National Library of Energy BETA

Sample records for waste engineering washington

  1. Washington Environmental Permit Handbook - Dangerous Waste Treatment...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Dangerous Waste Treatment Storage Disposal Facility New Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Web...

  2. Department of Civil Engineering University of Washington

    E-Print Network [OSTI]

    Eberhard, Marc O.

    #12;Department of Civil Engineering University of Washington Box 352700 Seattle, Washington 98195-2700 EVALUATION OF THE EFFECTS OF FOREST ROADS ON STREAMFLOW IN HARD AND WARE CREEKS, WASHINGTON by LAURA C Washington catchments, Hard and Ware Creeks (drainage areas 2.3 and 2.8 square km, respectively). Road

  3. An Economic Engine for Washington State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pnnl.gov An Economic Engine for Washington State When Washington State leaders share their visions for a vibrant future, certain priorities rise to the top: jobs, education, and an...

  4. Industrial & Systems Engineering University of Washington

    E-Print Network [OSTI]

    Anderson, Richard

    Industrial & Systems Engineering University of Washington Linda Ng Boyle, Ph.D. Associate Professor linda@u.washington.edu #12;Agenda · What is Industrial & Systems Engineering? · Where do Industrial Engineers get jobs? · What classes would you take in ISE? · Where do UW graduates with ISE degrees

  5. Industrial & Systems Engineering University of Washington

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Industrial & Systems Engineering University of Washington Linda Ng Boyle, Ph.D. Professor and Chair linda@uw.edu #12;Agenda · What is Industrial & Systems Engineering? · Where do Industrial Engineers get area #12;Industrial & Systems Engineering (ISE) · Design things to be ­ Better quality ­ Higher

  6. www.pnnl.gov An Economic Engine for Washington State

    E-Print Network [OSTI]

    www.pnnl.gov An Economic Engine for Washington State When Washington State leaders share, but significant benefit: economic impact. In Washington State, that impact shows up in funding and spending, jobs's 4,344 staff, 94 percent reside in Washington State, including Richland, Seattle, and Sequim

  7. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  8. Department of Civil and Environmental Engineering University of Washington

    E-Print Network [OSTI]

    Eberhard, Marc O.

    #12;Department of Civil and Environmental Engineering University of Washington Box 352700 Seattle, Washington 98195-2700 PREDICTABILITY OF RUNOFF IN THE MISSISSIPPI RIVER BASIN By Edwin P. Maurer Water and support provided by his advisor, Professor Dennis P. Lettenmaier at the University of Washington

  9. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    8 10 x u = 5, v = 15 f(x) u = 5, v = 5 f1 ­ , ,u v f (x) Haijun Li Math/Stat 370: Engineering f1 ­ , , f, ,u v u v f (x) Haijun Li Math/Stat 370: Engineering Statistics, Washington State f1-,n1-1,n2-1. Haijun Li Math/Stat 370: Engineering Statistics, Washington State University Week 11

  10. Washington State Ergonomics Tool: predictive validity in the waste industry 

    E-Print Network [OSTI]

    Eppes, Susan Elise

    2004-09-30

    stream_source_info etd-tamu-2004A-SENG-Eppes-1.pdf.txt stream_content_type text/plain stream_size 67300 Content-Encoding UTF-8 stream_name etd-tamu-2004A-SENG-Eppes-1.pdf.txt Content-Type text/plain; charset=UTF-8... WASHINGTON STATE ERGONOMICS TOOL: PREDICTIVE VALIDITY IN THE WASTE INDUSTRY A Thesis by SUSAN EPPES Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

  11. Waste shipment engineering data management plan

    SciTech Connect (OSTI)

    Marquez, D.L.

    1995-05-01

    This plan documents current data management practices and future data management improvements for TWRS Waste Shipment Engineering.

  12. Washington State University Vancouver Mech 101 Introduction to Mechanical Engineering Mechanical Engineering Fall 2012 Syllabus

    E-Print Network [OSTI]

    Washington State University Vancouver Mech 101 Introduction to Mechanical Engineering Mechanical Engineering Fall 2012 Syllabus 1 Introduction to Mechanical Engineering Course: Mech 101, Introduction to Mechanical Engineering, 2 Credits Prerequisite: None Instructor: Dr. Yoon Jo Kim Office: VECS 301Q Phone

  13. Waste Form Degradation Model Integration for Engineered Materials...

    Office of Environmental Management (EM)

    Waste Form Degradation Model Integration for Engineered Materials Performance Waste Form Degradation Model Integration for Engineered Materials Performance The collaborative...

  14. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    Li Math/Stat 370: Engineering Statistics, Washington State University Week 12 7 / 29 #12;Six-Sigma point plots outside three-sigma control limits Two out of three consecutive points plot beyond a two-sigma limit. Four out of five consecutive points plot at a distance of one sigma or beyond from the center

  15. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    8 10 x u = 5, v = 15 f(x) u = 5, v = 5 f1 ­ , ,u v f (x) Haijun Li Math/Stat 370: Engineering f1 ­ , , f, ,u v u v f (x) Haijun Li Math/Stat 370: Engineering Statistics, Washington State percentage point of the F distribution. Table IV lists the values of f,u,v . Note that f1-,u,v = 1 f,v,u x

  16. Ross Woods and Dr. Shane A. Brown Department of Civil Engineering Washington State University

    E-Print Network [OSTI]

    Collins, Gary S.

    Ross Woods and Dr. Shane A. Brown Department of Civil Engineering · Washington State University al. 2007). Other Findings: · Increased Interest in careers in Science, Technology, Engineering

  17. Washington State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    The Washington State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Washington. The profile is the result of a survey of NRC licensees in Washington. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Washington.

  18. Faculty Position: Air Resources Engineering and Sciences The Department of Civil and Environmental Engineering (CEE) at the University of Washington

    E-Print Network [OSTI]

    Engineering (CEE) at the University of Washington (UW) is in an ambitious, multiyear period of growth: http://www.engr.washington.edu/facsearch/apply.phtml?pos_id=151. Questions regarding the application process may be directed to search@ce.washington.edu. Applicant review will begin November 1, 2014

  19. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. 2002deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology Diesel Engine Waste Heat Recovery...

  20. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2004deerhopmann.pdf More Documents & Publications Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology Diesel Engine Waste Heat Recovery...

