Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Waste Fund Activities Management Team | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Fund Activities Management Team Waste Fund Activities Management Team Nuclear Waste Fund Activities Management Team The Nuclear Waste Fund Activities Management Team has responsibility to: Manage the investments and expenditures of the Nuclear Waste Fund; Support correspondence regarding Nuclear Waste Policy Act issues raised by congressional, Inspector General, Government Accounting Office and Freedom of Information Act inquiries; and, Manage the annual fee adequacy assessment process. Applicable Documents Nuclear Waste Policy Act of 1982 Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste Standard Contract Amendment for New Reactors FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Fee Adequacy, Pub 2008 2009 Letter to Congress OCRWM Financial Statements for Annual Report for Years Ended

2

Chapter 19 - Nuclear Waste Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste Fund 19-1 Nuclear Waste Fund 19-1 CHAPTER 19 NUCLEAR WASTE FUND 1. INTRODUCTION. a. Purpose. This chapter establishes the financial, accounting, and budget policies and procedures for civilian and defense nuclear waste activities, as authorized in Public Law 97-425, the Nuclear Waste Policy Act, as amended, referred to hereafter as the Act. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are funded by the Nuclear Waste Fund (NWF) or the Defense Nuclear Waste Disposal appropriation. c. Background. The Act established the Office of Civilian Radioactive Waste Management (OCRWM) and assigned it responsibility for the management

3

Funds denied for nuclear waste  

Science Journals Connector (OSTI)

... curb on the amount of nuclear waste that can be stored in the state's West Valley .facility, which has been closed since 1972. ...

David Dickson

1979-05-24T23:59:59.000Z

4

WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uses Recovery Act Funding to Reduce Nuclear Waste Footprint Uses Recovery Act Funding to Reduce Nuclear Waste Footprint WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint August 1, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP). Expediting TRU waste shipments supports DOE's goal to dispose of 90 percent of legacy TRU waste by 2015, saving taxpayers million of dollars in storage and maintenance costs. Recovery Act funds allowed highly trained teams to safely prepare and load

5

Idaho Workers Complete Last of Transuranic Waste Transfers Funded by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Last of Transuranic Waste Transfers Funded Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from the Recovery Act, the final shipment of the containers from the Materials and Fuels Complex recently arrived at the Idaho Nuclear Technology and Engineering Center (INTEC). Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act More Documents & Publications EIS-0203-SA-03: Supplement Analysis

6

Department of Energy's Nuclear Waste Fund's Fiscal Year 2014...  

Office of Environmental Management (EM)

Nuclear Waste Fund's Fiscal Year 2014 Financial Statement Audit OAS-FS-15-03 November 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections...

7

Nuclear Waste Fund fee adequacy: An assessment  

SciTech Connect

The purpose of this report is to present the Department of Energy`s (the Department) analysis of the adequacy of the 1.00 mill per kilowatt-hour (kWh) fee being paid by the utilities generating nuclear power for the permanent disposal of their spent nuclear fuel (SNF). In accordance with the Nuclear Waste Policy Act (NWPA), the SNF would be disposed of in a geologic repository to be developed by the Department. An annual analysis of the fee`s adequacy is required by the NWPA.

NONE

1990-11-01T23:59:59.000Z

8

GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions February 26, 2010 - 3:17pm Addthis Consistent with the Administration's commitment to transparency, DOE General Counsel Scott Blake Harris has decided that all future determinations as to the adequacy of the Nuclear Waste Fund fee will be made available to the public on DOE's website shortly after DOE makes a determination. The report relied upon in determining fee adequacy for 2008, the most recent year for which DOE has made a determination, is available here: (2008 Fee Adequacy Letter Report). Addthis Related Articles DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee Department of Energy Files Motion to Withdraw Yucca Mountain License

9

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of Energy has adopted and approved this determination. As a result, the fee will remain at the amount specified in the NWPA pending the next annual review. The Secretary's determination is available here. 2011 Secretarial Fee Adequacy Determination.PDF More Documents & Publications Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee

10

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE 2011 SECRETARIAL DETERMINATION OF THE ADEQUACY OF THE NUCLEAR WASTE FUND FEE As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of Energy has adopted and approved this determination. As a result, the fee will remain at the amount specified in the NWPA pending the next annual review. The Secretary's determination is available here. 2011 Secretarial Fee Adequacy Determination.PDF More Documents & Publications Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee

11

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

12

ORISE: Supporting ARRA funded cleanup activities in Oak Ridge...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORISE supporting Oak Ridge reservation cleanup activities through recovery funding ORISE technician performs an environmental scan Disposing of old and contaminated buildings, and...

13

Waste Loading Enhancements for Hanford Low-Activity Waste Glasses  

NLE Websites -- All DOE Office Websites (Extended Search)

WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

14

The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's Nuclear The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements OAS-FS-12-03 November 2011 Department of Energy Washington, DC 20585 November 21, 2011 MEMORANDUM FOR THE DIRECTOR, OFFICE OF STANDARD CONTRACT MANAGEMENT, OFFICE OF GENERAL COUNSEL FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Report on "The Department of Energy's Nuclear Waste Fund's Fiscal Year 2011 Financial Statements" The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Nuclear Waste Fund's (Fund) Fiscal Year 2011 balance sheet and the related statements of net cost, changes in net position, and budgetary resources.

15

Department of Energy's Nuclear Waste Fund's Fiscal Year 2012 Financial Statement Audit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Nuclear Waste Fund's Fiscal Year 2012 Financial Statements OAS-FS-13-05 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 November 28, 2012 MEMORANDUM FOR THE DIRECTOR, OFFICE OF STANDARD CONTRACT MANAGEMENT, OFFICE OF GENERAL COUNSEL FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Department of Energy's Nuclear Waste Fund's Fiscal Year 2012 Financial Statement Audit" The attached report presents the results of the independent certified public accountants' audit of the Department of Energy's Nuclear Waste Fund's (Fund) Fiscal Year 2012 balance sheet and the

16

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Tank Farm - January 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm - January 2014 January 2014 Hanford Waste...

17

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization...

18

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Environmental Management (EM)

of River Protection review of the High Level Waste Facility heating, ventilation, and air conditioning systems. Independent Oversight Activity Report, Hanford Waste Treatment...

19

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy Savers (EERE)

October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization...

20

SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT  

SciTech Connect

This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

CRAWFORD TW

2008-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Environmental Management (EM)

Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities HIAR-WTP-2014-01-27 This...

22

Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 29, 2011 August 29, 2011 IDAHO FALLS, Idaho - American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste - each weighing up to 15 tons - to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from the Recovery Act, the final shipment of the containers from the Materials and Fuels Com- plex recently arrived at the Idaho Nuclear Technology and Engineering Center (INTEC). Each of the containers moved to INTEC is shielded and specially designed and fabricated for highly radioactive waste. Once at INTEC, the containers are cut open, emptied, and repackaged. After the waste is removed and put in casks, it is shipped to the Waste Isolation Pilot

23

Community Involvement Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Involvement Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Community Involvement Fund Overview The success of EM's legacy waste cleanup mission depends largely on the support of informed and engaged stakeholders. Cleanup activities have the potential to affect the health of the public, the environment, and the future of the communities that either host or are located near EM sites. Therefore, it is critical that EM receive public input from local citizens and community organizations prior to making cleanup decisions. In December 2010, EM partnered with the New Mexico Community Foundation

24

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 31 - April 10, 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - March 31 - April 10, 2014 March 31 - April 10, 2014 Observation...

25

How Active is Your Real Estate Fund Manager?  

E-Print Network (OSTI)

. These funds do not seem to take increased risk and their outperformance cannot be explained by fund size alone, though on average they are smaller funds. This paper was sponsored by Aberdeen Asset Management PLC and was independently written...

Cremers, Martijn; Lizieri, Colin

2015-01-01T23:59:59.000Z

26

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to...

27

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Energy.gov (U.S. Department of Energy (DOE))

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

28

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

29

Nuclear waste isolation activities report  

SciTech Connect

Included are: a report from the Deputy Assistant Secretary, a summary of recent events, new literature, a list of upcoming waste management meetings, and background information on DOE`s radwaste management programs. (DLC)

None

1980-12-01T23:59:59.000Z

30

Opportunities for support of geothermal energy activities from Petroleum Violation Escrow funds  

SciTech Connect

The purpose of this document is to provide a reference for the geothermal community regarding the extent to which Petroleum Violation Escrow (PVE) funds might be employed by states to fund research, development, demonstration and applications pertaining to geothermal energy resources. The document highlights the background and status of the PVE funds being disbursed through state energy agencies and summarizes the types of energy-related activities being conducted with these funds and the process used to select and approve these activities. These funds provides a mechanism for expanding the contribution of geothermal technologies to domestic energy conservation and security.

Not Available

1988-06-01T23:59:59.000Z

31

Independent Activity Report, Hanford Waste Treatment Plant - February 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Hanford Waste Treatment Plant - Activity Report, Hanford Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review [ARPT-WTP-2011-002] The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment Plant - February 2011 More Documents & Publications Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant -

32

E-Print Network 3.0 - activity radioactive waste Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

waste Search Powered by Explorit Topic List Advanced Search Sample search results for: activity radioactive waste...

33

RCRA Notification of Regulated Waste Activity (EPA Form 8700...  

Open Energy Info (EERE)

Notification of Regulated Waste Activity (EPA Form 8700-12) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Notification of Regulated Waste Activity...

34

Notification of Regulated Waste Activity | Open Energy Information  

Open Energy Info (EERE)

Regulated Waste Activity Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Notification of Regulated Waste ActivityLegal Published NA...

35

Iodine Solubility in Low-Activity Waste Borosilicate Glass at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. Iodine Solubility in Low-Activity Waste Borosilicate Glass at 1000 °C. Abstract: The purpose of this...

36

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

37

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from July 31 - August 5, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the hazards analysis (HA) for WTP Low Activity Waste (LAW) Melter Process system. The primary purpose of this HSS field activity was to observe and

38

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

39

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

40

Independent Activity Report, Waste Isolation Pilot Plant - September...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diffusion Plant - July 2011 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 Independent Activity Report, West Valley Demonstration Project - November 2011...

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Independent Oversight Activity Report, Hanford Waste Tank Farms...  

Office of Environmental Management (EM)

Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks HIAR-HANFORD-2013-10-28 This Independent Oversight Activity Report documents an...

42

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2013 October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from October 21-31, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff reviewing the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the WTP Low Activity Waste (LAW) Melter and Off-gas systems, observed a limited portion of the HA for the

43

Examples of Benefits from the NEPA process for ARRA funded activities  

Energy.gov (U.S. Department of Energy (DOE))

Efforts to implement the American Recovery and Reinvestment Act of 2009 (ARRA) include ensuring, and reporting on, timely NEPA reviews prepared in support of projects and activities funded under major provisions of ARRA. In addition to reporting on the status of the NEPA environmental reviews, agencies also report on the benefits of NEPA.

44

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

45

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

46

Hanford's Simulated Low Activity Waste Cast Stone Processing  

SciTech Connect

Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

Kim, Young

2013-08-20T23:59:59.000Z

47

Independent Activity Report, Waste Isolation Pilot Plant - September 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant - Waste Isolation Pilot Plant - September 2011 Independent Activity Report, Waste Isolation Pilot Plant - September 2011 September 2011 Orientation Visit to the Waste Isolation Pilot Plant [HIAR-WIPP-2011-09-07] The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit to the DOE Carlsbad Field Office (CBFO) and the nuclear facility at the Waste Isolation Pilot Plant (WIPP) at Carlsbad, NM, on September 7, 2011. The purpose of the visit was to discuss the nuclear safety oversight strategy, describe the site lead program, increase HSS personnel's operational awareness of the site's activities, and identify specific activities that HSS can perform to carry out its

48

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – March 31 – April 10, 2014  

Energy.gov (U.S. Department of Energy (DOE))

Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

49

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

50

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – October 2013  

Energy.gov (U.S. Department of Energy (DOE))

Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

51

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

52

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – July 2013  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

53

388 Federal Funds--Continued ENVIRONMENTAL AND OTHER DEFENSE ACTIVITIES--Continued  

E-Print Network (OSTI)

of Legacy Management (Defense).--The programs within this office support long-term stewardship activities Management to accomplish its mission. Office of Civilian Radioactive Waste Management.--The pro- gram coordinates and resolves issues regarding the charac- terization, safe storage, transportation, and proper

54

Independent Activity Report, Office of River Protection Waste Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection Waste Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 February 2013 Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25] The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made two trips to the site, which included tours of the WTP construction site

55

Independent Oversight Activity Report, Savannah River Site Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Activity Report, Savannah River Site Waste Independent Oversight Activity Report, Savannah River Site Waste Solidification Building Independent Oversight Activity Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] Activity Description/Purpose: Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions

56

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

57

Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005  

SciTech Connect

The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

McDowell, Kip; Forrester, Tim [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States)] [Oak Ridge National Laboratory, PO Box 2008 MS-6322, Oak Ridge, TN 37831 (United States); Saunders, Mark [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)] [Fairfield Services Group, PO Box 31468, KNOxville, TN 37930 (United States)

2013-07-01T23:59:59.000Z

58

Independent Oversight Activity Report, Savannah River Site Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Waste Savannah River Site Waste Solidification Building Independent Oversight Activity Report, Savannah River Site Waste Solidification Building May 2013 Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07] Activity Description/Purpose: Review the corrective actions being implemented by the construction contractor to address Findings 1-4, 6, and 9 from a construction quality review performed by the Office of Health, Safety and Security (HSS) (Reference 1). Meet with the SRS WSB project staff and Savannah River Nuclear Solutions (SRNS) engineers to discuss the proposed corrective actions discussed in Reference 2, and clarify additional reviews to be performed by

59

Phase 1 immobilized low-activity waste operational source term  

SciTech Connect

This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study.

Burbank, D.A.

1998-03-06T23:59:59.000Z

60

Los Alamos National Laboratory Environmental Management Activities Funded by the Recovery Act, OAS-RA-11-15  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Los Alamos National Laboratory Los Alamos National Laboratory Environmental Management Activities Funded by the Recovery Act OAS-RA-11-15 August 2011 Department of Energy Washington, DC 20585 August 25, 2011 MEMORANDUM FOR THE MANAGER, LOS ALAMOS SITE OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits SUBJECT: INFORMATION: Audit Report on "Los Alamos National Laboratory Environmental Management Activities Funded by the Recovery Act" BACKGROUND In February 2009, the American Recovery and Reinvestment Act of 2009 (Recovery Act) was enacted. The Department of Energy's (Department) National Nuclear Security Administration (NNSA) received approximately $212 million in Recovery Act funds from the Office of

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating Organizations 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW Objectives: Reduce the risk associated with implementing the FBSR NAS waste form as a supplemental treatment technology for Hanford LAW Conduct test with actual tank wastes Use the best science to fill key data gaps Linking previous and new results together 4 Outline FBSR NAS waste form processing scales FBSR NAS waste form data/key assumptions FBSR NAS key data gaps FBSR NAS testing program 5 FBSR NAS Waste Form Processing

62

Hanford immobilized low-activity tank waste performance assessment  

SciTech Connect

The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

Mann, F.M.

1998-03-26T23:59:59.000Z

63

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2013 November 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 December 2013 Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations on November 18, 2013, at the Catholic University of America Vitreous State Laboratory (VSL). Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the

64

Analysis of alternatives for immobilized low activity waste disposal  

SciTech Connect

This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

Burbank, D.A.

1997-10-28T23:59:59.000Z

65

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

documented safety analysis and technical safety requirements for the U.S. Department of Energy Office of River Protection's review and approval. Independent Oversight Activity...

66

Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)  

SciTech Connect

This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

Arnold, P.

2012-10-31T23:59:59.000Z

67

Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment  

SciTech Connect

The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc.

MANN, F.M.

2000-02-09T23:59:59.000Z

68

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

69

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

SciTech Connect

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to land disposal restrictions. The long term precision (24-hr) also was good with percent relative standard deviations (%RSDs) < 10 % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

70

LOW ACTIVITY WASTE FEED SOLIDS CARACTERIZATION AND FILTERABILITY TESTS  

SciTech Connect

The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant (WTP) that is currently under construction. The baseline plan for the WTP Pretreatment facility is to treat the waste, splitting it into High Level Waste (HLW) feed and Low Activity Waste (LAW) feed. Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed onsite in the Integrated Disposal Facility (IDF). There are currently no plans to treat the waste to remove technetium in the WTP Pretreatment facility, so its disposition path is the LAW glass. Options are being explored to immobilize the LAW portion of the tank waste, i.e., the LAW feed from the WTP Pretreatment facility. Removal of {sup 99}Tc from the LAW Feed, followed by off-site disposal of the {sup 99}Tc, would eliminate a key risk contributor for the IDF Performance Assessment (PA) for supplemental waste forms, and has potential to reduce treatment and disposal costs. Washington River Protection Solutions (WRPS) is developing some conceptual flow sheets for LAW treatment and disposal that could benefit from technetium removal. One of these flowsheets will specifically examine removing {sup 99}Tc from the LAW feed stream to supplemental immobilization. The conceptual flow sheet of the {sup 99}Tc removal process includes a filter to remove insoluble solids prior to processing the stream in an ion exchange column, but the characteristics and behavior of the liquid and solid phases has not previously been investigated. This report contains results of testing of a simulant that represents the projected composition of the feed to the Supplemental LAW process. This feed composition is not identical to the aqueous tank waste fed to the Waste Treatment Plant because it has been processed through WTP Pretreatment facility and therefore contains internal changes and recycle streams that will be generated within the WTP process. Although a Supplemental LAW feed simulant has previously been prepared, this feed composition differs from that simulant because those tests examined only the fully soluble aqueous solution at room temperature, not the composition formed after evaporation, including the insoluble solids that precipitate after it cools. The conceptual flow sheet for Supplemental LAW immobilization has an option for removal of {sup 99}Tc from the feed stream, if needed. Elutable ion exchange has been selected for that process. If implemented, the stream would need filtration to remove the insoluble solids prior to processing in an ion exchange column. The characteristics, chemical speciation, physical properties, and filterability of the solids are important to judge the feasibility of the concept, and to estimate the size and cost of a facility. The insoluble solids formed during these tests were primarily natrophosphate, natroxalate, and a sodium aluminosilicate compound. At the elevated temperature and 8 M [Na+], appreciable insoluble solids (1.39 wt%) were present. Cooling to room temperature and dilution of the slurry from 8 M to 5 M [Na+] resulted in a slurry containing 0.8 wt% insoluble solids. The solids (natrophosphate, natroxalate, sodium aluminum silicate, and a hydrated sodium phosphate) were relatively stable and settled quickly. Filtration rates were in the range of those observed with iron-based simulated Hanford tank sludge simulants, e.g., 6 M [Na+] Hanford tank 241-AN-102, even though their chemical speciation is considerably different. Chemical cleaning of the crossflow filter was readily accomplished with acid. As this simulant formulation was based on an average composition of a wide range of feeds using an integrated computer model, this exact composition may never be observed. But the test conditions were selected to enable comparison to the model to enable improving its chemical prediction capability.

McCabe, D.; Crawford, C.; Duignan, M.; Williams, M.; Burket, P.

2014-04-03T23:59:59.000Z

71

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

72

Research Activities 2012 15 The research funding program, Exploratory Research for Advanced Technology (ERATO), was founded  

E-Print Network (OSTI)

Researcher Project Title ONO Teruo (Professor, Institute for Chemical Research) Development of low-energy-consumption Funding Program for Next Generation World-Leading Researchers (NEXT Program), including thirty-six from to be future world leaders in the field of science and technology, and promoting "green" and "life" innovations

Takada, Shoji

73

About QNRF Newsroom Funding Programs Activities Awarded Proposals Grant Management Contact Us Site Search  

E-Print Network (OSTI)

suitable for use in SHM of oil/gas pipelines and offshore platforms in Qatar. ID : 1271 Number of shows: 31 Proposal Specialty: 2.10 Nano Technology LPI Name: Prof. Shaker Meguid Submitting Institution: Qatar 800 pixels for screen resolution © 2008 - 2010 QNRF - Qatar National Research Fund English First

Sun, Yu

74

E-Print Network 3.0 - active nuclear wastes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: active nuclear wastes Page: << < 1 2 3 4 5 > >> 1 THE UNIVERSITY OF WESTERN ONTARIO RADIATION SAFETY...

75

Toward Understanding the Effect of LowActivity Waste Glass Composition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward Understanding the Effect of Low-Activity Waste Glass Composition on Sulfur Solubility John D. Vienna, , Dong-Sang Kim, Isabelle S. Muller, Greg F. Piepel, ...

76

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

77

System Planning for Low-Activity Waste at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Review of System Planning Technical Review of System Planning for Low-Activity Waste Treatment at Hanford November 2008 Dr. David S. Kosson, Vanderbilt University Dr. David R. Gallay, Logistics Management Institute Dr. Ian L. Pegg, The Catholic University of America Dr. Ray G. Wymer, Oak Ridge National Laboratory (ret.) Dr. Steven Krahn, U. S. Department of Energy ii ACKNOWLEDGEMENT The Review Team thanks Mr. Ben Harp, Office of River Protection (ORP), and Mr. James Honeyman, CH2M HILL, for their exceptional support during this review. Mr. Harp was the lead Department of Energy (DOE) representative responsible for organizing reviews held on-site by the Review Team. Mr. Honeyman, and his staff, provided responsive support through technical presentations, telephone conferences, and numerous reference documents.

78

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

79

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

80

Rock mechanics activities at the Waste Isolation Pilot Plant  

SciTech Connect

The application of rock mechanics at nuclear waste repositories is a true multidisciplinary effort. A description and historical summary of the Waste Isolation Pilot Plant (WIPP) is presented. Rock mechanics programs at the WIPP are outlined, and the current rock mechanics modeling philosophy of the Westinghouse Waste Isolation Division is discussed.

Francke, C. [Westinghouse Electric Corp., Carlsbad, NM (United States); Saeb, S. [International Technology Corp., Albuquerque, NM (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

82

BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect

This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

ARD KE

2011-04-11T23:59:59.000Z

83

Technical basis for classification of low-activity waste fraction from Hanford site tanks  

SciTech Connect

The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

Petersen, C.A.

