The data presented in this report establish a baseline for solid waste management both in the present and future. With knowledge of the volumes by container type, decisions on the facility handling and storage requirements can be adequately made. It is recognized that the forecast estimates will vary as facility planning and missions continue to change and become better defined; however, the data presented in this report still provide useful insight into Hanford`s future solid waste management requirements.

  18. DOE mixed waste treatment capacity analysis

    SciTech Connect (OSTI)

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01T23:59:59.000Z

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  19. MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY

    SciTech Connect (OSTI)

    Bannochie, C; David Diprete, D; Ned Bibler, N

    2008-12-31T23:59:59.000Z

    This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

  20. Implementation plan for the Waste Experimental Reduction Facility Restart Operational Readiness Review

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The primary technical objective for the WERF Restart Project is to assess, upgrade where necessary, and implement management, documentation, safety, and operation control systems that enable the resumption and continued operation of waste treatment and storage operations in a manner that is compliant with all environment, safety, and quality requirements of the US Department of Energy and Federal and State regulatory agencies. Specific processes that will be resumed at WERF include compaction of low-level compatible waste; size reduction of LLW, metallic and wood waste; incineration of combustible LLW and MLLW; and solidification of low-level and mixed low-level incinerator bottom ash, baghouse fly ash, and compatible sludges and debris. WERF will also provide for the operation of the WWSB which includes storage of MLLW in accordance with Resource Conservation and Recovery Act requirements.

  1. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Daniel, W.E.

    2000-01-06T23:59:59.000Z

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  2. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-01T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  3. Hanford Site Transuranic (TRU) Waste Certification Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP.

  4. FY2010 ANNUAL REVIEW E-AREA LOW-LEVEL WASTE FACILITY PERFORMANCE ASSESSMENT AND COMPOSITE ANALYSIS

    SciTech Connect (OSTI)

    Butcher, T.; Swingle, R.; Crapse, K.; Millings, M.; Sink, D.

    2011-01-01T23:59:59.000Z

    The E-Area Low-Level Waste Facility (ELLWF) consists of a number of disposal units described in the Performance Assessment (PA)(WSRC, 2008b) and Composite Analysis (CA)(WSRC, 1997; WSRC, 1999): Low-Activity Waste (LAW) Vault, Intermediate Level (IL) Vault, Trenches (Slit Trenches [STs], Engineered Trenches [ETs], and Component-in-Grout [CIG] Trenches), and Naval Reactor Component Disposal Areas (NRCDAs). This annual review evaluates the adequacy of the approved 2008 ELLWF PA along with the Special Analyses (SAs) approved since the PA was issued. The review also verifies that the Fiscal Year (FY) 2010 low-level waste (LLW) disposal operations were conducted within the bounds of the PA/SA baseline, the Savannah River Site (SRS) CA, and the Department of Energy (DOE) Disposal Authorization Statement (DAS). Important factors considered in this review include waste receipts, results from monitoring and research and development (R&D) programs, and the adequacy of controls derived from the PA/SA baseline. Sections 1.0 and 2.0 of this review are a summary of the adequacy of the PA/SA and CA, respectively. An evaluation of the FY2010 waste receipts and the resultant impact on the ELLWF is summarized in Section 3.1. The results of the monitoring program, R&D program, and other relevant factors are found in Section 3.2, 3.3 and 3.4, respectively. Section 4.0 contains the CA annual determination similarly organized. SRS low-level waste management is regulated under DOE Order 435.1 (DOE, 1999a) and is authorized under a DAS as a federal permit. The original DAS was issued by the DOE-Headquarters (DOE-HQ) on September 28, 1999 (DOE, 1999b) for the operation of the ELLWF and the Saltstone Disposal Facility (SDF). The 1999 DAS remains in effect for the regulation of the SDF. Those portions of that DAS applicable to the ELLWF were superseded by revision 1 of the DAS on July 15, 2008 (DOE, 2008b). The 2008 PA and DAS were officially implemented by the facility on October 31, 2008 and are the authorization documents for this FY2010 Annual Review. Department of Energy Headquarters approval of the 2008 DAS was subject to numerous conditions specified in the document. Two of those conditions are to update the ELLWF closure plan and monitoring plan to align with the conceptual model analyzed in the PA. Both of these conditions were met with the issuance of the PA Monitoring Plan (Millings, 2009a) and the Closure Plan (Phifer et al, 2009a). The PA Monitoring Plan was approved by DOE on July 22, 2009 and the Closure Plan was approved by DOE on May 21, 2009. Both will be updated as needed to remain consistent with the PA. The DAS also specifies that the maintenance plan include activities to resolve each of the secondary issues identified in the DOEHQ review of the 2008 PA that were not completely addressed either with supplemental material provided to the review team or in final revisions to the PA. These outstanding issues were originally documented in the 2008 update of the PA/CA Maintenance Plan (WSRC, 2008a) and in subsequent PA/CA Maintenance Plans (most recently SRNS, 2010a) as required and are actively being worked.