  1. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  2. An Engine System Approach to Exhaust Waste Heat Recovery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies (OFCVT). deer07kruiswyk.pdf More Documents & Publications An Engine System Approach to Exhaust Waste Heat Recovery Engine System Approach to Exhaust Energy...

  3. Washington

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington , DC 20585 April 15, 2013 Mr.

  4. Washington,

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuel EfficiencyWashington , DC 20585 April 15, 2013Local DC

  5. EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

  6. On the virtual aeroshaping effect of synthetic jets Department of Mechanical and Aerospace Engineering, The George Washington University,

    E-Print Network [OSTI]

    Mittal, Rajat

    On the virtual aeroshaping effect of synthetic jets R. Mittal Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052 P. Rampunggoon Department of Mechanical Engineering, University of Florida, Gainesville, Florida 32611 Received 9 October 2001; accepted 3

  7. Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trubocompound Technology Diesel Engine Waste Heat Recovery Utilizing Electric Trubocompound Technology 2003 DEER Conference Presentation: Caterpillar Inc. 2003deeralgrain.pdf...

  8. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  9. Washington State University Vancouver Mech 303 Fluid Mechanics Mechanical Engineering Fall 2013 Syllabus

    E-Print Network [OSTI]

    Washington State University Vancouver Mech 303 Fluid Mechanics Mechanical Engineering Fall 2013 Syllabus 1 Fluid Mechanics Course: Mech 303, Fluid Mechanics, 3 Credits Prerequisite: Dynamics (Mech 212: VECS 105 Textbook: Fundamentals of Fluid Mechanics, 7 th Edition By Munson, Okiishi, Huebsch

  10. Washington Closure Hanford System Engineer Program FY2010 Annual Report

    SciTech Connect (OSTI)

    J.N. Winters

    2010-11-02

    This report is a summary of the assessments of the vital safety systems (VSS) that are administered under WCH’s system engineer program.

  11. Studien-und Prfungsordnung der Universitt Stuttgart fr den auslandsorientierten Studiengang Air Quality Control, Solid Waste and Waste Water Process Engineering

    E-Print Network [OSTI]

    Reyle, Uwe

    Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) mit Abschluss Master Quality Control, Solid Waste and Waste Water Process Engineering" (WASTE) beschlossen. Der Rektor hat Control, Solid Waste and Waste Water Process Engineering" (WASTE) überblickt werden, die Fähigkeit

  12. UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195

    E-Print Network [OSTI]

    UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195 College of Engineering Department of Nuclear of Energy 1000 Independence Avenue Washington, D.C. 20585 Dear Dr. Hunter: The Magnetic Fusion Advisory

  13. Waste Technology Engineering Laboratory (324 building)

    SciTech Connect (OSTI)

    Kammenzind, D.E.

    1997-05-27

    The 324 Facility Standards/Requirements Identification Document (S/RID) is comprised of twenty functional areas. Two of the twenty functional areas (Decontamination and Decommissioning and Environmental Restoration) were determined as nonapplicable functional areas and one functional area (Research and Development and Experimental Activities) was determined applicable, however, requirements are found in other functional areas and will not be duplicated. Each functional area follows as a separate chapter, either containing the S/RID or a justification for nonapplicability. The twenty functional areas listed below follow as chapters: 1. Management Systems; 2. Quality Assurance; 3. Configuration Management; 4. Training and Qualification; 5. Emergency Management; 6. Safeguards and Security; 7. Engineering Program; 8. Construction; 9. Operations; 10. Maintenance; 11. Radiation Protection; 12. Fire Protection; 13. Packaging and Transportation; 14. Environmental Restoration; 15. Decontamination and Decommissioning; 16. Waste Management; 17. Research and Development and Experimental Activities; 18. Nuclear Safety; 19. Occupational Safety and Health; 20. Environmental Protection.

  14. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    = head, T = tail. Then = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. Haijun Li Math/Stat 370: Engineering. Then = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. Example: Toss a coin until the first head appears. = {H, TH. Then = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. Example: Toss a coin until the first head appears. = {H, TH

  15. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    machines, operator errors, or defective raw materials, ... Haijun Li Math/Stat 370: Engineering Statistics, or defective raw materials, ... A process that is operating with only chance causes present is said that arises from improperly adjusted machines, operator errors, or defective raw materials, ... A process

  16. A Cultural Resources Survey for the Type V GG Liquid Waste Processing Facility in Washington County, Texas 

    E-Print Network [OSTI]

    Moore, William

    2015-07-31

    A Phase I cultural resources survey for a proposed type V GG liquid waste processing facility on a 7.73 acre site in south-central Washington County, Texas was performed by Brazos Valley Research Associates on December 28, 2011. The project area...

  17. Transit Vehicles as Traffic Probe Sensors F.W. Cathey, University of Washington, Dept. of Electrical Engineering, Box 352500, Seattle, WA, 98195-2500,

    E-Print Network [OSTI]

    TRB 02-2228 Transit Vehicles as Traffic Probe Sensors F.W. Cathey, University of Washington, Dept. of Electrical Engineering, Box 352500, Seattle, WA, 98195-2500, phone 206-616-3185, fax 206-616-1787, fritz@its.washington.edu D.J. Dailey, University of Washington, Dept. of Electrical Engineering, Box 352500, Seattle, WA

  18. Engineered waste-package-system design specification

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity.

  19. Independent engineering review of the Hanford Waste Vitrification System

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  20. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  1. Water distillation using waste engine heat from an internal combustion engine

    E-Print Network [OSTI]

    Mears, Kevin S

    2006-01-01

    To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

  2. Engine Waste Heat Recovery Concept Demonstration

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  3. Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.

    SciTech Connect (OSTI)

    Youngs, Robert R.

    2007-06-29

    This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

  4. Waste heat recovery in automobile engines : potential solutions and benefits

    E-Print Network [OSTI]

    Ruiz, Joaquin G., 1981-

    2005-01-01

    Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

  5. Preliminary Performance Assessment for the Waste Management Area C at the Hanford Site in Southeast Washington - 15331

    SciTech Connect (OSTI)

    Bergeron, Marcel P.; Singleton, Kristin M.; Eberlein, Susan J.