1996-09-20T23:59:59.000Z

84

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

85

Funding Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Additional Funding Additional Funding QuarkNet Home - Information - Calendar - Contacts - Projects - Forms: EoI - Teachers Many additional sources of funding are available above and beyond the QuarkNet funds. They can be in the form of money, supplies, matching funds and in-kind contributions. The sources run from National Science Foundation (NSF) grants to local stores in your area. Some of those sources are listed below. If you know of others, please send them in. Sources of Funds Name Source Deadline Amount Availability Research Experience for Teachers (RET) National Science Foundation (NSF) Anytime Can fund multiple teachers for 8 weeks Annually Venture Fund American Association of Physics Teachers (AAPT) None Up to $25,000 to promote the development and marketing of innovative teaching products and services One project at a time

86

Funding Opportunities  

Office of Environmental Management (EM)

Opportunity - Buildings University Innovators and Leaders Development (BUILD) http:energy.goveerebuildingsarticlesapply-funding-opportunity-buildings-university-innovato...

87

Secretarial Determination of the Adequacy of the Nuclear Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee Secretarial Determination of the Adequacy of the Nuclear Waste Fund Fee I adopt and approve the attached...

88

Report on Abatement Activities Related to Agriculture and Waste Management  

E-Print Network (OSTI)

Guidelines for Producers 9 2.3 Best Agricultural Waste Management Plans (BAWMPs) 9 3.0 AGRICULTURAL PRACTICES COMPLAINT RESPONSE SYSTEM 8 2.1 Agricultural Waste Control Regulation and Code 9 2.2 Environmental ASSESSMENT INITIATIVE 10 3.1 Watershed Farm Practices Study 10 3.2 Ongoing Farm Practices Evaluation 12 3

89

WASTE SOLIDIFICATION BUILDING BENCH SCALE HIGH ACTIVITY WASTE SIMULANT VARIABILITY STUDY FY2008  

SciTech Connect

The primary objective of this task was to perform a variability study of the high activity waste (HAW) acidic feed to determine the impact of feed variability on the quality of the final grout and on the mixability of the salt solution into the dry powders. The HAW acidic feeds were processed through the neutralization/pH process, targeting a final pH of 12. These fluids were then blended with the dry materials to make the final waste forms. A secondary objective was to determine if elemental substitution for cost prohibitive or toxic elements in the simulant affects the mixing response, thus providing a more economical simulant for use in full scale tests. Though not an objective, the HAW simulant used in the full scale tests was also tested and compared to the results from this task. A statistically designed test matrix was developed based on the maximum molarity inputs used to make the acidic solutions. The maximum molarity inputs were: 7.39 HNO{sub 3}, 0.11618 gallium, 0.5423 silver, and 1.1032 'other' metals based on their NO{sub 3}{sup -} contribution. Substitution of the elements aluminum for gallium and copper for silver was also considered in this test matrix, resulting in a total of 40 tests. During the NaOH addition, the neutralization/pH adjustment process was controlled to a maximum temperature of 60 C. The neutralized/pH adjusted simulants were blended with Portland cement and zircon flour at a water to cement mass ratio of 0.30. The mass ratio of zircon flour to Portland cement was 1/12. The grout was made using a Hobart N-50 mixer running at low speed for two minutes to incorporate and properly wet the dry solids with liquid and at medium speed for five minutes for mixing. The resulting fresh grout was measured for three consecutive yield stress measurements. The cured grout was measured for set, bleed, and density. Given the conditions of preparing the grout in this task, all of the grouts were visually well mixed prior to preparing the grouts for measurements. All of the cured grouts were measured for bleed and set. All of the cured grouts satisfied the bleed and set requirements, where no bleed water was observed on any of the grout samples after one day and all had set within 3 days of curing. This data indicates, for a well mixed product, bleed and set requirement are satisfied for the range of acidic feeds tested in this task. The yield stress measurements provide both an indication on the mixability of the salt solution with dry materials and an indication of how quickly the grout is starting to form structure. The inability to properly mix these two streams into a well mixed grout product will lead to a non-homogeneous mixture that will impact product quality. Product quality issues could be unmixed regions of dry material and hot spots having high concentrations of americium 241. Mixes that were more difficult to incorporate typically resulted in grouts with higher yield stresses. The mixability from these tests will provide Waste Solidification Building (WSB) an indication of which grouts will be more challenging to mix. The first yield stress measurements were statistically compared to a list of variables, specifically the batched chemicals used to make the acidic solutions. The first yield stress was also compared to the physical properties of the acidic solutions, physical and pH properties of the neutralized/pH adjusted solutions, and chemical and physical properties of the grout.

Hansen, E; Timothy Jones, T; Tommy Edwards, T; Alex Cozzi, A

2009-03-20T23:59:59.000Z

90

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PURPOSE PURPOSE The U.S. Department of Energv SUMRY (DOE) has Dreuared this environmental impact -. . . statement (EIS) to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant (SRP) in Aiken, South Carolina. This EIS, which is both programmatic and project-specific, has been prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act (NEPA) of 1969, as amended. It is intended to support broad decisions on future actions on SRP waste management activities and to provide project- related environmental input and support for project-specific decisions on pro- ceeding with cleanup activities at existing waste sites in the R- and F-Areas, establishing new waste

91

EIS-0120: Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy has prepared this environmental impact statement to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant in Aiken, South Carolina.

92

EIS-0120: Waste Management Activities for Groundwater Protection, Savannah River Plant, Aiken, SC  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy has prepared this environmental impact statement to assess the environmental consequences of the implementation of modified waste management activities for hazardous, low-level radioactive, and mixed wastes for the protection of groundwater, human health, and the environment at its Savannah River Plant in Aiken, South Carolina.

93

Final Environmental Assessment for Waste Disposition Activities at the Paducah Site Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-347(doc)/093002 0-347(doc)/093002 1 FINDING OF NO SIGNIFICANT IMPACT WASTE DISPOSITION ACTIVITIES AT THE PADUCAH SITE PADUCAH, KENTUCKY AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an environmental assessment (DOE/EA-1339), which is incorporated herein by reference, for proposed disposition of polychlorinated biphenyl (PCB) wastes, low-level radioactive waste (LLW), mixed low- level radioactive waste (MLLW), and transuranic (TRU) waste from the Paducah Gaseous Diffusion Plant Site (Paducah Site) in Paducah, Kentucky. All of the wastes would be transported for disposal at various locations in the United States. Based on the results of the impact analysis reported in the EA, DOE has determined that the proposed action is

94

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

SciTech Connect

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

95

Independent Activity Report, Office of River Protection Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lead for the Office of River Protection Waste Treatment Plant and Tank Farms HIAR-HANFORD-2013-02-25 The Office of Health, Safety and Security's (HSS) Office of Safety and...

96

Independent Oversight Activity Report, Savannah River Site Waste Solidification Building  

Energy.gov (U.S. Department of Energy (DOE))

Savannah River Site Waste Solidification Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design [HIAR SRS-2013-5-07

97

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

98

Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility  

Energy.gov (U.S. Department of Energy (DOE))

WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

99

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion  

E-Print Network (OSTI)

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion Thomas on digestibility, especially in regards to the composition of extracellular polymeric substances (EPS). Samples possibilities. Characterizations made from extraction data showed curiously high EPS disruption in Amherst

Mountziaris, T. J.

100

Acceleration Fund  

NLE Websites -- All DOE Office Websites (Extended Search)

for these Venture Acceleration Fund awards, which have already produced a significant return on investment for the regional companies that have received them," said Padilla....

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS  

SciTech Connect

The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

DISSELKAMP RS

2011-01-06T23:59:59.000Z

102

Optimisation of the Management of Higher Activity Waste in the UK - 13537  

SciTech Connect

The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interim storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)

Walsh, Ciara; Buckley, Matthew [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

103

SWEPP PAN assay system uncertainty analysis: Active mode measurements of solidified aqueous sludge waste  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory is being used as a temporary storage facility for transuranic waste generated by the US Nuclear Weapons program at the Rocky Flats Plant (RFP) in Golden, Colorado. Currently, there is a large effort in progress to prepare to ship this waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. In order to meet the TRU Waste Characterization Quality Assurance Program Plan nondestructive assay compliance requirements and quality assurance objectives, it is necessary to determine the total uncertainty of the radioassay results produced by the Stored Waste Examination Pilot Plant (SWEPP) Passive Active Neutron (PAN) radioassay system. This paper is one of a series of reports quantifying the results of the uncertainty analysis of the PAN system measurements for specific waste types and measurement modes. In particular this report covers active mode measurements of weapons grade plutonium-contaminated aqueous sludge waste contained in 208 liter drums (item description codes 1, 2, 7, 800, 803, and 807). Results of the uncertainty analysis for PAN active mode measurements of aqueous sludge indicate that a bias correction multiplier of 1.55 should be applied to the PAN aqueous sludge measurements. With the bias correction, the uncertainty bounds on the expected bias are 0 {+-} 27%. These bounds meet the Quality Assurance Program Plan requirements for radioassay systems.

Blackwood, L.G.; Harker, Y.D.; Meachum, T.R.

1997-12-01T23:59:59.000Z

104

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT  

SciTech Connect

The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2007-08-08T23:59:59.000Z

105

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

106

Waste Form Release Data Package for the 2001 Immobilized Low-Activity Waste Performance Assessment  

SciTech Connect

This data package documents the experimentally derived input data on the representative waste glasses LAWABP1 and HLP-31 that will be used for simulations of the immobilized lowactivity waste disposal system with the Subsurface Transport Over Reactive Multiphases (STORM) code. The STORM code will be used to provide the near-field radionuclide release source term for a performance assessment to be issued in March of 2001. Documented in this data package are data related to 1) kinetic rate law parameters for glass dissolution, 2) alkali-H ion exchange rate, 3) chemical reaction network of secondary phases that form in accelerated weathering tests, and 4) thermodynamic equilibrium constants assigned to these secondary phases. The kinetic rate law and Na+-H+ ion exchange rate were determined from single-pass flow-through experiments. Pressurized unsaturated flow and vapor hydration experiments were used for accelerated weathering or aging of the glasses. The majority of the thermodynamic data were extracted from the thermodynamic database package shipped with the geochemical code EQ3/6. However, several secondary reaction products identified from laboratory tests with prototypical LAW glasses were not included in this database, nor are the thermodynamic data available in the open literature. One of these phases, herschelite, was determined to have a potentially significant impact on the release calculations and so a solubility product was estimated using a polymer structure model developed for zeolites. Although this data package is relatively complete, final selection of ILAW glass compositions has not been done by the waste treatment plant contractor. Consequently, revisions to this data package to address new ILAW glass formulations are to be regularly expected.

McGrail, B. Peter; Icenhower, Jonathan P.; Martin, Paul F.; Schaef, Herbert T.; O'Hara, Matthew J.; Rodriguez, Eugenio; Steele, Jackie L.

2001-02-01T23:59:59.000Z

107

Independent Oversight Activity Report, Savannah River Site Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Building Corrective Actions from the January 2013 Report on Construction Quality of Mechanical Systems Installation and Fire Protection Design HIAR SRS-2013-5-07 Activity...

108

Waste management regulatory compliance issues related to D&D activities at Oak Ridge National Laboratory (ORNL)  

SciTech Connect

The waste management activities at ORNL related to the decontamination and decommissioning (D&D) of radioactively contaminated buildings are divided into four categories: Operational facilities, inactive or surplus facilities, future facilities planning, and D&D activities. This paper only discusses regulatory issues related to inactive or surplus facilities. Additionally, rather than attempting to address all resulting waste streams and related regulations, this paper highlights only a few of the ORNL waste streams that present key regulatory issues.

Hitch, J.P.; Arnold, S.E.; Burwinkle, T.; Daugherty, D.

1994-09-01T23:59:59.000Z

109

Management Activities for Retrieved and Newly Generated Transuranic Wastes Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 WL 253648 (F.R.) 8 WL 253648 (F.R.) NOTICES DEPARTMENT OF ENERGY Finding of No Significant Impact; Transuranic Waste Management Activities at the Savannah River Plant, Aiken, SC Tuesday, August 30, 1988 *33172 AGENCY: Department of Energy. ACTION: Finding of No Significant Impact. SUMMARY: The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -0315, for transuranic (TRU) waste management activities at DOE's Savannah River Plant (SRP), including the construction and operation of a new TRU Waste Processing Facility. Based on analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact

110

CAST STONE TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect

Cast stone technology is being evaluated for potential application in the treatment and immobilization of Hanford low-activity waste. The purpose of this document is to provide background information on cast stone technology. The information provided in the report is mainly based on a pre-conceptual design completed in 2003.

MINWALL HJ

2011-04-08T23:59:59.000Z

111

Preliminary Closure Plan for the Immobilized Low Activity Waste (ILAW) Disposal Facility  

SciTech Connect

This document describes the preliminary plans for closure of the Immobilized Low-Activity Waste (ILAW) disposal facility to be built by the Office of River Protection at the Hanford site in southeastern Washington. The facility will provide near-surface disposal of up to 204,000 cubic meters of ILAW in engineered trenches with modified RCRA Subtitle C closure barriers.

BURBANK, D.A.

2000-08-31T23:59:59.000Z

112

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network (OSTI)

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul of WAS is the make-up of the Extracellular Polymeric Substances (EPS) surrounding the cells, which acts as a glue/inorganics in influent, temperature, reactor flow types, etc). Certain EPS complexes are vulnerable to specific

Mountziaris, T. J.

113

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

114

Training Activities on Radioactive Waste Management at Moscow SIA -Radon-: Experience, Practice, Theory  

SciTech Connect

Management of radioactive waste relates to the category of hazardous activities. Hence the requirements to the professional level of managers and personnel working in this industry are very high. Education, training and examination of managers, operators and workers are important elements of assuring safe and efficient operation of radioactive waste management sites. The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 10 years. The paper summarizes the current experience of the SIA 'Radon' in the organisation and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)

Batyukhnova, O.G.; Arustamov, A.E.; Dmitriev, S.A.; Agrinenko, V.V. [SUE SIA -Radon-, The 7-th Rostovsky Lane 2/14, Moscow (Russian Federation); Ojovan, M.I. [Immobilisation Science Laboratory, University of Sheffield, Sir Robert Hadfield Building (United Kingdom); Drace, Z. [International Atomic Energy Agency, Vienna (Austria)

2008-07-01T23:59:59.000Z

115

Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443  

SciTech Connect

Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls for the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)

Ramsey, William G.; Esparza, Brian P. [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)] [Washington River Protection Solutions, LLC, Richland, WA 99532 (United States)

2013-07-01T23:59:59.000Z

116

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Els-o120 Els-o120 Final Environmental Impact Statement I Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina of Energy 1 COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy ACTIVITY: Final Environmental Impact Statement, Waste Management I TC Activities for Groundwater Protection at the Savannah River Plant, Aiken, South Carolina. CONTACT: ABSTRACT: Additional information concerning this Statement can be obtained from: Mr. S. R. Wright Director, Environmental Division U.S. Department of Energy Savannah River Operations Office Post Office Box A Aiken, South Carolina 29802 (803) 725-3957 I TC For general information on the Department of Energy qs EIS process contact: Office of the Assistant Secretary for Environment, Safety, and Health U.S. Department of Energy Attn: Ms. Carol Bergstrom (EH-25) Acting Director, Office of

117

Unrestricted disposal of minimal activity levels of radioactive wastes: exposure and risk calculations  

SciTech Connect

The US Nuclear Regulatory Commission is currently considering revision of rule 10 CFR Part 20, which covers disposal of solid wastes containing minimal radioactivity. In support of these revised rules, we have evaluated the consequences of disposing of four waste streams at four types of disposal areas located in three different geographic regions. Consequences are expressed in terms of human exposures and associated health effects. Each geographic region has its own climate and geology. Example waste streams, waste disposal methods, and geographic regions chosen for this study are clearly specified. Monetary consequences of minimal activity waste disposal are briefly discussed. The PRESTO methodology was used to evaluate radionuclide transport and health effects. This methodology was developed to assess radiological impacts to a static local population for a 1000-year period following disposal. Pathways and processes of transit from the trench to exposed populations included the following considerations: groundwater transport, overland flow, erosion, surface water dilution, resuspension, atmospheric transport, deposition, inhalation, and ingestion of contaminated beef, milk, crops, and water. 12 references, 2 figures, 8 tables.

Fields, D.E.; Emerson, C.J.

1984-08-01T23:59:59.000Z

118

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1995  

SciTech Connect

To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities that the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during fiscal year 1995.

Forman, S.

1995-12-01T23:59:59.000Z

119

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1996  

SciTech Connect

To assist the Department of Energy (DOE) in fulfilling its responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985, the National Low-Level Waste Management Program (NLLWMP) outlines the key activities tat the NLLWMP will accomplish in the following fiscal year. Additional activities are added during the fiscal year as necessary to accomplish programmatic goals. This report summarizes the activities and accomplishments of the NLLWMP during Fiscal Year 1996.

Garcia, R.S.

1996-12-01T23:59:59.000Z

120

Conservation Trust Funds  

E-Print Network (OSTI)

than $50,000, such as Suriname's Forest People's Fund, "levels. 94 For example, the Suriname trust fund operates at

Guerin-McManus, Marianne

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)  

SciTech Connect

Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

Not Available

1980-10-01T23:59:59.000Z

122

Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Waste Isolation Pilot Plant Work Planning and Control Activities April 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope.................................................................................................................................................... 1 3.0 Background........................................................................................................................................... 1 4.0 Methodology......................................................................................................................................... 2

123

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

124

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

125

Annual summary of Immobilized Low-Activity Waste (ILAW) Performance Assessment for 2003 Incorporating the Integrated Disposal Facility Concept  

SciTech Connect

To Erik Olds 09/30/03 - An annual summary of the adequacy of the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (ILAW PA) is necessary in each year in which a full performance assessment is not issued.

MANN, F M

2003-09-01T23:59:59.000Z

126

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

127

Stimulus Funding Will Accelerate Cleanup In Idaho  

NLE Websites -- All DOE Office Websites (Extended Search)

STIMULUS FUNDING WILL STIMULUS FUNDING WILL ACCELERATE CLEANUP IN IDAHO Funding from the American Recovery and Reinvestment Act will do more than sustain employment at the U.S. Department of Energy's Idaho Site - it will accelerate cleanup. Click here to see larger image Inside the retrieval enclosure at Accelerated Retrieval Project-III Click on image to enlarge The Office of Environmental Management received $6 billon in additional funding under the "stimulus bill" passed earlier this year by Congress and signed by President Obama. The Idaho Site will receive $468 million of the EM funding. The funding will be used at DOE's Idaho Site to: Decontaminate and decommission buildings that have no useful mission. Accelerate removal of buried radioactive waste, which will be

128

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

129

Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1  

SciTech Connect

The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect that packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.

Not Available

1994-09-01T23:59:59.000Z

130

National Low-Level Waste Management Program final summary report of key activities and accomplishments for fiscal year 1997  

SciTech Connect

The US Department of Energy (DOE) has responsibilities under the Low-Level Radioactive Waste Policy Amendments Act of 1985 to assist states and compacts in their siting and licensing efforts for low-level radioactive waste disposal facilities. The National Low-Level Waste Management Program (NLLWMP) is the element of the DOE that performs the key support activities under the Act. The NLLWMP`s activities are driven by the needs of the states and compacts as they prepare to manage their low-level waste under the Act. Other work is added during the fiscal year as necessary to accommodate new requests brought on by status changes in states` and compacts` siting and licensing efforts. This report summarizes the activities and accomplishments of the NLLWMP during FY 1997.

Rittenberg, R.B.

1998-03-01T23:59:59.000Z

131

UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048  

SciTech Connect

The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for the definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to allow for construction which is scheduled to being during the first semester of 2013. The elaboration of the final waste package is still undergoing and expected to be completed by then end of 2013, following some final elements of R and D required to demonstrate the full compatibility of the package with deep geological repository. The HAO legacy waste retrieval project is so far the largest such project entering operational phase on the site of La Hague. It is on schedule, under budget, and in conformity with the delivery requirements set by the French Safety Authority, as well as other stakeholders. This project paves the way for the successful completion of AREVA La Hague other legacy waste retrieval projects, which are currently being drafted or already in active R and D phase. (authors)

Chabeuf, Jean-Michel; Varet, Thierry [AREVA Site Value Development Business Unit, La Hague Site (France)] [AREVA Site Value Development Business Unit, La Hague Site (France)

2013-07-01T23:59:59.000Z

132

TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect

This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

BURBANK, D.A.

1999-09-01T23:59:59.000Z

133

Round-robin testing of a reference glass for low-activity waste forms  

SciTech Connect

A round robin test program was conducted with a glass that was developed for use as a standard test material for acceptance testing of low-activity waste glasses made with Hanford tank wastes. The glass is referred to as the low-activity test reference material (LRM). The program was conducted to measure the interlaboratory reproducibility of composition analysis and durability test results. Participants were allowed to select the methods used to analyze the glass composition. The durability tests closely followed the Product Consistency Test (PCT) Method A, except that tests were conducted at both 40 and 90 C and that parallel tests with a reference glass were not required. Samples of LRM glass that had been crushed, sieved, and washed to remove fines were provided to participants for tests and analyses. The reproducibility of both the composition and PCT results compare favorably with the results of interlaboratory studies conducted with other glasses. From the perspective of reproducibility of analysis results, this glass is acceptable for use as a composition standard for nonradioactive components of low-activity waste forms present at >0.1 elemental mass % and as a test standard for PCTS at 40 and 90 C. For PCT with LRM glass, the expected test results at the 95% confidence level are as follows: (1) at 40 C: pH = 9.86 {+-} 0.96; [B] = 2.30 {+-} 1.25 mg/L; [Na] = 19.7 {+-} 7.3 mg/L; [Si] = 13.7 {+-} 4.2 mg/L; and (2) at 90 C: pH = 10.92 {+-} 0.43; [B] = 26.7 {+-} 7.2 mg/L; [Na] = 160 {+-} 13 mg/L; [Si] = 82.0 {+-} 12.7 mg/L. These ranges can be used to evaluate the accuracy of PCTS conducted at other laboratories.