  5. Statement of work for services provided by the waste sampling and characterization facility for the effluent and environmental monitoring program - Calendar year 1999

    SciTech Connect (OSTI)

    DIEDIKER, L.P.

    1999-06-03T23:59:59.000Z

    This document defines the services that the Waste Sampling and Characterization Facility (WSCF) shall provide the Environmental Compliance Program (ECP) throughout the calendar year for effluent and environmental monitoring (EEM) analysis. One of the purposes of EEM is to monitor liquid and gaseous effluents and the environment immediately around facilities that might contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine the degree of compliance with applicable federal and state regulations and permits.

  6. Statement of Work (SOW) for services provided by the Waste Sampling and Characterization Facility for the Effluent and Environmental Monitoring Program during calendar year 1998

    SciTech Connect (OSTI)

    GLECKLER, B.P.

    1998-10-22T23:59:59.000Z

    This document defines the services the Waste Sampling and Characterization Facility (WSCF) shall provide the Effluent and Environmental Monitoring Program (EEM) throughout the calendar year for analysis. The purpose of the EEM Program is to monitor liquid and gaseous effluents, and the environment immediately around the facilities which may contain radioactive and hazardous materials. Monitoring data are collected, evaluated, and reported to determine their degree of compliance with applicable federal and state regulations and permits.

  7. Savannah River Site Waste Management Program Plan, FY 1993. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

  8. Criticality Safety Evaluation for TRU Waste In Storage at the RWMC

    SciTech Connect (OSTI)

    M. E. Shaw; J. B. Briggs; C. A. Atkinson; G. J. Briscoe

    1994-04-01T23:59:59.000Z

    Stored containers (drums, boxes, and bins) of transuranic waste at the Radioactive Waste Management Complex (RWMC) facility located at the Idaho National Engineering Laboratory (INEL) were evaluated based on inherent neutron absorption characteristics of the waste materials. It was demonstrated that these properties are sufficient to preclude a criticality accident at the actual fissile levels present in the waste stored at the RWMC. Based on the database information available, the results reported herein confirm that the waste drums, boxes, and bins currently stored at the RWMC will remain safely subcritical if rearranged, restacked, or otherwise handled. Acceptance criteria for receiving future drum shipments were established based on fully infinite systems.

  9. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III

    SciTech Connect (OSTI)

    Chase, J.

    1998-10-30T23:59:59.000Z

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

  10. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-04-09T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  11. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-06-02T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  12. Mixed Waste Management Facility (MWMF) Old Burial Ground (OBG) source control technology and inventory study

    SciTech Connect (OSTI)

    Flach, G.P.; Rehder, T.E.; Kanzleiter, J.P.

    1996-10-02T23:59:59.000Z

    This report has been developed to support information needs for wastes buried in the Burial Ground Complex. Information discussed is presented in a total of four individual attachments. The general focus of this report is to collect information on estimated source inventories, leaching studies, source control technologies, and to provide information on modeling parameters and associated data deficiencies.