    2015-01-07

    A performance assessment (PA) of Single-Shell Tank (SST) Waste Management Area C (WMA C) located at the U.S. Department of Energy's (DOE) Hanford Site in southeastern Washington is being conducted to satisfy the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO), as well as other Federal requirements and State-approved closure plans and permits. The WMP C PA assesses the fate, transport, and impacts of radionuclides and hazardous chemicals within residual wastes left in tanks and ancillary equipment and facilities in their assumed closed configuration and the subsequent risks to humans into the far future. The part of the PA focused on radiological impacts is being developed to meet the requirements for a closure authorization under DOE Order 435.1 that includes a waste incidental to reprocessing determination for residual wastes remaining in tanks, ancillary equipment, and facilities. An additional part of the PA will evaluate human health and environmental impacts from hazardous chemical inventories in residual wastes remaining in WMA C tanks, ancillary equipment, and facilities needed to meet the requirements for permitted closure under RCRA.

  6. Teaching Radioactive Waste Management in an Undergraduate Engineering Program - 13269

    SciTech Connect (OSTI)

    Ikeda, Brian M.

    2013-07-01

    The University of Ontario Institute of Technology is Ontario's newest university and the only one in Canada that offers an accredited Bachelor of Nuclear Engineering (Honours) degree. The nuclear engineering program consists of 48 full-semester courses, including one on radioactive waste management. This is a design course that challenges young engineers to develop a fundamental understanding of how to manage the storage and disposal of various types and forms of radioactive waste, and to recognize the social consequences of their practices and decisions. Students are tasked with developing a major project based on an environmental assessment of a simple conceptual design for a waste disposal facility. They use collaborative learning and self-directed exploration to gain the requisite knowledge of the waste management system. The project constitutes 70% of their mark, but is broken down into several small components that include, an environmental assessment comprehensive study report, a technical review, a facility design, and a public defense of their proposal. Many aspects of the project mirror industry team project situations, including the various levels of participation. The success of the students is correlated with their engagement in the project, the highest final examination scores achieved by students with the strongest effort in the project. (authors)

  7. A Waste Heat Recovery System for Light Duty Diesel Engines

    SciTech Connect (OSTI)

    Briggs, Thomas E; Wagner, Robert M; Edwards, Kevin Dean; Curran, Scott; Nafziger, Eric J

    2010-01-01

    In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

  8. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  9. Engineered photocatalysts for detoxification of waste water

    SciTech Connect (OSTI)

    Majumder, S.A.; Prairie, M.R.; Shelnutt, J.A.; Khan, S.U.M.

    1996-12-01

    This report describes progress on the development of engineered photocatalysts for the detoxification of water polluted with toxic organic compounds and heavy metals. We examined a range of different oxide supports (titania, alumina, magnesia and manganese dioxide) for tin uroporphyrin and investigated the efficacy of a few different porphyrins. A water-soluble octaacetic-acid-tetraphenylporphyrin and its derivatives have been synthesized and characterized in an attempt to design a porphyrin catalyst with a larger binding pocket. We have also investigated photocatalytic processes on both single crystal and powder forms of semiconducting SiC with an ultimate goal of developing a dual-semiconductor system combining TiO{sub 2} and SiC. Mathematical modeling was also performed to identify parameters that can improve the efficiency of SiC-based photocatalytic systems. Although the conceptual TiO{sub 2}/SiC photodiode shows some promises for photoreduction processes, SiC itself was found to be an inefficient photocatalyst when combined with TiO{sub 2}. Alternative semiconductors with bandgap and band potentials similar to SiC should be tested in the future for further development and a practical utilization of the dual photodiode concept.

  10. 1. Nelson, John (January 2013). Continuing and Online Education Forum Market Viability for an Online Master's Degree in Engineering Management. Education Advisory Board, Washington, DC.

    E-Print Network [OSTI]

    Davis, Lloyd M.

    Engineering Manager Positions Improve in the PostRecession Economy National job postings data confirms for an Online Master's Degree in Engineering Management. Education Advisory Board, Washington, DC. National Engineering Management Statistics A forum in Education Advisory Board described the status

  11. Modeling of transport and reaction in an engineered barrier for radioactive waste confinement

    E-Print Network [OSTI]

    Montes-Hernandez, German

    Modeling of transport and reaction in an engineered barrier for radioactive waste confinement G bentonite; Radioactive waste; Modelling; KIRMAT code; Chemical transformations; Mass transport 0169;1. Introduction A particular radioactive waste disposal design proposes to store waste in deep geological layers

  12. EIS-0046: Management of Commercially Generated Radioactive Waste, Washington, D.C.

    Broader source: Energy.gov [DOE]

    This statement analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented.

  13. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  14. EA-1189: Non-thermal Treatment of Hanford Site Low-level Mixed Waste, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to demonstrate the feasibility of commercial treatment of contact-handled low-level mixed waste to meet existing Federal and State...

  15. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  16. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  17. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    SciTech Connect (OSTI)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  18. Systems engineering identification and control of mixed waste technology development

    SciTech Connect (OSTI)

    Beitel, G.A.

    1997-08-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper.

  19. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  20. Development of a Waste Heat Recovery System for Light Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

  1. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect (OSTI)

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  2. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Youngs, Robert R.; Costantino, Carl J.; Miller, Lewis F.

    2008-02-28

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy’s (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were re-evaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary’s approval of the final seismic criteria this past summer, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities.

  3. Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. Coal StocksSuppliers Tag:Take Action APPENDIX S WASTE

  4. EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to retrieve transuranic waste (TRU), provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3, and mixed...

  5. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    SciTech Connect (OSTI)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  6. Washington State University Vancouver Mech 442/542 Advanced Thermal Systems Mechanical Engineering Spring 2013 Syllabus

    E-Print Network [OSTI]

    the conservation laws (e.g. mass, momentum, and energy) to thermal systems under steady-state and transient and thermal management, microchannel heat transfer, energy resources, renewable energy, thermal systems. Thermal energy systems 5. Energy resources and renewable energy #12;Washington State University Vancouver

  7. WASHINGTON UNIVERSITY IN ST. LOUIS School of Engineering and Applied Science

    E-Print Network [OSTI]

    with respect to the proportional progress of tasks in the system. We model this scheduling problem in Computer Science Washington University in St. Louis, 2009 Research Advisor: Professor William D. Smart Scheduling policies for open soft real-time systems must be able to balance the com- peting concerns

  8. Structural Engineering Faculty Position The Department of Civil and Environmental Engineering (CEE) at the University of Washington (UW) is

    E-Print Network [OSTI]

    Structural Engineering Faculty Position The Department of Civil and Environmental Engineering (CEE Engineering and Mechanics. The successful candidate will be expected to engage in teaching, research. The search is open to candidates with expertise in all areas of structural engineering, including

  9. Baseline Risk Assessment Supporting Closure at Waste Management Area C at the Hanford Site Washington - 15332

    SciTech Connect (OSTI)

    Singleton, Kristin M.