Ebert, W. L.; Wolf, S. F.

1999-12-06T23:59:59.000Z

134

E-Print Network 3.0 - activity waste ilaw Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Accumulation Areas (SAAs) All Hazardous waste generated... and California state regulations. All waste that is ... Source: Lawrence Berkeley National Laboratory, Ion Beam...

135

Radioactive Demonstration Of Mineralized Waste Forms Made From Hanford Low Activity Waste (Tank SX-105 And AN-103) By Fluidized Bed Steam Reformation  

SciTech Connect

One of the immobilization technologies under consideration as a Supplemental Treatment for Hanford’s Low Activity Waste (LAW) is Fluidized Bed Steam Reforming (FBSR). The FBSR technology forms a mineral waste form at moderate processing temperatures thus retaining and atomically bonding the halides, sulfates, and technetium in the mineral phases (nepheline, sodalite, nosean, carnegieite). Additions of kaolin clay are used instead of glass formers and the minerals formed by the FBSR technology offers (1) atomic bonding of the radionuclides and constituents of concern (COC) comparable to glass, (2) short and long term durability comparable to glass, (3) disposal volumes comparable to glass, and (4) higher Na2O and SO{sub 4} waste loadings than glass. The higher FBSR Na{sub 2}O and SO{sub 4} waste loadings contribute to the low disposal volumes but also provide for more rapid processing of the LAW. Recent FBSR processing and testing of Hanford radioactive LAW (Tank SX-105 and AN-103) waste is reported and compared to previous radioactive and non-radioactive LAW processing and testing.

Jantzen, Carol; Herman, Connie; Crawford, Charles; Bannochie, Christopher; Burket, Paul; Daniel, Gene; Cozzi, Alex; Nash, Charles; Miller, Donald; Missimer, David

2014-01-10T23:59:59.000Z

136

No Time Wasted. 25 years COVRA: Radioactive Waste Management in the Netherlands  

SciTech Connect

Time will render radioactive waste harmless. How can we manage the time radioactive substances remain harmful? Just 'wait and see' or 'marking time' is not an option. We need to isolate the waste from our living environment and control it as long as necessary. December 2007 was a time to commemorate, as the national waste management organisation of the Netherlands, COVRA, celebrated its 12. anniversary. During this period of 25 years a stable policy has been formulated and implemented. For the situation in the Netherlands, it was obvious that a period of long term storage was needed. Both the small volume of waste and the limited financial possibilities are determining factors. Time is needed to let the volume of waste grow and to let the money, needed for disposal, grow in a capital growth fund. A historical overview of the activities of COVRA is presented and lessons learned over a period of 25 years are given. (authors)

Codee, H.D.K.; Verhoef, E.V. [COVRA N.V., Vlissingen (Netherlands)

2008-07-01T23:59:59.000Z

137

Florida Growth Fund (Florida)  

Energy.gov (U.S. Department of Energy (DOE))

The Florida Growth Fund can provide investments in technology and growth-related companies through co-investments with other institutional investors. The Fund awards preference to companies...

138

Microsoft Word - Solid Waste at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use of American Recovery and Use of American Recovery and Reinvestment Act of 2009 Funds on Solid Waste Project Activities at the Department of Energy's Hanford Site OAS-RA-L-11-08 May 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: May19, 2011 Audit Report Number: OAS-RA-L-11-08 REPLY TO ATTN OF: IG-34 (A10RA041) SUBJECT: Report on "Use of American Recovery and Reinvestment Act of 2009 Funds on Solid Waste Project Activities at the Department of Energy's Hanford Site" TO: Assistant Secretary for Environmental Management INTRODUCTION AND OBJECTIVE The Department of Energy's (Department), Richland Operations Office (Richland), awarded a contract, effective October 1, 2008, to CH2M HILL Plateau Remediation Company (CHPRC) to

139

Past Restoration Fund Info  

NLE Websites -- All DOE Office Websites (Extended Search)

Rates > Past Restoration Rates > Past Restoration Fund Info Past Restoration Fund Info FY 2013 Restoration Fund SNR Letter to Customers Regarding Revision to FY13 Restoration Fund Obligation Mid-Year Adjustment (June 19, 2013) (PDF - 1146 KB) SNR Letter to Customers Regarding FY13 Restoration Fund Obligation Mid-Year Adjustment (April 15, 2013) (PDF - 829 KB) SNR Letter to Customers Regarding Restoration Fund Obligations for FY 2013 (August 8, 2012) (PDF - 325 KB) FY 2012 Restoration Fund SNR Letter to Customers Regarding Restoration Fund Obligations for FY 2012 (August 9, 2011) (PDF - 340 KB) Mid Year Adjustment to the FY 2012 Restoration Fund Payment (April 18, 2012) (PDF - 174 KB) FY 2011 Restoration Fund SNR Letter to Customers Regarding Restoration Fund Obligations for FY 2011 (August 20, 2010) (PDF - 705 KB)

140

Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security Administration, and activities that are directly or indirectly involved with the Fund. c. Requirements and Sources of the Fund. (1) The Energy Policy Act of 1992 (EPACT) requires DOE to establish and administer the Fund. EPACT authorizes that the

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable Development Fund (RDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Renewable Development Fund (RDF) Renewable Development Fund (RDF) < Back Eligibility Agricultural Commercial Fed. Government General Public/Consumer Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State Minnesota Program Type Public Benefits Fund Provider Xcel Energy Xcel Energy's Renewable Development Fund (RDF) was created in 1999 pursuant to the 1994 Radioactive Waste Management Facility Authorization Law (Minn. Stat. § 116C.779). Originally, Xcel Energy was required to donate to the fund $500,000 annually for each dry cask containing spent nuclear fuel

142

Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge  

Science Journals Connector (OSTI)

Abstract The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 ?mol g?1 dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production.

Minh Tuan Nguyen; Nazlina Haiza Mohd Yasin; Toshiki Miyazaki; Toshinari Maeda

2014-01-01T23:59:59.000Z

143

Funding Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Experience for Teachers (RET) Research Experience for Teachers (RET) Organization: National Science Foundation (NSF) Deadline: NA Limitations: Institution must have a REU grant or be applying for one Amount varies depending on needs. An institution can apply for up to 2 months of a teacher's annualized salary for as many teachers as necessary. Available annually The institution MUST have a Research Experience for Undergraduates (REU) grant or must be applying for an REU grant along with the RET grant. The RET request (as supplement or as part of the proposal) should address the following points. The request should describe the plan for teacher activities and the nature of involvement with the REU site program. One special goal of this involvement should be to incorporate the outcome of

144

Financial Assistance Funding Opportunity Announcement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financial Assistance Funding Opportunity Announcement Financial Assistance Funding Opportunity Announcement Financial Assistance Funding Opportunity Announcement AMERICAN RECOVERY AND REINVESTMENT ACT OF 2009 Projects under this FOA will be funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act or Act). The Recovery Act's purposes are to stimulate the economy and to create and retain jobs. The Act gives preference to activities that can be started and completed expeditiously, including a goal of using at least 50 percent of the funds made available by it for activities that can be initiated not later than June 17, 2009. Accordingly, special consideration will be given to projects that promote and enhance the objectives of the Act, especially job creation,

145

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I I Y DoE/Els-o120 Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina Volume 2 Q ~<$c'% ~ v ~ g ;:: # +4 -~ STATES O* December 1987 United States Department of Energy -- TABLE OF CONTENTS Appendix A GEOLOGY AND SUBSURFACE HYDROLOGY . . . . . . . . . . . . . . . A.1 Geology and Seismology . . . . . . . . . . . . . . . . . A.1.l Regional Geologic Setting . . . . . . . . . . . . A.1.1.1 Tectonic Provinces . . . . . . . . . . . A.I.1.2 Stratigraphy . . . . . . . . . . . . . . A.1.1.3 Geomorphology . . . . . . . . . . . . . . A.1.2 Seismology and Geologic Hazards . . . . . . . . . A.1.2.1 Geologic Structures and Seismicity . . . A.1.2.2 Seismic Events and Liquefaction Potentill . . . . . . . . . . . . . . . . A.2 Groundwater Resources . . . . . . . . . . . . . . . . . . A.2.1 Hydrostratigraphy . . . . . . . . . . . . . . . . A.2.2 Groundwater Hydrology . . . . . . . . . . . . . . A.2.2.1 Hydrologic Properties

146

Final Environmental Impact Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Impact \ DoE/Els-o120 Statement Waste Management Activities for Groundwater Protection Savannah River Plant Aiken, South Carolina Volume 3 Q ~+ ~ FNT O&@+@ &v a w ~ k ~ ;%." $ +6 & ~+e $TiTES Of December 1987 United States Department of Energy TABLE OF CONTENTS ~pendix G ASSESSMENT OF ALTERNATIVE STRATEGIES FOR STORAGE FACILITIES . . . . . . . . . . . G.1 No-Action Strategy . . . . . . . . G.1.l Sununarv and Objectives . . NEW DISPOSAL/ . . . . . . . . . . . . . . . G.1.2 Groundwater and Surface Water Effects G.1.3 Nonradioactive Atmospheric Releases . G.1.4 Ecological Effects . . . . . . . . . G.1.5 Radiological Releases . . . . . . . . G.1.6 Archaeological and Historic Resources G.1.7 SOciOecOnOmics . . . . . . . . . . . G.1.8 Dedication of Site . . . . . . . . . G.1.9 Institutional Impacts . . . . . . . . G.l.10 Noise . . . . . . . . . . . . . . . . G.2 Dedication Strategy . . . . . . . . . . . . . G.2.1 G.2.2 G.2.3 G.2.4 G.2.5 G.2.6

147

Overview of environmental surveillance of waste management activities at the Idaho National Engineering Laboratory  

SciTech Connect

The Idaho National Engineering Laboratory (INEL), in southeastern Idaho, is a principal center for nuclear energy development for the Department of Energy (DOE) and the US Nuclear Navy. Fifty-two reactors have been built at the INEL, with 15 still operable. Extensive environmental surveillance is conducted at the INEL by DOE's Radiological and Environmental Sciences Laboratory (RESL), the US Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), EG and G Idaho, Inc., and Westinghouse Idaho Nuclear Company (WINCO). Surveillance of waste management facilities is integrated with the overall INEL Site surveillance program. Air, water, soil, biota, and environmental radiation are monitored or sampled routinely at the INEL. Results to date indicate very small or no impacts from the INEL on the surrounding environment. Environmental surveillance activities are currently underway to address key environmental issues at the INEL. 7 refs., 6 figs., 2 tabs.

Smith, T.H.; Hedahl, T.G.; Wiersma, G.B.; Chew, E.W.; Mann, L.J.; Pointer, T.F.

1986-02-01T23:59:59.000Z

148

Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)  

SciTech Connect

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K{sub d}) and the thermodynamic solubility product (K{sub sp}), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. In future geochemical data packages, they will determine whether a more rigorous measure of solubility is necessary or warranted based on the dose predictions emanating from the ILAW 2001 PA and reviewers' comments. The K{sub d}s and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the ILAW system. In addition to the best-estimate K{sub d}s, a reasonable conservative value and a range are provided. They assume that K{sub d} values are log normally distributed over the cited ranges. Currently, they do not give estimates for the range in solubility limits or their uncertainty. However, they supply different values for both the K{sub d}s and solution concentration limits for different spatial zones in the ILAW system and supply time-varying K{sub d}s for the concrete zone, should the final repository design include concrete vaults or cement amendments to buffer the system pH.

DI Kaplan; RJ Serne

2000-02-24T23:59:59.000Z

149

Solid Waste Regulations (Nova Scotia, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

Nova Scotia Environment administers waste management for the province. Regulations include specific rules and standards for landfills, establish a Resource Recovery Fund, and guidelines for...

150

Calculations of Induced Activity in the ATLAS Experiment for Nuclear Waste Zoning.  

E-Print Network (OSTI)

Extensive calculations were performed with the general activation formula using the fluxes of high-energy hadrons and low-energy neutrons previously obtained from simulations with the GCALOR code of the ATLAS detector. Three sets of proton cross-sections were used for hadrons energy above 20 MeV: (a) one set calculated with the YIELDX code (i.e., the Silberberg-Tsao formula of partial proton spallation cross-sections), (b) one set calculated with the Rudstam formula, and (c) the â??best-estimate' dataset which was a compilation of the available experimental and calculated data. In the energy region below 20 MeV, neutron activation cross-sections were taken from evaluated nuclear data files. The activity of each nuclide for a predefined operation scenario (i.e., number and duration of irradiation and shutdown cycles) was normalized to reference values taken from the European or Swiss legislations, to obtain an aggregate estimate of the radiological hazard comparable with a nuclear waste zoning definition cr...

Morev, M N

2007-01-01T23:59:59.000Z

151

Funding cut for US nuclear waste dump  

Science Journals Connector (OSTI)

... is expected to propose spending only the estimated US$40 million needed to let the Nuclear Regulatory Commission (NRC) move forwards in evaluating the licence application for Yucca Mountain. ... three to four years. Tom Kauffman, a spokesman for the industry policy group the Nuclear Energy Institute, says that ...

Amanda Leigh Mascarelli

2009-04-29T23:59:59.000Z

152

Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy  

E-Print Network (OSTI)

activities, such as waste burning versus waste dumping.and the Geographies of Waste Governance: A Burning Issue forEurope: • Burning oriented – Incineration (waste-to-energy)

Mengozzi, Alessandro

2010-01-01T23:59:59.000Z

153

Public Benefit Funds | Open Energy Information  

Open Energy Info (EERE)

Public Benefit Funds Public Benefit Funds Jump to: navigation, search Public benefit funds (PBF) are state-level programs typically developed during electric utility restructuring by some states in the late 1990s to ensure continued support for renewable energy resources, energy efficiency initiatives and low-income energy programs. These funds are most commonly supported through a very small surcharge on electricity consumption (e.g., $0.002/kWh). This charge is sometimes referred to as a system benefits charge (SBC). PBFs commonly support rebate programs for renewable energy systems, loan programs, research and development, and energy education programs. [1] Contents 1 Public Benefits Fund Incentives 2 References Public Benefits Fund Incentives CSV (rows 1 - 51) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

154

Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream.

Not Available

1994-08-01T23:59:59.000Z

155

Mechanics of Funding matrix  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUNDING MECHANISMS FUNDING MECHANISMS Funding Mechanism Advantages Disadvantages Comments 1. From Doe to regional organizations * * Facilitates a broad, regional approach to planning and implementation that enhances consistency and uniformity * * Especially beneficial for new programs where early planning is needed * * Simplifies communication for DOE to have only one point of contact for information and discussion * * Cooperative agreement mechanism has proven relatively simple to administer * * Approach would require modification for Tribes * * Would also require that funding be provided to individual States to enable them to participate in the process, since planning authority and responsibility rests with the individual State * * Differs from OCRWM approach to 180(c) funding * * Introduces another layer of

156

Bubblers Speed Nuclear Waste Processing at SRS  

ScienceCinema (OSTI)

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2014-08-06T23:59:59.000Z

157

Bubblers Speed Nuclear Waste Processing at SRS  

SciTech Connect

At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

None

2010-11-14T23:59:59.000Z

158

Independent Oversight Activity Report, Hanford Waste Tank Farms – October 28 – November 6, 2013  

Energy.gov (U.S. Department of Energy (DOE))

Follow-up on Previously Identified Items Regarding Positive Ventilation of Hanford Underground Waste Tanks [HIAR-HANFORD-2013-10-28

159

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

160

Tank waste treatment R and D activities at Oak Ridge National Laboratory  

SciTech Connect

Oak Ridge National Laboratory (ORNL) served as the pilot plant for the Hanford production facility during the 1940s. As a result, the waste contained in the ORNL storage tanks has similarities to waste found at other sites, but is typically 10 to 100 times less radioactive. It is estimated that nearly 4.9 million liters of legacy of waste is stored on the site of ORNL. Of this volume about one-fifth is transuranic sludges. The remainder of the waste volume is classified as low-level waste. The waste contains approximately 130,000 Ci, composed primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. The wastes were originally acidic in nature but were neutralized using Na{sub 2}CO{sub 3}, NaOH, or CaO to allow their storage in tanks constructed of carbon steel or concrete (Gunite). In addition to the legacy waste, about 57,000 L of concentrated waste is generated annually, which contains about 13,000 Ci, consisting primarily of {sup 137}Cs, {sup 90}Sr, and small amounts of other fission products. As part of the US department of Energy`s (DOE`s) Environmental Management Tanks Focus Area and Efficient Separations and Processing programs, a number of tasks are under way at ORNL to address the wastes currently stored in tanks across the DOE complex. This paper summarizes the efforts in three of these tasks: (1) the treatment of the tank supernatant to remove Cs, Tc, and Sr; (2) the leaching or washing of the sludges to reduce the volume of waste to be vitrified; and (3) the immobilization of the sludges.

Jubin, R.T.; Lee, D.D.; Beahm, E.C.; Collins, J.L.; Davidson, D.J.; Egan, B.Z.; Mattus, A.J.; Walker, J.F. Jr. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Impacts of Feed Composition and Recycle on Hanford Low-Activity Waste Glass Mass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feed Composition Feed Composition and Recycle on Hanford Low- Activity Waste Glass Mass J.D. Vienna & D.S. Kim - Pacific Northwest National Laboratory I.L. Pegg - Catholic University of America 1 LAW Glass Loading Limits WTP baseline (LAW Glass Formulation Algorithm) low uncertainty  thoroughly tested accounts for Na, S, Cl, F, Cr, K, and P impacts conservative loading Advanced silicate formulation higher uncertainty than baseline currently accounts for Na and S impacts impacts of other components not specifically tested, but, one can evaluate maxima from testing as a lower bound 2 0 5 10 15 20 25 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 SO 3 (target) wt% in Glass Na 2 O (target) wt% in Glass SO 3 ≤ 0.77 wt% Na 2 O ≤ 35.875 - 42.5*SO 3 (in wt%) Na 2 O ≤ 21 wt% Na 2 O + 0.66*K

162

Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass  

SciTech Connect

This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility of rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.

Riley, Brian J.; McCloy, John S.; Goel, Ashutosh; Liezers, Martin; Schweiger, Michael J.; Liu, Juan; Rodriguez, Carmen P.; Kim, Dong-Sang

2013-04-01T23:59:59.000Z

163

Coupling High-Energy Radiography And Photon Activation Analysis (PAA) To Optimize The Characterization Of Nuclear Waste Packages  

SciTech Connect

Radiological characterization of nuclear waste packages is an industrial issue in order to select the best mode of storage. The alpha-activity, mainly due to the presence of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu,...) inside the package, is one of the most important parameter to assess during the characterization. Photon Activation Analysis (PAA) is a non-destructive active method (NDA method) based on the photofission process and on the detection of delayed particles (neutrons and gammas). This technique is well-adapted to the characterization of large concrete waste packages. However, PAA methods often require a simulation step which is necessary to analyze experimental results and to quantify the global mass of actinides. The weak point of this approach is that characteristics of the package are often not well-known, these latter having a huge impact on the final simulation result. High-energy radiography, based on the use of a linear electron accelerator (LINAC), allows to visualize the content of the package and is also a performing way to tune simulation models and to optimize the characterization process by PAA. In this article, we present high-energy radiography results obtained for two different large concrete waste packages in the SAPHIR facility (Active Photon and Irradiation System). This facility is dedicated to PAA study and development and setup for a decade in CEA Saclay. We also discuss possibilities offered by the coupling between high-energy radiography and PAA techniques.

Carrel, F.; Agelou, M.; Gmar, M.; Laine, F.; Lamotte, T.; Lazaro, D.; Poumarede, B.; Rattoni, B. [CEA, LIST, F-91191, Gif-sur-Yvette (France)

2009-12-02T23:59:59.000Z

164

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

165

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

166

Phosphates as Nuclear Waste Forms  

Science Journals Connector (OSTI)

...environment of the disposal site, the...the sustained funding of the Office...EP (1999) Yucca Mountain as a radioactive-waste...Ultimate disposal of radioactive...Adirondack Mountains, New York...for geologic disposal. Mater Res...

Rodney C. Ewing; LuMin Wang

167

E-Print Network 3.0 - activity-long life waste Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

ASME Proceedings of NAWTEC16 Summary: to as an "environmental life-cycle assessment," or LCA." In the field of solid waste management, it has long been... . The conduct of life...

168

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – November 2013  

Energy.gov (U.S. Department of Energy (DOE))

Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18

169

Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013  

Energy.gov (U.S. Department of Energy (DOE))

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

170

Extractive spectrophotometric determination of palladium from acidic high activity nuclear waste  

Science Journals Connector (OSTI)

A simple and rapid method for spectrophotometric determination of palladium from highly acidic and highly radioactive nuclear waste using ?-benzoin oxime (ABO) as...?5M to 4·10?4M in the organic phase. The molar ...

A. Dakshinamoorthy; R. K. Singh; R. H. Iyer

1994-01-01T23:59:59.000Z

171

E-Print Network 3.0 - activity waste vitrification Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference May 1-3, 2006, Tampa, Florida USA Summary: -98. Izumikawa C., 1996, "Metal recovery from fly ash generated from vitrification process for MSW ash," Waste... 14th...

172

Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559  

SciTech Connect

Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

Schmitz, Mark A.; Crouse, Thomas N. [Savannah River Remediation, Aiken, South Carolina 29808 (United States)

2012-07-01T23:59:59.000Z

173

Management activities for retrieved and newly generated transuranic waste, Savannah River Plant  

SciTech Connect

The purpose of this Environmental Assessment (EA) is to assess the potential environmental impacts of the retrieval and processing of retrieved and newly generated transuranic (TRU) radioactive waste at the Savannah River Plant (SRP), including the transportation of the processes TRU waste to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. A new TRU Waste Facility (TWF) will be constructed at SRP to retrieve and process the SRP TRU waste in interim storage to meet WIPP criteria. This EA has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council of Environmental Quality Regulations for implementing NEPA (40 CFR Parts 1500--1508). The National Environmental Policy Act (NEPA) requires the assessment of environmental consequences of all major federal actions that may affect the quality of the human environment. This document describes the environmental impact of constructing and operating the TWF facility for processing and shipment of the TRU waste to WIPP and considers alternatives to the proposed action. 40 refs., 12 figs., 12 tabs.

