Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

2

Alternative Fuels Data Center: Ethanol Production Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Credit County governments are eligible to receive waste reduction credits for using yard clippings, clean wood waste, or paper waste as feedstock for the

3

Ethanol-blended Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

4

Alternative Fuels Data Center: Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices Find ethanol fuel prices and trends. Ethanol is a renewable fuel made from corn and other plant materials. The use of ethanol is widespread-almost all gasoline in the U.S. contains

5

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

6

Chief Ethanol Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Chief Ethanol Fuels Inc Place: Hastings, Nebraska Product: Ethanol producer and supplier References: Chief Ethanol Fuels Inc1 This article is a...

7

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

8

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

9

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

10

Chief Ethanol Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Jump to: navigation, search Name: Chief Ethanol Fuels Place: Hastings, NE Website: http:www.chiefethanolfuels.c References: Chief Ethanol Fuels1 Information About...

11

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

12

Alternative Fuels Data Center: Ethanol Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find More places to share Alternative Fuels Data Center: Ethanol Related Links on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

13

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

14

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

15

Alternative Fuels Data Center: Ethanol Feedstocks  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Feedstocks to Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Feedstocks Map of the United States BioFuels Atlas Use this interactive map to compare biomass feedstocks and biofuels by

16

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

17

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

18

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

19

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement All gasoline containing 1% or more ethanol by volume offered for sale must be conspicuously identified as "with ethanol" or "containing ethanol."

20

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Ethanol Production Incentive provides qualified ethanol producers with quarterly payments based on production volume during times when ethanol

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

22

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Station Locations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Station Locations Find ethanol (E85) fueling stations near an address or ZIP code or along a

23

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

24

Alternative Fuels Data Center: Ethanol Infrastructure Funding  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Funding to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Funding on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Funding on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Funding on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations

25

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

26

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

27

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Motor fuel containing more than 1% ethanol or methanol may not be sold or offered for sale from a motor fuel dispenser unless the individual selling

28

Ethanol Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

29

Large-scale fuel ethanol from lignocellulose  

Science Journals Connector (OSTI)

Ethanol produced from lignocellulose is considered as a ... foreseeable technology. These are: conversion and production energy balances, suitability of ethanol as a transportation fuel, air quality impacts, raw ...

Lee R. Lynd

30

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

31

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

32

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer

33

Alternative Fuels Data Center: Ethanol Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Tax Exemption Ethanol Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and December 31, 2018. If at any time these taxes are imposed at a rate of 1.25%, the tax on

34

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

35

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

36

Alternative Fuels Data Center: Ethanol License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol License to Ethanol License to someone by E-mail Share Alternative Fuels Data Center: Ethanol License on Facebook Tweet about Alternative Fuels Data Center: Ethanol License on Twitter Bookmark Alternative Fuels Data Center: Ethanol License on Google Bookmark Alternative Fuels Data Center: Ethanol License on Delicious Rank Alternative Fuels Data Center: Ethanol License on Digg Find More places to share Alternative Fuels Data Center: Ethanol License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol License Anyone who imports, exports, or supplies ethanol in the state of Wyoming must obtain an annual license from the Wyoming Department of Transportation. The fee for each license is $25. (Reference Wyoming

37

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Ethanol producers may qualify for an income tax credit equal to 30% of production facility nameplate capacity between 500,000 and 15 million

38

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Colorado Corn Blender Pump Pilot Program provides funding assistance for each qualified station dispensing mid-level ethanol blends. Projects

39

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Missouri Department of Agriculture manages the Missouri Ethanol Producer Incentive Fund (Fund), which provides monthly grants to qualified

40

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Qualified ethanol producers are eligible for a production incentive payable from the Kansas Qualified Agricultural Ethyl Alcohol Producer Fund. An

42

Ethanol fuel for diesel tractors  

SciTech Connect (OSTI)

The use of ethanol fuel in turbocharged diesel tractors is considered. The investigation was performed to evaluate the conversion of a diesel tractor for dual-fueling with ethanol by attaching a carburetor to the inlet air system or with the use of an alcohol spray-injection kit. In this system the mixture of water and alcohol is injected into the air stream by means of pressure from the turbocharger. The carburetor was attached to a by-pass apparatus which allowed the engine to start and shut off on diesel alone. Approximately 46% of the energy for the turbocharged 65 kW diesel tractor could be supplied by carbureted ethanol, and about 30% by the spray-injection approach. Knock limited the extent of substitution of ethanol for diesel fuel. The dual-fueling with ethanol caused a slight increase in brake thermal efficiency. Exhaust temperatures were much lower for equivalent high torque levels. Maximum power was increased by 36% with the spray-injection approach and about 59% with carburetion.

da Cruz, J.M.

1981-01-01T23:59:59.000Z

43

Alternative Fuels Data Center: Ethanol Production  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Production to Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Production and Distribution Ethanol is a domestically produced alternative fuel that's most commonly made from corn. It can also be made from cellulosic feedstocks, such as

44

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Production Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Montana-based ethanol producers are eligible for a tax incentive of $0.20 per gallon of ethanol produced solely from Montana agricultural products or

45

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

46

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Kentucky Corn Growers' Association (KyCGA) offers grants of $5,000 per pump to retailers installing new E85 dispensers in Kentucky. For more

47

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

48

Mid-Blend Ethanol Fuels - Implementation Perspectives | Department...  

Broader source: Energy.gov (indexed) [DOE]

Mid-Blend Ethanol Fuels - Implementation Perspectives Mid-Blend Ethanol Fuels - Implementation Perspectives Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel...

49

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share...

50

Optimization of ethanol production from spent tea waste by Saccharomyces cerevisiae using statistical experimental designs  

Science Journals Connector (OSTI)

The aim of this study was to investigate the prospect for the use of spent tea waste (STW), an important municipal waste, as a potential substrate to generate hydrolysates for fuel ethanol production. Acid pretre...

Yasin Yücel; Sezer Göyc?nc?k

2014-07-01T23:59:59.000Z

51

Emissions from ethanol and LPG fueled vehicles  

SciTech Connect (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

52

Alternative Fuels Data Center: Ethanol Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Benefits and Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Benefits and Considerations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Benefits and Considerations Ethanol is a renewable, domestically produced transportation fuel. Whether

53

Ethanol: Producting Food, Feed, and Fuel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Ethanol: Producting Food, Feed, and Fuel At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol...

54

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

55

Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol and Biobutanol Ethanol and Biobutanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biobutanol Production Incentive

56

Alternative Fuels Data Center: Ethanol Production Investment Tax Credits  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Investment Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Google Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Delicious Rank Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Investment Tax Credits

57

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

58

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution. (Refs. 6).

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

59

Dual-fueling turbocharged diesels with ethanol  

SciTech Connect (OSTI)

Spray addition and carburetion methods were tested for dual-fueling a turbocharged, 65 kW diesel tractor. Approximately 30 percent of the fuel energy for the tractor was supplied by spraying ethanol into the intake air and about 46 percent by carburetion with little affect on the engine thermal efficiency. Further substitution of diesel fuel with ethanol was limited by knock. As the amount of ethanol fed into the engine was increased, ignition apparently changed from the steady burning process which normally occurs in a diesel engine to a rapid explosion which caused knock. The best fuel for the spray approach was a 50 percent ethanol/water solution and with the carburetor it was an 80 percent ethanol/water solution.

Cruz, J.M.; Rotz, C.A.; Watson, D.H.

1982-09-01T23:59:59.000Z

60

Food for fuel: The price of ethanol  

E-Print Network [OSTI]

Conversion of corn to ethanol in the US since 2005 has been a major cause of global food price increases during that time and has been shown to be ineffective in achieving US energy independence and reducing environmental impact. We make three key statements to enhance understanding and communication about ethanol production's impact on the food and fuel markets: (1) The amount of corn used to produce the ethanol in a gallon of regular gas would feed a person for a day, (2) The production of ethanol is so energy intensive that it uses only 20% less fossil fuel than gasoline, and (3) The cost of gas made with ethanol is actually higher per mile because ethanol reduces gasoline's energy per gallon.

Albino, Dominic K; Bar-Yam, Yaneer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuels Data Center: Ethanol Production Facility Environmental  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Facility Environmental Assessment Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on AddThis.com...

62

Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Underwriters Underwriters Laboratories Ethanol Dispenser Safety Testing to someone by E-mail Share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Facebook Tweet about Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Twitter Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Google Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Delicious Rank Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Digg Find More places to share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on AddThis.com... Underwriters Laboratories Ethanol Dispenser Safety Testing

63

Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Pennsylvania's Ethanol Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Delicious Rank Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on

64

Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel and Ethanol Biodiesel and Ethanol Definitions and Retail Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on AddThis.com... More in this section...

65

Alternative Fuels Data Center: Cellulosic Ethanol Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Cellulosic Ethanol Cellulosic Ethanol Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on AddThis.com... More in this section... Federal State

66

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol producer located in Indiana is entitled to a credit of $0.125 per gallon of ethanol produced, including cellulosic ethanol. The Indiana

67

Chapter 23 - How Fuel Ethanol Is Made from Corn  

Science Journals Connector (OSTI)

Abstract In this chapter, fuel ethanol, yeast's role in ethanol production, corn as ethanol feedstock, industrial ethanol production including wet milling, and dry-grind ethanol processing steps (milling, liquefaction, saccharification, fermentation, distillation and recovery) are described along with the energy use in ethanol production.

Nathan S. Mosier; Klein E. Ileleji

2015-01-01T23:59:59.000Z

68

Alternative Fuels Data Center: Ethanol Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Ethanol Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Ethanol Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Ethanol Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Ethanol Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Ethanol Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Ethanol Laws and Incentives on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Laws and Incentives

69

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit Qualified ethanol producers are eligible for an income tax credit of $1.00 per gallon of corn- or cellulosic-based ethanol that meets ASTM

70

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

71

Ethanol  

Science Journals Connector (OSTI)

Ethanol is considered to be the best alternative ... liquid fuel for use in automobiles. Although ethanol can be produced from a variety of ... , whereas it is sugarcane in Brazil for ethanol production. However,...

Tushar K. Ghosh; Mark A. Prelas

2011-01-01T23:59:59.000Z

72

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

73

Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol and Biodiesel Ethanol and Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biodiesel Tax Exemption Motor fuels sold to an ethanol or biodiesel production facility and motor

74

Alternative Fuels Data Center: Ethanol Sales Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Sales Tax Ethanol Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and

75

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

76

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

77

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

78

Alternative Fuels Data Center: Biodiesel and Ethanol Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Ethanol and Ethanol Specifications to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Google Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Delicious Rank Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Ethanol Specifications Ethanol-blended gasoline must conform to ASTM D4814, E85 must conform to

79

Alternative Fuels Data Center: Status Update: Clarification of Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clarification of Ethanol Certification Limits for Legacy Equipment Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Google Bookmark Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Delicious Rank Alternative Fuels Data Center: Status Update: Clarification of

80

Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Ethanol The list below contains summaries of all Alaska laws and incentives related

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Ethanol The list below contains summaries of all Wisconsin laws and incentives

82

Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Ethanol The list below contains summaries of all Virginia laws and incentives

83

Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Ethanol The list below contains summaries of all Arkansas laws and incentives

84

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A qualified investor may receive a tax credit of up to 40% of an

85

Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Ethanol The list below contains summaries of all Oregon laws and incentives related

86

Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Ethanol The list below contains summaries of all Texas laws and incentives related

87

Alternative Fuels Data Center: California Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Ethanol The list below contains summaries of all California laws and incentives

88

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A tax credit is available for investments in a qualified small business

89

Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Ethanol The list below contains summaries of all Tennessee laws and incentives

90

Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Ethanol The list below contains summaries of all Minnesota laws and incentives

91

Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Ethanol The list below contains summaries of all Kentucky laws and incentives

92

Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Ethanol The list below contains summaries of all Delaware laws and incentives

93

Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Ethanol The list below contains summaries of all Nevada laws and incentives related

94

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Ethanol The list below contains summaries of all Pennsylvania laws and incentives

95

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Ethanol The list below contains summaries of all Oklahoma laws and incentives

96

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Production Tax Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol facility is eligible for a credit of $0.075 per gallon of ethanol, before denaturing, for new production for up to 36 consecutive

97

Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Ethanol The list below contains summaries of all Georgia laws and incentives

98

Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Ethanol The list below contains summaries of all Idaho laws and incentives related

99

Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Ethanol The list below contains summaries of all Florida laws and incentives

100

Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Ethanol The list below contains summaries of all Mississippi laws and incentives

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Ethanol The list below contains summaries of all Colorado laws and incentives

102

Alternative Fuels Data Center: Cellulosic Ethanol Production Financing  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Cellulosic Ethanol Cellulosic Ethanol Production Financing to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Production Financing The Kansas Development Finance Authority may issue revenue bonds to cover

103

Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Ethanol The list below contains summaries of all Illinois laws and incentives

104

Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Ethanol The list below contains summaries of all Michigan laws and incentives

105

Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Ethanol The list below contains summaries of all Montana laws and incentives

106

Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Ethanol The list below contains summaries of all Nebraska laws and incentives

107

Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Ethanol The list below contains summaries of all Kansas laws and incentives related

108

Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Ethanol The list below contains summaries of all Louisiana laws and incentives

109

Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Ethanol The list below contains summaries of all Indiana laws and incentives

110

Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Ethanol The list below contains summaries of all Missouri laws and incentives

111

Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Ethanol The list below contains summaries of all Utah laws and incentives related

112

Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Ethanol The list below contains summaries of all Iowa laws and incentives related

113

Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Ethanol The list below contains summaries of all Ohio laws and incentives related

114

Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Ethanol The list below contains summaries of all Connecticut laws and incentives

115

Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Ethanol The list below contains summaries of all Vermont laws and incentives

116

Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Ethanol The list below contains summaries of all Maryland laws and incentives

117

Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Ethanol The list below contains summaries of all Washington laws and incentives

118

Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Ethanol The list below contains summaries of all Hawaii laws and incentives related

119

Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Ethanol The list below contains summaries of all Arizona laws and incentives

120

Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Ethanol The list below contains summaries of all Alabama laws and incentives

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Ethanol The list below contains summaries of all Wyoming laws and incentives

122

Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives

123

Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Ethanol The list below contains summaries of all Maine laws and incentives related

124

Vaporizer design criteria for ethanol fueled internal combustion engines  

E-Print Network [OSTI]

been identified in conversion of diesel engines of farm tractors for using alcohol fuels. Distillation at atmospheric pressure does not yield 200 proof ethanol, (Winston, 1981), so with present technology, ethanol produced on farms is aqueous. A... engines 2. Modify diesel to tolerate straight ethanol injection. 3. Mix ethanol with diesel fuel. 4. Carburete the ethanol separately Converting Diesels To SI Engines Most diesel engines currently used in tractors operate with compression ratios...