    2015-01-07

    The Office of River Protection under the U.S. Department of Energy is pursuing closure of the Single-Shell Tank (SST) Waste Management Area (WMA) C under the requirements of the Hanford Federal Facility Agreement and Consent Order (HFFACO). A baseline risk assessment (BRA) of current conditions is based on available characterization data and information collected at WMA C. The baseline risk assessment is being developed as a part of a Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)/Corrective Measures Study (CMS) at WMA C that is mandatory under Comprehensive Environmental Response, Compensation, and Liability Act and RCRA corrective action. The RFI/CMS is needed to identify and evaluate the hazardous chemical and radiological contamination in the vadose zone from past releases of waste from WMA C. WMA C will be under Federal ownership and control for the foreseeable future, and managed as an industrial area with restricted access and various institutional controls. The exposure scenarios evaluated under these conditions include Model Toxics Control Act (MTCA) Method C, industrial worker, maintenance and surveillance worker, construction worker, and trespasser scenarios. The BRA evaluates several unrestricted land use scenarios (residential all-pathway, MTCA Method B, and Tribal) to provide additional information for risk management. Analytical results from 13 shallow zone (0 to 15 ft. below ground surface) sampling locations were collected to evaluate human health impacts at WMA C. In addition, soil analytical data were screened against background concentrations and ecological soil screening levels to determine if soil concentrations have the potential to adversely affect ecological receptors. Analytical data from 12 groundwater monitoring wells were evaluated between 2004 and 2013. A screening of groundwater monitoring data against background concentrations and Federal maximum concentration levels was used to determine vadose zone contamination impacts on groundwater. Waste Management Area C is the first of the Hanford tank farms to begin the closure planning process. The current baseline risk assessment will provide valuable information for making corrective actions and closure decisions for WMA C, and will also support the planning for future tank farm soil investigation and baseline risk assessments.

  10. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, T.M.; Rohay, A.C. [Pacific Northwest National Laboratory, Richland, WA (United States); Youngs, R.R. [Geomatrix Consultants, Inc., Oakland, CA (United States); Costantino, C.J. [C.J. Costantino and Associates, Valley, NY (United States); Miller, L.F. [U.S. Department of Energy, Office of River Protection, Richland, WA (United States)

    2008-07-01

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy's (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were reevaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary's approval of the final seismic criteria in the summer of 2007, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities. The technical basis for the certification of seismic design criteria resulted from a two-year Seismic Boreholes Project that planned, collected, and analyzed geological data from four new boreholes drilled to depths of approximately 1400 feet below ground surface on the WTP site. A key uncertainty identified in the 2005 analyses was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The absence of directly-measured seismic shear wave velocities in the sedimentary interbeds resulted in the use of a wider and more conservative range of velocities in the 2005 analyses. The Seismic Boreholes Project was designed to directly measure the velocities and velocity contrasts in the basalts and sediments below the WTP, reanalyze the ground motion response, and assess the level of conservatism in the 2005 seismic design criteria. The characterization and analysis effort included 1) downhole measurements of the velocity properties (including uncertainties) of the basalt/interbed sequences, 2) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core-hole and data collected through geophysical logging of each borehole, and 3) prediction of ground motion response to an earthquake using newly acquired and historic data. The data and analyses reflect a significant reduction in the uncertainty in shear wave velocities below the WTP and result in a significantly lower spectral acceleration (i.e., ground motion). The updated ground motion response analyses and corresponding design response spectra reflect a 25% lower peak horizontal acceleration than reflected in the 2005 design criteria. These results provide confidence that the WTP seismic design criteria are conservative. (authors)

  11. UW GEOTECHNICAL The University of Washington

    E-Print Network [OSTI]

    Eberhard, Marc O.

    UW GEOTECHNICAL PROGRAM The University of Washington Geotechnical Engineering Program is one Earthquake Engineering Research (PEER) Center, and the Washington State Department of Transportation. www.ce.washington activities and the cultural activities found in a cosmopolitan city. On the shores of Lake Washington

  12. Qifeng Zhang, Xiaoyuan Zhou, Christopher S. Dandeneau, Kwangsuk Park, Supan Yodyingyong, Guozhong Cao* Materials Science and Engineering, University of Washington, Seattle, WA 98195

    E-Print Network [OSTI]

    Cao, Guozhong

    for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Advanced Functional Materials Cao* Materials Science and Engineering, University of Washington, Seattle, WA 98195 Abstract nanostructures with organic polymer materials. 3. Other Nanostructures with Potential Application in Solar Cells

  13. Corinna Cisneros, S.M. Golam Mortuza, and Soumik Banerjee School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99163

    E-Print Network [OSTI]

    Collins, Gary S.

    community to develop renewable energy technologies. Solar cell technology has generated significant on the tops of carport canopies, bus stops and large buildings. Specifically, organic photovoltaic (OPV) solar Engineering, Washington State University, Pullman, WA 99163 Organic Photovoltaic Solar Cells: A Molecular

  14. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char

    E-Print Network [OSTI]

    Lam, Su Shiung; Liew, Rock Keey; Cheng, Chin Kui; Chase, Howard A.

    2015-04-09

    Microwave pyrolysis was performed on waste engine oil pre-mixed with different amounts of metallic-char catalyst produced previously from a similar microwave pyrolysis process. The metallic-char catalyst was first prepared by pretreatment...

  15. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  16. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    2007-06-01

    This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.

  17. 2014 Course Description Solid Waste Engineering -CE 477

    E-Print Network [OSTI]

    Barlaz, Morton A.

    on course web site http://people.engr.ncsu.edu/barlaz/ Solid Waste Technology & Management by Christensen et al (eBook available through NCSU libraries) Solid waste management must be addressed by virtually aspects of municipal solid waste (MSW) management including refuse generation, source reduction

  18. A STUDY OF ROCK-WATER-NUCLEAR WASTE INTERACTIONS IN THE PASCO BASIN, WASHINGTON -- Part: Distribution and Composition of Secondary and Primary Mineral Phases in Basalts of the Pasco Basin, Washington

    E-Print Network [OSTI]

    Benson, L.V.