Not Available

1988-08-01T23:59:59.000Z

174

Public Benefits Fund | Open Energy Information  

Open Energy Info (EERE)

Public Benefits Fund Public Benefits Fund Jump to: navigation, search Public benefit funds (PBF) are state-level programs typically developed during electric utility restructuring by some states in the late 1990s to ensure continued support for renewable energy resources, energy efficiency initiatives and low-income energy programs. These funds are most commonly supported through a very small surcharge on electricity consumption (e.g., $0.002/kWh). This charge is sometimes referred to as a system benefits charge (SBC). PBFs commonly support rebate programs for renewable energy systems, loan programs, research and development, and energy education programs. [1] Public Benefits Fund Incentives CSV (rows 1 - 51) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

175

Rural Innovation Fund (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Innovation Fund (Kentucky) Innovation Fund (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on August 29, 2013. EZFeed Policy Place Kentucky Applies to States or Provinces Kentucky Name Rural Innovation Fund (Kentucky) Policy Category Financial Incentive Policy Type Equity Investment, Grant Program Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Primary Website http://startups.kstc.com/index.php/funding-opportunities/kef-funds Information Source http://startups.kstc.com/images/resource_docs/rif%20guidelines%2020130131.pdf

176

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

177

Part B - Requirements & Funding Information PART B - Requirements and Funding Information  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

b. Part B 1 b. Part B 1 Part B - Requirements & Funding Information PART B - Requirements and Funding Information Gray highlights are instructions. Remove the instructions from the interagency agreement. Attachment 3.b. Part B 2 PART B - Requirements & Funding Information B.1. Purpose This is an interagency transaction. An interagency transaction is an intra-governmental transaction when the servicing agency uses internal resources to support the requesting agency requirement and is a reimbursable activity that requires an interagency agreement. This Part of the interagency agreement (IA) (hereinafter 'Part B') serves as the funding document. It provides specific information on the requirements of the Department of Energy, hereinafter 'the Requesting

178

A data base and a standard material for use in acceptance testing of low-activity waste products  

SciTech Connect

The authors have conducted replicate dissolution tests following the product consistency test (PCT) procedure to measure the mean and standard deviation of the solution concentrations of B, Na, and Si at various combinations of temperature, duration, and glass/water mass ratio. Tests were conducted with a glass formulated to be compositionally similar to low-activity waste products anticipated for Hanford to evaluate the adequacy of test methods that have been designated in privatization contracts for use in product acceptance. An important finding from this set of tests is that the solution concentrations generated in tests at 20 C will likely be too low to measure the dissolution rates of waste products reliably. Based on these results, the authors recommend that the acceptance test be conducted at 40 C. Tests at 40 C generated higher solution concentrations, were more easily conducted, and the measured rates were easily related to those at 20 C. Replicate measurements of other glass properties were made to evaluate the possible use of LRM-1 as a standard material. These include its composition, homogeneity, density, compressive strength, the Na leachability index with the ANSI/ANS 16.1 leach test, and if the glass is characteristically hazardous with the toxicity characteristic leach procedure. The values of these properties were within the acceptable limits identified for Hanford low-activity waste products. The reproducibility of replicate tests and analyses indicates that the glass would be a suitable standard material.

Wolf, S.F.; Ebert, W.L.; Luo, J.S.; Strachan, D.M.

1998-04-01T23:59:59.000Z

179

Project Funding | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Funding Project Funding Project Funding Federal energy projects require funding to generate results. Carefully matching available funding options with specific project needs can make the difference between a stalled, unfunded project and a successful project generating energy and cost savings. The Federal Energy Management Program (FEMP) supports Federal agencies identify, obtain, and implement project funding for energy projects through: Energy Savings Performance Contracts ESPC ENABLE Process Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs. Federal agencies can choose the funding options that best fits for their project needs. For an overview of available funding options and strategies, read the FEMP Project Funding Quick Guide.

180

Second Generation Waste Package Design Study  

SciTech Connect

The following describes the objectives of Project Activity 023 “Second Generation Waste Package Design Study” under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion testenvironments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity.

Armijo, J.S.; Misra, M.; Kar, Piyush

2007-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Waste generator services implementation plan  

SciTech Connect

Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

Mousseau, J.; Magleby, M.; Litus, M.

1998-04-01T23:59:59.000Z

182

Accelerating commercialization: a new model of strategic foundation funding  

Science Journals Connector (OSTI)

Venture philanthropy presents a new model of research funding that is particularly helpful to those fighting orphan diseases, which actively manages the commercialization process to accelerate scientific progress...

Maryann P. Feldman; Alexandra Graddy-Reed

2014-08-01T23:59:59.000Z

183

Radioactive Waste Radioactive Waste  

E-Print Network (OSTI)

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

184

Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunity Announcement Funding Opportunity Announcement Smart Grid Investment Grants Frequently Asked Questions June 26, 2009 Introduction The Department of Energy has reviewed all comments submitted in response to the Notice of Intent released on April 16, 2009 for the Funding Opportunity Announcement (DOE-FOA- 0000058) titled Smart Grid Investment Grant Program. The final version of this FOA released on June 25, 2009 reflects various changes based on these comments. Potential applicants should carefully read the final version of the FOA to ensure that they understand the entire requirements and determine if their specific questions have been addressed. To further clarify

185

US - Former Soviet Union environmental restoration and waste management activities, March 1994  

SciTech Connect

The Peaceful Uses of Atomic Energy Agreement was signed between DOE and the Ministry of Atomic Energy for the Russian Federation and provides a mechanism for cooperation in research, development, and safe utilization of nuclear energy. Under the umbrella of this agreement, DOE and the former Ministry of Atomic Power and Industry signed a Memorandum of Cooperation in the areas of environmental restoration and waste management in September 1990. This document discusses the environmental situation, science and technology process, technical projects (separations, contaminant transport, waste treatment, environmental restoration), scientist exchanges, enhanced data transfer, the US-Russia industry partnership (conference, centers), and future actions.

Not Available

1994-03-01T23:59:59.000Z

186

Community Development Fund (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Community Development Fund is a partnership between the Illinois Department of Commerce and Economic Opportunity (DCEO) and financial institutions. Up to $5 million in micro loans is available...

187

NP Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

188

ASCR Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

189

HEP Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

190

FES Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

191

BES Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

192

BER Open Funding Opportunities  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

193

Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste  

E-Print Network (OSTI)

EXPERIMENTAL. . 26 PGNAA Assembly. Detection System Background Determination of Detector Shielding. Self-Shielding. Optimal Bag Size and Orientation. . . . . . . . . . . . . . . Detection Limit and Sensitivity. . . . . . . . . . . . . . . . Neutron Flux... solid waste. This study modified a previous setup that was in a shadow- shield arrangement using Pu-Be neutron sources by: more elaborate detector shielding to reduce background levels; and, irradiating the target bilaterally. The system background...

Dendahl, Katherine Hoge

2012-06-07T23:59:59.000Z

194

Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.  

Science Journals Connector (OSTI)

...samples collected from disposal sites at Maxey Flats, Ky., and West...trenches at the disposal sites of Maxey Flats, Ky., West Valley...trench water at the Maxey Flats low-level radioactive waste disposal site, p. 747-761...

A J Francis; S Dobbs; B J Nine

1980-07-01T23:59:59.000Z

195

Funding | Photosynthetic Antenna Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Funding Investigators who receive support from the PARC should cite the Washington University Energy Frontier Research Center (EFRC) grant in all publications and projects....

196

WINDExchange: Funding School Wind Projects  

Wind Powering America (EERE)

polluters. Federal Funds In addition to funding provided by the U.S. Department of Energy, many Wind for Schools projects have received federal grants. The United States...

197

California Energy Commission GUIDANCE ON WASTE  

E-Print Network (OSTI)

California Energy Commission GUIDANCE GUIDANCE ON WASTE MANAGEMENT PLANS FOR ENERGY EFFICIENCY) obtain waste management plans for each proposed project receiving funding under the Energy Efficiency of waste. The Energy Commission is providing the following guidance to assist recipients of EECBG Program

198

Mixed low-level waste minimization at Los Alamos  

SciTech Connect

During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

Starke, T.P.

1998-12-01T23:59:59.000Z

199

River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect

This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

BRIGGS, M.G.

2000-09-22T23:59:59.000Z

200

Savannah River Site Makes Progress on Recovery Act-funded Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Makes Progress on Recovery Act-funded Cleanup Savannah River Site Makes Progress on Recovery Act-funded Cleanup Savannah River Site Makes Progress on Recovery Act-funded Cleanup February 9, 2011 - 12:00pm Addthis SRS loaded 14 standard waste boxes containing mixed and low-level waste that previously was classified as transuranic TRU waste. This shipment to a Florida treatment site marks the 1,000 cubic meter milestone of the 5,000 cubic meters in the Site’s TRU program that will be dispositioned through the Recovery Act. SRS loaded 14 standard waste boxes containing mixed and low-level waste that previously was classified as transuranic TRU waste. This shipment to a Florida treatment site marks the 1,000 cubic meter milestone of the 5,000 cubic meters in the Site's TRU program that will be dispositioned through

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The mixed waste management facility  

SciTech Connect

During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

Streit, R.D.

1995-10-01T23:59:59.000Z

202

DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

Harpenau, Evan M

2013-10-10T23:59:59.000Z

203

ANNUAL FUNDING NOTICE for  

NLE Websites -- All DOE Office Websites (Extended Search)

HRD-BEN-2012-0038 HRD-BEN-2012-0038 Date: April 30, 2012 To: All Plan Participants From: SRNS Benefits Administration Re: Savannah River Nuclear Solutions, LLC Multiple Employer Pension Plan Funding Notices Attached are three pension plan notices of which the wording is very closely regulated by the federal government. Therefore, we are providing a quick overview of the notices here. 2011 Annual Funding Notice: The government previously required the distribution of an abbreviated form of this information and called it the Summary Annual Report (SAR). You may have seen SARs from previous years posted on the SRS Intranet "InSite". The enhanced version of that SAR is called the Annual Funding Notice. This particular notice covers the plan year 2011 and is issued after the

204

ANNUAL FUNDING NOTICE for  

NLE Websites -- All DOE Office Websites (Extended Search)

HRD-BEN-2013-0029 HRD-BEN-2013-0029 Date: April 30, 2013 To: All Plan Participants From: SRNS Benefits Administration Re: Savannah River Nuclear Solutions, LLC Multiple Employer Pension Plan Funding Notices Attached is the pension plan notice of which the wording is very closely regulated by the federal government. Therefore, we are providing a quick overview of the notice here. 2012 Annual Funding Notice: The government previously required the distribution of an abbreviated form of this information and called it the Summary Annual Report (SAR). You may have seen SARs from previous years posted on the SRS Intranet "InSite". The enhanced version of that

205

DOE Awards Grant to New Mexico Environment Department for Waste Isolation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant to New Mexico Environment Department for Waste Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring September 19, 2012 - 12:00pm Addthis Media Contact Deb Gill deb.gill@wipp.ws 575-234-7270 Carlsbad, NM - The Department of Energy (DOE) today awarded a grant for an estimated $1.6 million to the New Mexico Environment Department (NMED). The five-year grant funds an agreement for NMED to conduct non-regulatory environmental oversight and monitoring to evaluate activities conducted at DOE's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. NMED evaluates DOE activities related to WIPP's environmental monitoring and cleanup. This award is made in accordance with the Department of Energy

206

Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain  

SciTech Connect

Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m{sup 2}, including the rock salt dump. The space required for the underground facilities amounts to 1.2 km{sup 2}, approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented.

Huertas, F.; Ulibarri, A. [ENRESA, Madrid (Spain)

1993-12-31T23:59:59.000Z

207

Activity of Microorganisms in Organic Waste Disposal: IV. Bio-Calculations  

Science Journals Connector (OSTI)

...characteristics of the sludge system as previously...example, an activated sludge from a food processing...its high activity and gas production. As a result, the maximum attainable sludge concentration was 0...solution in microscopic bubbles. These fine bubbles...

W. Wesley Eckenfelder Jr.; Nandor Porges

1957-05-01T23:59:59.000Z

208

FUNDING BY APPROPRIATION  

Office of Environmental Management (EM)

Research and Development 498,715 561,931 475,500 -86,431 -15.4% Naval Petroleum and Oil Shale Reserves 14,129 19,999 19,950 -49 -0.2% Elk Hills School Lands Fund 0 0 15,580...

209

ARRA FUNDED ENERGY PROGRAMS  

E-Print Network (OSTI)

while retaining and creating jobs for energy industry manufacturing facilities in the state. #12ARRA FUNDED ENERGY PROGRAMS CALIFORNIA ENERGY COMMISSION JULY 1, 2010 INVESTING IN CALIFORNIA'S ENERGY FUTURE #12;#12;1 The California energy Commission is reCeiving $314.5 million in American Recovery

210

Electronic Waste Transformation  

Science Journals Connector (OSTI)

Electronic Waste Transformation ... Instead, entrepreneurial individuals and small businesses recover valuable metals such as copper from obsolete equipment through activities such as burning. ...

CHERYL HOGUE

2012-04-01T23:59:59.000Z

211

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

212

Adaption of the Magnetometer Towed Array geophysical system to meet Department of Energy needs for hazardous waste site characterization  

SciTech Connect

This report documents US Department of Energy (DOE)-funded activities that have adapted the US Navy`s Surface Towed Ordnance Locator System (STOLS) to meet DOE needs for a ``... better, faster, safer and cheaper ...`` system for characterizing inactive hazardous waste sites. These activities were undertaken by Sandia National Laboratories (Sandia), the Naval Research Laboratory, Geo-Centers Inc., New Mexico State University and others under the title of the Magnetometer Towed Array (MTA).

Cochran, J.R. [Sandia National Labs., Albuquerque, NM (United States); McDonald, J.R. [Naval Research Lab., Washington, DC (United States); Russell, R.J. [Geo-Centers, Inc., Newton, MA (United States); Robertson, R. [Hughes Associates, Inc., Washington, DC (United States); Hensel, E. [New Mexico State Univ., Las Cruces, NM (United States). Dept. of Mechanical Engineering

1995-10-01T23:59:59.000Z

213

Nuclear Waste Program Faces Political Burial  

Science Journals Connector (OSTI)

...seeking to halt funding for site work in...United States waste disposal Western U.S...choice ofwaste disposal sites. They just...Washington; Yucca Mountain, Nevada; and...list of proposed disposal sites. Titcomb...

ELIOT MARSHALL

1986-08-22T23:59:59.000Z

214

Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-5507-2013 STD-5507-2013 February 2013 DOE STANDARD Standard for Communicating Waste Characterization and DOT Hazard Classification Requirements for Low Specific Activity Materials and Surface Contaminated Objects [This Standard describes acceptable, but not mandatory means for complying with requirements. Standards are not requirements documents and are not to be construed as requirements in any audit or appraisal for compliance with associated rule or directives.] U.S. Department of Energy SAFT Washington, D.C. 20585 Distribution Statement: A. Approved for public release; distribution is unlimited This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services,

215

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

1987-09-30T23:59:59.000Z

216

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

1987-09-30T23:59:59.000Z

217

Federal Funding Sources of Information Sources for Automatic Funding Notices  

E-Print Network (OSTI)

;Federal Funding Sources of Information r Grant Programs & Deadlines q World Health Organization - GrantFederal Funding Sources of Information Sources for Automatic Funding Notices q Catalogue of Federal Domestic Assistance q Grants.Gov q FedBizOpps q The Foundation Center r RFP Bulletin r Philanthropy News

218

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

219

4 September 2014 Industry Skills Fund  

E-Print Network (OSTI)

pertaining to future activities to be funded and the scope of the Single Business Service Initiative on behalf of the broader ATN network. The ATN supports the creation of the Single Business Service with industry figures, including from SME's, in the Government-identified priority sectors of: Food

University of Technology, Sydney

220

Avoidable waste management costs  

SciTech Connect

This report describes the activity based costing method used to acquire variable (volume dependent or avoidable) waste management cost data for routine operations at Department of Energy (DOE) facilities. Waste volumes from environmental restoration, facility stabilization activities, and legacy waste were specifically excluded from this effort. A core team consisting of Idaho National Engineering Laboratory, Los Alamos National Laboratory, Rocky Flats Environmental Technology Site, and Oak Ridge Reservation developed and piloted the methodology, which can be used to determine avoidable waste management costs. The method developed to gather information was based on activity based costing, which is a common industrial engineering technique. Sites submitted separate flow diagrams that showed the progression of work from activity to activity for each waste type or treatability group. Each activity on a flow diagram was described in a narrative, which detailed the scope of the activity. Labor and material costs based on a unit quantity of waste being processed were then summed to generate a total cost for that flow diagram. Cross-complex values were calculated by determining a weighted average for each waste type or treatability group based on the volume generated. This study will provide DOE and contractors with a better understanding of waste management processes and their associated costs. Other potential benefits include providing cost data for sites to perform consistent cost/benefit analysis of waste minimization and pollution prevention (WMIN/PP) options identified during pollution prevention opportunity assessments and providing a means for prioritizing and allocating limited resources for WMIN/PP.

Hsu, K.; Burns, M.; Priebe, S.; Robinson, P.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vermont Sustainable Jobs Fund (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Vermont Sustainable Job Fund offers grants, loans, and technical assistance. VSJF's grant-making depends on the funds it raised and its strategic market development focus. Grant proposals are...

222

Community Development Financial Institutions Fund  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Treasury is accepting applications on the Community Development Financial Institutions (CDFI) Fund, which has opened the fiscal year 2015 funding round for the CDFI Program...

223

Grow Missouri Loan Fund (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Grow Missouri Loan Fund is open to private companies with fewer than 500 existing employees. One of the key advantages of the program is that the funding can be used as a prior commitment for...

224

Commercial Building Funding Opportunity Webinar  

Energy.gov (U.S. Department of Energy (DOE))

This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

225

Proposed design requirements for high-integrity containers used to store, transport, and dispose of high-specific-activity, low-level radioactive wastes from Three Mile Island Unit II  

SciTech Connect

This report develops proposed design requirements for high integrity containers used to store, transport and/or dispose of high-activity, low-level radioactive wastes from Three Mile Island Unit II. The wastes considered are the dewatered resins produced by the EPICOR II waste treatment system used to clean-up the auxiliary building water. The radioactivity level of some of these EPICOR II liners is 1300 curies per container. These wastes may be disposed of in an intermediate depth burial (10 to 20 meter depth) facility. The proposed container design requirements are directed to ensure isolation of the waste and protection of the public health and safety.

Vigil, M.G.; Allen, G.C.; Pope, R.B.

1981-04-01T23:59:59.000Z

226

Economic Development Fund (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Development Fund (New York) Economic Development Fund (New York) Economic Development Fund (New York) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Loan Program Provider Empire State Development Empire State Development operates the Economic Development Fund, which offers financial assistance to businesses that create or retain business activity and jobs. The program can provide financing and a range of

227

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

228

Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California  

SciTech Connect

DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only other option considered in this EA.

N /A

1999-12-17T23:59:59.000Z

229

Technology Commercialization Fund - EERE Commercialization Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

230

Building Technologies Office: Recovery Act-Funded HVAC Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

HVAC Research Projects to someone by E-mail HVAC Research Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded HVAC Research Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded HVAC Research Projects on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

231

Building Technologies Office: Recovery Act-Funded Working Fluid Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Fluid Projects to someone by E-mail Working Fluid Projects to someone by E-mail Share Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Facebook Tweet about Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Twitter Bookmark Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Google Bookmark Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Delicious Rank Building Technologies Office: Recovery Act-Funded Working Fluid Projects on Digg Find More places to share Building Technologies Office: Recovery Act-Funded Working Fluid Projects on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research

232

Grant Title: NATIONAL EDUCATION ASSOCIATION -LEARNING AND LEADERSHIP GRANTS Funding Opportunity Number: N/A  

E-Print Network (OSTI)

Grant Title: NATIONAL EDUCATION ASSOCIATION - LEARNING AND LEADERSHIP GRANTS Funding Opportunity in collegial study. Multiple awards. Length of Support: Grants will fund activities for twelve months from education institutions. Administrators may not apply for Learning & Leadership grants. Preference

Farritor, Shane

233

RADIOACTIVE WASTE MANAGEMENT IN THE CHERNOBYL EXCLUSION ZONE - 25 YEARS SINCE THE CHERNOBYL NUCLEAR POWER PLANT ACCIDENT  

SciTech Connect

Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.

Farfan, E.; Jannik, T.

2011-10-01T23:59:59.000Z

234

Application of single ion activity coefficients to determine solvent extraction mechanism for components of high level nuclear waste  

SciTech Connect

The TRUEX solvent extraction process is being developed to remove and concentrate transuranic (TRU) elements from high-level and TRU radioactive wastes currently stored at US Department of Energy sites. Phosphoric acid is one of the chemical species of concern at the Hanford site where bismuth phosphate was used to recover plutonium. The mechanism of phosphoric acid extraction with TRUEX-NPH solvent at 25{degrees}C was determined by phosphoric acid distribution ratios, which were measured by using phosphoric acid radiotracer and a variety of aqueous phases containing different concentrations of nitric acid and nitrate ions. A model was developed for predicting phosphoric acid distribution ratios as a function of the thermodynamic activities of nitrate ion and hydrogen ion. The Generic TRUEX Model (GTM) was used to calculate these activities based on the Bromley method. The derived model supports CMPO and TBP extraction of a phosphoric acid-nitric acid complex and a CMPO-phosphoric acid complex in TRUEX-NPH solvent.

Nunez, L.; Vandegrift, G.F.