Ariyaratne, Arachchi Rallage

2012-06-07T23:59:59.000Z

125

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

126

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

127

Alternative Fuels Data Center: Ethanol Production Facility Property Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Facility Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

128

Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Infrastructure Ethanol Infrastructure Grants and Loan Guarantees to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

129

Alternative Fuels Data Center: Status Update: Ethanol Blender Pump  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Blender Pump Dispenser Certified (August 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Google Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Delicious Rank Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Digg Find More places to share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on

130

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

131

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

132

Ethanol fuels: Energy security, economics, and the environment  

Science Journals Connector (OSTI)

Problems of fuel ethanol production have been the subject of numerous ... including this analysis. The conclusions are that ethanol: does not improve U.S. energy security; is uneconomical; is not...

David Pimentel

1991-01-01T23:59:59.000Z

133

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

134

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

135

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

136

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

137

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use  

E-Print Network [OSTI]

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet,*, Eric Apel, Daven K. Henze,§ Jason Hill, Julian D. Marshall, Hanwant B-Chem chemical transport model to constrain present-day North American ethanol sources, and gauge potential long

Mlllet, Dylan B.

138

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network [OSTI]

to fuel ethanol because it not only contains cellulose andCellulose conversion, % Co-Fermentation Glucose-ethanolamount of cellulose, can be used as fuel ethanol feedstocks

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

139

Fact #679: June 13, 2011 U.S. Imports of Fuel Ethanol Drop Sharply...  

Energy Savers [EERE]

9: June 13, 2011 U.S. Imports of Fuel Ethanol Drop Sharply Fact 679: June 13, 2011 U.S. Imports of Fuel Ethanol Drop Sharply U.S. imports of fuel ethanol were low until 2004 when...

140

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Making Better Use of Ethanol as a Transportation Fuel With "Renewable...  

Broader source: Energy.gov (indexed) [DOE]

Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout...

142

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

143

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS?  

E-Print Network [OSTI]

ETHANOL FROM CORN: CLEAN RENEWABLE FUEL FOR THE FUTURE, OR DRAIN ON OUR RESOURCES AND POCKETS? TAD as ethanol from corn. When this corn ethanol is burned as a gasoline additive or fuel, its use amounts that burn corn ethanol is halved. The wide- spread use of corn ethanol will cause manifold damage to air

Patzek, Tadeusz W.

144

Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content Fact 588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content The fuel economy of a vehicle is...

145

EA-1848: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran...  

Broader source: Energy.gov (indexed) [DOE]

8: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran, Storey County, NV EA-1848: Fulcrum Sierra Waste-to-Ethanol Facility in McCarran, Storey County, NV June 1, 2011 EA-1848:...

146

Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel  

Broader source: Energy.gov [DOE]

This study uses numerical simulations to explore the use of wet ethanol as the low-reactivity fuel and diesel as the high-reactivity fuel for RCCI operation in a heavy-duty diesel engine.

147

Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Corn-to-Ethanol Corn-to-Ethanol Research Pilot Plant to someone by E-mail Share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Facebook Tweet about Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Twitter Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Google Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Delicious Rank Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Digg Find More places to share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Corn-to-Ethanol Research Pilot Plant The Illinois Ethanol Research Advisory Board manages and operates the

148

Profit and policy implications of producing biodiesel–ethanol–diesel fuel blends to specification  

Science Journals Connector (OSTI)

A nonlinear optimization model is developed in this work to analyze biodiesel–ethanol–diesel (BED) ternary blending processes. The model establishes optimal blends to improve the system profitability given production costs, market demand, and fuel prices while meeting multiple property criteria such as kinematic viscosity, density, lower heating value, cloud point, cetane number, fuel stability and sulfur content. Pertinent fuel mixing rules for predicting the fuel properties of BED blends were extrapolated from previous works and applied as constraints to the present model. Several dynamic and/or uncertainty factors were explored in further depth to quantify their impacts on the fuel composition of BED blends including petro-diesel supply reduction, diesel production cost, diesel blends market retail price, and policy changes on bio-fuel subsidies. By examining key optimization sensitivity analysis such as shadow prices and opportunity costs, the crucial limits or constraints on fuel specifications can be identified and used to proactively identify and promote the development of potential additives. The model also suggests the government policy of simultaneously implementing bio-fuel tax credits and mandates may not have a higher contribution to promoting bio-fuel production than the case only with tax credits for the firms with the goal of profit maximization. The firms enable 5–8% increase of the optimal profit from BED blends by utilizing ethanol derived from food waste feedstocks instead of edible biomass.

Jiefeng Lin; Gabrielle Gaustad; Thomas A. Trabold

2013-01-01T23:59:59.000Z

149

Miscibility of Ethanol in Diesel Fuels  

Science Journals Connector (OSTI)

The fuels selected were as follows:? US-1D, US-2D, kerosene, light cycle oil, #1 fuel oil, Fischer Tropsch Liquid 2 (FTL-2, FTL refers to a broad-cut fraction of Fischer?Tropsch products not meeting diesel volatility specifications.), ... The close proximity of a mixture's UCST to the fuel's cloud point masked the classical UCST phase behavior for the FTL fuels and light cycle oil; however, the general trends persisted. ...

K. R. Gerdes; G. J. Suppes

2001-01-12T23:59:59.000Z

150

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content  

E-Print Network [OSTI]

Modeling the natural attenuation of benzene in groundwater impacted by ethanol-blended fuels: Effect of ethanol content on the lifespan and maximum length of benzene plumes Diego E. Gomez1 and Pedro 10 March 2009. [1] A numerical model was used to evaluate how the concentration of ethanol

Alvarez, Pedro J.

151

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

152

Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR  

DOE Patents [OSTI]

A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

2007-08-21T23:59:59.000Z

153

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network [OSTI]

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

Stefanopoulou, Anna

154

Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Ethanol The list below contains summaries of all New Jersey laws and incentives

155

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Ethanol The list below contains summaries of all Rhode Island laws and incentives

156

Alternative Fuels Data Center: New York Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Ethanol The list below contains summaries of all New York laws and incentives

157

Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Ethanol The list below contains summaries of all North Dakota laws and incentives

158

Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Ethanol The list below contains summaries of all New Mexico laws and incentives

159

Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Ethanol The list below contains summaries of all South Dakota laws and incentives

160

Ethanol Production for Automotive Fuel Usage  

SciTech Connect (OSTI)

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in  

E-Print Network [OSTI]

1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

Stefanopoulou, Anna

162

Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products  

Science Journals Connector (OSTI)

Abstract Waste-to-ethanol conversion is a promising technology to provide renewable transportation fuel while mitigating feedstock risks and land use conflicts. It also has the potential to reduce environmental impacts from waste management such as greenhouse gas (GHG) emissions that contribute to climate change. This paper analyzes the life cycle GHG emissions associated with a novel process for the conversion of food processing waste into ethanol (EtOH) and the co-products of compost and animal feed. Data are based on a pilot plant co-fermenting retail food waste with a sugary industrial wastewater, using a simultaneous saccharification and fermentation (SSF) process at room temperature with a grinding pretreatment. The process produced 295 L EtOH/dry t feedstock. Lifecycle GHG emissions associated with the ethanol production process were 1458 gCO2e/L EtOH. When the impact of avoided landfill emissions from diverting food waste to use as feedstock are considered, the process results in net negative GHG emissions and approximately 500% improvement relative to corn ethanol or gasoline production. This finding illustrates how feedstock and alternative waste disposal options have important implications in life cycle GHG results for waste-to-energy pathways.

Jacqueline Ebner; Callie Babbitt; Martin Winer; Brian Hilton; Anahita Williamson

2014-01-01T23:59:59.000Z

163

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect (OSTI)

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

164

Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste  

Science Journals Connector (OSTI)

The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA's requirements for cellulosic biofuel if the leakage rate is higher than 9.7%. For the small biorefinery, there are no GHG emission benefits in the production of biomethane if the leakage rate is higher than 11.5%. Compared to system expansion, the use of energy and market value allocation methods generally results in higher estimates of GHG emissions for the primary biorefinery products (i.e., smaller reductions in emissions compared to reference systems).

Mohammad Pourbafrani; Jon McKechnie; Heather L MacLean; Bradley A Saville

2013-01-01T23:59:59.000Z

165

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network [OSTI]

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized

Patzek, Tadeusz W.

166

2010-01-0166 Ethanol Content Estimation in Flex Fuel Direct Injection  

E-Print Network [OSTI]

2010-01-0166 Ethanol Content Estimation in Flex Fuel Direct Injection Engines Using In (FFVs) are able to operate on a blend of ethanol and gasoline in any volumetric concen- tration of up to 85% ethanol (93% in Brazil). The estima- tion of ethanol content is crucial for optimized and robust

Stefanopoulou, Anna

167

TOLERANT ETHANOL ESTIMATION IN FLEX-FUEL VEHICLES DURING MAF SENSOR DRIFTS  

E-Print Network [OSTI]

TOLERANT ETHANOL ESTIMATION IN FLEX-FUEL VEHICLES DURING MAF SENSOR DRIFTS Kyung-ho Ahn, Anna G Engineering Dearborn, Michigan 48121 ABSTRACT Flexible fuel vehicles (FFVs) can operate on a blend of ethanol and gasoline in any volumetric concentration of up to 85% ethanol (93% in Brazil). Existing FFVs rely

Stefanopoulou, Anna

168

Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Goss' Garage Provides Goss' Garage Provides Tips for Using Ethanol in Classic Cars to someone by E-mail Share Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Facebook Tweet about Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Twitter Bookmark Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Google Bookmark Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Delicious Rank Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Digg Find More places to share Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on AddThis.com...

169

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

170

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency

171

Decision-making of biomass ethanol fuel policy based on life cycle 3E assessment  

Science Journals Connector (OSTI)

To evaluate the environmental, economic, energy performance of biomass ethanol fuel in China and to support the decision-making of biomass ethanol energy policy, an assessment method of life cycle 3E (economy, en...

Ru-bo Leng PhD; Du Dai; Xiao-jun Chen…

2005-10-01T23:59:59.000Z

172

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

173

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents [OSTI]

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

174

Chapter 11 - Co-Generation by Ethanol Fuel  

Science Journals Connector (OSTI)

Abstract Steam reforming of ethanol using plate-type alumite catalysts was performed at atmospheric pressure in the temperature range of 300–600°C under space velocity of 50,000 h?1 with the objective of developing a high-performance proton exchange membrane fuel cell (PEMFC) systems. Alumite catalyst, which is prepared by anodic oxidation of aluminum plate, is advantageous for endothermic steam reforming reactions because of its excellent thermal conductivity. The method to increase durability of the alumite catalysts by preventing carbon formation was studied. The addition of Pt to Ni2Ce2 catalyst leads to satisfactory results in daily start and stop (DSS) tests with 20 cycles, and the conversion of ethanol is maintained at 100% with no observed depletion of the catalyst.

Hideo Kameyama

2014-01-01T23:59:59.000Z

175

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Wayne Moore, Matt Foster, Kevin Hoyer, Keith Confer Delphi Advanced Powertrain DEER Conference September 29, 2010...

176

Effect of Fuel Ethanol on Subsurface Microorganisms and its Influence on Biodegradation of BTEX Compounds.  