  13. Oak Ridge National Lebroatory Liquid&Gaseous Waste Treatment System Strategic Plan

    SciTech Connect (OSTI)

    Van Hoesen, S.D.

    2003-09-09T23:59:59.000Z

    Excellence in Laboratory operations is one of the three key goals of the Oak Ridge National Laboratory (ORNL) Agenda. That goal will be met through comprehensive upgrades of facilities and operational approaches over the next few years. Many of ORNL's physical facilities, including the liquid and gaseous waste collection and treatment systems, are quite old, and are reaching the end of their safe operating life. The condition of research facilities and supporting infrastructure, including the waste handling facilities, is a key environmental, safety and health (ES&H) concern. The existing infrastructure will add considerably to the overhead costs of research due to increased maintenance and operating costs as these facilities continue to age. The Liquid Gaseous Waste Treatment System (LGWTS) Reengineering Project is a UT-Battelle, LLC (UT-B) Operations Improvement Program (OIP) project that was undertaken to develop a plan for upgrading the ORNL liquid and gaseous waste systems to support ORNL's research mission.

  14. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect (OSTI)

    Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

    2012-07-01T23:59:59.000Z

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  15. Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Balkey, J.J.; Robinson, M.A.; Boak, J.

    1997-12-01T23:59:59.000Z

    The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

  16. RCRA Part B Permit Application for the Idaho National Engineering Laboratory - Volume 5 Radioactive Waste Management Complex

    SciTech Connect (OSTI)

    Pamela R. Cunningham

    1992-07-01T23:59:59.000Z

    This section of the Radioactive Waste Management Complex (RWMC) Part B permit application describes the waste characteristics Of the transuranic (TRU) mixed wastes at the RWMC waste management units to be permitted: the Intermediate-Level Transuranic Storage Facility (ILTSF) and the Waste Storage Facility (WSF). The ILTSF is used to store radioactive remote-handled (RH) wastes. The WSF will be used to store radioactive contact-handled (CH) wastes. The Transuranic Storage Area (TSA) was established at the RWMC to provide interim storage of TRU waste. Department of Energy (DOE) Order 5820.2A defines TRU waste as waste contaminated with alpha-emitting transuranium radionuclides with half-lives greater than 20 years in concentrations greater than 100 nanocuries per gram (nCi/g) o f waste material. The TSA serves generators both on and off the Idaho National Engineering Laboratory (INEL). The ILTSF is located at the TSA, and the WSF will be located there also. Most of the wastes managed at the TSA are mixed wastes, which are radioactive wastes regulated under the Atomic Energy Act (AEA) that also contain hazardous materials regulated under the Resource Conservation and Recovery Act (RCRA) and the Idaho Hazardous Waste Management Regulations. These wastes include TRU mixed wastes and some low-level mixed wastes. Accordingly, the TSA is subject to the permitting requirements of RCRA and the Idaho Administrative Procedures Act (IDAPA). Prior to 1982, DOE orders defined TRU wastes as having transuranium radionuclides in concentrations greater than 10 nCi/g, The low-level mixed wastes managed at the TSA are those wastes with 10 to 100 nCi/g of TRU radionuclides that prior to 1982 were considered TRU waste.

  17. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05T23:59:59.000Z

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

  18. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect (OSTI)

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21T23:59:59.000Z

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  19. M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

  20. H-Area Hazardous Waste Management Facility groundwater monitoring report, Third and fourth quarters 1995: Volume 1

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    Groundwater at the H-Area Hazardous Waste Management Facility (HWMF) is monitored in compliance with applicable regulations. Monitoring results are compared to the South Carolina Department of Health and Environmental control (SCDHEC) Groundwater Protection Standard (GWPS). Historically as well as currently, nitrate-nitrite as nitrogen, nonvolatile beta, and tritium have been among the primary constituents to exceed standards. Other radionuclides and hazardous constituents also exceeded the GWPS in the second half of 1995. Elevated constituents were found primarily in the water table (Aquifer Zone IIB{sub 2}), however, constitutents exceeding standards also occurred in several different aquifer zones monitoring wells. Water-level maps indicate that the groundwater flow rates and directions at the H-Area HWMF have remained relatively constant since the basins ceased to be active in 1988.