    2010-01-01

    IN THE PASCO BASIN, WASHINGTON PART I DISTRIBUTION ANDOF THE PASCO BASIN, WASHINGTON L. V. Benson and L. S. TeagueBasin of southeastern Washington. In particular, we have

  19. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  20. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  1. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan K.

    2002-01-02

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  2. Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Herbst, Alan Keith

    2002-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  3. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

  4. Hanford Tank Waste Retrieval,

    Office of Environmental Management (EM)

    Tank Waste Retrieval, Treatment, and Disposition Framework September 24, 2013 U.S. Department of Energy Washington, D.C. 20585 Hanford Tank Waste Retrieval, Treatment, and...

  5. Engineering report of plasma vitrification of Hanford tank wastes

    SciTech Connect (OSTI)

    Hendrickson, D.W.

    1995-05-12

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System.

  6. UNIVERSITY OF WASHINGTON WASHINGTON STATE

    E-Print Network [OSTI]

    Matrajt, Graciela

    UNIVERSITY OF WASHINGTON WASHINGTON STATE EMPLOYEE TUITION EXEMPTION REQUEST I have read and accept OF WASHINGTON STATE EMPLOYEES TUITION EXEMPTION REQUEST INSTRUCTIONSELIGIBILITY Eligible State of Washington to be eligible: Non-University of Washington permanent classified or contract state employees employed half

  7. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

    2002-09-26

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  8. Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report

    SciTech Connect (OSTI)

    Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

    2001-09-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

  9. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  10. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  11. Preliminary Notice of Violation, Washington Group International...

    Broader source: Energy.gov (indexed) [DOE]

    October 23, 2003 Issued to Washington Group International related to Falsification of Records and Procurement Deficiencies at the Advanced Mixed Waste Treatment Project at the...

  12. Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    M. D. Staiger

    1999-06-01

    A potential option in the program for long-term management of high-level wastes at the Idaho Nuclear Technology and Engineering Center (INTEC), at the Idaho National Engineering and Environmental Laboratory, calls for retrieving calcine waste and converting it to a more stable and less dispersible form. An inventory of calcine produced during the period December 1963 to May 1999 has been prepared based on calciner run, solids storage facilities operating, and miscellaneous operational information, which gives the range of chemical compositions of calcine waste stored at INTEC. Information researched includes calciner startup data, waste solution analyses and volumes calcined, calciner operating schedules, solids storage bin capacities, calcine storage bin distributor systems, and solids storage bin design and temperature monitoring records. Unique information on calcine solids storage facilities design of potential interest to remote retrieval operators is given.

  13. An Engine System Approach to Exhaust Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  14. Waste-to-Energy Facilities in Taiwan by Shang-Hsiu Lee, WTERT/Earth Engineering Center

    E-Print Network [OSTI]

    Columbia University

    of Taiwan6 Composition wt (%) Water wt (%) Dry Weight Heating Value (Kcal/kg) Food Wastes 45 85 6.8 11001 Waste-to-Energy Facilities in Taiwan by Shang-Hsiu Lee, WTERT/Earth Engineering Center National Plan for Waste-to-Energy (WTE) facilities The total area of Taiwan is nearly 14000 sq. mi (36,000 sq

  15. UW-Approved Waste Disposal, Recycling and Treatment Sites Hazardous waste disposal at the University of Washington is coordinated by the EH&S Environmental Programs Office

    E-Print Network [OSTI]

    Wilcock, William

    solid waste, use the approved facilities listed below. This document is primarily intended & sludge Seattle, WA Ventilation Power Cleaning Vactor & parking garage waste Seattle, WA King County Treatment Plant Liquids & sludge Seattle, WA La Farge Cement Kiln Liquids & sludge Seattle, WA Cemex Liquids

  16. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Hopman, Ulrich,; Kruiswyk, Richard W.

    2005-07-05

    Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

  17. EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and...

  18. Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Staiger, M. Daniel, Swenson, Michael C.

    2011-09-01

    This comprehensive report provides definitive volume, mass, and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. Calcine composition data are required for regulatory compliance (such as permitting and waste disposal), future treatment of the caline, and shipping the calcine to an off-Site-facility (such as a geologic repository). This report also contains a description of the calcine storage bins. The Calcined Solids Storage Facilities (CSSFs) were designed by different architectural engineering firms and built at different times. Each CSSF has a unique design, reflecting varying design criteria and lessons learned from historical CSSF operation. The varying CSSF design will affect future calcine retrieval processes and equipment. Revision 4 of this report presents refinements and enhancements of calculations concerning the composition, volume, mass, chemical content, and radioactivity of calcined waste produced and stored within the CSSFs. The historical calcine samples are insufficient in number and scope of analysis to fully characterize the entire inventory of calcine in the CSSFs. Sample data exist for all the liquid wastes that were calcined. This report provides calcine composition data based on liquid waste sample analyses, volume of liquid waste calcined, calciner operating data, and CSSF operating data using several large Microsoft Excel (Microsoft 2003) databases and spreadsheets that are collectively called the Historical Processing Model. The calcine composition determined by this method compares favorably with historical calcine sample data.

  19. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  20. Towards model-based control of a steam Rankine process for engine waste heat recovery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez control the system during nominal operation. Model reduction is obtained at the heat-exchanger level Paolino Tona and Antonio Sciarretta IFP Energies Nouvelles Control, Signal and System Department Lyon site

  1. A postmortem assessment of environmental compliance of a high-level radioactive waste repository, Hanford Site, Washington 

    E-Print Network [OSTI]

    Petrini, Rudolf Harald Wilhelm

    1988-01-01

    to the environment and to present and future generations (Burkholder and Rosinger, 1980). Several alternatives have been proposed for storing high-level radioactive waste, including above ground storage in sealed facilities, encapsulation in containers... of 100% commercial high-level radioactive waste (CHLW). Mass performance analysis of the SF-CHLW inventory employing the new EPA standards accounting for simultaneous release of multiple species to the accessible environment. . . . . . . . . . . Mass...

  2. "To the immortal name and memory of George Washington"

    E-Print Network [OSTI]

    US Army Corps of Engineers

    "To the immortal name and memory of George Washington" The United States Army Corps of Engineers and the Construction of the Washington Monument Louis Torres #12;THE COVER Washington Monument and Surroundings, North and memory of George Washington" The United States Army Corps of Engineers and the Construction

  3. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect (OSTI)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  4. Buried waste integrated demonstration human engineered control station. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  5. Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology

    SciTech Connect (OSTI)

    Gerke, Frank G.