E-Print Network [OSTI]

??Ethanol is used as fuel in neat form in some countries (Brazil and India) or blended with gasoline (Europe, Canada and the United States). The… (more)

Araujo, Daniela

2006-01-01T23:59:59.000Z

177

Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean  

Broader source: Energy.gov (indexed) [DOE]

Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis gas, which consists of hydrogen and carbon monoxide. The gas is cooled, cleaned, and fed to naturally occurring bacteria. The bacteria convert the gas into cellulosic ethanol, which is then purified to be used as a transportation fuel. Blueprints of the INEOS Biorefinery | Courtesy of INEOS Today marks the groundbreaking of INEOS Bio's Indian River Bioenergy

178

Oxy-fuel Combustion of Ethanol in Premixed Flames  

Science Journals Connector (OSTI)

(11-14) First, measurements using a heat flux setup for liquid fuels were studied on ethanol + air combustion. ... The heat flux method builds on the principle that heat is transferred to the unburnt gas, cooling the plate, while heat transfer from the flame heats the plate. ... A detailed kinetic scheme was compiled using known data on EtOH kinetics and is self-consistent in that it closely predicts laminar flame speed of EtOH, CH4, MeOH, and C2-hydrocarbons. ...

Jenny D. Nauclér; Moah Christensen; Elna J. K. Nilsson; Alexander A. Konnov

2012-06-19T23:59:59.000Z

179

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

180

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

182

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network [OSTI]

in their boiler systems. And, the trend toward using Process Gases, Flammable Liquids, and Volatile Organic Compounds (\\iDe's), to supplement fossil fuels, will be considered a key element of the management strategy for industrial power plants. The increase...ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

Coerper, P.

183

Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels  

Science Journals Connector (OSTI)

This study explores the use of wet ethanol as a fuel for HCCI engines while using exhaust heat recovery to provide the high input energy required for igniting wet ethanol. Experiments were conducted on a 4-cylinder Volkswagen engine modified for HCCI operation and retrofitted with an exhaust gas heat exchanger connected to one cylinder. Tested fuel blends ranged from 100% ethanol to 80% ethanol by volume, with the balance being water. These blends are directly formed in the process of ethanol production from biomass. Comprehensive data was collected for operating conditions ranging from intake pressures of 1.4–2.0 bar and equivalence ratios from 0.25 to 0.55. The heat exchanger was used to preheat the intake air allowing HCCI combustion without electrical air heating. The results suggest that the best operating conditions for the HCCI engine and heat exchanger system in terms of high power output, low ringing, and low nitrogen oxide emissions occur with high intake pressures, high equivalence ratios, and highly delayed combustion timings. Removing the final 20% of water from ethanol is a major energy sink. The results of this study show that HCCI engines can use ethanol fuels with up to 20% water while maintaining favorable operating conditions. This can remove the need for the most energy-intensive portion of the water removal process.

Samveg Saxena; Silvan Schneider; Salvador Aceves; Robert Dibble

2012-01-01T23:59:59.000Z

184

Can ethanol alone meet California's low carbon fuel standard? An evaluation of feedstock  

Science Journals Connector (OSTI)

The feasibility of meeting California's low carbon fuel standard (LCFS) using ethanol from various feedstocks is assessed. Lifecycle greenhouse gas (GHG) emissions, direct agricultural land use, petroleum displacement directly due to ethanol blending, and production costs for a number of conventional and lignocellulosic ethanol pathways are estimated under various supply scenarios. The results indicate that after considering indirect land use effects, all sources of ethanol examined, except Midwest corn ethanol, are viable options to meet the LCFS. However, the required ethanol quantity depends on the GHG emissions performance and ethanol availability. The quantity of ethanol that can be produced from lignocellulosic biomass resources within California is insufficient to meet the year 2020 LCFS target. Utilizing lignocellulosic ethanol to meet the LCFS is more attractive than utilizing Brazilian sugarcane ethanol due to projected lower direct agricultural land use, dependence on imported energy, ethanol cost, required refueling infrastructure modifications and penetration of flexible fuel E85 vehicles. However, advances in cellulosic ethanol technology and commercial production capacity are required to support moderate- to large-scale introduction of low carbon intensity cellulosic ethanol. Current cellulosic ethanol production cost estimates suffer from relatively high uncertainty and need to be refined based on commercial scale production data when available.

Yimin Zhang; Satish Joshi; Heather L MacLean

2010-01-01T23:59:59.000Z

185

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

186

Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications  

Science Journals Connector (OSTI)

Abstract The fuel processor in which hydrogen is produced from fuels is an important unit in a fuel cell system. The aim of this study is to apply a thermodynamic concept to identify a suitable reforming process for an ethanol-fueled solid oxide fuel cell (SOFC). Three different reforming technologies, i.e., steam reforming, partial oxidation and autothermal reforming, are considered. The first and second laws of thermodynamics are employed to determine an energy demand and to describe how efficiently the energy is supplied to the reforming process. Effect of key operating parameters on the distribution of reforming products, such as H2, CO, CO2 and CH4, and the possibility of carbon formation in different ethanol reformings are examined as a function of steam-to-ethanol ratio, oxygen-to-ethanol ratio and temperatures at atmospheric pressure. Energy and exergy analysis are performed to identify the best ethanol reforming process for SOFC applications.

Phanicha Tippawan; Amornchai Arpornwichanop

2014-01-01T23:59:59.000Z

187

Ternary PtSnRhSnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction  

E-Print Network [OSTI]

Ternary PtSnRh­SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell a superior long-term activity and stability towards ethanol oxidation than the commercial Pt catalyst. Our. Ethanol becomes an attractive fuel in the fuel cell reactions compared with methanol and hydrogen, because

Frenkel, Anatoly

188

Intermediate-Scale, Semicontinuous Solid-Phase Fermentation Process for Production of Fuel Ethanol from Sweet Sorghum  

Science Journals Connector (OSTI)

...sweet sorghum to fuel ethanol by a semicontinuous...progressively larger vessels of the inoculum...theoretical farm- scale fuel ethanol plant with sweet sorghuma Consumption Component Amt...1983. Energy consumption of a farm-scale...Farm-scale production of fuel ethanol and wet...

William R. Gibbons; Carl A. Westby; Thomas L. Dobbs

1986-01-01T23:59:59.000Z

189

Ethanol diesel dual fuel clean combustion with FPGA enabled control  

Science Journals Connector (OSTI)

Sophisticated engine controls have progressively become vital enablers for implementing clean and efficient combustion. The low temperature combustion in diesel engines is a viable combustion mode that offers ultra-low nitrogen oxides and dry soot emissions, yet only feasible under tightly controlled operating conditions. In this work, the dual fuel application of ethanol and diesel is studied for clean and efficient combustion. A set of real-time controllers has been configured to control the common-rail pressure and injection events, in concert with the use of two fuels in a high compression ratio diesel engine. An improved control algorithm has been implemented into the field programmable gate array devices to promptly execute the injection commands of the port and direct injection events. Such reliable and prompt control of fuel injection has been identified as critical to safely enable simultaneously low nitrogen oxides and soot combustion, especially when excessive or inadequate rate of exhaust gas recirculation is imminent. High load clean combustion was achieved with the improved control system.

Xiaoye Han; Jimi Tjong; Graham T. Reader; Ming Zheng

2014-01-01T23:59:59.000Z

190

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

191

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

192

Fuel Cell Power Plants Renewable and Waste Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

193

E-Print Network 3.0 - a-1 fuel production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, &...

194

E-Print Network 3.0 - analysis phwr fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, & ......

195

Ethanol Fuels: Energy Balance, Economics, and Environmental Impacts Are Negative  

Science Journals Connector (OSTI)

Several studies suggest that the $1.4 billion in government subsidies are encouraging the ethanol program without substantial benefits to the U.S. economy. Large ethanol industries and a few U.S. government ... a...

David Pimentel

2003-06-01T23:59:59.000Z

196

Renewable Fuels Association’s National Ethanol Conference  

Broader source: Energy.gov [DOE]

Mark Elless, a BETO technology manager, will be representing BETO at the 20th anniversary of the National Ethanol Conference.

197

High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells  

E-Print Network [OSTI]

, including methanol, ethanol, glycerol, ethylene glycol, and so on, ethanol is the best choice, as it has abundant than Pt and has a much lower price, and thus the cost of fuel cell technology can be greatly. Secondly, Pd is more abundant than Pt and has a much lower price, and thus the cost of fuel cell technology

Zhao, Tianshou

198

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. West, Alberto J. Lpez, Timothy J. Theiss, Ronald L. Graves, John M. Storey and Samuel...

199

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric...

200

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

2008 DOE Spent Nuclear Fuel and High Level Waste Inventory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management >> National Spent Nuclear Fuel INL Logo Search 2008 DOE Spent Nuclear Fuel and High Level Waste Inventory Content Goes Here Skip Navigation Links Home Newsroom About INL...

202

Alternative Fuels Data Center: Status Update: Ethanol Blender...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender pumps are fuel dispensers that draw fuel from two separate bulk storage tanks and can dispense preprogrammed blends of those fuels into vehicles. Many stations...

203

Management of ethanol waste from the solar distillation process: Experimental and theoretical studies  

Science Journals Connector (OSTI)

Abstract In this article, models for the management of the ethanol waste of a solar ethanol distillation system prototype have been proposed. The solar distillation system operates as a batch operation and consists of three stages of distillation, which increase the ethanol concentration from 8% to 80% (v/v). In each distillation stage, various volumes of ethanol solutions with different concentrations were obtained; three reuse scenarios (1, 2, and 3) have been proposed for extracting the ethanol solution from the distillation tank in order to increase the overall efficiency of the ethanol distillation system and reduce the amount of materials (cassava broth) fed into the distillation system. The most efficient distillation process, in terms of the final product volume and ethanol concentration in the product, was realized by using scenario 3, which involved recycling a mixture of the waste from the first stage and the second stage, for redistillation in the first stage and returning the waste obtained from the third stage for redistillation in the second stage than in scenarios 2 and 1 under the same condition, both quantitatively and qualitatively. In addition, by using scenario 3 for managing the ethanol waste, the amount of feedstock (cassava broth) annually fed to the system in the first stage could be reduced by 88–92% (96,522–100,073 L/year), compared to using the other two scenarios. Compared to a distillation process without recycling, the amount of cassava broth fed to the system can be reduced by over 180,000 L/year by using scenario 3.

J. Jareanjit; P. Siangsukone; K. Wongwailikhit; J. Tiansuwan

2015-01-01T23:59:59.000Z

204

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

SciTech Connect (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

205

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

206

Final Environmental Assessment for Construction and Operation of a Proposed Ethanol Cellulosic Ethanol Plant, Range Fuels, Inc.  

Broader source: Energy.gov (indexed) [DOE]

i i n a l E n v i r o n m e n t a l A s s e s s m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels, Inc. Treutlen County, Georgia DOE/EA 1597 Prepared for U.S. Department of Energy October 2007 Contents Section Page Contents........................................................................................................................................iii Acronyms and Abbreviations .................................................................................................vii 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1

207

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents [OSTI]

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

208

Industrial Wastes as a Fuel  

E-Print Network [OSTI]

point where a conveyor can conveniently handle it. for further transport. Apron feeders transport waste material by means of chain mounted overlapping steel pans that carry, rather than drag or scrape, the material. Normally, the maximum angle... Portable conveyors Lift trucks Feeders 4 TRANSFER Bucket elevator Belt conveyors Flight convPy'Ors Mass-Flow conveyors Stacking conveyors Crushers Sizers Dryers 3 PREP ARATION 6 COVERED STORAGE Bins 5 OUTDOOR STORAGE...

Richardson, G.; Hendrix, W.

1980-01-01T23:59:59.000Z

209

Overexpression of a truncated form of the MSN2 gene enhances the initial rate of ethanol production in an industrial fuel-ethanol Saccharomyces cerevisiae strain  

Science Journals Connector (OSTI)

The yeast strain CAT-1 isolated from a Brazilian fuel-ethanol plant (Babrzadeh et al. 2009) is...MSN4, MSN2, YAP1 and HSF1...of tolerant yeast strains are highly expressed under ethanol stress [1...], we generate...

Augusto Bücker; Davi Ludvig Gonçalves; Júlio Cézar Espírito Santo…

2014-10-01T23:59:59.000Z

210

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011.

211

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

212

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

SciTech Connect (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

213

The Renewable Fuel Standard and Ethanol Pricing: A Sensitivity Analysis  

E-Print Network [OSTI]

and gasoline. In 2014, it is projected oil refineries will hit the blend wall (BW). In short, oil refineries are required to blend more ethanol into gasoline than is allowed by the Environmental Protection Agency (EPA). As a consequence, the EPA will need...