1995-12-31T23:59:59.000Z

235

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

236

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

237

Waste acceptance and waste loading for vitrified Oak Ridge tank waste  

SciTech Connect

The Office of Science and Technology of the DOE has funded a joint project between the Oak Ridge National Laboratory (ORNL) and the Savannah River Technology Center (SRTC) to evaluate vitrification and grouting for the immobilization of sludge from ORNL tank farms. The radioactive waste is from the Gunite and Associated Tanks (GAAT), the Melton Valley Storage Tanks (MVST), the Bethel Valley Evaporator Service Tanks (BVEST), and the Old Hydrofractgure Tanks (OHF). Glass formulation development for sludge from these tanks is discussed in an accompanying article for this conference (Andrews and Workman). The sludges contain transuranic radionuclides at levels which will make the glass waste form (at reasonable waste loadings) TRU. Therefore, one of the objectives for this project was to ensure that the vitrified waste form could be disposed of at the Waste Isolation Pilot Plant (WIPP). In order to accomplish this, the waste form must meet the WIPP Waste Acceptance Criteria (WAC). An alternate pathway is to send the glass waste forms for disposal at the Nevada Test Site (NTS). A sludge waste loading in the feed of 6 wt percent will lead to a waste form which is non-TRU and could potentially be disposed of at NTS. The waste forms would then have to meet the requirements of the NTS WAC. This paper presents SRTC`s efforts at demonstrating that the glass waste form produced as a result of vitrification of ORNL sludge will meet all the criteria of the WIPP WAC or NTS WAC.

Harbour, J.R.; Andrews, M.K.

1997-06-06T23:59:59.000Z

238

Waste Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

239

A Lifetime of Work Gone to Waste?  

Science Journals Connector (OSTI)

...Congress chose Yucca Mountain in 1987 over alternatives...nuclear waste at Yucca Mountain “is not an option...request for 2010 cuts funding for the repository...nuclear-waste disposal.” The last word on Yucca Mountain probably hasn't...

Dan Charles

2009-03-20T23:59:59.000Z

240

Canada: Automobile Innovation Fund - Program Detail & Criteria...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Canada: Automobile Innovation Fund - Program Detail & Criteria Canada: Automobile Innovation Fund - Program Detail & Criteria Information from the Canadian Embassy Canada:...

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sustainable Energy Revolving Loan Fund CLOSEOUT FORM  

E-Print Network (OSTI)

and BETC funding. $ Eligible for Energy Trust funding? Yes No BETC? Yes No $ $ If eligible for Energy Trust

Escher, Christine

242

Geophysical Evidence through a CSAMT Survey of the Deep Geological Structure at a Potential Radioactive Waste Site at Beishan, Gansu, China  

Science Journals Connector (OSTI)

...Foundation for funding support (no...geophysical studies at Yucca Mountain, Nevada and vicinity...radioactive waste disposal site: Geophysics...waste (HLRW) disposal site in northwestern...models underground disposal waste disposal...

Zhiguo An; Qingyun Di; Changmin Fu; Cheng Xu; Bo Cheng

243

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

244

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services » Funding Opportunities Services » Funding Opportunities Funding Opportunities Funding Opportunities FUNDING OPPORTUNITIES AND SOLICITATIONS Cost-Shared Development of Innovative Small Modular Reactor Designs The Small Modular Reactor (SMR) Licensing Technical Support (LTS) program, sponsored by the U.S. Department of Energy (DOE) Office of Nuclear Energy (DOE-NE), through this Funding Opportunity Announcement (FOA) seeks to facilitate the development of innovative SMR designs that have the potential to address the nation's economic, environmental and energy security goals. Specifically, the Department is soliciting applications for SMR designs that offer unique and innovative solutions for achieving the objectives of enhanced safety, operations, and performance relative to currently certified designs. This FOA focuses on design development and

245

FUNDING IN ACTION  

NLE Websites -- All DOE Office Websites (Extended Search)

(continued on page 4) (continued on page 4) The ORNL Partnerships Directorate seeks to foster economic development and the growth of business and industry by making available the most innovative equip- ment, the latest technology, and the expertise of ORNL researchers to technology-based companies and research universities throughout the nation. O ak Ridge National Laboratory will receive $54.9 million from the Department of Energy to assist the department in meeting the 21st- century challenges of energy and climate while also creating jobs. ORNL landed two of eight projects, which will get $104.7 million in DOE funding from the American Recovery and Reinvestment Act to establish critical research and testing facilities. For the first project, construction of the Carbon Fiber

246

RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage  

SciTech Connect

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

2003-02-26T23:59:59.000Z

247

Office of Civilian Radioactive Waste Management annual report to Congress  

SciTech Connect

This is the fifth Annual Report to Congress by the Office of Civilian Radioactive Waste Management (OCRWM). The report covers the activities and expenditures of OCRWM during fiscal year 1987, which ended on September 30, 1987. The activities and accomplishments of OCRWM during fiscal year 1987 are discussed in chapters 1 through 9 of this report. The audited financial statements of the Nuclear Waste Fund are provided in chapter 10. Since the close of the fiscal year, a number of significant events have occurred. Foremost among them was the passage of the Nuclear Waste Policy Amendments Act of 1987 (Amendments Act) on December 21, 1987, nearly 3 months after the end of the fiscal year covered by this report. As a result, some of the plans and activities discussed in chapters 1 through 9 are currently undergoing significant change or are being discontinued. Most prominent among the provisions of the Amendments Act is the designation of Yucca Mountain, Nevada, as the only candidate first repository site to be characterized. Therefore, the site characterization plans for Deaf Smith, Texas, and Hanford, Washington, discussed in chapter 3, will not be issued. The refocusing of the waste management program under the Amendments Act is highlighted in the epilogue, chapter 11. 68 refs., 7 figs., 7 tabs.

NONE

1988-08-01T23:59:59.000Z

248

E-Print Network 3.0 - assess waste disposal Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

the University is implementing a charge to fund the costs of handling and disposal of "E-Waste." As previously... : Tuesday, December 23, 2008 Re: Notice of E-Waste Charge,...

249

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunities Funding Opportunities Funding Opportunities November 1, 2013 - 11:40am Addthis The primary strategy of the Advanced Manufacturing Office (AMO) is to invest in high-risk, high-value research and development that will reduce the energy requirements of manufacturing while stimulating economic productivity and growth. Opportunities exist for industry to participate in cost-shared research and development projects. In addition, AMO makes available information and resources on other financial assistance and research opportunities. Advanced Manufacturing Office AMO awards cost-shared funding to collaborative R&D partnerships that address top opportunities for saving energy in industrial distributed energy. Competitive solicitations are the principal mechanism used to

250

Funding Opportunities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunities Funding Opportunities Funding Opportunities November 1, 2013 - 11:40am Addthis The primary strategy of the Advanced Manufacturing Office (AMO) is to invest in high-risk, high-value research and development that will reduce the energy requirements of manufacturing while stimulating economic productivity and growth. Opportunities exist for industry to participate in cost-shared research and development projects. In addition, AMO makes available information and resources on other financial assistance and research opportunities. Advanced Manufacturing Office AMO awards cost-shared funding to collaborative R&D partnerships that address top opportunities for saving energy in industrial distributed energy. Competitive solicitations are the principal mechanism used to

251

Carlsbad employees fund veteran memorial  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlsbad Employees Fund Veteran Memorial Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015 All...

252

Financial Assistance Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE))

Funding Opportunity Announcement (FOA) for the initial Weatherization Innovation Pilot Program grant, issued in April 2010 and closed in June 2010.

253

Loan Loss Reserve Funds Webinars  

Energy.gov (U.S. Department of Energy (DOE))

Provides a listing of past L loan loss reserve fund webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency & Renewable Energy

254

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

255

Mixed Waste Focus Area: Department of Energy complex needs report  

SciTech Connect

The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

Roach, J.A.

1995-11-16T23:59:59.000Z

256

Waste Inspection Tomography (WIT)  

SciTech Connect

Waste Inspection Tomography (WIT) provides mobile semi-trailer mounted nondestructive examination (NDE) and assay (NDA) for nuclear waste drum characterization. WIT uses various computed tomography (CT) methods for both NDE and NDA of nuclear waste drums. Low level waste (LLW), transuranic (TRU), and mixed radioactive waste can be inspected and characterized without opening the drums. With externally transmitted x-ray NDE techniques, WIT has the ability to identify high density waste materials like heavy metals, define drum contents in two- and three-dimensional space, quantify free liquid volumes through density and x-ray attenuation coefficient discrimination, and measure drum wall thickness. With waste emitting gamma-ray NDA techniques, WIT can locate gamma emitting radioactive sources in two- and three-dimensional space, identify gamma emitting isotopic species, identify the external activity levels of emitting gamma-ray sources, correct for waste matrix attenuation, provide internal activity approximations, and provide the data needed for waste classification as LLW or TRU. The mobile feature of WIT allows inspection technologies to be brought to the nuclear waste drum storage site without the need to relocate drums for safe, rapid, and cost-effective characterization of regulated nuclear waste. The combination of these WIT characterization modalities provides the inspector with an unprecedented ability to non-invasively characterize the regulated contents of waste drums as large as 110 gallons, weighing up to 1,600 pounds. Any objects that fit within these size and weight restrictions can also be inspected on WIT, such as smaller waste bags and drums that are five and thirty-five gallons.

Bernardi, R.T.

1995-12-01T23:59:59.000Z

257

Indonesia-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Indonesia-Clean Technology Fund (CTF) Indonesia-Clean Technology Fund (CTF) Jump to: navigation, search Name Indonesia-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Indonesia UN Region South-Eastern Asia References Indonesia-Clean Technology Fund (CTF)[1] Indonesia-Clean Technology Fund (CTF) Screenshot Contents 1 Overview 2 Activities 2.1 Indonesia 2.2 Other Countries 3 Outcomes, Lessons Learned and Good Practices

258

Egypt-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Egypt-Clean Technology Fund (CTF) Egypt-Clean Technology Fund (CTF) Jump to: navigation, search Name Egypt-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Egypt Northern Africa References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1] Egypt-Clean Technology Fund (CTF) Screenshot Contents 1 Overview 2 Activities 2.1 Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)

259

Jordan-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Jordan-Clean Technology Fund (CTF) Jordan-Clean Technology Fund (CTF) Jump to: navigation, search Name Jordan-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Jordan Western Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1] Jordan-Clean Technology Fund (CTF) Screenshot Contents 1 Overview 2 Activities 2.1 Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)

260

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under {section}180(c) of the Nuclear Waste Policy Amendments Act. Under {section}180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radiological transportation emergency response training course funding and timing in the southern states  

SciTech Connect

The following is a review of the enabling statutes of 16 southern states regarding training for personnel preparing for or responding to a transportation-related emergency involving highway route-controlled quantities of spent fuel and high-level radioactive waste. This report outlines the funding sources and procedures for administering funds for programs attended by state and local officials. Additionally, the report outlines the views of emergency response officials in the southem states concerning the timing and administration of future federal assistance to be provided under [section]180(c) of the Nuclear Waste Policy Amendments Act. Under [section]180(c) of the Nuclear Waste Policy Amendments Act of 1987, the US Department of Energy (DOE) is required to provide technical assistance and funds to states for training public safety officials of appropriate units of local government and Indian tribes when spent nuclear fuel or high-level radioactive waste is transported through their jurisdictions. The Comprehensive Cooperative Agreement (CCA) is the primary funding mechanism for federal assistance to states for the development of their overall emergency management capabilities. FEMA supports 12 separate emergency management programs including the Emergency Management Training program (EMT). This program provides funds for emergency management training and technical assistance to states for unique state training needs. Funds may be used for instructors, students and other related costs.

Not Available

1991-10-01T23:59:59.000Z

262

Small Business Revolving Loan Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Revolving Loan Fund Small Business Revolving Loan Fund Small Business Revolving Loan Fund < Back Eligibility Commercial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate Per loan: $45,000 Lifetime maximum per business: $65,000 Program Info State Arkansas Program Type State Loan Program Provider Arkansas Department of Environmental Quality The Arkansas Department of Environmental Quality (ADEQ) offers low-interest loans to small businesses to institute pollution control measures required by state or federal law, or to institute pollution prevention and waste reduction measures. Energy efficiency projects are also eligible for these loans. Loan applications can be found on the program web site or interested

263

Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funds Expand Groundwater Treatment at Hanford Site: Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells Recovery Act Funds Expand Groundwater Treatment at Hanford Site: Contractor CH2M HILL drills record number of wells May 26, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong CH2M HILL Plateau Remediation Company (509) 376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, Wash. - Workers at the Hanford Site have surpassed goals for drilling wells to detect and remove contamination from groundwater. The groundwater was contaminated by radioactive waste and chemicals generated during decades of producing plutonium for the Cold War at the Hanford Site in southeast Washington State. The Department of Energy (DOE) had set a goal for its contractor, CH2M HILL

264

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

265

Annual Progress Report on the Development of Waste Tank Leak Monitoring and Detection and Mitigation Activities in Support of M-45-08  

SciTech Connect

Milestone M-45-09E of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA) [TPA 1996] requires submittal of an annual progress report on the development of waste tank leak detection, monitoring, and mitigation (LDMM) activities associated with the retrieval of waste from single-shell tanks (SSTs). This report details progress for fiscal year 2000, building on the current LDMM strategy and including discussion of technologies, applications, cost, schedule, and technical data. The report also includes discussion of demonstrations conducted and recommendations for additional testing. Tri-Party Agreement Milestones M-45-08A and M-45-08B required design and demonstration of LDMM systems for initial retrieval of SST waste. These specific milestones have recently been deleted as part of the M-45-00A change package. Future LDMM development work has been incorporated into specific technology demonstration milestones and SST waste retrieval milestones in the M-45-03 and M-45-05 milestone series.

DEFIGH PRICE, C.

2000-09-25T23:59:59.000Z

266

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

267

Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment  

Science Journals Connector (OSTI)

Understanding the effects of pretreatment on anaerobic digestion of sludge waste from wastewater treatment plants is becoming increasingly important, as impetus moves towards the utilization of sludge for rene...

Mabel Ting Wong; Dong Zhang; Jun Li; Raymond Kin Hi Hui…

2013-03-01T23:59:59.000Z

268

Integrated High-Level Waste System Planning - Utilizing an Integrated Systems Planning Approach to Ensure End-State Definitions are Met and Executed - 13244  

SciTech Connect

The Savannah River Site (SRS) is a Department of Energy site which has produced nuclear materials for national defense, research, space, and medical programs since the 1950's. As a by-product of this activity, approximately 37 million gallons of high-level liquid waste containing approximately 292 million curies of radioactivity is stored on an interim basis in 45 underground storage tanks. Originally, 51 tanks were constructed and utilized to support the mission. Four tanks have been closed and taken out of service and two are currently undergoing the closure process. The Liquid Waste System is a highly integrated operation involving safely storing liquid waste in underground storage tanks; removing, treating, and dispositioning the low-level waste fraction in grout; vitrifying the higher activity waste at the Defense Waste Processing Facility; and storing the vitrified waste in stainless steel canisters until permanent disposition. After waste removal and processing, the storage and processing facilities are decontaminated and closed. A Liquid Waste System Plan (hereinafter referred to as the Plan) was developed to integrate and document the activities required to disposition legacy and future High-Level Waste and to remove from service radioactive liquid waste tanks and facilities. It establishes and records a planning basis for waste processing in the liquid waste system through the end of the program mission. The integrated Plan which recognizes the challenges of constrained funding provides a path forward to complete the liquid waste mission within all regulatory and legal requirements. The overarching objective of the Plan is to meet all Federal Facility Agreement and Site Treatment Plan regulatory commitments on or ahead of schedule while preserving as much life cycle acceleration as possible through incorporation of numerous cost savings initiatives, elimination of non-essential scope, and deferral of other scope not on the critical path to compliance. There is currently a premium on processing and storage space in the radioactive liquid waste tank system. To enable continuation of risk reduction initiatives, the Plan establishes a processing strategy that provides tank space required to meet, or minimizes the impacts to meeting, programmatic objectives. The Plan also addresses perturbations in funding and schedule impacts. (authors)

Ling, Lawrence T. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2205, Aiken, SC 29808 (United States); Chew, David P. [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)] [URS-Savannah River Remediation, Savannah River Site, Building 766-H Room 2426, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

269

A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford  

SciTech Connect

The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

2014-08-04T23:59:59.000Z

270

Future Funding: Effective Models for Leveraging Public Funds...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the point at which they are allocated they need to be expended within four years from the point at which their allocated. So these funds will be available pretty much unless...

271

Cost effective waste management through composting in Africa  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

Couth, R. [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

2012-12-15T23:59:59.000Z

272

Sustainable Energy Revolving Loan Fund PROJECT APPLICATION  

E-Print Network (OSTI)

Trust and BETC funding. $ Eligible for Energy Trust funding? Yes No BETC? Yes No $ $ If eligible will be combined with funding sources (other than BETC and Energy Trust) for a total project cost higher than

Escher, Christine

273

Sun Fund 5 SL | Open Energy Information  

Open Energy Info (EERE)

Sun Fund 5 SL Place: Madrid, Spain Product: Spanish PV project developer. References: Sun Fund 5 SL1 This article is a stub. You can help OpenEI by expanding it. Sun Fund 5 SL is...

274

First Carbon Fund Ltd | Open Energy Information  

Open Energy Info (EERE)

First Carbon Fund Ltd Jump to: navigation, search Name: First Carbon Fund Ltd Place: London, Greater London, United Kingdom Zip: EC1V 9EE Sector: Carbon Product: First Carbon Fund...

275

Mixed waste characterization reference document  

SciTech Connect

Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

NONE

1997-09-01T23:59:59.000Z

276

funding | OpenEI Community  

Open Energy Info (EERE)

funding funding Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 12 December, 2012 - 11:30 FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies DOE energy efficiency FOA funding opportunity Renewable Energy A new funding opportunity is available to anyone interested in helping develop a public database of federal, state, and local policies and incentives. These resources will be made available through state-of-the-art web and mobile interfaces, on-demand web services, and a downloadable data feed designed to reach a wide variety of stakeholders including energy professionals and end consumers. Files: application/pdf icon DE-FOA0000777: Database of Renewable Energy and Energy Efficiency Incentives and Policies

277

Lin Engineering Technology Scholarship Fund  

E-Print Network (OSTI)

company specializing in step motor applications. Throughout its history, Lin Engineering has continuedLin Engineering Technology Scholarship Fund The purpose of this award is to provide scholarship in Electrical Engineering Technology or Industrial Management & Technology (Electronics area of study

Kostic, Milivoje M.

278

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT  

E-Print Network (OSTI)

Technology Laboratory Recovery Act ­ Smart Grid Demonstrations Funding Opportunity Number: DE-FOA-0000036 as possible to have the benefit of all responses. More information is available at http

279

Recovery Act Funding Opportunities Webcast  

Energy.gov (U.S. Department of Energy (DOE))

As a result of the 2009 American Reinvestment and Recovery Act, the Geothermal Technologies Office (GTO) has four open Funding Opportunity Announcements (FOAs) totaling $484 million for cost-shared...

280

Open Funding Opportunity Announcements (FOAs)  

Office of Science (SC) Website

- and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en CD8F561D-CA7E-4C24-B0AD-2...

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

282

Nuclear Waste Management in the United States—Starting Over  

Science Journals Connector (OSTI)

...selection of Yucca Mountain prevented the...Unreliable funding source...The Yucca Mountain program will...nuclear waste disposal” (17...Underground—Yucca Mountain and the Nation's...Sweden, SNF disposal site , www...

Rodney C. Ewing; Frank N. von Hippel

2009-07-10T23:59:59.000Z

283

Improving tamper detection for hazardous waste security  

SciTech Connect

After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

2002-01-01T23:59:59.000Z

284

Advanced Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Energy Fund Advanced Energy Fund Advanced Energy Fund < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Wind Solar Heating & Cooling Heating Water Heating Program Info State Ohio Program Type Public Benefits Fund Provider Ohio Development Services Agency Ohio's Advanced Energy Fund was originally authorized by the state's 1999 electric restructuring legislation. The Fund supports the Advanced Energy Program, which at different times has provided grants for renewable energy and energy efficiency projects to different economic sectors. Grant and loan funds are awarded through periodic Notices of Funding Availability

285

Nationwide Solar Funding | Open Energy Information  

Open Energy Info (EERE)

Nationwide Solar Funding Place: Palm Desert, California Zip: 92211 Sector: Solar Product: Provides funding for small (residential and business) solar projects References:...

286

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers (EERE)

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

287

Funding Opportunity Webinar - Advancing Solutions To Improve...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Funding Opportunity Webinar - Advancing Solutions To Improve the Energy Efficiency of US Commercial Buildings Funding Opportunity Webinar - Advancing Solutions To Improve the...

288

Advanced Reactor Research and Development Funding Opportunity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Research and Development Funding Opportunity Announcement Advanced Reactor Research and Development Funding Opportunity Announcement The U.S. Department of Energy (DOE)...

289

Property:FundingAgencies | Open Energy Information  

Open Energy Info (EERE)

search Property Name FundingAgencies Property Type Page Retrieved from "http:en.openei.orgwindex.php?titleProperty:FundingAgencies&oldid611377" Categories: Properties NEPA...

290

Department of Energy Issues Funding Opportunity Announcements...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education Department of Energy Issues Funding Opportunity Announcements to Enhance Nuclear Energy Education March...

291

New funding will stimulate alternative energy research  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative energy research New funding will stimulate alternative energy research The Laboratory recently received notice that it has received ARRA funding to participate in four...

292

Lab announces Venture Acceleration Fund recipients  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides...

293

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

294

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a “nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

295

Tank Closure and Waste Management Environmental Impact Statement...  

NLE Websites -- All DOE Office Websites (Extended Search)

due to releases of radionuclides and chemicals from the high-level radioactive waste tanks, Fast Flux Test Facility decommissioning, and waste management activities over long...