  1. CARRIER/CASK HANDLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    E.F. Loros

    2000-06-23T23:59:59.000Z

    The Carrier/Cask Handling System receives casks on railcars and legal-weight trucks (LWTs) (transporters) that transport loaded casks and empty overpacks to the Monitored Geologic Repository (MGR) from the Carrier/Cask Transport System. Casks that come to the MGR on heavy-haul trucks (HHTs) are transferred onto railcars before being brought into the Carrier/Cask Handling System. The system is the interfacing system between the railcars and LWTs and the Assembly Transfer System (ATS) and Canister Transfer System (CTS). The Carrier/Cask Handling System removes loaded casks from the cask transporters and transfers the casks to a transfer cart for either the ATS or CTS, as appropriate, based on cask contents. The Carrier/Cask Handling System receives the returned empty casks from the ATS and CTS and mounts the casks back onto the transporters for reshipment. If necessary, the Carrier/Cask Handling System can also mount loaded casks back onto the transporters and remove empty casks from the transporters. The Carrier/Cask Handling System receives overpacks from the ATS loaded with canisters that have been cut open and emptied and mounts the overpacks back onto the transporters for disposal. If necessary, the Carrier/Cask Handling System can also mount empty overpacks back onto the transporters and remove loaded overpacks from them. The Carrier/Cask Handling System is located within the Carrier Bay of the Waste Handling Building System. The system consists of cranes, hoists, manipulators, and supporting equipment. The Carrier/Cask Handling System is designed with the tooling and fixtures necessary for handling a variety of casks. The Carrier/Cask Handling System performance and reliability are sufficient to support the shipping and emplacement schedules for the MGR. The Carrier/Cask Handling System interfaces with the Carrier/Cask Transport System, ATS, and CTS as noted above. The Carrier/Cask Handling System interfaces with the Waste Handling Building System for building structures and space allocations. The Carrier/Cask Handling System interfaces with the Waste Handling Building Electrical System for electrical power.

  2. Siting of low-level radioactive waste disposal facilities in Texas

    E-Print Network [OSTI]

    Isenhower, Daniel Bruce

    1982-01-01T23:59:59.000Z

    University property was evaluated for suitability for disposal of low-level radioactive waste. This site was evaluated to demonstrate, briefly, the site characterization process and to determine the ability of the statewide study to accurately predict... these boreholes. Literature review was an additional method employed to characterize the site. The results of this site characterization reveal that a more extensive investigation would be necessary to completely evaluate the site and that the state- wide...

  3. Final closure cover for a Hanford radioactive mixed waste disposal facility

    SciTech Connect (OSTI)

    Johnson, K.D.

    1996-02-06T23:59:59.000Z

    This study provides a preliminary design for a RCRA mixed waste landfill final closure cover. The cover design was developed by a senior class design team from Seattle University. The design incorporates a layered design of indigenous soils and geosynthetics in a layered system to meet final closure cover requirements for a landfill as imposed by the Washington Administrative Code WAC-173-303 implementation of the Resource Conservation and Recovery Act.

  4. Medical waste management in Ibadan, Nigeria: Obstacles and prospects

    SciTech Connect (OSTI)

    Coker, Akinwale [Department of Civil Engineering, Faculty of Technology, University of Ibadan, Ibadan (Nigeria); School of Engineering and the Built Environment, University of Wolverhampton, Wolverhampton WV1 1SB (United Kingdom)], E-mail: cokerwale@yahoo.com; Sangodoyin, Abimbola [Department of Agricultural and Environmental Engineering, Faculty of Technology, University of Ibadan, Ibadan (Nigeria); Sridhar, Mynepalli [Division of Environmental Health, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan (Nigeria); Booth, Colin; Olomolaiye, Paul; Hammond, Felix [School of Engineering and the Built Environment, University of Wolverhampton, Wolverhampton WV1 1SB (United Kingdom)