McNair, Robert

2014-04-18T23:59:59.000Z

214

Usage of Fuel Mixtures Containing Ethanol and Rapeseed Oil Methyl Esters in a Diesel Engine  

Science Journals Connector (OSTI)

However, its use in the diesel engine cycle is hampered by the poor motor-fueling characteristics of lower alcohols and, primarily, the limited solubility of ethanol in fossil diesel fuel and its low self-ignition characteristics. ... Coefficient ? = Gair/(GfL0) estimates air supply into a diesel engine cylinder (indicator process), taking into account the differences of stoichiometric ratio L0 of the tested fuels, caused by the increase of the E portion in the RME?E mixture (Gair is air consumption, and Gf is fuel consumption). ... Future research will concentrate on the analysis of fuel injection and heat release rate characteristics in a cylinder, while a diesel engine is running on biodiesel fuels RME?E, and also on the operational parameters of diesel engines when fossil diesel fuel is replaced with three-component fuels D?RME?E. ...

Sergejus Lebedevas; Galina Lebedeva; Violeta Makareviciene; Prutenis Janulis; Egle Sendzikiene

2008-11-12T23:59:59.000Z

215

Ethanol Steam Reforming Thermally Coupled with Fuel Combustion in a Parallel Plate Reactor  

Science Journals Connector (OSTI)

Experimental Conditions for Measuring the Isothermal Kinetics of the Pd-Based Catalytic Spacers for Ethanol Steam Reforming ... (9) On the basis of previous experience,(23) a mixture of hydrogen with CO2 (about 1:2 in molar ratio) is used as fuel in order to reduce the danger of homogeneous combustion of the fuel in the mixing zones. ... 0.09 (after mixing with air) were necessary to prevent ignition of the homogeneous reaction. ...

Eduardo Lopez; Vanessa Gepert; Achim Gritsch; Ulrich Nieken; Gerhart Eigenberger

2012-02-28T23:59:59.000Z

216

New Catalyst Might Expand Bio-Ethanol's Possible uses: fuel additives, rubber and solvents  

E-Print Network [OSTI]

environmentally friendly products including octane- boosting gas and rubber for tires. #12;WHAT'S NEXT? FutureNew Catalyst Might Expand Bio-Ethanol's Usefulness Possible uses: fuel additives, rubber it first, potentially keeping costs lower and production times faster. Reported by researchers

217

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: Energy.gov [DOE]

Presentation by Robert Remick, NREL, at the DOE-DOD Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011

218

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

219

Waste-to-Energy using Fuel Cells Webinar  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a webinar on July 13, 2011, in Washington, DC, to discuss waste-to-energy for fuel...

220

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel from Waste Helps Power Two Tribes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel from Waste Helps Power Two Tribes Fuel from Waste Helps Power Two Tribes Fuel from Waste Helps Power Two Tribes September 6, 2013 - 2:01pm Addthis The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use. The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use. Fuel from Waste Helps Power Two Tribes The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use.

222

Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables.

Not Available

1984-09-01T23:59:59.000Z

223

Liquid fuel resources and prospects for ligno-cellulosic ethanol: An Egyptian case study  

Science Journals Connector (OSTI)

Abstract Fossil fuels (oil, natural gas and coal) presently represent about 90% of the world’s total commercial primary energy demand. Yet, they are depletable sources of energy. Growth in the production of easily accessible oil, the main source of high energy liquid transportation fuels, will not match the projected rate of demand growth, especially in developing countries. In the transport sector, today, the only alternative to non-sustainable fossil fuels is biofuels that are produced from biomass, a stored environmentally neutral solar energy. These fuels are compatible with current vehicles and blendable with conventional fuels. Moreover, they share the long-established distribution infrastructure with little, if any, modification of equipment. The main biofuels presently in commercial production are bioethanol and biodiesel. Industrial countries started production of the 1st generation bioethanol and biodiesel from food products (grains and edible oil) since a few decades and these fuels are currently available at petrol stations. Second generation bioethanol from ligno-cellulosic materials is on the research, pilot and/or demonstration stage. This paper discusses the current situation regarding liquid fuels in Egypt which are experiencing imbalance between total production and demand for gasoline and diesel fuels. The quantified need for nonconventional sources is presented. Based on a thorough assessment of current and prospective generated agriculture residues as distributed over the political areas, mapping of the number and capacity of plants to be installed for production of bioethanol from available residues namely rice straw, sugar cane residues and cotton stalks has been developed. Annual capacities of 3000, 10,000 and 20,000 tons ethanol/year until year 2021 have been proposed. Capital and operating requirements and economic indicators have been estimated. It has been concluded that at current price of ethanol of about $0.6/kg, the simple rate of return on investments is about 2.8%, 11% and 16% for the 3000, 10,000 and 20,000 tons annual capacity ethanol respectively.

Shadia R. Tewfik; Nihal M. El Defrawy; Mohamed H. Sorour

2013-01-01T23:59:59.000Z

224

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation...

225

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

A. Alsaed

2005-07-28T23:59:59.000Z

226

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

J.K. Knudson

2003-10-02T23:59:59.000Z

227

Increasing Efficiency of Fuel Ethanol Production from Lignocellulosic Biomass by Process Integration  

Science Journals Connector (OSTI)

(8-10) To our knowledge, the thermal integration of ethanol fermentation and thermochemical conversion of its residues has only been investigated for ethanol production from sugar cane and power cogeneration from the by-produced bagasse with an integrated gasification combined cycle (IGCC) instead of a conventional single cycle. ... Considering the energetic value of the byproducts in Table 2 and the important heat requirement for distillation and rectification of the raw product to fuel quality of Figure 2(c), this section compares different alternatives for integrating the fuel production and the energy and exergy recovery processes. ... biofuels as well as to indicate the emerging challenges and opportunities of the application of process integration on such processes towards innovative and sustainable solns. ...

Martin Gassner; François Maréchal

2013-03-12T23:59:59.000Z

228

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network [OSTI]

key to unlocking low-cost cellulosic ethanol. 2(1):26-40.1995 19941216. Commercial ethanol production process.facility and commercial ethanol production process.

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

229

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Broader source: Energy.gov (indexed) [DOE]

GreenWood Resources to advance GreenWood Resources to advance scientific understanding of the ways chemical traits are inherited in hybrid poplars and the extent of variations in characteristics such as lignin content and forms of lignin-enabling the best traits to be developed and significantly advancing the potential of hybrid poplars to provide a substantial, renewable source of ethanol fuel. GreenWood Resources (Portland,

230

Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana DOE/EA 1517  

Broader source: Energy.gov (indexed) [DOE]

517 517 ENVIRONMENTAL ASSESSMENT Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana April 2005 U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 1 2 3 4 5 6 7 Environmental Assessment Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ...................................................................................................IV GLOSSARY ................................................................................................................................................ V UNITS OF MEASUREMENT ................................................................................................................. VII

231

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

232

Production of metal waste forms from spent fuel treatment  

SciTech Connect (OSTI)

Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

1995-02-01T23:59:59.000Z

233

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

SciTech Connect (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

234

Hydrogenated soy ethyl ester (HySEE) from ethanol and waste vegetable oil  

SciTech Connect (OSTI)

Biodiesel is gaining recognition in the United States as a renewable fuel which may be used as an alternative to diesel fuel without any modifications to the engine. Currently the cost of this fuel is the factor that limits its use. One way to reduce the cost of biodiesel is to use a less expensive form of vegetable oil such as waste oil from a processing plant. These operations use mainly hydrogenated soybean oil, some tallow and some Canola as their frying oils. It is estimated that there are several million pounds of waste vegetable oil from these operations. Additional waste frying oil is available from smaller processors, off-grade oil seeds and restaurants. This paper reports on developing a process to produce the first 945 liters (250 gallons) of HySEE using recipes developed at the University of Idaho; fuel characterization tests on the HySEE according to the ASAE proposed Engineering Practice for Testing of Fuels from Biological Materials, X552; short term injector coking tests and performance tests in a turbocharged, DI, CI engine; and a 300 hour screening test in a single cylinder, IDI, CI engine.

Peterson, C.; Reece, D.; Thompson, J. [Univ. of Idaho, Moscow, ID (United States)] [and others

1995-11-01T23:59:59.000Z

235

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

236

Fact #581: July 27, 2009 Fuel Wasted in Traffic Congestion  

Broader source: Energy.gov [DOE]

The researchers at the Texas Transportation Institute have recently published new estimates of the effects of traffic congestion. Nearly 3 billion gallons of fuel is wasted each year due to traffic...

237

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

238

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

239

Experimental analysis of a diesel engine operating in Diesel–Ethanol Dual-Fuel mode  

Science Journals Connector (OSTI)

Abstract The use of engines is necessary to keep the world moving. Such engines are fed mainly by fossil fuels, among these, the diesel. The operation and the behavior of engines in different thermodynamic cycles, with common fossil fuels, it is still challenging but, in general, it has well known and documented data. On the other hand, for alternative fuels, there is still demand of experimental data, particularly considering that it is desirable, most of the times, the use of a system with dual mode (reversible). Such systems are called Dual-Fuel, it brings a greater degree of freedom, but imply in technological challenges. In this paper we used an engine operating with single cylinder direct injection diesel and port ethanol injection system in Dual-Fuel mode with a 100% electronically controlled calibration. The methodology applied was, once the engine calibration was given to achieve the best specific fuel consumption or the MBT (Maximum Brake Torque) in each load condition, to gradually substitute the diesel oil by ethanol in compliance with the requirements established. Comparisons were made among working conditions considering the rate of diesel substitution and the energy indicated efficiency. Initially, the flow structure in the combustion chamber was tested in both ‘quiescent’ and high “swirl” modes. Compression ratios were adjusted at 3 different levels: 14:1, 16:1 and 17:1. It was tested two injectors, the first one of 35 g/s and another of 45 g/s. Regarding pressure diesel injection, 4 levels were investigated namely 800, 1000, 1200 and 1400 bar.

Roberto Freitas Britto Jr.; Cristiane Aparecida Martins

2014-01-01T23:59:59.000Z

240

Ethanol Production by Fermentation  

Science Journals Connector (OSTI)

Conversion of biomass to ethanol is an attractive route for biomass utilization because ethanol can be easily assimilated by the liquid fuel and chemical markets. Ethanol is somewhat unique as a fermentation p...

D. Brandt

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

242

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

243

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

244

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

245

Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980  

SciTech Connect (OSTI)

The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

Singh, B.

1980-05-01T23:59:59.000Z

246

Waste-to-Energy using Fuel Cells Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy using Fuel Cells Workshop Capital Hilton Hotel, Washington DC January 13th, 2011 8:30 am to 5:00 pm Agenda 8:30 am Welcome, introductions and meeting logistics Pete Devlin, Department of Energy (DOE) Fuel Cell Technologies Program Overall Purpose * To identify DOD-DOE waste-to-energy and fuel cells opportunities * To identify challenges and determine actions to address them * To determine specific ways fuel cell and related technologies can help meet Executive Order 13514 requirements * To identify the next steps for collaboration Background Materials Provided * DOD-DOE MOU - http://www.energy.gov/news/documents/Enhance-Energy-Security-MOU.pdf * Executive Order 13514 - http://edocket.access.gpo.gov/2009/pdf/E9-24518.pdf

247

Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol  

Science Journals Connector (OSTI)

Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min?1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, \\{NOx\\} emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

C.S. Cheung; Yage Di; Zuohua Huang

2008-01-01T23:59:59.000Z

248

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information &127;Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Rank Urban Area Fuel Wasted due to Congestion (Million Gallons) 1 New York-Newark NY-NJ-CT...

249

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste...  

Broader source: Energy.gov (indexed) [DOE]

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Map of the United States of America showing the...

250

International trade and waste and fuel managment issue, 2006  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.

Agnihotri, Newal (ed.)

2006-01-15T23:59:59.000Z

251

Enhanced bio-ethanol production via simultaneous saccharification and fermentation through a cell free enzyme system prepared by disintegration of waste of beer fermentation broth  

Science Journals Connector (OSTI)

Current study illustrates the effect of high yeast cell density contained in the waste of beer fermentation broth (WBFB) on bio-ethanol production through simultaneous saccharification and fermentation (SSF ... e...

Shaukat Khan; Mazhar Ul-Islam…

2014-11-01T23:59:59.000Z

252

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive waste and a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. Fuel Cycle Potential Waste Inventory for Disposition R5a.docx More Documents & Publications Repository Reference Disposal Concepts and Thermal Load Management Analysis

253

Energy recovery from solid waste fuels using advanced gasification technology  

SciTech Connect (OSTI)

Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

1998-12-31T23:59:59.000Z

254

An Analysis of the Effects of Government Subsidies and the Renewable Fuels Standard on the Fuel Ethanol Industry: A  

E-Print Network [OSTI]

Ethanol Industry: A Structural Econometric Model By Fujin Yi, C.-Y. Cynthia Lin, Karen Thome This paper ethanol industry. Analyses that ignore the dynamic implications of these policies, including their effects on incumbent ethanol firms' investment, production, and exit decisions and on potential entrants' entry

Lin, C.-Y. Cynthia

255

Business Plan Turning waste into fuel  

E-Print Network [OSTI]

D- Biogas Digester Specifications 20 E- Regulations and Subsidies 21 F - Risks and Mitigations 22 G to both the market and the slum residents. Our plan is to introduce a local, community scale biogas for the nearby struggling families. The biogas fuel will be offered at a lower rate than the current subsidized

Mlllet, Dylan B.