296

Energy Secretary Chu Announces $6 Billion in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Billion in Recovery Act Funding 6 Billion in Recovery Act Funding for Environmental Cleanup Energy Secretary Chu Announces $6 Billion in Recovery Act Funding for Environmental Cleanup March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects our commitment to future generations as well as to help local economies get

297

Energy Secretary Chu Announces $138 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

38 Million in Recovery Act Funding 38 Million in Recovery Act Funding for Environmental Cleanup in Ohio Energy Secretary Chu Announces $138 Million in Recovery Act Funding for Environmental Cleanup in Ohio March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Ohio. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

298

Energy Secretary Chu Announces $148 million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48 million in Recovery Act Funding 48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces $148 million in Recovery Act Funding for Environmental Cleanup in New York March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in New York. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

299

Energy Secretary Chu Announces $99 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Chu Announces $99 Million in Recovery Act Funding Energy Secretary Chu Announces $99 Million in Recovery Act Funding for Environmental Cleanup in Illinois Energy Secretary Chu Announces $99 Million in Recovery Act Funding for Environmental Cleanup in Illinois March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Illinois. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up

300

Energy Secretary Chu Announces $79 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Chu Announces $79 Million in Recovery Act Funding Energy Secretary Chu Announces $79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky Energy Secretary Chu Announces $79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Kentucky. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Energy Secretary Chu Announces $384 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Chu Announces $384 Million in Recovery Act Funding Energy Secretary Chu Announces $384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces $384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in New Mexico. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up

302

Energy Secretary Chu Announces $62 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

62 Million in Recovery Act Funding 62 Million in Recovery Act Funding for Environmental Cleanup in California Energy Secretary Chu Announces $62 Million in Recovery Act Funding for Environmental Cleanup in California March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in California. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

303

Energy Secretary Chu Announces $108 Million in Recovery Act Funding for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

108 Million in Recovery Act Funding 108 Million in Recovery Act Funding for Environmental Cleanup in Utah Energy Secretary Chu Announces $108 Million in Recovery Act Funding for Environmental Cleanup in Utah March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Utah. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

304

Interactions between Energy Efficiency Programs funded under the Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactions between Energy Efficiency Programs funded under the Recovery Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs Title Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs Publication Type Report Refereed Designation Unknown LBNL Report Number LBNL-4322E Year of Publication 2011 Authors Goldman, Charles A., Elizabeth Stuart, Ian M. Hoffman, Merrian C. Fuller, and Megan A. Billingsley Tertiary Authors Borgeson, Merrian Pagination 73 Date Published 03/2011 Publisher LBNL City Berkeley Report Number LBNL-4322E Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on "shovel ready" projects to create and retain jobs, is unprecedented. Thousands of newly funded players -cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over2,200 cities, counties and tribes from our study to keep its scope manageable.

305

Waste Isolation Pilot Plant - Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports Reports Waste Isolation Pilot Plant Review Report 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities, April 2013 Review Report 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant, November 2012 Activity Reports 2011 Orientation Visit to the Waste Isolation Pilot Plant, September 2011 Review Reports 2007 Independent Oversight Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant, December 2007 Review Reports 2002 Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant - Summary Report, August 2002 Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant - Volume I, August 2002

306

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network (OSTI)

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

307

Industrial Waste Reduction Program annual report, FY 1993  

SciTech Connect

The Department of Energy`s Industrial Waste Reduction Program (IWRP) sponsors the development, demonstration, and deployment of technologies that offer a significant opportunity to reduce waste generation, improve productivity, and enhance environmental performance in US industry. The program emphasizes technology-driven solutions that are economically beneficial and environmentally sound. Its goal is to improve the energy efficiency and competitiveness of private industry by cost-effectively reducing waste. Industry, universities, national laboratories and other government agencies are working cooperatively to meet this goal. The IWRP emphasizes the timely commercialization of new technologies that can produce measurable energy, environmental, and economic benefits. All projects are substantially cost-shared with private companies to foster the commercialization process. The program is proud to claim four successfully commercialized technologies that have begun generating benefits. The current IWRP portfolio boasts 32 projects in progress. Funding for the IWRP has grown from $1.7 million in 1990 to $13 million in 1994. New companies join the program each year, reaping the benefits of working cooperatively with government. New technologies are expected to reach commercial success in fiscal year (FY) 1994, further increasing the benefits already accrued. Future Annual Reports will also include projects from the Waste Utilization and Conversion Program. Descriptions of the program`s 32 active projects are organized in this report according these elements. Each project description provides a brief background and the major accomplishments during FY 1993.

Not Available

1994-01-01T23:59:59.000Z

308

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

309

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

310

Development, Application, and Evaluation of a Methodology to Estimate Distributed Slip on Fractures due to Future Earthquakes for Nuclear Waste Repository Performance Assessment  

Science Journals Connector (OSTI)

...acknowledge the funding and support received...fracture networks at Yucca Mountain, southwest Nevada...Nuclear Waste Disposal Research) Report...acknowledge the funding and support re-ceived...fracture networks at Yucca Mountain, southwest Nevada...

Paul R. La Pointe; Trenton Cladouhos; Sven Follin

311

Climate Funds Update | Open Energy Information  

Open Energy Info (EERE)

Funds Update Funds Update Jump to: navigation, search Name Climate Funds Update Agency/Company /Organization Overseas Development Institute, The Green Political Foundation Sector Climate Topics Finance Resource Type Training materials, Lessons learned/best practices Website http://www.climatefundsupdate. References Climate Funds Update[1] Abstract Climate Funds Update is an independent website that provides information on the growing number of international climate finance initiatives designed to help developing countries address the challenges of climate change. Climate Funds Update Screenshot "Climate Funds Update is an independent website that provides information on the growing number of international climate finance initiatives designed to help developing countries address the challenges of climate change."

312

Renewable Energy Project Funding | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Project Funding Renewable Energy Project Funding Renewable Energy Project Funding October 16, 2013 - 5:15pm Addthis Renewable Energy Project Funding Planning, Programming & Budgeting Building Design Project Construction Commissioning Operations & Maintenance Federal energy projects require funding to generate results. Agencies trying to stretch their capital budget for a construction project should investigate renewable energy project funding options outside the traditional appropriated budget process. Carefully matching available funding tools with specific project needs can make the difference between a stalled, unfunded renewable energy project and a successful project that generates energy and cost savings. Federal agencies may be able to use tools to finance renewable energy

313

Vehicle Technologies Office: Recovery Act Funding Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Funding Recovery Act Funding Opportunities to someone by E-mail Share Vehicle Technologies Office: Recovery Act Funding Opportunities on Facebook Tweet about Vehicle Technologies Office: Recovery Act Funding Opportunities on Twitter Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Google Bookmark Vehicle Technologies Office: Recovery Act Funding Opportunities on Delicious Rank Vehicle Technologies Office: Recovery Act Funding Opportunities on Digg Find More places to share Vehicle Technologies Office: Recovery Act Funding Opportunities on AddThis.com... Recovery Act Funding Opportunities President Barack Obama announced on March 19 that the DOE is offering up to $2.4 billion in American Recovery and Reinvestment Act funds to support next-generation plug-in hybrid electric vehicles (PHEV) and their advanced

314

Clean Cities: Funded Clean Cities Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Clean Cities: Funded Clean Cities Projects to someone by E-mail Share Clean Cities: Funded Clean Cities Projects on Facebook Tweet about Clean Cities: Funded Clean Cities Projects on Twitter Bookmark Clean Cities: Funded Clean Cities Projects on Google Bookmark Clean Cities: Funded Clean Cities Projects on Delicious Rank Clean Cities: Funded Clean Cities Projects on Digg Find More places to share Clean Cities: Funded Clean Cities Projects on AddThis.com... Current Opportunities Related Opportunities Funded Projects Recovery Act Projects Community Readiness Projects Alternative Fuel Market Projects Funded Clean Cities Projects Clean Cities has awarded more than $300 million to fund hundreds of

315

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

316

Los Alamos Employees' Scholarship Fund  

NLE Websites -- All DOE Office Websites (Extended Search)

Commitment » Commitment » Los Alamos Employees' Scholarship Fund Los Alamos Employees' Scholarship Fund The LAESF campaign raises funds for scholarships that support students from Northern New Mexico who are pursuing four-year undergraduate degrees in fields that will serve the region. June 13, 2012 Scholarship winner and Lab Director Scholarship winner Micaela Lucero and Lab Director Charlie McMillan Contact Giving Campaigns & Volunteering Debbi Wersonick Community Programs Office (505) 667-7870 Email LANL Foundation (505) 753-8890 Email Helping area students pay for college During the 2013 campaign, our employees donated a record-breaking $313,000 that, with the LANS match, resulted in more than $563,000 for scholarships. About the Scholarship Program In 1998, Los Alamos National Laboratory (LANL) and its employees, retirees

317

Final Tank Closure and Waste Management Environmental Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of the low-activity waste (LAW) at the Hanford Site...

318

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

319

BES Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

BES Funding Opportunities BES Funding Opportunities Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas BES Funding Opportunities Print Text Size: A A A RSS Feeds FeedbackShare Page There are no funding opportunities specific to the Materials Sciences and Engineering Division at this time. Please visit the BES Funding Opportunities Page (link below) for general information on preparing applications to BES programs and for information on Funding Opportunities available to broader audiences than Materials

320

PARTNERSHIP PROFILE: THE GLOBAL FUND | 1 About the Global Fund to Fight AIDS,  

E-Print Network (OSTI)

grants worth a total of US$29 billion in more than 140 countries. The Global Fund provided 22% of allPARTNERSHIP PROFILE: THE GLOBAL FUND | 1 MARCH 2014 About the Global Fund to Fight AIDS, Tuberculosis and Malaria The Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund) is a global

Klein, Ophir

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

GRADUATE CONFERENCE FUND The Graduate Conference Fund is sponsored by the Graduate Student Government and  

E-Print Network (OSTI)

GRADUATE CONFERENCE FUND The Graduate Conference Fund is sponsored by the Graduate Student Government and is intended to provide financial assistance for graduate students traveling to a conference Conference Fund The purpose of this funding is to supplement your primary funding from your department

Houston, Paul L.

322

HARVARD CHINA FUND ARTICLES Harvard University has launched the Harvard China Fund, a new University-wide initiative under the direction of  

E-Print Network (OSTI)

HARVARD CHINA FUND ARTICLES Harvard University has launched the Harvard China Fund, a new foundation to support research and teaching about and in China. According to Kirby, the center will have three primary aims: supporting Harvard activities in China and, potentially, establishing a physical

Wolfe, Patrick J.

323

Interactions between Energy Efficiency Programs funded under the Recovery Act and Utility Customer-Funded Energy Efficiency Programs  

SciTech Connect

Since the spring of 2009, billions of federal dollars have been allocated to state and local governments as grants for energy efficiency and renewable energy projects and programs. The scale of this American Reinvestment and Recovery Act (ARRA) funding, focused on 'shovel-ready' projects to create and retain jobs, is unprecedented. Thousands of newly funded players - cities, counties, states, and tribes - and thousands of programs and projects are entering the existing landscape of energy efficiency programs for the first time or expanding their reach. The nation's experience base with energy efficiency is growing enormously, fed by federal dollars and driven by broader objectives than saving energy alone. State and local officials made countless choices in developing portfolios of ARRA-funded energy efficiency programs and deciding how their programs would relate to existing efficiency programs funded by utility customers. Those choices are worth examining as bellwethers of a future world where there may be multiple program administrators and funding sources in many states. What are the opportunities and challenges of this new environment? What short- and long-term impacts will this large, infusion of funds have on utility customer-funded programs; for example, on infrastructure for delivering energy efficiency services or on customer willingness to invest in energy efficiency? To what extent has the attribution of energy savings been a critical issue, especially where administrators of utility customer-funded energy efficiency programs have performance or shareholder incentives? Do the new ARRA-funded energy efficiency programs provide insights on roles or activities that are particularly well-suited to state and local program administrators vs. administrators or implementers of utility customer-funded programs? The answers could have important implications for the future of U.S. energy efficiency. This report focuses on a selected set of ARRA-funded energy efficiency programs administered by state energy offices: the State Energy Program (SEP) formula grants, the portion of Energy Efficiency and Conservation Block Grant (EECBG) formula funds administered directly by states, and the State Energy Efficient Appliance Rebate Program (SEEARP). Since these ARRA programs devote significant monies to energy efficiency and serve similar markets as utility customer-funded programs, there are frequent interactions between programs. We exclude the DOE low-income weatherization program and EECBG funding awarded directly to the over 2,200 cities, counties and tribes from our study to keep its scope manageable. We summarize the energy efficiency program design and funding choices made by the 50 state energy offices, 5 territories and the District of Columbia. We then focus on the specific choices made in 12 case study states. These states were selected based on the level of utility customer program funding, diversity of program administrator models, and geographic diversity. Based on interviews with more than 80 energy efficiency actors in those 12 states, we draw observations about states strategies for use of Recovery Act funds. We examine interactions between ARRA programs and utility customer-funded energy efficiency programs in terms of program planning, program design and implementation, policy issues, and potential long-term impacts. We consider how the existing regulatory policy framework and energy efficiency programs in these 12 states may have impacted development of these selected ARRA programs. Finally, we summarize key trends and highlight issues that evaluators of these ARRA programs may want to examine in more depth in their process and impact evaluations.

Goldman, Charles A.; Stuart, Elizabeth; Hoffman, Ian; Fuller, Merrian C.; Billingsley, Megan A.

2011-02-25T23:59:59.000Z

324

Transuranic Waste Tabletop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transuranic (TRU) Waste Transuranic (TRU) Waste (Hazard Class 7 Radioactive) Moderator's Version of Tabletop Prepared for the Department of Energy Office of Transportation and Emergency Management 02B00215-07D.p65 This page intentionally left blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools planning tools planning tools T T T T Tr r r r ransur ansur ansur ansur ansuranic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) W anic (TRU) Waste aste aste aste aste (Hazar (Hazar (Hazar (Hazar (Hazard Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radio d Class 7 Radioactiv activ activ activ active) e) e) e) e) Moder Moder Moder Moder Moderat at at at ator' or' or' or' or's V s V s V s V s Version of T ersion of T ersion of T ersion of T ersion of Tablet ablet ablet ablet abletop

325

Immobilization of fission products in phosphate ceramic waste forms  

SciTech Connect

Argonne National Laboratory (ANL) is developing chemically bonded phosphate ceramics (CBPCs) to treat low-level mixed wastes, particularly those containing volatiles and pyrophorics that cannot be treated by conventional thermal processes. This work was begun under ANL`s Laboratory Directed Research and Development funds, followed by further development with support from EM-50`s Mixed Waste Focus Area.

Singh, D.; Wagh, A.

1997-09-01T23:59:59.000Z

326

HARVESTING EMSP RESEARCH RESULTS FOR WASTE CLEANUP  

SciTech Connect

The extent of environmental contamination created by the nuclear weapons legacy combined with expensive, ineffective waste cleanup strategies at many U.S. Department of Energy (DOE) sites prompted Congress to pass the FY96 Energy and Water Development Appropriations Act, which directed the DOE to: ''provide sufficient attention and resources to longer-term basic science research, which needs to be done to ultimately reduce cleanup costs'', ''develop a program that takes advantage of laboratory and university expertise, and'' ''seek new and innovative cleanup methods to replace current conventional approaches which are often costly and ineffective.'' In response, the DOE initiated the Environmental Management Science Program (EMSP)-a targeted, long-term research program intended to produce solutions to DOE's most pressing environmental problems. EMSP funds basic research to lower cleanup cost and reduce risk to workers, the public, and the environment; direct the nation's scientific infrastructure towards cleanup of contaminated waste sites; and bridge the gap between fundamental research and technology development activities. EMSP research projects are competitively awarded based on the project's scientific, merit coupled with relevance to addressing DOE site needs. This paper describes selected EMSP research projects with long, mid, and short-term deployment potential and discusses the impacts, focus, and results of the research. Results of EMSP research are intended to accelerate cleanup schedules, reduce cost or risk for current baselines, provide alternatives for contingency planning, or provide solutions to problems where no solutions exist.

Guillen, Donna Post; Nielson, R. Bruce; Phillips, Ann Marie; Lebow, Scott

2003-02-27T23:59:59.000Z

327

Technical requirements specification for tank waste retrieval  

SciTech Connect

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

328

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

329

Astronomy Funding: Feeling the Pinch?  

Science Journals Connector (OSTI)

... radio bleeps from pulsars, it comes as a surprise that Federal support for ground-based astronomy is decreasing. This is in spite of a gradual increase over the years in ... Science Foundation, which distributes roughly half of the Federal funds which go to ground-based astronomy. The reason is that the increase in NSF support is more than overtaken by ...

1969-05-03T23:59:59.000Z

330

Linn Engineering Technology Scholarship Fund  

E-Print Network (OSTI)

as a consulting company specializing in step motor applications. Throughout its history, Linn Engineering hasLinn Engineering Technology Scholarship Fund The purpose of this award is to provide scholarship in Electrical Engineering Technology or Industrial Management & Technology (Electronics area of study

Kostic, Milivoje M.

331

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT  

E-Print Network (OSTI)

to this Funding Opportunity Announcement (FOA), as follows: · Register and create an account on EERE Exchange at https://eere-exchange.energy.gov/. This account will then allow the user to register for any open EERE FOAs that are currently in EERE Exchange. It is recommended that each organization or business unit

332

The Clean Energy Fund | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Fund Clean Energy Fund Jump to: navigation, search Name The Clean Energy Fund Place Santa Monica, California Zip 90403 Product The Clean Energy Fund hopes to begin investing in public market equities beginning in July. As assets under management grow, the types of asset classes Clean Energy Fund will consider will also broaden to include some PE and other convertible instruments. References The Clean Energy Fund[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Clean Energy Fund is a company located in Santa Monica, California . References ↑ "The Clean Energy Fund" Retrieved from "http://en.openei.org/w/index.php?title=The_Clean_Energy_Fund&oldid=35217

333

Alternative Fuels Data Center: Ethanol Infrastructure Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Funding to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Funding on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Funding on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Funding on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations

334

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded  

Open Energy Info (EERE)

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Details Activities (9) Areas (6) Regions (0) Abstract: The Navy's Geothermal Program Office (GPO) manages, explores for and supports the development of geothermal resources on Department of Defense (DoD) -managed lands. We are currently conducting exploration in 13 sites or regions on 6 military installations in Nevada and California. We also have tentative plans to expand our activities late this year or early next year into Utah as well as Guam and the Republic of Djibouti, northeast

335

Measurement of Wind-Induced Pressure Gradients in a Waste Rock Pile  

Science Journals Connector (OSTI)

...constraints can be determined. Funding for this research was...the wind blow through Yucca Mountain. p. 45-53. In D...High-Level Radioactive Waste Disposal. NUREG CP-0040. U...unsaturated zone waste disposal waste rock Western Canada...

Richard T. Amos; David W. Blowes; Leslie Smith; David C. Sego

336

Part B - Requirements & Funding Information  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B - Requirements & Funding Information B - Requirements & Funding Information PART B - Requirements & Funding Information .......................................................................................... 2 PART B - Requirements & Funding Information B.1. Purpose This Part of the IA (hereinafter 'Part B') serves as the funding document. It provides specific information on the requirements of the Department of Energy, hereinafter 'the Requesting Agency' sufficient to demonstrate a bona fide need and identifies funds associated with the requirement to allow [insert the name of agency/organization that will provide acquisition services for the Department of Energy], hereinafter 'the Servicing Agency,' to provide acquisition assistance and conduct an interagency acquisition.

337

Multi-geophysical Investigation of Geological Structures in a Pre-selected High-level Radioactive Waste Disposal Area in Northwestern China  

Science Journals Connector (OSTI)

...Science Foundation for funding support (no.-41104045...level radioactive waste disposal: Acta Geoscientica Sinica...geophysical studies at Yucca Mountain, Nevada and vicinity...potential radioactive waste disposal site: Geophysics, 65...

Zhiguo An; Qingyun Di; Ruo Wang; Miaoyue Wang

338

Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015  

SciTech Connect

Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel, high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)

Ouzounian, P. [ANDRA, Chatenay-Malabry (France); Palmu, Marjatta [Posiva Oy, Eurajoki (Finland); Eng, Torsten [SKB, Stockholm (Sweden)

2012-07-01T23:59:59.000Z

339

Special report: Nuclear waste - under new management  

SciTech Connect

This article is an overview of the effort to provide a long-term disposal site at Yucca Mountain for high-level wastes. Previous financial and technical problems are discussed, as are current funding initiatives. The final decision on the suitability of the site is scheduled for 1998, and a license application is scheduled for 2001.

NONE

1994-12-31T23:59:59.000Z

340

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Completes Annual Determination of the Adequacy of the Nuclear Waste  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Annual Determination of the Adequacy of the Nuclear Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee DOE Completes Annual Determination of the Adequacy of the Nuclear Waste Fund Fee November 2, 2010 - 7:41pm Addthis As required by the Nuclear Waste Policy Act of 1982 (NWPA), DOE has completed its annual review of the adequacy of the Nuclear Waste Fund fee. Based on that review, the Office of Standard Contract Management has determined that there is no basis to propose an adjustment to the fee to Congress. The Secretary of Energy has adopted and approved this determination. As a result, the fee will remain at the amount specified in the NWPA pending the next annual review. The Secretary's determination is available here. Addthis Related Articles GC Commits to Transparency on Nuclear Waste Fund Fee Adequacy Decisions

342

Field testing of waste forms using lysimeters  

SciTech Connect

The Low-Level Waste Data Base Development - EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission is obtaining information on performance of radioactive waste in a disposal environment. Waste forms manufactured from ion exchange resins used to clean up water from the accident at Three Mile Island Nuclear Power Station are being examined in field tests. This paper presents a description of the field testing and results from the first year of operation. 8 refs., 8 figs., 4 tabs.

McConnell, J.W. Jr.; Rogers, R.D.

1987-01-01T23:59:59.000Z

343

Increasing Antioxidant Activity of Procyanidin Extracts from the Pericarp of Litchi chinensis Processing Waste by Two Probiotic Bacteria Bioconversions  

Science Journals Connector (OSTI)

The total antioxidant capability (T-AOC) of LPOPCs before and after microbial incubation was estimated, and the results suggested that probiotic bacteria bioconversion is a feasible and efficient method to convert litchi pericarp procyanidins to a more effective antioxidant agent. ... However, the pericarp of litchi, which accounts for 15% of the fresh weight of the fruit, becomes desiccated and turns brown at ambient temperature within 2 or 3 days pastharvest and is often thrown away as waste. ... Elution conditions were as follows: a linear gradient from 5 to 35% B in 40 min, from 35 to 50% B in 5 min, from 50 to 80% B in 5 min, and from 80 to 5% B in 5 min, at a flow rate of 1.0 mL/min. ...