    2001-08-05

    This cooperative program between the DOE Office of Heavy Vehicle Technology and Caterpillar, Inc. is aimed at demonstrating electric turbocompound technology on a Class 8 truck engine. This is a lab demonstration program, with no provision for on-truck testing of the system. The goal is to demonstrate the level of fuel efficiency improvement attainable with the electric turbocompound system. Also, electric turbocompounding adds an additional level of control to the air supply which could be a component in an emissions control strategy.

  6. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    SciTech Connect (OSTI)

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  7. Department of Civil and Environmental Engineering, University of Washington More 201, Box 352700, Seattle, WA 98195-2700, USA

    E-Print Network [OSTI]

    department. Year 2014 2013 2012 2011 Degree Master's PhD Master's PhD Master's PhD Master's PhD GPA 3.5 3.8 3% Washington Resident (Citizen & Perm Res) 92 35% Non-Resident 168 65% International 90 35% Degrees Granted

  8. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  9. P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008.

    E-Print Network [OSTI]

    Columbia University

    P. Ulloa, "Overview of Food Waste Composting in the U.S." Internal Report, Earth Engineering Center, Columbia University, July 2008. 1 Overview of Food Waste Composting in the U.S. According to the State Solid Waste (MSW) generated in the U.S. (387 million tons). Food Waste in the United States Residential

  10. Using Photogrammetry to Estimate Tank Waste Volumes from Video

    SciTech Connect (OSTI)

    Field, Jim G. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2013-03-27

    Washington River Protection Solutions (WRPS) contracted with HiLine Engineering & Fabrication, Inc. to assess the accuracy of photogrammetry tools as compared to video Camera/CAD Modeling System (CCMS) estimates. This test report documents the results of using photogrammetry to estimate the volume of waste in tank 241-C-I04 from post-retrieval videos and results using photogrammetry to estimate the volume of waste piles in the CCMS test video.

  11. HLW Glass Waste Loadings

    Office of Environmental Management (EM)

    HLW Glass Waste Loadings Ian L. Pegg Vitreous State Laboratory The Catholic University of America Washington, DC Overview Overview Vitrification - general background Joule...

  12. -California -Washington

    E-Print Network [OSTI]

    with Hawaii-based U.S. fisheries, as well as the fleets of other Pacific Rim nations. As such, the managementPacific - California - Oregon - Washington #12;Regional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed

  13. DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING GRADUATE STUDENT REPORT PREPARED FOR: Civil & Environmental Engineering College of Engineering University of Washington Seattle, Washington of Engineering strategic goals, this report provides Civil and Environmental Engineering (CEE) with detailed

  14. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

  15. DEPARTMENT OF THE ARMY EM 1110-35-1 U.S. Army Corps of Engineers

    E-Print Network [OSTI]

    US Army Corps of Engineers

    DEPARTMENT OF THE ARMY EM 1110-35-1 U.S. Army Corps of Engineers CEMP-DE Washington, DC 20314-1000 Manual No. 1110-35-1 1 July 2005 Engineering and Design MANAGEMENT GUIDELINES FOR WORKING are not addressed except in passing reference to their component part of mixed waste. This manual supersedes EM 1110-35

  16. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2008 State of Washington Water Research Center Annual Technical Report FY 2008 1 #12;Introduction The mission of the State of Washington-related research important to the State of Washington and the region, ii) Educate and train engineers, scientists

  17. DOE Exercises 5 Year Option on Washington TRU Solutions Contract...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    it has decided to exercise the five year option in the Washington TRU Solutions LLC ("WTS") contract to continue managing and operating the Department's Waste Isolation Pilot...

  18. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect (OSTI)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  19. Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles

    SciTech Connect (OSTI)

    Khalifa, H.E.

    1983-12-01

    This report presents an evaluation of Brayton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. It is also shown that, if installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or $170/Bhp. Technical and economic barriers that would hinder the commercial introduction of bottoming systems were identified.

  20. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    SciTech Connect (OSTI)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  1. www.ce.washington.edu 201 More Hall, Box 352700, Seattle, WA 98195 Phone (206) 543-5092 ceadvice@uw.edu CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    www.ce.washington.edu 201 More Hall, Box 352700, Seattle, WA 98195 Phone (206) 543-5092 ceadvice. To apply for the Departmental Honors program: Complete the Honors Departmental invitation form at http://depts.washington to make the course more rigorous and extensive. Download the Ad Hoc Honors form at http://depts.washington

  2. Census Snapshot: Washington, DC

    E-Print Network [OSTI]

    Romero, Adam P.; Baumle, Amanda K; Badgett, M.V. Lee; Gates, Gary J

    2007-01-01

    INSTITUTE CENSUS SNAPSHOT | WASHINGTON, DC. | DECEMBER 2007WASHINGTON, D.C. Adam P. Romero, Public Policy Fellow AmandaINSTITUTE CENSUS SNAPSHOT | WASHINGTON, DC. | DECEMBER 2007

  3. University of Washington University of Washington

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    University of Washington University of Washington President's Advisory Committee on Women PACW 2007 REPORT ON WOMEN AT UW Contact Us: pacw@u.washington.edu http://depts.washington.edu/pacw/reports/women2007 #12;University of Washington Introduction From President Emmert: One of the charges given

  4. University of Washington University of Washington -Bothell

    E-Print Network [OSTI]

    Brown, Sally

    University of Washington University of Washington - Bothell University of Washington - Tacoma Diver- sity Outreach & Recruitment 425.352.3254 AKelley@uwb.edu UW Tacoma Equity & Diversity http://www.tacoma.washington.edu/diversity University of Washington Tacoma, 1900 Commerce St, Box 358430 Tacoma, WA 98402-3100 Dr. Sharon Parkter

  5. Washington Update

    Broader source: Energy.gov (indexed) [DOE]

    * Formal EMS * Toxic Chemical Reduction * Pollution Prevention * Pest Management * Composting * Recycling * Waste Management * 95% Sustainable Acquisition Goal * Modify contracts...