256

Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)  

Broader source: Energy.gov [DOE]

GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

257

Assessing and Managing the Risks of Fuel Compounds: Ethanol Case Study  

SciTech Connect (OSTI)

We have implemented a suite of chemical transport and fate models that provide diagnostic information about the behavior of ethanol (denoted EtOH) and other fuel-related chemicals released to the environment. Our principal focus is on the impacts to water resources, as this has been one of the key issues facing the introduction of new fuels and additives. We present analyses comparing the transport and fate of EtOH, methyl tertiary butyl ether (MTBE), and 2,2,4 trimethyl pentane (TMP) for the following cases (1) discharges to stratified lakes, subsurface release in a surficial soil, (3) cross-media transfer from air to ground water, and (4) fate in a regional landscape. These compounds have significantly different properties that directly influence their behavior in the environment. EtOH, for example, has a low Henry's law constant, which means that it preferentially partitions to the water phase instead of air. An advantageous characteristic of EtOH is its rapid biodegradation rate in water; unlike MTBE or TMP, which degrade slowly. As a consequence, EtOH does not pose a significant risk to water resources. Preliminary health-protective limits for EtOH in drinking water suggest that routine releases to the environment will not result in levels that threaten human health.

Layton, D.W.; Rice, D.W.

2002-02-04T23:59:59.000Z

258

Experimental investigation on thermal barrier coated diesel engine fueled with diesel-biodiesel-ethanol-diethyl ether blends  

Science Journals Connector (OSTI)

In the present work diesel-biodiesel-ethanol (DBE) and diesel-biodiesel-diethyl ether (DBD) fuels are tested with normal diesel engine and the diesel engine coated with the layers of aluminum oxide (Al 2O3) of 0.3?mm and yttria-stabilized zirconia of 0.2?mm. The various performance and emission parameters are analyzed and determined. The experimental work was carried out in a single cylinder water cooled engine coupled with eddy current dynamometer. The AVL make five gas analyzer and smoke meter were used to measure the different exhaust pollutants. The result shows that the brake thermal efficiency of coated engine is more than that of base diesel at high loads. The thermal barrier coated engine using fuel as diesel biodiesel and ethanol (TDBE) produces the lowest carbon monoxide (CO) emissions among all the fuels that are selected. In addition it produces the lowest carbon dioxide (CO2) at higher loads. Both the thermal barrier coated engine using fuel as diesel biodiesel and diethyl ether (TDBD) and TDBE have higher NOx emissions among almost all the fuels used. The TDBE and TDBD have higher smoke emissions at initial loads but eventually show lower smoke emissions at higher loads. The thermal barrier coated diesel engine fueled with DBE and DBD shows an increase in engine power and specific fuel consumption as well as significant improvements in exhaust gas emissions except NOx.

2013-01-01T23:59:59.000Z

259

Price Supports for Fuel Ethanol, Sugarcane, and Freight Charges: Alterations Stemming from Deregulation  

Science Journals Connector (OSTI)

Hydrous ethanol was not competitive with gasoline on strictly economic terms, because, at the time of the creation of the Programa Nacional do Álcool...(Proálcool, National Ethanol Program), in 1979, the cost of ...

Márcia Azanha Ferraz Dias de Moraes…

2014-01-01T23:59:59.000Z

260

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Process for recovery of palladium from nuclear fuel reprocessing wastes  

DOE Patents [OSTI]

Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

Campbell, D.O.; Buxton, S.R.

1980-06-16T23:59:59.000Z

262

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

Broader source: Energy.gov [DOE]

Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

263

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network [OSTI]

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

264

Energy Supply- Production of Fuel from Agricultural and Animal Waste  

SciTech Connect (OSTI)

The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

Gabriel Miller

2009-03-25T23:59:59.000Z

265

Using waste wood as fuel saves $2000 per day  

SciTech Connect (OSTI)

Sawdust and wood residue replaced natural gas or number 2 fuel oil to fire 2 kilns at the Cherokee Brick Co. in Raleigh, NC, resulting in savings of $2000/day. Exhaust air from the kilns was sent directly back to a rotating dryer to dry the waste wood. The dried wood containing 8 to 12% moisture was supplied, around the clock, at a rate of 140 ton/day of dry material. (BLM)

Ragland, W. (Cherokee Brick Co., Raleigh, NC); Byrnes, D.

1981-11-01T23:59:59.000Z

266

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

267

International trade and waste and fuel managment issue, 2008  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: A global solution for clients, by Yves Linz, AREVA NP; A safer, secure and economical plant, by Andy White, GE Hitachi Nuclear; Robust global prospects, by Ken Petrunik, Atomic Energy of Canada Limited; Development of NPPs in China, by Chen Changbing and Li Huiqiang, Huazhong University of Science and Technology; Yucca Mountain update; and, A class of its own, by Tyler Lamberts, Entergy Nuclear. The Industry Innovation articles in this issue are: Fuel assembly inspection program, by Jim Lemons, Tennessee Valley Authority; and, Improved in-core fuel shuffle for reduced refueling duration, by James Tusar, Exelon Nuclear.

Agnihotri, Newal (ed.)

2008-01-15T23:59:59.000Z

268

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

269

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Office of Energy Efficiency and Renewable Energy (EERE)

GreenWood Resources saw potential in growing poplar trees—remarkable for their sheer biomass productivity—to make ethanol.

270

Stainless steel-zirconium waste forms from the treatment of spent nuclear fuel  

Science Journals Connector (OSTI)

Stainless steel-zirconium waste-form alloys have been developed for the disposal of metallic wastes recovered from spent nuclear fuel using the electrometallurgical process developed by Argonne National Laborator...

S. M. McDeavitt; D. P. Abraham; J. Y. Park; D. D. Keiser

1997-07-01T23:59:59.000Z

271

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network [OSTI]

of stationary fuel Premier developer of stationary fuel cell technology -- founded in 1969 · Over 50 efficiency 60% DFC-ERGDFC ERG DFC/Turbine 58 ­ 70% Direct FuelCell (DFC)* 47% Natural Gas Engines Small Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp

272

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

and benefits of biodiesel and ethanol biofuels. Proc. Natl.Bacteria engineered for fuel ethanol production: currentGenetic engineering of ethanol production in Escherichia

Fortman, J. L.

2010-01-01T23:59:59.000Z

273

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network [OSTI]

Biofuel alternatives to ethanol: pumping the microbialproducts, pharmaceuticals, ethanol fuel and more. Even so,producing biofuel. Although ethanol currently dominates the

Fortman, J.L.

2011-01-01T23:59:59.000Z

274

BlueFire Ethanol | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BlueFire Ethanol BlueFire Ethanol Construct and operate a facility that converts green waste and lignocellulosic fractions diverted from landfills or Southern California Materials...

275

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

276

An assessment of energy balance from sugar-based ethanol for fuel-saving and climate policy - the case of an island economy  

Science Journals Connector (OSTI)

The study assesses the efficiency of sugar-based ethanol production in Mauritius using the net energy balance and energy ratio. The findings indicate a positive net energy balance. For every one unit of fossil fuel used, the system returns more than six times in terms of renewable energy from ethanol. The fuel savings and other economic benefits which may be accrued to Mauritius are discussed. The sensitivity analysis shows that the fossil energy consumed in the production of fertilisers and in the transportation of feedstock to factory represents the main components which influence efficiency indicators. Greening the supply chain may enhance the efficiency and sustainability of bio-ethanol production systems. Green strategies may include the use of organic fertilisers, clean technology, and sustainable transportation and land use. The efficiency indicators can also be used to guide the CDM for sugar-based ethanol project.

Riad Sultan; Abdel Khoodaruth

2013-01-01T23:59:59.000Z

277

PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc.  

E-Print Network [OSTI]

PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc. Thomas J. RichardsThomas J. Richards #12;PEM ETHANOL FUEL CELL DOE Hydrogen & Fuel Cells 2003 Annual Merit Review 21 May 2003 #12;PEM ETHANOL FUEL CELL In 2003, a 10-15 kW stationary PEM fuel cell system

278

Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality  

Science Journals Connector (OSTI)

Solid recovered fuel (SRF) produced by mechanical–biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO2-neutral, affordable, and alternative energy source. ... (4) The concentration of chlorine in SRF is key to fuel quality due to concern that elevated concentrations could exacerbate ash deposition in the convective part of boilers;(8) cause high-temperature corrosion (>500 °C) of boiler steel due to alkali chlorides and lower temperature melt deposits (300–400 °C) in the presence of zinc and lead;(9) generate high acid gases emissions (hydrogen chloride (HCl));(10) and contribute to the formation of polychlorinated dibenzodioxins (PCDDs) (for [Cl] above 0.3% w/wd)(11) during thermal recovery. ... The overall moisture content MT, reported as % w/wd (d: dry solids), was measured in two steps. ...

Costas Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2011-12-21T23:59:59.000Z

279

Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability  

SciTech Connect (OSTI)

The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

Not Available

1980-09-01T23:59:59.000Z

280

Vehicle Technologies Office: Intermediate Ethanol Blends | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels annually by 2022, most of which will be ethanol. However, current ethanol usage is much lower than the requirements. It would be challenging to increase this use...

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experimental Determination of the Efficiency and Emissions of a Residential Microcogeneration System Based on a Stirling Engine and Fueled by Diesel and Ethanol  

Science Journals Connector (OSTI)

Some of the diesel fuel properties were obtained from fuel certification tests conducted by the Alberta Research Council and established by the American Society for Testing and Materials, and the remainder are reported general properties. ... Clucas, D. M.Development of a Stirling engine battery charger based on a low cost wobble mechanism, Ph.D. Thesis, Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand, 1993. ... investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' lab., which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. ...

Nicolas Farra; Tommy Tzanetakis; Murray J. Thomson

2012-01-27T23:59:59.000Z

282

ULTRASONIC ARRAY TECHNIQUE FOR THE INSPECTION OF COPPER LINED CANISTERS FOR NUCLEAR WASTE FUEL  

E-Print Network [OSTI]

ULTRASONIC ARRAY TECHNIQUE FOR THE INSPECTION OF COPPER LINED CANISTERS FOR NUCLEAR WASTE FUEL and Waste Management Co.) for encapsulation of nuclear waste. Due to the radiation emitted by the nuclear, and characterization. The applicability of linear array technique for inspection of copper lined canisters for nuclear

283

Definition: Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol A colorless, flammable liquid produced by fermentation of sugars. While it is also the alcohol found in alcoholic beverages, it can be denatured for fuel use. Fuel ethanol is used principally for blending in low concentrations with motor gasoline as an oxygenate or octane enhancer. In high concentrations, it is used to fuel alternative-fuel vehicles specially designed for its use.[1][2][3] View on Wikipedia Wikipedia Definition Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion liters. From 2007 to 2008, the share of ethanol in global gasoline type

284

Spent fuel and radioactive waste inventories, projections, and characteristics. Revision 1  

SciTech Connect (OSTI)

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1984, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions.

Not Available

1985-12-01T23:59:59.000Z

285

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2012-01-01T23:59:59.000Z

286

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2013-01-01T23:59:59.000Z

287

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

SciTech Connect (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

288

Fuzzy Logic-based energy efficiency Life Cycle Assessment with a case study of corn-based fuel ethanol in China  

Science Journals Connector (OSTI)

A fuzzy logic based method of energy efficiency assessment of Biomass-based Fuel Ethanol (BFE) production is introduced in this paper. Energy relevant inventory variables are defined and described by fuzzy sets representing the differences in energy inventory data between the BFE system and its reference. A fuzzy reasoning process is developed to derive the energy efficiency from the fuzzificated inventory data. This method distinguishes itself by simple calculation, lower requirements of data accuracy and capability of processing subjectivity. A case study of corn-based fuel ethanol from Northeast China is conducted to demonstrate the application of the proposed method.

Suiran Yu; Jing Tao

2009-01-01T23:59:59.000Z

289

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

E85 Definition E85 motor fuel is defined as an alternative fuel that is a blend of ethanol and hydrocarbon, of which the ethanol portion is 75-85% denatured fuel ethanol by volume...

290

Intermediate-Scale, Semicontinuous Solid-Phase Fermentation Process for Production of Fuel Ethanol from Sweet Sorghum  

Science Journals Connector (OSTI)

...0.47/liter for 95% ethanol. The calculated energy balance (energy output...0.47/liter for 95% ethanol. The calculated energy balance (energy output...denatured 95% (vol/vol) ethanol. Energy balances for pasteurized...