Shuyi Li; Lu Chen; Ting Yang; Qian Wu; Zhejuan Lv; Bijun Xie; Zhida Sun

2013-01-21T23:59:59.000Z

344

Waste Management Program. Technical progress report, Aporil-June 1983  

SciTech Connect

This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

None

1984-02-01T23:59:59.000Z

345

Section I - FUNDING OPPORTUNITY DESCRIPTION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECOVERY ACT" RECOVERY ACT" FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy - Headquarters Advanced Research Projects Agency - Energy (ARPA-E) Funding Opportunity Number: DE-FOA-0000065 Announcement Type: Initial CFDA Number: 81.135 Issue Date: April 27 , 2009 Concept Paper Opening Date: May 12, 2009, at 8:00 AM Eastern Time Concept Paper Closing Date: June 2, 2009, at 8:00 PM Eastern Time Advanced Research Projects Agency - Energy DE-FOA-0000065 Executive Summary and Introduction This is the first solicitation for the Advanced Research Projects Agency - Energy (ARPA-E). ARPA-E is a new organization within the Department of Energy (DOE), created specifically to foster research and development (R&D) of transformational energy-related technologies.

346

DOE Completes Cleanup at New York, California Sites - Recovery Act funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes Cleanup at New York, California Sites - Recovery Act Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction DOE Completes Cleanup at New York, California Sites - Recovery Act funds accelerate cleanup; support job creation and footprint reduction July 1, 2011 - 12:00pm Addthis Media Contact 202-586-4940 WASHINGTON, D.C. - Last month, the U.S. Department of Energy completed the cleanup of Cold War legacy waste at the Nuclear Radiation Development, LLC (NRD) site near Grand Island, New York, and at the Lawrence Berkeley National Laboratory in Berkeley, California. The two locations became the 18th and 19th sites to be completely cleaned of legacy waste. This milestone was achieved as part of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup

347

Energy Efficiency Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Fund Energy Efficiency Fund Energy Efficiency Fund < Back Eligibility Commercial Industrial Institutional Residential Savings Category Heating & Cooling Cooling Commercial Heating & Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Program Info State Connecticut Program Type Public Benefits Fund Provider Connecticut Department of Public Utility Control Connecticut's original electric-industry restructuring legislation (Public Act 98-28), enacted in April 1998, created separate funds to support energy efficiency and renewable energy.* The efficiency fund is known as the Energy Efficiency Fund, and the renewables fund is known as the [http://www.dsireusa.org/incentives/incentive.cfm?Incentive_Code=CT03R&re...

348

Agri Energy Funding Solutions | Open Energy Information  

Open Energy Info (EERE)

Agri Energy Funding Solutions Agri Energy Funding Solutions Jump to: navigation, search Name Agri-Energy Funding Solutions Place Omaha, Nebraska Zip 68137-2495 Sector Biomass, Wind energy Product AGRI-ENERGY FUNDING SOLUTIONS is a market consultant for BioDiesel, Ethanol as well as Biomass and Wind Energy projects both nationally and internationally and is based in Omaha, Nebraska. References Agri-Energy Funding Solutions[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agri-Energy Funding Solutions is a company located in Omaha, Nebraska . References ↑ "Agri-Energy Funding Solutions" Retrieved from "http://en.openei.org/w/index.php?title=Agri_Energy_Funding_Solutions&oldid=341887

349

Federal Energy Management Program: Project Funding  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Funding Project Funding AFFECT FOA Webinar FEMP hosted a 60-minute informational webinar and question and answer session on the AFFECT FOA on November 12, 2013. Review the webinar slides and transcript. Federal energy projects require funding to generate results. Carefully matching available funding options with specific project needs can make the difference between a stalled, unfunded project and a successful project generating energy and cost savings. The Federal Energy Management Program (FEMP) supports Federal agencies identify, obtain, and implement project funding for energy projects through: Energy Savings Performance Contracts ESPC ENABLE Process Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs. Federal agencies can choose the funding options that best fits for their project needs. For an overview of available funding options and strategies, read the FEMP Project Funding Quick Guide.

350

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

351

Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site  

SciTech Connect

This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

NONE

1995-02-01T23:59:59.000Z

352

Leach test of cladding removal waste grout using Hanford groundwater  

SciTech Connect

This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

Serne, R.J.; Martin, W.J.; Legore, V.L.

1995-09-01T23:59:59.000Z

353

Getting Started Advanced Search for Funding Opportunities  

E-Print Network (OSTI)

Getting Started Advanced Search for Funding Opportunities For Assistance Delete Criteria to Update Search Funding ­ Finding Additional Sources Saving and Printing SPIN Search Results Past funding opportunities can be searched in InfoEd to: · find opportunities that were added prior to your account set

Duchowski, Andrew T.

354

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

355

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network (OSTI)

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

356

Grant Title: NATIONAL EDUCATION ASSOCIATION -STUDENT ACHIEVEMENT GRANTS Funding Opportunity Number: N/A  

E-Print Network (OSTI)

Grant Title: NATIONAL EDUCATION ASSOCIATION - STUDENT ACHIEVEMENT GRANTS Funding Opportunity Number awards. Length of Support: Grants will fund activities for 12 months from the date of the award. Eligible not apply for Student Achievement Grants. Preference will be given to members of the National Education

Farritor, Shane

357

Proposed Fidelity Option Line-Up Tier Fund Type Fund Category/Asset Class Proposed Investment Option  

E-Print Network (OSTI)

Proposed Fidelity Option Line-Up Tier Fund Type Fund Category/Asset Class Proposed Investment Vanguard Inflation Protected Securities U.S. Large Cap Stock Index Fund Vanguard S&P 500 Index Fund U.S. Small/Mid Cap Stock Index Fund Vanguard Extended Market Index Fund International Stock Index Fund

358

State Energy Revolving Loan Funds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(TAP) Revolving Loan Funds: Basics and Best Practices Revolving Loan Funds: Basics and Best Practices Revolving Loan Funds: An Introduction Weatherization & Intergovernmental...

359

The Children's Investment Fund Foundation (CIFF) | Open Energy...  

Open Energy Info (EERE)

(Redirected from The Children's Investment Fund Foundation) Jump to: navigation, search Logo: The Children's Investment Fund Foundation Name: The Children's Investment Fund...

360

Self-Funded Energy Savings Performance Contracting Programs ...  

Energy Savers (EERE)

Self-Funded Energy Savings Performance Contracting Programs Self-Funded Energy Savings Performance Contracting Programs Provides introductory information about self-funded Energy...

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Financing and Revenue: Crowd Funding: Enabling Small Investors...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing and Revenue: Crowd Funding: Enabling Small Investors to Help Fund Business Loans for E3 Upgrades Peer Exchange Call Financing and Revenue: Crowd Funding: Enabling Small...

362

Revolving Loan Funds: An Introduction | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolving Loan Funds: An Introduction Revolving Loan Funds: An Introduction Provides information on the Revolving Loand Funds Webinar Transcript Presentation More Documents &...

363

Hazardous waste management in the Pacific basin  

SciTech Connect

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

364

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

365

Waste Reduction plan for Oak Ridge National Laboratory  

SciTech Connect

Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

Not Available

1991-12-01T23:59:59.000Z

366

SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014  

E-Print Network (OSTI)

SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

Suzuki, Masatsugu

367

Public Benefit Charge Funded Performance Contracting Programs - Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Benefit Charge Funded Performance Contracting Programs - Survey Public Benefit Charge Funded Performance Contracting Programs - Survey and Guidelines Title Public Benefit Charge Funded Performance Contracting Programs - Survey and Guidelines Publication Type Report Refereed Designation Unknown Year of Publication 2000 Authors Schiller, Steven R., Charles A. Goldman, and Brian Henderson Pagination 20 Date Published 08/2000 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper discusses the evolution of performance contracting programs that are included in energy efficiency activities supported by Public Benefit Charge (PBC) funds. Between 1998 and 2002, on the order of $400 million of ratepayer funds are or expected to be committed for these programs in California, Colorado, New York, Texas, and Wisconsin. We summarize several programs that encourage performance-based contracting either through standard performance contracting (e.g., California, New York and Texas), demandside bidding (Colorado) or contractor support programs (Wisconsin). The programs are selected in part to illustrate differing program objectives as well as the relationship between goals and program design. Our major findings and recommendations are:

368

Climate Investment Funds | Open Energy Information  

Open Energy Info (EERE)

Climate Investment Funds Climate Investment Funds Jump to: navigation, search Tool Summary Name: Clean Technology Fund Agency/Company /Organization: African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector: Energy, Land Topics: Finance, Implementation, Low emission development planning, Market analysis, Background analysis Website: www.climateinvestmentfunds.org/cif/ References: Climate Investment Funds[1] Overview The Climate Investment Funds are a unique pair of financing instruments designed to support low-carbon and climate-resilient development through scaled-up financing channeled through the African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development,

369

Chapter 02 - Administrative Control of Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. Administrative Control of Funds 2-1 . Administrative Control of Funds 2-1 CHAPTER 2 ADMINISTRATIVE CONTROL OF FUNDS 1. INTRODUCTION. a. Background/Authority. Title 31, section 1514, of the United States Code (31 U.S.C. 1514), Administrative Division of Apportionments, requires the Secretary of Energy to prescribe and carry out a system for administratively controlling funds. In compliance with this requirement, this chapter establishes the policy and general procedures for administrative control of funds within Department of Energy (DOE), and specifies the penalties that apply to persons who violate these procedures. Additional information regarding DOE's internal control requirements can be found in DOE O

370

DEMEC - Green Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEMEC - Green Energy Fund DEMEC - Green Energy Fund DEMEC - Green Energy Fund < Back Eligibility Commercial Industrial Municipal Utility Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate [http://www.dnrec.delaware.gov/energy/services/GreenEnergy/Pages/GEF_Regu... webpage] will provide details about relevant public meetings and workshops,

371

Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Fund (CTF) Fund (CTF) (Redirected from Vietnam-Clean Technology Fund (CTF)) Jump to: navigation, search Name Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Algeria, Egypt, Indonesia, Jordan, Kazakhstan, Mexico, Morocco, Nigeria, Philippines, South Africa, Thailand, Tunisia UN Region South-Eastern Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1]

372

Green Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Fund Green Energy Fund Green Energy Fund < Back Eligibility Commercial Industrial Institutional Residential Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate [http://www.dnrec.delaware.gov/energy/services/GreenEnergy/Pages/GEF_Regu... webpage] will provide details about relevant public meetings and workshops,

373

Funding Federal Energy and Water Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL ENERGY MANAGEMENT PROGRAM FEDERAL ENERGY MANAGEMENT PROGRAM Funding Federal Energy and Water Projects The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps Federal agencies identify and obtain funding for energy efficiency, renewable energy, water conservation, and greenhouse gas (GHG) management projects. Federal agencies cannot rely on Congressional appropriations alone to fund the energy projects needed to meet Federal require- ments. Additional funding options are available, including: * Energy savings performance contracts (ESPCs) * Utility energy service contracts (UESCs) * Power purchase agreements (PPAs) * Energy incentive programs Carefully matching available funding options with specific

374

Sustainable Development Fund Financing Program (PECO Territory) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Development Fund Financing Program (PECO Territory) Sustainable Development Fund Financing Program (PECO Territory) Sustainable Development Fund Financing Program (PECO Territory) < Back Eligibility Commercial Industrial Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Bioenergy Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Water Heating Wind Program Info State Pennsylvania Program Type Local Loan Program Rebate Amount Varies by project Provider TRF Sustainable Development Fund The Pennsylvania Public Utility Commission created the Sustainable Development Fund (SDF) in its final order of the PECO Energy electric

375

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

376

ICDF Complex Operations Waste Management Plan  

SciTech Connect

This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

W.M. Heileson

2006-12-01T23:59:59.000Z

377

Solid waste retrieval. Phase 1, Operational basis  

SciTech Connect

This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

Johnson, D.M.

1994-09-30T23:59:59.000Z

378

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

379

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

380

Access Fund Partners LP | Open Energy Information  

Open Energy Info (EERE)

Access Fund Partners LP Access Fund Partners LP Jump to: navigation, search Name Access Fund Partners, LP Place San Juan Capistrano, California Zip 92675 Product Boutique investment banking and investment advisory firm with clean energy focus References Access Fund Partners, LP[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Access Fund Partners, LP is a company located in San Juan Capistrano, California . References ↑ "Access Fund Partners, LP" Retrieved from "http://en.openei.org/w/index.php?title=Access_Fund_Partners_LP&oldid=341703" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sustainable Energy Trust Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Trust Fund Sustainable Energy Trust Fund Sustainable Energy Trust Fund < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Bioenergy Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State District of Columbia Program Type Public Benefits Fund Provider Energy Division The District of Columbia's Retail Electric Competition and Consumer Protection Act of 1999 required the DC Public Service Commission (PSC) to establish a public benefits fund to provide energy assistance to low-income residents, and to support energy-efficiency programs and renewable-energy programs. This fund, known as the Reliable Energy Trust Fund (RETF), took effect in 2001. In October 2008, the District of Columbia enacted the Clean

382

Global Environment Fund GEF | Open Energy Information  

Open Energy Info (EERE)

Environment Fund GEF Environment Fund GEF Jump to: navigation, search Name Global Environment Fund (GEF) Place Chevy Chase, Maryland Zip 20815 Product International investment management firm with around USD 800m under management. Invests in companies that make positive contributions to environmental quality, human health and sustainable management of resources. References Global Environment Fund (GEF)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Environment Fund (GEF) is a company located in Chevy Chase, Maryland . References ↑ "Global Environment Fund (GEF)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Environment_Fund_GEF&oldid=345910"

383

Renewable Energy Trust Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Trust Fund Renewable Energy Trust Fund Renewable Energy Trust Fund < Back Eligibility Agricultural Commercial Industrial Institutional Nonprofit Residential Schools Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Home Weatherization Wind Program Info State Massachusetts Program Type Public Benefits Fund Provider Massachusetts Clean Energy Center The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of all investor-owned electric utilities and competitive municipal utilities in Massachusetts. (Non-competitive municipal utilities generally may opt into the Fund by

384

Flexible Capital Fund (Vermont) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) Flexible Capital Fund (Vermont) < Back Eligibility Commercial Agricultural Construction Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Vermont Program Type Loan Program Provider Vermont Sustainable Jobs Fund The Vermont Sustainable Jobs Fund's Flexible Capital Fund (the "Flex Fund") is designed for companies in Vermont's rural areas that are smaller and work on a less-than global scale, offering a return on investment that does not always meet venture capital levels. These rural companies may need a form of "equity" to fuel growth but need it in lesser amounts and perhaps at lower returns than traditional venture

385

Strategic Climate Fund (SCF) | Open Energy Information  

Open Energy Info (EERE)

SCF) SCF) Jump to: navigation, search Name Strategic Climate Fund (SCF) Agency/Company /Organization World Bank, African Development Bank, Asian Development Bank, European Development Bank, Inter-American Development Bank Sector Energy, Land Topics Finance, Market analysis Website http://www.climatefundsupdate. Program Start 2008 References Strategic Climate Fund (SCF)[1] "The Strategic Climate Fund (SCF) is one of the two funds of the Climate Investment Funds. It serves as an overarching framework to support three targeted programs with dedicated funding to pilot new approaches with potential for scaled-up, transformational action aimed at a specific climate change challenge or sectoral response. The SCF is an umbrella vehicle for the receipt of donor funds and

386

Environmental Defense Fund | Open Energy Information  

Open Energy Info (EERE)

Defense Fund Defense Fund Jump to: navigation, search Name Environmental Defense Fund Place New York, New York Zip 10010 Product Environmental Defense is a leading national nonprofit organization representing more than 500,000 members. Environmental Defense is dedicated to protecting the environmental rights of all people, including future generations. References Environmental Defense Fund[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Environmental Defense Fund is a company located in New York, New York . References ↑ "Environmental Defense Fund" Retrieved from "http://en.openei.org/w/index.php?title=Environmental_Defense_Fund&oldid=345028" Categories:

387

Kaiser Engineers Hanford internal position paper -- Project W-236A, Multi-function Waste Tank Facility -- Peer reviews of selected activities  

SciTech Connect

The purpose of this paper is to develop and document a proposed position on the performance of independent peer reviews on selected design and analysis components of the Title 1 [Preliminary] and Title 2 [Final] design phases of the Multi-Function Waste Tank Facility [MWTF] project. An independent, third-party peer review is defined as a documented critical review of documents, data, designs, design inputs, tests, calculations, or related materials. The peer review should be conducted by persons independent of those who performed the work, but who are technically qualified to perform the original work. The peer review is used to assess the validity of assumptions and functional requirements, to assess the appropriateness and logic of selected methodologies and design inputs, and to verify calculations, analyses and computer software. The peer review can be conducted at the end of the design activity, at specific stages of the design process, or continuously and concurrently with the design activity. This latter method is often referred to as ``Continuous Peer Review.``

Stine, M.D. [Kaiser Engineers Hanford Co., Richland, WA (United States)

1995-01-04T23:59:59.000Z

388

Find Funding | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Find Funding Find Funding Funding Opportunities Grants & Contracts Support Award Search Find Funding Early Career Research Program Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Find Funding Print Text Size: A A A RSS Feeds FeedbackShare Page Additional information on funding opportunities, including program contacts and general program announcements can be found on the SC program offices' funding opportunities pages: Advanced Scientific Research Computing (ASCR) funding opportunities information Basic Energy Sciences (BES) funding opportunities information Biological & Environmental Research (BER) funding opportunities information Fusion Energy Sciences (FES) funding opportunities information

389

Waste Treatment Plant - 12508  

SciTech Connect

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

390

Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR-VSL-2013-11-18 Site: Catholic University of America - Vitreous State Laboratory (VSL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design Date of Activity : 11/18/13 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is

391

Sodium-Bearing Waste Treatment Alternatives Implementation Study  

SciTech Connect

The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

Charles M. Barnes; James B. Bosley; Clifford W. Olsen

2004-07-01T23:59:59.000Z

392

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

393

Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs  

Energy.gov (U.S. Department of Energy (DOE))

Interactions Between Energy Efficiecy Programs Funded Under Recover Act and Utility Customer-funded Energy Efficiency Programs Webinar.

394

Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms  

SciTech Connect

The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

1998-03-01T23:59:59.000Z

395

Solar Electric Light Fund | Open Energy Information  

Open Energy Info (EERE)

Solar Electric Light Fund Solar Electric Light Fund Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Electric Light Fund Agency/Company /Organization: Solar Electric Light Fund Sector: Energy Focus Area: Solar Phase: Create Early Successes Resource Type: Publications, Training materials Website: www.self.org/ Locality: US, Africa, Asia, Latin America Cost: Free The mission of the Solar Electric Light Fund (SELF) is to empower people in developing countries to rise from poverty using energy from the sun. What We Do The Solar Electric Light Fund (SELF) has been working in the field of renewable energy, household energy and decentralized rural electrification for over 18 years. We have a proven track record of managing complex, multi-disciplinary international projects and have worked on renewable

396

Funding available for New Mexico businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding available for New Mexico businesses Funding available for New Mexico businesses Funding available for New Mexico businesses The Venture Acceleration Fund of Los Alamos National Security, LLC is accepting applications for the 2013 calendar year. February 6, 2013 Los Alamos water tower after snow fall. Los Alamos water tower after snow fall. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email The quality of applications has increased greatly over the years, so we expect the process will be competitive for 2013. Los Alamos Venture Acceleration Fund accepting 2013 applications LOS ALAMOS, NEW MEXICO, February 6, 2013-The Venture Acceleration Fund (VAF) of Los Alamos National Security, LLC (LANS), the company that manages and operates Los Alamos National Laboratory for the National Nuclear

397

Energy Project Incentive Funds: Updates and Trends  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Incentive Funds Project Incentive Funds Updates and Trends Elizabeth Stuart Lawrence Berkeley National Lab FUPWG Spring Meeting - April 20, 2011 EE Funding Overview * Ratepayer-funded EE budget $5.3B in 2010 - Plus over $1B for DR/LM and $1.5B for renewables * Expected to reach $6B for EE in 2011 - Nearly double the 2008 figure ($3.1B) * Strong expansion expected to 2020 - Total expected to reach $7.5-12.4B (EE only) * It's not just the usual suspects anymore - Recent entrants: NM, MI, NC, AR, VA, OH, PA, IN... EE Funding - Current Picture * ~ 45 states have ratepayer-funded EE * 2010 budget (EE only) $5.3B (source: CEE) - $4.4B in 2009, $3.1B in 2008 and $0.8B in 1998 - ~ 80% on electric side ($4.3B); ~20% for gas EE

398

ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS  

SciTech Connect

Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

Rogers, B.; Loveland, K.

2003-02-27T23:59:59.000Z

399

2014 SunShot Initiative Portfolio Book: Appendix of SunShot Funding Programs  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot’s five subprogram areas, as well as a description of every active project in the SunShot’s project portfolio as of May 2014. This section provides an index list of every active funding program (also known as funding opportunity announcement, or “FOA”) within the SunShot portfolio.

400

State Agency Recovery Act Funding  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agency Agency Recovery Act Funding .Alabama Alabama Public Service Commission $868,824 .Alaska Regulatory Commission of Alaska $767,493 .Arizona Arizona Corporation Commission $915,679 .Arkansas Arkansas Public Service Commission $822,779 .California California Public Utilities Commission $1,686,869 .Colorado The Public Utilities Commission of the State of Colorado $875,899 .Connecticut Connecticut Department of Public Utility Control $839,241 .Delaware Delaware Public Service Commission $772,254 .District of Columbia Public Service Commission of the District of Columbia $765,085 .Florida Florida Public Service Commission $1,217,160 .Georgia Georgia Public Service Commission $996,874 .Hawaii Hawaii Public Utilities Commission $782,834 .Idaho Idaho Public Utilities Commission $788,840 .Illinois

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Waste Hoist  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Hoist: 45-ton Rope-Guide Friction Hoist Completely enclosed (for contamination control), the waste hoist at WIPP is a modern friction hoist with rope guides. With a 45-ton...

402

Nuclear Waste  

Science Journals Connector (OSTI)

Nuclear waste is radioactive material no longer considered valuable...238U, 235U, and 226Ra (where the latter decays to 222Rn gas by emitting an alpha particle) or formed through fission of fissile radioisotopes ...