    2009-02-15T23:59:59.000Z

    Quantification and characterization of medical waste generated in healthcare facilities (HCFs) in a developing African nation has been conducted to provide insights into existing waste collection and disposal approaches, so as to provide sustainable avenues for institutional policy improvement. The study, in Ibadan city, Nigeria, entailed a representative classification of nearly 400 healthcare facilities, from 11 local government areas (LGA) of Ibadan, into tertiary, secondary, primary, and diagnostic HCFs, of which, 52 HCFs were strategically selected. Primary data sources included field measurements, waste sampling and analysis and a questionnaire, while secondary information sources included public and private records from hospitals and government ministries. Results indicate secondary HCFs generate the greatest amounts of medical waste (mean of 10,238 kg/day per facility) followed by tertiary, primary and diagnostic HCFs, respectively. Characterised waste revealed that only {approx}3% was deemed infectious and highlights opportunities for composting, reuse and recycling. Furthermore, the management practices in most facilities expose patients, staff, waste handlers and the populace to unnecessary health risks. This study proffers recommendations to include (i) a need for sustained cooperation among all key actors (government, hospitals and waste managers) in implementing a safe and reliable medical waste management strategy, not only in legislation and policy formation but also particularly in its monitoring and enforcement and (ii) an obligation for each HCF to ensure a safe and hygienic system of medical waste handling, segregation, collection, storage, transportation, treatment and disposal, with minimal risk to handlers, public health and the environment.

  5. Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

  6. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01T23:59:59.000Z

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  7. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect (OSTI)

    Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

    1995-12-01T23:59:59.000Z

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  8. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    SciTech Connect (OSTI)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

    1997-11-14T23:59:59.000Z

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  9. Plutonium Equivalent Inventory for Belowground Radioactive Waste at the Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect (OSTI)

    French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

    2012-04-18T23:59:59.000Z

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Many aspects of the management of this waste are conducted at Technical Area 54 (TA-54); Area G plays a key role in these management activities as the Laboratory's only disposal facility for low-level radioactive waste (LLW). Furthermore, Area G serves as a staging area for transuranic (TRU) waste that will be shipped to the Waste Isolation Pilot Plant for disposal. A portion of this TRU waste is retrievably stored in pits, trenches, and shafts. The radioactive waste disposed of or stored at Area G poses potential short- and long-term risks to workers at the disposal facility and to members of the public. These risks are directly proportional to the radionuclide inventories in the waste. The Area G performance assessment and composite analysis (LANL, 2008a) project long-term risks to members of the public; short-term risks to workers and members of the public, such as those posed by accidents, are addressed by the Area G Documented Safety Analysis (LANL, 2011a). The Documented Safety Analysis uses an inventory expressed in terms of plutonium-equivalent curies, referred to as the PE-Ci inventory, to estimate these risks. The Technical Safety Requirements for Technical Area 54, Area G (LANL, 2011b) establishes a belowground radioactive material limit that ensures the cumulative projected inventory authorized for the Area G site is not exceeded. The total belowground radioactive waste inventory limit established for Area G is 110,000 PE-Ci. The PE-Ci inventory is updated annually; this report presents the inventory prepared for 2011. The approach used to estimate the inventory is described in Section 2. The results of the analysis are presented in Section 3.

  10. Operations and Maintenance Concept Plan for the Immobilized High Level Waste (IHLW) Interim Storage Facility

    SciTech Connect (OSTI)

    JANIN, L.F.

    2000-08-30T23:59:59.000Z

    This O&M Concept looks at the future operations and maintenance of the IHLW/CSB interim storage facility. It defines the overall strategy, objectives, and functional requirements for the portion of the building to be utilized by Project W-464. The concept supports the tasks of safety basis planning, risk mitigation, alternative analysis, decision making, etc. and will be updated as required to support the evolving design.