William R. Gibbons; Carl A. Westby; Thomas L. Dobbs

1986-01-01T23:59:59.000Z

291

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

292

Making Better Use of Ethanol as a Transportation Fuel With “Renewable Super Premium”  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification Brian West, Deputy Director for the Fuels, Engines, and Emissions Research Center, Oak Ridge National Laboratory

293

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

294

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Broader source: Energy.gov (indexed) [DOE]

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

295

International trade and waste and fuel management issue, 2009  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: Innovative financing and workforce planning, by Donna Jacobs, Entergy Nuclear; Nuclear power - a long-term need, by John C. Devine, Gerald Goldsmith and Michael DeLallo, WorleyParsons; Importance of loan guarantee program, by Donald Hintz; EPC contracts for new plants, by Dave Barry, Shaw Power Group; GNEP and fuel recycling, by Alan Hanson, AREVA NC Inc.; Safe and reliable reactor, by Kiyoshi Yamauchi, Mitsubishi Heavy Industries, Ltd.; Safe, small and simple reactors, by Yoshi Sakashita, Toshiba Corporation; Nuclear power in Thailand, by Tatchai Sumitra, Thailand Institute of Nuclear Technology; and, Nuclear power in Vietnam, by Tran Huu Phat, Vietnam Atomic Energy Commission. The Industry Innovation article this issue is Rectifying axial-offset-anomaly problems, by Don Adams, Tennessee Valley Authority. The Plant Profile article is Star of Stars Excellence, by Tyler Lamberts, Entergy Nuclear Operations, Inc.

Agnihotri, Newal (ed.)

2009-01-15T23:59:59.000Z

296

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect (OSTI)

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

297

Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel  

SciTech Connect (OSTI)

The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technology developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.

Simpson, Michael F.; Benedict, Robert W.

2007-09-01T23:59:59.000Z

298

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

299

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

26 January 1983 research-article Ethanol from Cellulosic Biomass [and Discussion...of cellulosic biomass to liquid fuel, ethanol. Within the scope of this objective...maximize the conversion efficiency of ethanol production from biomass. This can be...

1983-01-01T23:59:59.000Z

300

Ethanol from Cellulosic Biomass [and Discussion  

Science Journals Connector (OSTI)

...research-article Ethanol from Cellulosic Biomass [and Discussion] D. I. C. Wang G...microbiological conversion of cellulosic biomass to liquid fuel, ethanol. Within the...efficiency of ethanol production from biomass. This can be achieved through the effective...

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: Energy.gov [DOE]

Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

302

Fair Oaks Farms and AMP Americas Transform Waste into Fuel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Fair Oaks Farms and AMP Americas Transform Waste into Fuel Fair Oaks Farms and AMP Americas Transform Waste into Fuel Fair Oaks Farms and AMP Americas Transform Waste into Fuel March 7, 2013 - 9:00am Addthis Learn how an Indiana dairy fuels milk delivery trucks with compressed natural gas. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? An anaerobic digester is helping Fair Oaks Farms and AMP Americas turn agriculture waste into renewable natural gas. The natural gas will be used to fuel the fleet of trucks that transports Fair Oaks Farms' products across the country. Trucks and cows may not seem like a natural match, but a dairy farm in Indiana has found an innovative way to combine two of its biggest resources. With the support of the Energy Department and one of the three

303

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

SciTech Connect (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

304

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E"...

305

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect (OSTI)

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

306

EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. – EM supported DOE in its role as the lead technical agency to produce a report recently for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

307

Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels  

E-Print Network [OSTI]

"Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

Bettinger, J.; Koppel, P.; Margulies, A.

308

Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)  

SciTech Connect (OSTI)

From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

Harrow, G.

2008-05-14T23:59:59.000Z

309

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

310

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

SciTech Connect (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

311

Iridium?Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions  

SciTech Connect (OSTI)

In this study, carbon supported Ir-Ru nanoparticles with average sizes ranging from 2.9 to 3.7 nm were prepared using a polyol method. The combined characterization techniques, that is, scanning transmission electron microscopy equipped with electron energy loss spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were used to determine an Ir-Ru alloy nanostructure. Both cyclic voltammetry and chronoamperometry (CA) results demonstrate that Ir{sub 77}Ru{sub 23}/C bears superior catalytic activities for the ethanol oxidation reaction compared to Ir/C and commercial Pt/C catalysts. In particular, the Ir{sub 77}Ru{sub 23}/C catalyst shows more than 21 times higher mass current density than that of Pt/C after 2 h reaction at a potential of 0.2 V vs Ag/AgCl in CA measurement. Density functional theory simulations also demonstrate the superiority of Ir-Ru alloys compared to Ir for the ethanol oxidation reaction.

Su D.; Du, W.; Deskins, N.A.; Teng, X.

2012-06-01T23:59:59.000Z

312

Verifying the Benefits and Resolving the Issues in the Commercialization of Ethanol Containing Diesel Fuels  

Broader source: Energy.gov [DOE]

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

313

Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs.

Not Available

1989-11-01T23:59:59.000Z

314

Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs.

Not Available

1990-10-01T23:59:59.000Z

315

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

316

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

317

Growing America’s fuel: an analysis of corn and cellulosic ethanol feasibility in the United States  

Science Journals Connector (OSTI)

Recent excitement over ethanol in the United States has been unmatched by other alternative energy sources. To a certain extent, the mention of ethanol by President Bush in the past four ... generated a high leve...

Dan Somma; Hope Lobkowicz…

2010-08-01T23:59:59.000Z

318

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend...

319

Shale Rocks as Nuclear Waste Repositories: Hydrothermal Reactions with Glass, Ceramic and Spent Fuel Waste Forms  

Science Journals Connector (OSTI)

The objectives of various contributions from this laboratory have been to simulate “worst case” situations, given a proposed choice of waste form, repository rock, and waste loading/waste age. The “worst case”...

W. Phelps Freeborn; Michael Zolensky…

1980-01-01T23:59:59.000Z

320

A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377  

SciTech Connect (OSTI)

A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

Carelli, M.D.; Franceschini, F.; Lahoda, E.J. [Westinghouse Electric Company LLC., Cranberry Township, PA (United States); Petrovic, B. [Georgia Institute of Technology, Atlanta, GA (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Spent Fuel and High-Level Waste Requirements (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission All proposed nuclear power generation facilities must be certified by the Public Utilities Commission under this statute prior to construction and

322

Management of salt waste from electrochemical processing of used nuclear fuel  

SciTech Connect (OSTI)

Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

Simpson, M.F.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States); Lee, J.; Wang, Y. [Sandia National Laboratory, Albuquerque, NM (United States); Versey, J.; Phongikaroon, S. [University of Idaho, Idaho Falls, ID (United States)

2013-07-01T23:59:59.000Z

323

Thermodynamic and optical characterizations of a high performance GDI engine operating in homogeneous and stratified charge mixture conditions fueled with gasoline and bio-ethanol  

Science Journals Connector (OSTI)

UltraViolet–visible imaging measurements were carried out in a gasoline direct injection (GDI) engine in order to investigate the spray and combustion evolution of gasoline and pure bio-ethanol fuel. Two different starts of injection, early injection (homogeneous charge) and late injection (stratified charge), were tested in two different engine conditions, 1000 rpm idle and 1500 rpm medium load as representative point of urban new European driving cycle (NEDC). Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution cameras in order to allow the visualization of the fuel injection and the combustion process. All the optical data were correlated to the in-cylinder pressure-based indicated analysis and to the gaseous and solid emissions. Wide statistics were performed for all measurements in order to take into account the cycle-to-cycle variability that characterized, in particular, the idle engine condition. Optical imaging showed that gasoline spray was more sensible to air motion and in-cylinder pressure than ethanol’s, for all the investigated conditions. The stratified flame front for both fuels was about 40% faster compared to homogeneous in the first phase, due to the A/F ratio local distribution. It leads to better performance in terms of stability and maximum pressure, even if the late injections produce more soot and UHC emissions due to fuel impingement. Ethanol combustion shows less diffusive flames than gasoline. A lower amount of soot was evaluated by two color pyrometry method in the combustion chamber and measured at the exhaust.

Paolo Sementa; Bianca Maria Vaglieco; Francesco Catapano

2012-01-01T23:59:59.000Z

324

Florida Project Produces Nation's First Cellulosic Ethanol at  

Broader source: Energy.gov (indexed) [DOE]

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

325

Florida Project Produces Nation's First Cellulosic Ethanol at  

Broader source: Energy.gov (indexed) [DOE]

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

326

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect (OSTI)

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

327

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

328

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

SciTech Connect (OSTI)

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

329

Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions.

Not Available

1986-09-01T23:59:59.000Z

330

Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs.

Not Available

1988-09-01T23:59:59.000Z

331

Integrated data base for 1987: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1986. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 82 refs., 57 figs., 121 tabs.

Not Available

1987-09-01T23:59:59.000Z

332

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

333

Regulatory standards for permanent disposal of spent nuclear fuel and high-level radioactive waste.  

SciTech Connect (OSTI)

This paper provides a summary of observations drawn from twenty years of personal experience in working with regulatory criteria for the permanent disposal of radioactive waste for both the Waste Isolation Pilot Plant repository for transuranic defense waste and the proposed Yucca Mountain repository for spent nuclear fuel and high-level wastes. Rather than providing specific recommendations for regulatory criteria, my goal here is to provide a perspective on topics that are fundamental to how high-level radioactive waste disposal regulations have been implemented in the past. What are the main questions raised relevant to long-term disposal regulations? What has proven effective in the past? Where have regulatory requirements perhaps had unintended consequences? New regulations for radioactive waste disposal may prove necessary, but the drafting of these regulations may be premature until a broad range of policy issues are better addressed. In the interim, the perspective offered here may be helpful for framing policy discussions.

Swift, Peter N.

2010-08-01T23:59:59.000Z

334

ethanol | OpenEI  

Open Energy Info (EERE)

ethanol ethanol Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

335

Corn Ethanol -April 2006 11 Cover Story  

E-Print Network [OSTI]

Corn Ethanol - April 2006 11 Cover Story orn ethanol is the fuel du jour. It's domestic. It's not oil. Ethanol's going to help promote "energy independence." Magazines trumpet it as the motor vehicle Midwest fields, waiting to rot or be processed into ethanol. Interestingly, the National Corn Growers

Patzek, Tadeusz W.

336

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... treatment-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. ... Velis, C. A.; Cooper, J.Are solid recovered fuels resource-efficient? ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-12-05T23:59:59.000Z

337

The Effect of the Di-Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of Ethanol and Diethyl Ether  

E-Print Network [OSTI]

Ignition Using Isooctane, Ethanol and Natural Gas - AModel for High Temperature Ethanol Oxidation," Internationalof Bio-Derived Carbon from Ethanol-in-Diesel Blends in the

Mack, John Hunter; Buchholz, Bruce A; Flowers, Daniel L; Dibble, Robert W

2005-01-01T23:59:59.000Z

338

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

339

Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results  

E-Print Network [OSTI]

The energy balance of corn ethanol revisited, Transaction offor autoignition. The wet ethanol modeling study [REF] usedengine running on wet ethanol. Fuel mixtures studied range

Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

2007-01-01T23:59:59.000Z

340

Analysis of Metabolic Pathways and Fluxes in a Newly Discovered Thermophilic and Ethanol-Tolerant Geobacillus Strain  

E-Print Network [OSTI]

Bacteria engineered for fuel ethanol production: currentcharacterization of two novel ethanol-tolerant facultative-Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass

Tang, Yinjie J.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An assessment of waste fuel burning in operating circulating fluidized bed boilers  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC), today's fastest growing boiler technology, has the flexibility to burn a wide range of fuels, including many waste fuels, while satisfying all present and anticipated environmental regulations. The first generation of FBC--atmospheric fluidized bed combustion (AFBC)--concentrated on ''bubbling'' fluidized bed designs. These systems have inherent limitations and experienced several problems. In response to these problems, circulating fluidized bed (CFB) technology was developed.

Gendreau, R.J.; Raymond, D.L.

1986-01-01T23:59:59.000Z

342

The Future of Corn-Ethanol in Fuel Sector of United States from Environmental and Economic Standpoint  

E-Print Network [OSTI]

........................................................................................................... 4 LITERATURE REVIEW ................................................................................................ 7 PROCEDURE AND METHODOLOGY ....................................................................... 13 LCA OF CORN... cane, and other starchy agricultural products. In United States, most ethanol is made from corn, although because of the rapidly developing research, cellulosic ethanol may soon become a larger part of the market if proven effective. Most corn...

Tulva, Arya Nath

2007-12-14T23:59:59.000Z

343

Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel.  

SciTech Connect (OSTI)

Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to {approx} 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.