Rob P. Rechard

2014-01-01T23:59:59.000Z

403

Oklahoma Opportunity Fund (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Opportunity Fund (Oklahoma) Oklahoma Opportunity Fund (Oklahoma) Oklahoma Opportunity Fund (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Grant Program Provider Commerce The Oklahoma Opportunity Fund was established to promote economic development and related infrastructure development. Eligible applicants are

404

Rural Innovation Fund (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Fund (Kentucky) Innovation Fund (Kentucky) Rural Innovation Fund (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Nonprofit Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kentucky Program Type Equity Investment Grant Program Provider Kentucky Science and Technology Corp. This fund provides capital to early-stage technology companies located in rural areas of Kentucky. Companies may apply for a $30,000 grant or an investment up to $100,000.

405

Kina- och Rysslandsfonder; China and Russia Funds.  

E-Print Network (OSTI)

?? Purpose: Aims of this paper is to evaluate a comparative study between China and Russia funds in respect of the risks and returns. We… (more)

Orhan, Banu

2010-01-01T23:59:59.000Z

406

Missouri Agribusiness Revolving Loan Fund (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Missouri Agricultural and Small Business Development Authority’s (MASBDA) Missouri Agribusiness Revolving Loan Fund offers financing to value-added agriculture enterprises, agriculture support...

407

Big Tree Climate Fund | Open Energy Information  

Open Energy Info (EERE)

Name: Big Tree Climate Fund Place: Boulder, Colorado Zip: 80307 Sector: Carbon Product: Finances clean energy and carbon reduction projects through customers who buy RECs and VERs...

408

Lab seeks ideas for Venture Acceleration Fund  

NLE Websites -- All DOE Office Websites (Extended Search)

for these Venture Acceleration Fund awards, which have already produced a significant return on investment for the regional companies that have received them," said Padilla....

409

Industrial Technologies Funding Profile by Subprogram  

Energy.gov (U.S. Department of Energy (DOE))

This document summarizes ITP's funding for fiscal year (FY) 2008, and appropriations for FY2009, and FY2010 requests and breaks it down into each subprogram. 

410

Loan Loss Reserve Fund Program Development  

Energy.gov (U.S. Department of Energy (DOE))

Typically, grantees will work with interested parties or partners to develop a clean energy loan and a loan loss reserve fund program that involves the following steps:

411

Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Clean Technology Fund (CTF) Clean Technology Fund (CTF) Jump to: navigation, search Name Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Energy Efficiency, Geothermal, Transportation Topics Background analysis, Finance, Implementation, Low emission development planning, Market analysis Website http://www.climateinvestmentfu Country Algeria, Egypt, Indonesia, Jordan, Kazakhstan, Mexico, Morocco, Nigeria, Philippines, South Africa, Thailand, Tunisia UN Region South-Eastern Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1]

412

Legacy Risk Measure for Environmental Management Waste  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating the development of a comprehensive and quantitative risk model framework for environmental management activities at the site. Included are waste management programs (high-level waste, transuranic waste, low-level waste, mixed low-level waste, spent nuclear fuel, and special nuclear materials), major environmental restoration efforts, major decontamination and decommissioning projects, and planned long-term stewardship activities. Two basic types of risk estimates are included: risks from environmental management activities, and long-term legacy risks from wastes/materials. Both types of risks are estimated using the Environment, Safety, and Health Risk Assessment Program (ESHRAP) developed at the INEEL. Given these two types of risk calculations, the following evaluations can be performed: • Risk evaluation of an entire program (covering waste/material as it now exists through disposal or other end states) • Risk comparisons of alternative programs or activities • Comparisons of risk benefit versus risk cost for activities or entire programs • Ranking of programs or activities by risk • Ranking of wastes/materials by risk • Evaluation of site risk changes with time as activities progress • Integrated performance measurement using indicators such as injury/death and exposure rates. This paper discusses the definition and calculation of legacy risk measures and associated issues. The legacy risk measure is needed to support three of the seven types of evaluations listed above: comparisons of risk benefit versus risk cost, ranking of wastes/materials by risk, and evaluation of site risk changes with time.

Eide, Steven Arvid; Nitschke, Robert Leon

2002-02-01T23:59:59.000Z

413

FY 1996 Tank waste analysis plan  

SciTech Connect

This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

Homi, C.S.

1996-09-18T23:59:59.000Z

414

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

415

WASTE TO WATTS Waste is a Resource!  

E-Print Network (OSTI)

WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

Columbia University

416

NorthWestern Energy - USB Renewable Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy - USB Renewable Energy Fund NorthWestern Energy - USB Renewable Energy Fund NorthWestern Energy - USB Renewable Energy Fund < Back Eligibility Commercial Industrial Residential Savings Category Water Buying & Making Electricity Solar Wind Maximum Rebate PV: 6,000 Wind: 10,000 Program Info State Montana Program Type Utility Grant Program Rebate Amount PV: 3.00/watt Wind: 2.00/watt Provider NorthWestern Energy NorthWestern Energy (NWE), formerly Montana Power Company, periodically provides funding to its customers for renewable energy projects. In 1997, Montana established the Universal System Benefits (USB) program. The USB requires all electric and gas utilities to establish USB funds for low-income energy assistance, weatherization, energy efficiency activities, and development of renewable energy resources. A typical NorthWestern

417

Low-level waste management in the South. Task 4. 2 - long-term care requirements. [Shallow land burial  

SciTech Connect

This paper provides an analysis of the long-term care requirements of low-level radioactive waste disposal facilities. Among the topics considered are the technical requirements for long-term care, the experiences of the three inactive and three active commercial disposal facilities concerning perpetual care and maintenance, and the financial management of a perpetual care fund. In addition, certain recommendations for the establishment of a perpetual care fund are provided. The predominant method of disposing of low-level radioactive wastes is shallow land burial. After studying alternative methods of disposal, the U.S Nuclear Regulatory Commission (NRC) concluded that there are no compelling reasons for abandoning this disposal method. Of the 22 shallow land burial facilities in the U.S., the federal government maintains 14 active and two inactive disposal sites. There are three active (Barnwell, South Carolina; Hanford, Washington; and Beatty, Nevada) and three inactive commercial disposal facilities (Maxey Flats, Kentucky; Sheffield, Illinois; and West Valley, New York). The life of a typical facility can be broken into five phases: preoperational, operational, closure, postclosure observation and maintenance, and institutional control. Long-term care of a shallow land burial facility will begin with the disposal site closure phase and continue through the postclosure observation and maintenance and institutional control phases. Since the postclosure observation and maintenance phase will last about five years and the institutional control phase 100 years, the importance of a well planned long-term care program is apparent. 26 references, 1 table.

Not Available

1983-01-01T23:59:59.000Z

418

Green Fund Proposal Guidelines September 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES  

E-Print Network (OSTI)

Green Fund Proposal Guidelines September 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals will be accepted by the Green University

Northern British Columbia, University of

419

Green Fund Proposal Guidelines August 10, 2012 UNBC GREEN FUND PROPOSAL GUIDELINES  

E-Print Network (OSTI)

Green Fund Proposal Guidelines August 10, 2012 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals are accepted by the Green University

Northern British Columbia, University of

420

Green Fund Proposal Guidelines March 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES  

E-Print Network (OSTI)

Green Fund Proposal Guidelines March 15, 2010 UNBC GREEN FUND PROPOSAL GUIDELINES In order to advance the overall sustainability of UNBC as an institution a "UNBC Green Fund" has been created from UNBC parking revenues. Green research and project proposals will be accepted by the Green University

Northern British Columbia, University of

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2013 Reinvention Fund Request for Proposals 1 2013 Reinvention Fund: Request for Proposals  

E-Print Network (OSTI)

2013 Reinvention Fund Request for Proposals 1 2013 Reinvention Fund: Request for Proposals Building a Living Laboratory for Sustainability at Penn State Reinvention Fund Projects Pre-Proposals Due: October 21, 2013 Full Proposals Due: December 20, 2013 Student Sustainability Innovation Projects Pre

Maranas, Costas

422

Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt  

SciTech Connect

The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

2014-09-26T23:59:59.000Z

423

ORISE: ARRA-funded work creates opportunities for Tennessee-based small  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA-funded work creates opportunities for Tennessee-based small businesses ARRA-funded work creates opportunities for Tennessee-based small businesses The U.S. Department of Energy Office of Environmental Management (DOE-EM) presented a short-notice opportunity to the Oak Ridge Institute for Science and Education (ORISE)-which is managed by Oak Ridge Associated Universities (ORAU) on behalf of DOE-to provide waste characterization of 34 facilities slated for demolition at Oak Ridge National Laboratory (ORNL). In response, ORAU immediately augmented its current ORISE staff of health physicists, health physics technicians and environmental compliance specialists by securing professional and technical services from locally positioned, small businesses. Throughout the course of the project, which is funded through the American Recovery and Reinvestment Act (ARRA) of

424

Intercity Passenger Rail Federal Funding presented by  

E-Print Network (OSTI)

Intercity Passenger Rail ­ Federal Funding Process presented by: Minnesota Department, equipment and connections ·! Long term: build efficient HSR network ­! Connecting major population centers ·! Lead state on Milwaukee to Twin Cities segment ·! 2008 state bonding to match federal funds

Minnesota, University of

425

The Williams Parents Fund Committee thanks these  

E-Print Network (OSTI)

The Williams Parents Fund Committee thanks these generous donors to the 2010 Parents Fund, as well as the many families who gave anonymously. Pa re n t s Fu n d Do n o r s Williams #12;Bold-face entries Drs. Charles Evans & Lisa Robbins Ms. Suzanne Farver Mr. Jeff & Ms. Karen Follert Dr. Elissa G

Stoiciu, Mihai

426

Change Investment Funds BSA Retirement Plan  

E-Print Network (OSTI)

Change Investment Funds BSA Retirement Plan: If you want to change to a different investment fund in a company you are currently using · Contact the investment company directly by telephone · Or, if you have set-up your access through the investment company website, you can change it online If you want

Ohta, Shigemi

427

Finance 101 Student Organization Funding Workshop  

E-Print Network (OSTI)

students? 4. All org must registered with SICC. Some org received funding from ASI for more than 3 years have received and utilized ASI funding for the past year or more. Group B Group C Approximately 60 the Appropriate Forms: 13 #12;Reports and Reviews Let us know how awesome your event was by having attendees fill

428

LHC and space station get funding strings  

Science Journals Connector (OSTI)

... , authorizing US funding for both the International Space Station and the Large Hadron Collider (LHC) at the European Laboratory for Particle Physics (CERN) in Geneva, Switzerland, but ... both houses. But they do provide an indication of policy direction. In particular, the LHC vote represents defeat for a bid to cut funding completely, but still reflects congressional ...

Meredith Wadman

1997-04-24T23:59:59.000Z

429

Oversight Reports - Waste Isolation Pilot Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Reports - Waste Isolation Pilot Plant Oversight Reports - Waste Isolation Pilot Plant Oversight Reports - Waste Isolation Pilot Plant April 22, 2013 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities November 28, 2012 Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant September 28, 2011 Independent Activity Report, Waste Isolation Pilot Plant - September 2011 Orientation Visit to the Waste Isolation Pilot Plant [HIAR-WIPP-2011-09-07] October 2, 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 Inspection of Environment, Safety, and Health and Emergency Management at

430

Waste Management Improvement Initiatives at Atomic Energy of Canada Limited - 13091  

SciTech Connect

Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) has been in operation for over 60 years. Radioactive, mixed, hazardous and non-hazardous wastes have been and continue to be generated at CRL as a result of research and development, radioisotope production, reactor operation and facility decommissioning activities. AECL has implemented several improvement initiatives at CRL to simplify the interface between waste generators and waste receivers: - Introduction of trained Waste Officers representing their facilities or activities at CRL; - Establishment of a Waste Management Customer Support Service as a Single-Point of Contact to provide guidance to waste generators for all waste management processes; and - Implementation of a streamlined approach for waste identification with emphasis on early identification of waste types and potential disposition paths. As a result of implementing these improvement initiatives, improvements in waste management and waste transfer efficiencies have been realized at CRL. These included: 1) waste generators contacting the Customer Support Service for information or guidance instead of various waste receivers; 2) more clear and consistent guidance provided to waste generators for waste management through the Customer Support Service; 3) more consistent and correct waste information provided to waste receivers through Waste Officers, resulting in reduced time and resources required for waste management (i.e., overall cost); 4) improved waste minimization and segregation approaches, as identified by in-house Waste Officers; and 5) enhanced communication between waste generators and waste management groups. (authors)

Chan, Nicholas; Adams, Lynne; Wong, Pierre [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)] [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada)

2013-07-01T23:59:59.000Z

431

Clean Cities: Funded Clean Cities Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Funded Clean Cities Projects Funded Clean Cities Projects Clean Cities has awarded more than $300 million to fund hundreds of projects that reduce petroleum use. Since its inception in 1993, Clean Cities has funded more than 500 transportation projects nationwide through a competitive application process. These projects awards contribute to Clean Cities' primary goal of reducing petroleum use in the U.S. by 2.5 billion gallons per year by 2020. Some funded Clean Cities projects have included: Introduction of all-electric and hybrid electric vehicles into public and private fleets Development of E85 (85% ethanol, 15% gasoline) fueling stations along busy transportation corridors Conversion of conventional vehicles to run on natural gas and propane Installation of idle-reduction equipment in school buses and tractor trailers.

432

Climate Protection Action Fund | Open Energy Information  

Open Energy Info (EERE)

Action Fund Action Fund (Redirected from The Climate Protection Action Fund) Jump to: navigation, search Logo: The Climate Protection Action Fund Name The Climate Protection Action Fund Address 901 E Street, NW Suite 610 Place Washington, District of Columbia Zip 20004 Website http://www.climateprotectionac Coordinates 38.896398°, -77.024192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.896398,"lon":-77.024192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Delaware Strategic Fund (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Fund (Delaware) Strategic Fund (Delaware) Delaware Strategic Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Grant Program Provider Business Financing The Delaware Strategic Fund represents the primary funding source used by Delaware Economic Development Authority (DEDA) to provide customized loans and grants to businesses for job creation, relocation and expansion. For businesses considering locating in the state of Delaware, financial assistance may be provided in the form of low interest loans, grants, or other creative instruments to support the attraction of businesses that pay sustainable wages. Assistance terms are negotiated specific to each

434

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))

435

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

436

Portable sensor for hazardous waste  

SciTech Connect

Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps.

Piper, L.G.

1994-12-31T23:59:59.000Z

437

New England Wind Forum: State Renewable Energy Funds  

Wind Powering America (EERE)

State Renewable Energy Funds State Renewable Energy Funds Renewable Energy Funds in Massachusetts, Connecticut, and Rhode Island are Public Benefit Funds set up as part of electric industry restructuring legislation. They are funded through systems benefit charges (SBCs) collected from electric ratepayers in these states as part of their monthly electricity bills. Using tools including investments, grants, technical assistance, and research funding, these funds support renewable energy businesses and generation projects, development of renewable energy market demand and infrastructure, and increased awareness and public support. Massachusetts Renewable Energy Trust Fund Operated by the Massachusetts Technology Collaborative. Connecticut Clean Energy Fund Operated by Connecticut Innovations, Inc.

438

Catalytic Transformation of Waste Carbon Dioxide into Valuable Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Transformation of Waste Catalytic Transformation of Waste Carbon Dioxide into Valuable Products Background Many industrial processes contribute large amounts of carbon dioxide (CO 2 ) to the earth's atmosphere. In an effort to reduce the amount of CO 2 released to the atmosphere, the U.S. Department of Energy (DOE) is funding efforts to develop CO 2 capture and storage technologies. In addition to permanent storage of CO 2 in underground reservoirs, some

439

Waste Disposal (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

440

REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences  

E-Print Network (OSTI)

1 REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences (Revised, December 2010) In light to provide bridge funding to the extent possible. The requests for funding will likely exceed the funds. For any given application to this program, if a decision is made to award bridge funding, that award

Sibille, Etienne

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences  

E-Print Network (OSTI)

1 REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences (Revised, November 2013) In light Sciences and Dean, School of Medicine, will provide bridge funding as permitted by the merit of the request for such funds and funds available. A committee has been established to review the requests for bridge funding

Jiang, Huiqiang

442

REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences  

E-Print Network (OSTI)

1 REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences (Revised, August 2013*) In light Sciences and Dean, School of Medicine, will provide bridge funding as permitted by the merit of the request for such funds and funds available. A committee has been established to review the requests for bridge funding

Benos, Takis

443

REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences  

E-Print Network (OSTI)

1 REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences (Revised, October 2011) In light to provide bridge funding to the extent possible. The requests for funding will likely exceed the funds. For any given application to this program, if a decision is made to award bridge funding, that award

Sibille, Etienne

444

REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences  

E-Print Network (OSTI)

1 REQUEST FOR BRIDGE FUNDING Schools of the Health Sciences (Revised, January 2009) In light to provide bridge funding to the extent possible. The requests for funding will likely exceed the funds. For any given application to this program, if a decision is made to award bridge funding, that award

Sibille, Etienne

445

Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts  

SciTech Connect

The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities.

Not Available

1985-08-01T23:59:59.000Z

446

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

447

New Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

New » New Funding Opportunities New » New Funding Opportunities Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Staff Listings/Contact Information What's New Research Areas Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home What's New New Funding Opportunities Print Text Size: A A A RSS Feeds FeedbackShare Page New Grant Applications from Universities and Other Research Institutions NEW FUNDING OPPORTUNITY Computational Materials and Chemical Sciences Network (CMCSN) Program (Closed) In FY 2011, the U.S. Department of Energy, Office of Basic Energy Sciences, will provide support for starting new Computational Materials and Chemical Sciences Network (CMCSN) projects. The CMCSN program supports fundamental research activities in theory and computation relevant to the BES mission.

448

The Global Fund to Fight AIDS, Tuberculosis, and Malaria (Global Fund), founded in 2002, has become the largest  

E-Print Network (OSTI)

Fund allotments to the eliminating countries accounted for 7% of the total Global Fund malariaMAY 2014 1 Background The Global Fund to Fight AIDS, Tuberculosis, and Malaria (Global Fund, amidst global economic stress, the Board of the Global Fund called for a structural reformation

Mullins, Dyche

449

Municipal Energy Reduction Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Energy Reduction Fund Municipal Energy Reduction Fund Municipal Energy Reduction Fund < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Buying & Making Electricity Energy Sources Maximum Rebate $400,000 Program Info Start Date 3/17/2010 State New Hampshire Program Type State Loan Program Rebate Amount $5,000 to $400,000 Provider New Hampshire Community Development Finance Authority In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state's

450

Residential Loan Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Residential Loan Fund Residential Loan Fund < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Bioenergy Solar Maximum Rebate $20,000 Program Info Funding Source System Benefits Charge (SBC) Start Date 11/10/2009 (current offering) State New York Program Type State Loan Program Rebate Amount Varies Provider New York State Energy Research and Development Authority '''''The New York State Energy Research and Development Authority (NYSERDA) has extended the Participation Agreements of the Assisted Home Performance

451

Enterprise Energy Fund Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Energy Fund Grants Enterprise Energy Fund Grants Enterprise Energy Fund Grants < Back Eligibility Commercial Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Manufacturing Other Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Water Heating Bioenergy Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate Not specified Program Info Start Date 03/2010 State New Hampshire Program Type State Grant Program Rebate Amount Not specified Provider New Hampshire Community Development Finance Authority '''''Note: This program is fully subscribed and currently is not accepting

452

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

453

Experiences with treatment of mixed waste  

SciTech Connect

During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

Dziewinski, J.; Marczak, S.; Smith, W.H. [Los Alamos National Lab., NM (United States); Nuttall, E. [Univ. of New Mexico, Albuquerque, NM (United States). Chemical and Nuclear Engineering Dept.

1996-04-10T23:59:59.000Z

454

Tritium waste disposal technology in the US  

SciTech Connect

Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

Albenesius, E.L.; Towler, O.A.

1983-01-01T23:59:59.000Z

455

Technology Incubator for Wind Energy Innovations Funding Opportunity Announcement  

Energy.gov (U.S. Department of Energy (DOE))

On April 2, 2014 EERE’s Wind Program announced a funding opportunity entitled “Technology Incubator for Wind Energy Innovations.” This funding opportunity will fund R&D investments in...

456

CalCEF Clean Energy Fund | Open Energy Information  

Open Energy Info (EERE)

94103 Product: US-based fund manager to CalCEF clean energy funds focusing on the clean energy and related technologies market. References: CalCEF Clean Energy Fund1 This...

457

Grant funding Mechanism Review Options for consultation In the Options set out below, it has been assumed that  

E-Print Network (OSTI)

1 Grant funding Mechanism Review ­ Options for consultation In the Options set out below grants In this model, all exploitation activity (including project maintenance and operations (M&O) for particle physics projects) would be funded via 3year (maximum) standard grants. The detailed model would

Crowther, Paul

458

Categorical Exclusion 4565, Waste Management Construction Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FornI FornI Project Title: Waste Management Construction Support (4565) Program or Program Office: Y -12 Site Office Location: Oak Ridge Tennessee Project Description: This work scope is an attempt to cover the general activities that construction would perform in support of Waste Management activities. Work includes construction work performed in support of Waste Management Sustainability and Stewardship projects and programs to include: load waste into containers; open, manipulate containers; empty containers; decommission out-of-service equipment (includes removal of liquids, hazardous, and universal wastes); apply fabric and gravel to ground; transport equipment; transport materials; transport waste; remove vegetation; place barriers; place erosion controls; operate wheeled and tracked equipment; general carpentry. Work will be performed on dirt, vegetated, graveled, or paved surfaces in

459

Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams  

SciTech Connect

At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

COZZI, ALEX

2004-02-18T23:59:59.000Z

460

Sevin Rosen Funds (California) | Open Energy Information  

Open Energy Info (EERE)

Sevin Rosen Funds (California) Sevin Rosen Funds (California) Jump to: navigation, search Name Sevin Rosen Funds (California) Address 421 Kipling Street Place Palo Alto, California Zip 94301 Region Bay Area Product Venture fund Year founded 1981 Phone number (650) 326-0550 Website http://www.srfunds.com/ Coordinates 37.448385°, -122.160428° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.448385,"lon":-122.160428,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "waste fund activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.