  6. DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING UNDERGRADUATE STUDENT REPORT PREPARED FOR: Civil & Environmental Engineering College of Engineering University of Washington Seattle, Washington in Civil and Environmental Engineering (CEE). The purpose of the report is to facilitate the department

  7. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J. [MSE Technology Applications, Inc., MT (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2007-07-01

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  8. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  9. Analysis of Bioproducts from Ultra-Low Cost Biomass Processing Lucy Cheadle, Chemical Engineering, Washington University in St. Louis, MO

    E-Print Network [OSTI]

    Collins, Gary S.

    countries Using the process to oven-dry wood would reduce transportation costs needed to haul the biomassAnalysis of Bioproducts from Ultra-Low Cost Biomass Processing Lucy Cheadle, Chemical Engineering of biochar product to processing variations. Possible uses for biochar: · Natural coal replacement · Soil

  10. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  11. Efficacy of backfilling and other engineered barriers in a radioactive waste repository in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.

    1982-09-01

    In the United States, investigation of potential host geologic formations was expanded in 1975 to include hard rocks. Potential groundwater intrusion is leading to very conservative and expensive waste package designs. Recent studies have concluded that incentives for engineered barriers and 1000-year canisters probably do not exist for reasonable breach scenarios. The assumption that multibarriers will significantly increase the safety margin is also questioned. Use of a bentonite backfill for surrounding a canister of exotic materials was developed in Sweden and is being considered in the US. The expectation that bentonite will remain essentially unchanged for hundreds of years for US repository designs may be unrealistic. In addition, thick bentonite backfills will increase the canister surface temperature and add much more water around the canister. The use of desiccant materials, such as CaO or MgO, for backfilling seems to be a better method of protecting the canister. An argument can also be made for not using backfill material in salt repositories since the 30-cm-thick space will provide for hole closure for many years and will promote heat transfer via natural convection. It is concluded that expensive safety systems are being considered for repository designs that do not necessarily increase the safety margin. It is recommended that the safety systems for waste repositories in different geologic media be addressed individually and that cost-benefit analyses be performed.

  12. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  13. Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation 

    E-Print Network [OSTI]

    Medvedev, Dmitry Gennadievich

    2005-11-01

    of the clean up effort is targeted towards High Level Waste (HLW), with 94 million gallons of untreated HLW in storage at DOE facilities at the Hanford Site in Washington, the Savannah River Site (SRS) in South Carolina, and the Idaho National Engineering... complicated after September 11 of 2001 and consequent events when the existence of terrorist organizations became obvious to the public. Temporary storage facilities for radioactive wastes may be used as a possible target for terrorist attacks. Untreated...

  14. Municipal solid waste management: Identification and analysis of engineering indexes representing demand and costs generated in virtuous Italian communities

    SciTech Connect (OSTI)

    Gamberini, R. Del Buono, D.; Lolli, F.; Rimini, B.

    2013-11-15

    Highlights: • Collection and analysis of real life data in the field of Municipal Solid Waste (MSW) generation and costs for management. • Study of 92 virtuous Italian communities. • Elaboration of trends of engineering indexes useful during design and evaluation of MSWM systems. - Abstract: The definition and utilisation of engineering indexes in the field of Municipal Solid Waste Management (MSWM) is an issue of interest for technicians and scientists, which is widely discussed in literature. Specifically, the availability of consolidated engineering indexes is useful when new waste collection services are designed, along with when their performance is evaluated after a warm-up period. However, most published works in the field of MSWM complete their study with an analysis of isolated case studies. Conversely, decision makers require tools for information collection and exchange in order to trace the trends of these engineering indexes in large experiments. In this paper, common engineering indexes are presented and their values analysed in virtuous Italian communities, with the aim of contributing to the creation of a useful database whose data could be used during experiments, by indicating examples of MSWM demand profiles and the costs required to manage them.

  15. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  16. Department of Biomedical Engineering

    E-Print Network [OSTI]

    Stormo, Gary

    Department of Biomedical Engineering Undergraduate Studies Manual 2011­2012 #12;Biomedical Engineering Undergraduate Advising Manual 2011 | 1 Greetings and Department Mission and Objectives 2 Introduction to Biomedical Engineering 3 Biomedical Engineering at Washington University 4 Career Opportunities

  17. Department of Biomedical Engineering

    E-Print Network [OSTI]

    Stormo, Gary

    Department of Biomedical Engineering Undergraduate Studies Manual 2012­2013 #12;Biomedical Engineering Undergraduate Advising Manual 2012 | 1 Greetings and Department Mission and Objectives 2 Introduction to Biomedical Engineering 3 Biomedical Engineering at Washington University 4 Career Opportunities

  18. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2003 Introduction The mission of the State of Washington Water Research Center (SWWRC) is to: i) facilitate, coordinate, and administer water-related research important to the State of Washington and the region; ii) educate and train engineers, scientists

  19. Energy Department and Catholic University Improve Safety of Nuclear Waste

    Broader source: Energy.gov [DOE]

    A new waste processing plant in Washington will help to safely remove nuclear and chemical waste, thanks to research from Catholic University.

  20. WASHINGTON. DC.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1. .&. ' , cMarch 20, 1995WASHINGTON.

  1. Census Snapshot: Washington

    E-Print Network [OSTI]

    Romero, Adam P.; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

    2008-01-01

    WASHINGTON Adam P. Romero, Public Policy Fellow Clifford J.raising children in Washington. We compare same-sex “sex married couples in Washington. 1 APRIL 2008 In many

  2. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  3. Maine Department of Environmental Protection Washington State Department of Ecology California Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street

    E-Print Network [OSTI]

    Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street Augusta and prioritize hazardous chemicals for further action. -MORE- #12;2-2-2-2-2 Environmental leadership often begins

  4. Washington: Washington's Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-25

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Washington.

  5. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  6. Preliminary Notice of Violation, CH2M-Washington Group Idaho...

    Broader source: Energy.gov (indexed) [DOE]

    14, 2007 Issued to CH2M-Washington Group Idaho, LLC, related to Radiation Protection Program Deficiencies at the Radioactive Waste Management Complex - Accelerated Retrieval...

  7. Washington University Financial Statements

    E-Print Network [OSTI]

    Grant, Gregory

    Washington University Financial Statements June 30, 2011 and 2010 #12;Washington University Index: (314) 206-8514, www.pwc.com/us To the Board of Trustees of Washington University In our opinion fairly, in all material respects, the financial position of Washington University (the "University

  8. Draft Tank Closure & Waste Management EIS - Summary

    Office of Environmental Management (EM)

    91 Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington Summary U.S. Department of Energy October 2009 Cover Sheet...