Janney, D. E.; Keiser, D. D., Jr.; Engineering Technology

2003-09-01T23:59:59.000Z

344

Biofuel contribution to mitigate fossil fuel CO 2 emissions: Comparing sugar cane ethanol in Brazil with corn ethanol and discussing land use for food production and deforestation  

Science Journals Connector (OSTI)

This paper compares the use of sugar cane and corn for the production of ethanol with a focus on global warming and the current international debate about land use competition for food and biofuel production. The indicators used to compare the products are CO 2 emissions energy consumption sugar cane coproducts and deforestation. The life cycle emission inventory as a methodological tool is taken into account. The sustainability of socioeconomic development and the developing countries’ need to overcome barriers form the background against which the Brazilian government energy plans are analyzed.

Luiz Pinguelli Rosa

2009-01-01T23:59:59.000Z

345

List of Ethanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Ethanol Incentives Ethanol Incentives Jump to: navigation, search The following contains the list of 67 Ethanol Incentives. CSV (rows 1 - 67) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol

346

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is 0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate...

347

Cellulase, Clostridia, and Ethanol  

Science Journals Connector (OSTI)

...formation of six hydrogen bonds, four intramolecular...conversion of cellulose to fuels is its hydrolysis...acid, lactic acid, hydrogen, and carbon dioxide...be taken into the cell, broken down further...fermentation and fuel use of ethanol is...1990, 90% of new cars in Brazil used neat...

Arnold L. Demain; Michael Newcomb; J. H. David Wu

2005-03-01T23:59:59.000Z

348

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

349

Four Cellulosic Ethanol Breakthroughs  

Broader source: Energy.gov [DOE]

Today, the nation's first ever commercial-scale cellulosic ethanol biorefinery to use corn waste as a feedstock officially opened for business in Emmetsburg, Iowa. POET-DSM’s Project LIBERTY is the second of two Energy Department-funded cellulosic ethanol biorefineries to come on line within the past year. Learn more about how the Energy Department is helping the nation reduce its dependence on foreign oil and move the clean energy economy forward.

350

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations throughout the state....

351

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer...

352

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and must include space for the following fuel types: gasoline, diesel, propane, electricity, natural gas, methanolM85, ethanolE85, biodiesel, and other. For more...

353

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

SciTech Connect (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

354

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

355

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

356

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

357

Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste  

SciTech Connect (OSTI)

This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

Wurm, K.J.; Miller, N.E.

1982-11-01T23:59:59.000Z

358

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.2006. Ethanol can contribute to energy and environmental2006. Ethanol can contribute to energy and environmental

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

359

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.2006. Ethanol can contribute to energy and environmental2006. Ethanol can contribute to energy and environmental

2007-01-01T23:59:59.000Z

360

Ethanol Synthesis by Genetic Engineering in Cyanobacteria  

Science Journals Connector (OSTI)

...known fossil fuel reserves...of renewable energy sources. Production of fuel ethanol through...for fossil fuels. Traditionally...rapid growth rates, and capacity...University of Florida, Gainesville...from Enol Energy Inc. and the...

Ming-De Deng; John R. Coleman

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Comparison of selected foreign plans and practices for spent fuel and high-level waste management  

SciTech Connect (OSTI)

This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

1990-04-01T23:59:59.000Z

362

Identification of bimetallic electrocatalysts for ethanol and acetaldehyde oxidation: Probing C2-pathway and activity for hydrogen oxidation for indirect hydrogen fuel cells  

Science Journals Connector (OSTI)

Abstract Hydrogen, in the ethanol molecule, can be utilized in indirect hydrogen fuel cells. In this device, ethanol can be dehydrogenated producing H2 and acetaldehyde in an external fuel processor, and the H2 molecules are electro-oxidized in the anode. The anode electrocatalyst can, additionally, be active for the electro-oxidation of residual ethanol or acetaldehyde, but must catalyze the reaction via the C2-pathway (intact CC bond), in order to avoid the formation poisoning species. This work investigated potential materials that are active for H2 and catalyze the selective electro-oxidation of ethanol and acetaldehyde via the C2-pathway. The bimetallic electrocatalysts were formed by W, Ru and Sn-modified Pt nanoparticles. The reaction products were followed by on-line differential electrochemical mass spectrometry (DEMS) experiments. The results showed that Ru/Pt/C and Sn/Pt/C presented higher overall reaction rate when compared to the other studied materials. However, they were non-selective, even at different atomic proportions, and catalyzed the reaction in parallel pathways producing CO2 and acetaldehyde, with Ru/Pt/C presenting the highest average current efficiency for CO2 formation (16.6%). On the other hand, W/Pt/C with high W content was more selective to the C2 route, evidenced by the absence of the DEMS signals for molecules with one carbon atom such as CH4 and CO2. Additionally, this material was active and stable for H2 electro-oxidation, even in the presence of acetaldehyde in solution, contrarily to what was observed for Pt/C, and this was associated to its activity for H2 oxidation and its inability for the CC dissociation, as evidenced by the DEMS measurements. The high selectivity obtained for the W/Pt/C material to the C2-pathway, and its capability for hydrogen electro-oxidation, is an important novelty in this work, as it turns into a potential electrocatalyst for application in the anode of indirect hydrogen fuel cells powered by ethanol, mainly for those that operates as auxiliary power units of internal combustion engine cars.

A.C. Queiroz; W.O. Silva; I.A. Rodrigues; F.H.B. Lima

2014-01-01T23:59:59.000Z

363

Fermentation guide for common grains: a step-by-step procedure for small-scale ethanol fuel production  

SciTech Connect (OSTI)

This booklet covers in detail all the procedures prior to and including fermentation that are necessary to produce the highest possible yields from small-scale ethanol plants. Batch starch conversion of corn, barley, wheat, and milo using enzymes (..cap alpha..-amylase and glucoamylase) from bacteria and fungi is described. The types of yeast to use in fermenting the mash and the equipment and chemicals needed are detailed. Refinements that can help to improve ethanol production are presented. (DMC)

Not Available

1981-06-01T23:59:59.000Z

364

Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

1991-12-01T23:59:59.000Z

365

Environmental Statements, Availability, Etc., Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov (indexed) [DOE]

8679 8679 Thursday June 1, 1995 Part III Department of Energy Environmental Statements, Availability, Etc.; Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs: Notice 28680 Federal Register / Vol. 60, No. 105 / Thursday, June 1, 1995 / Notices DEPARTMENT OF ENERGY Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The Department of Energy has issued a Record of Decision on Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. The Record of Decision includes a Department-wide decision to

366

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

367

Waste generation process modeling and analysis for fuel reprocessing technologies  

SciTech Connect (OSTI)

Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

2002-01-01T23:59:59.000Z

368

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect (OSTI)

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

369

Stocks of Fuel Ethanol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 090514 091214 091914 092614...

370

SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS  

SciTech Connect (OSTI)

ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

2010-11-01T23:59:59.000Z

371

Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics  

Science Journals Connector (OSTI)

Abstract Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

JeongIn Gug; David Cacciola; Margaret J. Sobkowicz

2014-01-01T23:59:59.000Z

372

DOE/EA-1647: Supplemental Environmental Assessment for the Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (January 2009)  

Broader source: Energy.gov (indexed) [DOE]

S S u p p l e m e n t a l E n v i r o n m e n t a l A s s e s s m e n t a n d N o t i c e o f W e t l a n d s I n v o l v e m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (formerly Range Fuels Inc.) Treutlen County, Georgia DOE/EA 1647 Prepared for U.S. Department of Energy January 2009 Contents Section Page Acronyms and Abbreviations ................................................................................................... v 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1 1.2 Purpose and Need for Proposed Action ..........................................................2

373

Clean Cities: Ethanol Basics, Fact Sheet, October 2008  

SciTech Connect (OSTI)

Document answers frequently asked questions about ethanol as a transportation fuel, including those on production, environmental effects, and vehicles.

Not Available

2008-10-01T23:59:59.000Z

374

Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423  

SciTech Connect (OSTI)

Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been

Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

2012-07-01T23:59:59.000Z

375

Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals  

Science Journals Connector (OSTI)

A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. ... highly suitable as a feedstock for conversion to fuel, fe...

Michael H. Eley; Gerald R. Guinn; Joyita Bagchi

1995-09-01T23:59:59.000Z

376

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011  

Broader source: Energy.gov [DOE]

The top ten urban areas across the U.S. accounted for nearly 40% of the total fuel wasted due to traffic congestion in 2011. Highway congestion caused vehicles in the combined urban areas of New...

377

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

378

Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel  

SciTech Connect (OSTI)

Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

2013-02-01T23:59:59.000Z

379

Epsilon metal waste form for immobilization of noble metals from used nuclear fuel  

Science Journals Connector (OSTI)

Abstract Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500–2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Jarrod V. Crum; Denis Strachan; Aashish Rohatgi; Mac Zumhoff

2013-01-01T23:59:59.000Z

380

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

382

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. [Contains glossary  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

383

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 7  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

384

Microsoft Word - Fuel Cycle Potential Waste Inventory for Disposition R5a.docx  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Potential Fuel Cycle Potential Waste Inventory for Disposition Prepared for U.S. Department of Energy Used Nuclear Fuel Joe T. Carter, SRNL Alan J. Luptak, INL Jason Gastelum, PNNL Christine Stockman, SNL Andrew Miller, SNL July 2012 FCR&D-USED-2010-000031 Rev 5 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial

385

Ethanol Synthesis by Genetic Engineering in Cyanobacteria  

Science Journals Connector (OSTI)

...production of ethanol by cyanobacteria...bioconversion of solar energy and CO2 into a...utilization of renewable energy sources. Production of fuel ethanol through bioconversion...production of ethanol by cyanobacteria...bioconversion of solar energy and CO2 into a...

Ming-De Deng; John R. Coleman

1999-02-01T23:59:59.000Z

386

Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste  

Broader source: Energy.gov [DOE]

[In Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices)] This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation.

387

Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management  

Broader source: Energy.gov [DOE]

Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management

388

Ethanol Facts : BioEnergy Science Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol Facts Ethanol Facts In 2005, the U.S. produced about 4 billion gallons of ethanol from corn grain, equaling approximately 2% of the 140 billion gallons of gasoline consumed. Ethanol is widely used as a fuel additive. The oxygen contained in ethanol improves gasoline combustibility. The Energy Policy Act of 2005 has established a renewable fuels standard which requires using 7.5 billion gallons of ethanol by 2012. E85 (85% ethanol and 15% gasoline blend) can be used as a substitute for gasoline in vehicles that have been modified to use E85. Energy content of E85 is 70% that of gasoline, so about 1.4 gallons of E85 are needed to displace one gallon of gasoline. Starch in corn grain is readily degraded into glucose sugar molecules that are fermented to ethanol. The complex structural

389

Winter Heating Fuels - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear...

390

Pacific Ethanol, Inc  

Broader source: Energy.gov (indexed) [DOE]

Verenium Biofuels Corporation Verenium Biofuels Corporation Corporate HQ: Cambridge, Massachusetts Proposed Facility Location: Jennings, Louisiana Description: Operation and maintenance of a demonstration-scale facility in Jennings, Louisiana with some capital additions. CEO or Equivalent: Carlos A. Riva, President, Chief Executive Officer and Director Participants: Only Verenium Biofuels Corporation Production: * Capacity of 1.5 million gallons per year of cellulosic ethanol biofuel Technology and Feedstocks: * Pretreatment, enzymatic hydrolysis of lignocellulosics and fermentation of sugars into ethanol * sugarcane bagasse, dedicated energy crops, agricultural waste, and wood product residues State of Readiness: * The demonstration facility has been completed and is in the

391

Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage  

SciTech Connect (OSTI)

It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

1984-01-01T23:59:59.000Z

392

Study of the synergistic activity between industrial yeast strains resistant to high temperature and ethanol concentrations and high fermentative capacity to produce ethanol  

Science Journals Connector (OSTI)

Fuel-ethanol fermentation process includes a reutilization of the ... other well established commercial yeast strains: ZFC4 (ethanol best producer) and ZFD4 (most ethanol and temperature tolerant). Based on these...

Strohmayer Lourencetti Natália Manuela; Danieli Flávia…

2014-10-01T23:59:59.000Z

393

A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels  

Science Journals Connector (OSTI)

Pelletized recovered solid waste fuel is often applied in gasification systems to provide feedstock with a stabilized quality and high heating value and to avoid the bridging behavior caused by high moisture content, low particle density, and irregular particle size. However, the swelling properties and the sticky material generated from pyrolysis of the plastic group components also tend to trigger bridging in the retorting zone. It is well known that the plastic group materials, which occupy a considerable proportion of municipal solid waste, can melt together easily even under low temperature. This study investigates the pyrolysis behaviors of typical recovered solid waste pellets, including the devolatilization rate, heat transfer properties, char properties, and swelling/shrinkage properties, in a small fixed-bed facility over a wide temperature range, from 900 °C to 450 °C. The results are also compared with those from wheat straw pellets, a typical cellulosic fuel. Moreover, the SEM images and BET analysis of the char structure are further analyzed to provide additional explanation for the mechanisms of swelling/shrinkage phenomena observed during heating.