  11. Hanford facility dangerous waste permit application, low-level burial grounds

    SciTech Connect (OSTI)

    Engelmann, R.H.

    1997-08-12T23:59:59.000Z

    The Hanford Facility Dangerous Plaste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the Low-Level Burial Grounds (this document, DOE/RL-88-20).

  12. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  13. Hanford Waste Transfer Planning and Control - 13465

    SciTech Connect (OSTI)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)] [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01T23:59:59.000Z

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  14. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    SciTech Connect (OSTI)

    King, J.W.

    1993-08-01T23:59:59.000Z

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  15. Fall 2010 Semiannual (III.H. and I.U.) Report for the HWMA/RCRA Post Closure Permit for the INTEC Waste Calcining Facility and the CPP 601/627/640 Facility at the INL Site

    SciTech Connect (OSTI)

    Boehmer, Ann

    2010-11-01T23:59:59.000Z

    The Waste Calcining Facility is located at the Idaho Nuclear Technology and Engineering Center. In 1999, the Waste Calcining Facility was closed under an approved Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Closure Plan. Vessels and spaces were grouted and then covered with a concrete cap. The Idaho Department of Environmental Quality issued a final HWMA/RCRA post-closure permit on September 15, 2003, with an effective date of October 16, 2003. This permit sets forth procedural requirements for groundwater characterization and monitoring, maintenance, and inspections of the Waste Calcining Facility to ensure continued protection of human health and the environment. The post closure permit also includes semiannual reporting requirements under Permit Conditions III.H. and I.U. These reporting requirements have been combined into this single semiannual report, as agreed between the Idaho Cleanup Project and Idaho Department of Environmental Quality. The Permit Condition III.H. portion of this report includes a description and the results of field methods associated with groundwater monitoring of the Waste Calcining Facility. Analytical results from groundwater sampling, results of inspections and maintenance of monitoring wells in the Waste Calcining Facility groundwater monitoring network, and results of inspections of the concrete cap are summarized. The Permit Condition I.U. portion of this report includes noncompliances not otherwise required to be reported under Permit Condition I.R. (advance notice of planned changes to facility activity which may result in a noncompliance) or Permit Condition I.T. (reporting of noncompliances which may endanger human health or the environment). This report also provides groundwater sampling results for wells that were installed and monitored as part of the Phase 1 post-closure period of the landfill closure components in accordance with HWMA/RCRA Landfill Closure Plan for the CPP-601 Deep Tanks System Phase 1. These monitoring wells are intended to monitor for the occurrence of contaminants of concern in the perched water beneath and adjacent to the CPP-601/627/640 Landfill. The wells were constructed to satisfy requirements of the HWMA/RCRA Post-Closure Plan for the CPP 601/627/640 Landfill.

  16. TRU waste inventory collection and work off plans for the centralization of TRU waste characterization/certification at INL - on your mark - get set - 9410

    SciTech Connect (OSTI)

    Mctaggert, Jerri Lynne [Los Alamos National Laboratory; Lott, Sheila A [Los Alamos National Laboratory; Gadbury, Casey [CBFO

    2008-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTF at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  17. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  18. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  19. Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility

    SciTech Connect (OSTI)

    Cherkas, Dmytro

    2011-10-01T23:59:59.000Z

    As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

  20. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect (OSTI)

    Koopman, D. C.

    2004-12-31T23:59:59.000Z

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed experimental work, additional data analysis, and future modeling programs. These proposals have led to recent investigations into the mercury issue and the effect of co-precipitating noble metals which will be documented in two separate reports. SRS hydrogen generation work since 2002 will also be collected and summarized in a future report on the effect of noble metal-sludge matrix interactions on hydrogen generation. Other potential factors for experimental investigation include sludge composition variations related to both the washing process and to the insoluble species with particular attention given to the role of silver and to improving the understanding of the interaction of nitrite ion with the noble metals.