Chunguang Zhou; Qinglin Zhang; Leonie Arnold; Weihong Yang; Wlodzimierz Blasiak

2013-01-01T23:59:59.000Z

394

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

395

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

on   the   impact   of   waste   heat   load   on   waste  involve   coupling   waste   heat   load   with   metrics  radionuclides   in   the   waste,   heat   generated   by  

Djokic, Denia

2013-01-01T23:59:59.000Z

396

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains...

397

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Regulations User Type Jurisdiction Biodiesel Ethanol Natural Gas Propane (LPG) Hydrogen Fuel Cells EVs HEVs or PHEVs NEVs Aftermarket Conversions Fuel Economy or Efficiency Idle...

398

Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410  

SciTech Connect (OSTI)

Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for use as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)

Phillips, Chris; Willis, William; Carter, Robert [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Baker, Stephen [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)] [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)

2013-07-01T23:59:59.000Z

399

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect (OSTI)

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

400

Radioactive Waste Management at the New Conversion Facility of 'TVEL'{sup R} Fuel Company - 13474  

SciTech Connect (OSTI)

The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL{sup R} Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

Indyk, S.I.; Volodenko, A.V. [JSC 'TVEL', Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation)] [JSC 'TVEL', Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation); Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V. [JSC 'Siberian Group of Chemical Enterprises', Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)] [JSC 'Siberian Group of Chemical Enterprises', Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management  

SciTech Connect (OSTI)

The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

Stewart, L.

2004-10-03T23:59:59.000Z

402

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

403

What are Spent Nuclear Fuel and High-Level Radioactive Waste ?  

SciTech Connect (OSTI)

Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

DOE

2002-12-01T23:59:59.000Z

404

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

405

Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol  

E-Print Network [OSTI]

S1 Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use Dylan B. Millet*,1 , Eric Apel2 , Daven K. Henze3 , Jason Hill1 , Julian D. Marshall1 INFORMATION Supporting Information contains a total of 12 pages, 1 table, and 7 figures. 1. AIRBORNE ETHANOL

Mlllet, Dylan B.

406

Proton NMR characterization of gasoline–ethanol blends  

Science Journals Connector (OSTI)

Abstract Nuclear magnetic resonance (NMR) can be conveniently used for accurate measurement of water and ethanol concentrations in gasoline–ethanol fuel blends. The spectra also contain information on proton exchange rates. In addition, NMR pulsed-field-gradient diffusion measurement allows estimation of ethanol–water clusters and viscosity of the fuel blends.

A. Turanov; A.K. Khitrin

2014-01-01T23:59:59.000Z

407

Thermodynamics of the Corn-Ethanol Biofuel Cycle  

E-Print Network [OSTI]

Thermodynamics of the Corn-Ethanol Biofuel Cycle Tad W. Patzek Department of Civil: Appendix D on fuel cells, consistent use of fuel HHVs, corrected theoretical yield of ethanol from starch oxidation Increased ethanol yield to 2.5 gal/wet bushel, 91.5% of theoretical yield Appendix E on free

Patzek, Tadeusz W.

408

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol in Diesel engines Anil Singh Bika, Luke Franklin, Prof. David B. Kittelson  

E-Print Network [OSTI]

Hydrogen assisted combustion of ethanol in Diesel enginesHydrogen assisted combustion of ethanol a means of using nearly pure ethanol as a diesel engine fuel by using hydrogen rich gases to facilitate of combustion (SOC) · A good diesel fuel has a low ignition delay period and hence a high CN · Ethanol has

Minnesota, University of

409

Preparation of hydrogen for feeding fuel cells by low-temperature conversion of ethanol on Ni/ZnO and Ni-Cu/ZnO catalysts  

Science Journals Connector (OSTI)

Preparation of hydrogen by low-temperature steam conversion of ethanol on nickel and binary nickel-copper catalysts ... efficiency of hydrogen evolution in the course of ethanol conversion on these catalysts was ...

N. V. Lapin; V. S. Bezhok; A. F. Vyatkin

2014-05-01T23:59:59.000Z

410

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

411

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

412

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect (OSTI)

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

413

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

414

Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505  

SciTech Connect (OSTI)

One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

2013-07-01T23:59:59.000Z

415

Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells: Workshop Summary and Action Plan  

Broader source: Energy.gov [DOE]

This report discusses the results of a January 13, 2011, workshop that focused on utilizing biowaste as an energy feedstock and converting this feedstock into heat and/or power using fuel cells. DOD and DOE are collaborating under a Memorandum of Understanding (MOU) to pursue technology-driven solutions that reduce petroleum use, among other objectives. One of the solutions being explored under the MOU is leveraging waste as feedstock for fuel cell applications in fixed and deployed military operations.

416

Microaerobic Conversion of Glycerol to Ethanol in Escherichia coli  

Science Journals Connector (OSTI)

...production of fuels and chemicals...glycerol-to-ethanol process. INTRODUCTION Concerns about...sources of fuel. Biodiesel is one of the...every 10 kg of biodiesel produced...metabolic-engineering strategies...glycerol into fuels and chemicals...

Matthew S. Wong; Mai Li; Ryan W. Black; Thao Q. Le; Sharon Puthli; Paul Campbell; Daniel J. Monticello

2014-02-28T23:59:59.000Z

417

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect (OSTI)

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

418

Waste degradation and mobilization in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of waste degradation and mobilization in performance assessments (PAs) conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. As understanding of the Yucca Mountain disposal system increased, the waste degradation module, or succinctly called the source-term, evolved from initial assumptions in 1984 to results based on process modeling in 2008. In early PAs, waste degradation had significant influence on calculated behavior but as the robustness of the waste container was increased and modeling of the container degradation improved, waste degradation had much less influence in later PAs. The variation of dissolved concentrations of radionuclides progressed from simple probability distributions in early \\{PAs\\} to functions dependent upon water chemistry in later PAs. Also, transport modeling of radionuclides in the waste, container, and invert were added in 1995; and, colloid-facilitated transport of radionuclides was added in 1998.

Rob P. Rechard; Christine T. Stockman

2014-01-01T23:59:59.000Z

419

Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

This diagram shows the flow of actual mass from which it is useful to recover energy. ... The utilization of solid recovered fuels (SRF) for energy recovery has been increasing steadily in recent years, and this development is set to continue. ... To date, Korea has used four species of solid recovered fuels (SRFs) which have been certified by the Environmental Ministry of Korea: refuse-derived fuel (RDF), refused plastic fuel (RPF), tyre-derived fuel (TDF), and wood chip fuel (WCF). ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-02-11T23:59:59.000Z

420

A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles  

SciTech Connect (OSTI)

There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U{sup 6+}-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10{sup 5} years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings.

M.T. Peters; R.C. Ewing

2006-06-22T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sorghum to Ethanol Research  

SciTech Connect (OSTI)

The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called �dedicated bioenergy crops� including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

Dahlberg, Jeff; Wolfrum, Ed

2010-06-30T23:59:59.000Z

422

Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results  

E-Print Network [OSTI]

of the VW TDi running on a mixture of 60% ethanol-in-water.the VW TDi running on different fuel blends of wet ethanol

Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

2007-01-01T23:59:59.000Z

423

DOE/EA-1517: Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana (April 2005)  

SciTech Connect (OSTI)

Based on action by the U.S. Congress, the U.S. Department of Energy (DOE) has funding available to support a proposal by the Iroquois Bio-energy Company (IBEC), an Indiana limited liability company, to construct a fuel ethanol plant in Jasper County, Indiana (the proposed plant). Congress has acknowledged the merit of this project by providing specific funding through DOE. Consequently, DOE proposes to provide partial funding to IBEC to subsidize the design and construction of the proposed plant (the Proposed Action). In accordance with DOE and National Environmental Policy Act (NEPA) implementing regulations, DOE is required to evaluate the potential environmental impacts of DOE facilities, operations, and related funding decisions. The proposal to use Federal funds to support the project requires DOE to address NEPA requirements and related environmental documentation and permitting requirements. In compliance with NEPA (42 U.S.C. {section} 4321 et seq.) and DOE's NEPA implementing regulations (10 CFR section 1021.330) and procedures, this environmental assessment (EA) examines the potential environmental impacts of DOE's Proposed Action and a No Action Alternative.

N /A

2005-04-29T23:59:59.000Z

424

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents [OSTI]

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

1999-01-01T23:59:59.000Z

425

Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends  

Science Journals Connector (OSTI)

Abstract The need to produce energy from poor quality carbonaceous materials has increased, in order to reduce European dependency on imported fuels, diversify the use of new and alternative fuels and to guarantee secure energy production routes. The valorisation of a poor quality solid residual fuel (SRF), with high content of ash and volatile matter, through its conversion into fuel gas was studied. The rise of gasification temperature and equivalent ratio (ER) led to higher gas yields and to lower undesirable gaseous components, though higher ER values led to a gas with lower energetic content. To reduce the negative effect of SRF unfavourable characteristics and to diversify the feedstocks used, SRF blended with three different types of biomass wastes: forestry pine, almond shells and olive bagasse was co-gasified. The use of biomass wastes tested was valuable for SRF gasification, as there was an increase in the overall reactivity and in H2 production and a reduction of about 55% in tar released, without great changes in gas yield and in its HHV. The use of natural minerals mixed with silica sand was also studied with the aim of improving SRF gasification performance and fuel gas quality. The best results were obtained in presence of dolomite, as the lowest tar and H2S contents were obtained, while an increase in gas yield was observed. Co-gasification of this poor quality SRF blended with biomass wastes in presence of dolomite increased gas yield by 25% while tar contents decreased by 55%.

Filomena Pinto; Rui Neto André; Carlos Carolino; Miguel Miranda; Pedro Abelha; Daniel Direito; Nikos Perdikaris; Ioannis Boukis

2014-01-01T23:59:59.000Z

426

Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production  

Office of Energy Efficiency and Renewable Energy (EERE)

Project LIBERTY, the nation’s first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock, announced the start of production today. Once operating at full, commercial-scale, the biorefinery in Emmetsburg, Iowa will produce 25 million gallons of cellulosic ethanol per year - enough to avoid approximately 210,000 tons of CO2 emissions annually.

427

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

428

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

429

Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding.

Rob P. Rechard; Michael D. Voegele

2014-01-01T23:59:59.000Z

430

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

0.24 per gallon. E85 is defined as an alternative fuel that is a blend of denatured ethanol and hydrocarbon and typically contains 85% ethanol by volume, but must contain at...

431

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and 68-1359...

432

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and December 31, 2018. If at...

433

Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests  

SciTech Connect (OSTI)

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

Wilson, C.N.

1990-09-01T23:59:59.000Z

434

Development of Technology for Immobilization of Waste Salt from Electrorefining Spent Nuclear Fuel in Zeolite-A for Eventual Disposition in a Ceramic Waste Form  

SciTech Connect (OSTI)

The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

Michael F. Simpson; Prateek Sachdev

2008-04-01T23:59:59.000Z

435

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives related to Ethanol. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

436

Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions...  

Broader source: Energy.gov (indexed) [DOE]

and US06, transient accelerations plus steady state * Fuels: Gasoline and intermediate ethanol blends (E0, E10, E20) * Measurements: - Particle mass: collection on Teflon-coated...

437

Ethanol from Sugarcane Lignocellulosic Residues - Opportunities for Process Improvement and Production Cost Reduction.  

E-Print Network [OSTI]

??Bioethanol from sugarcane is a sustainable alternative to fossil fuels, and the increasing demand for fuel ethanol has prompted studies on the use of the… (more)

Macrelli, Stefano

2014-01-01T23:59:59.000Z

438

Diesel-engine fumigation with aqueous ethanol  

SciTech Connect (OSTI)

A three cylinder, two cycle diesel engine, rated at 22KW at 2300 rpm, was fumigated with ethanol of 140-to-200 proofs. P-T diagrams and engine performance were analyzed with particular emphasis on the detection and evaluation of the knock phenomenon. Satisfactory full load operation was obtained with thirty percent of the fuel energy supplied as aqueous ethanol.

McLaughlin, S.L.; Stephenson, K.Q.

1981-01-01T23:59:59.000Z

439

Direct Synthesis of 1-Butanol from Ethanol in a Plug Flow Reactor: Reactor and Reaction Kinetics Modeling  

Science Journals Connector (OSTI)

Bio-ethanol is well known for its use as ... continuous reactor technology and heterogeneous alumina catalysts, ethanol can be upgraded to 1-butanol in ... feasible properties as fuel component in comparison to ethanol

T. Riittonen; T. Salmi; J.-P. Mikkola; J. Wärnĺ

2014-11-01T23:59:59.000Z

440

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste fuel ethanol" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Ethanol Can Contribute to Energy and Environmental Goals  

E-Print Network [OSTI]

Ethanol Can Contribute to Energy and Environmental Goals Alexander E. Farrell,1 * Richard J. Plevin the potential effects of increased biofuel use, we evaluated six representative analyses of fuel ethanol studies indicated that current corn ethanol technologies are much less petroleum-intensive than gasoline

Kammen, Daniel M.