  9. Soluble pig for radioactive waste transfer lines

    SciTech Connect (OSTI)

    Ohl, P.C., Westinghouse Hanford

    1996-12-02

    Flushing transfer pipe after radioactive waste transfers generates thousands of gallons of additional radioactive waste each year at the Hanford site. The use of pneumatic pigging with waste soluble pigs as a means to clear transfer piping may be an effective alternative to raw water flushes. A feasibility study was performed by a group of senior mechanical engineering students for their senior design project as part of their curriculum at Washington State University. The students divided the feasibility study into three sub-projects involving: (1) materials research, (2) delivery system design, and (3) mockup fabrication and testing. The students screened through twenty-three candidate materials and selected a thermoplastic polymer combined 50:50 wt% with sucrose to meet the established material performance criteria. The students also prepared a conceptual design of a remote pneumatic delivery system and constructed a mockup section of transfer pipe for testing the prototype pigs.

  10. www.ce.washington.edu 201 More Hall, Box 352700, Seattle, WA 98195 Phone 206-543-5092 ceadvice@uw.edu CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    @uw.edu CIVIL & ENVIRONMENTAL ENGINEERING PREREQUISITE & GENERAL EDUCATION COURSES Mathematics 24 cr MATH 124, and environmental engineering). The 300-level curriculum provides a foundation in all areas and is typically to Fluid Mechanics (5) CEE 357 Environmental Engineering (5) CEE 367 Geotechnical Engineering (5) CEE 377

  11. www.ce.washington.edu 201 More Hall, Box 352700, Seattle, WA 98195 Phone 206-543-5092 ceadvice@uw.edu CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    @uw.edu CIVIL & ENVIRONMENTAL ENGINEERING PREREQUISITE & GENERAL EDUCATION COURSES Mathematics 24 cr MATH 124 of interest (construction, transportation, geotechnical, structural, water, and environmental engineering Environmental Engineering (5) CEE 367 Geotechnical Engineering (5) CEE 377 Intro to Structural Design (5) CEE

  12. INTERNATIONAL UNION OF OPERATING ENGINEERS NATIONAL HAZMAT PROGRAM - HANDSS-55 TRANSURANIC WASTE REPACKAGING MODULE

    SciTech Connect (OSTI)

    Unknown

    2001-08-31

    The Transuranic waste generated at the Savannah River Site from nuclear weapons research, development, and production is currently estimated to be over 10,000 cubic meters. Over half of this amount is stored in 55-gallon drums. The waste in drums is primarily job control waste and equipment generated as the result of routine maintenance performed on the plutonium processing operations. Over the years that the drums have been accumulating, the regulatory definitions of materials approved for disposal have changed. Consequently, many of the drums now contain items that are not approved for disposal at DOE Waste Isolation Pilot Plant (WIPP). The HANDSS-55 technology is being developed to allow remote sorting of the items in these drums and then repackaging of the compliant items for disposal at WIPP.

  13. Production of biofuels and biodegradable plastics from common waste substrates in engineered Ralstonia eutropha

    E-Print Network [OSTI]

    Lu, Jingnan, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    Ralstonia eutropha, a Gram-negative proteobacterium, is capable of utilizing a plethora of simple and complex carbon sources derived from common waste streams. When experiencing nutrient stress in the presence of high ...

  14. UNIVERSITY OF WASHINGTON FINANCE & FACILITIES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital, 2013 #12;UNIVERSITY OF WASHINGTON FINANCE & FACILITIES Capital Projects Office TITLE · 3.15-mile

  15. BACKFILL BARRIERS: THE USE OF ENGINEERED BARRIERS BASED ON GEOLOGIC MATERIALS TO ASSURE ISOLATION OF RADIOACTIVE WASTES IN A REPOSITORY

    E-Print Network [OSTI]

    Apps, J.A.

    2010-01-01

    Scientific Basis for Nuclear Waste Management, Boston, MA,Scientific Basis for Nuclear Waste Management, Volume 3. New

  16. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  17. Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  18. www.ce.washington.edu 201 More Hall, Box 352700, Seattle, WA 98195 Phone 206-543-5092 ceadvice@uw.edu CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    @uw.edu CIVIL & ENVIRONMENTAL ENGINEERING PREREQUISITE & GENERAL EDUCATION COURSES Mathematics 24 cr MATH 124 (construction, transportation, geotechnical, structural, water, and environmental engineering). The 300-level 337 Construction Materials (5) CEE 347 Intro to Fluid Mechanics (5) CEE 357 Environmental Engineering

  19. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  20. Waste Loading Enhancements for Hanford Low-Activity Waste Glasses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE LOADING ENHANCEMENTS FOR HANFORD LOW-ACTIVITY WASTE GLASSES Albert A. Kruger, Glass Scientist DOE-WTP Project Office Engineering Division US Department of Energy Richland,...

  1. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  2. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  3. An engineering approach to solid waste collection system: Ibadan North as case study

    SciTech Connect (OSTI)

    Ayininuola, Gbenga Matthew [Department of Civil Engineering, University of Ibadan, Ibadan, Oyo State (Nigeria)], E-mail: ayigbenga@yahoo.com; Muibi, Musa Adekunle [Department of Civil Engineering, University of Ibadan, Ibadan, Oyo State (Nigeria)

    2008-07-01

    This research centered on finding and perfecting methods of collection and disposal of refuse in Ibadan North Local Government Areas. The methodology used included questionnaire administration, personal interviews, field reconnaissance, and biochemical tests of water samples, all aimed at providing useful data for the design of effective methods of collecting and disposing refuse. The local government area was divided into three classes based on resident income: a high-income area (Bodija Avenue, etc.), a medium-income area (Sanngo, Oluyole, etc.), and a low-income area (Beere, Adeoyo, etc.). The research outcomes revealed that the waste generation rate for the local government ranged from 0.2 to 0.33 kg/cap/day and waste density ranged from 172.41 to 217.61 kg/m{sup 3}. Water analyses showed that the chloride, manganese, lead, and cadmium levels in water from low-income areas were above the WHO standard. The refuse generated in high and medium-income areas was collected and transported to the disposal site properly while only 54.5% of wastes were handled properly in low-income areas. Also, in order to make low-income areas free from wastes daily, an additional 15 metal skips and 9 refuse vehicles would be needed.

  4. Machine Design Analysis University of Washington, Seattle Winter Quarter 2015

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    ://courses.washington.edu/nsniadec/ME356/W15 Description: Analysis, design, and selection of mechanical and electromechanical subsystems of Materials Laboratory Textbook: Budynas, R. G. & Nisbett, J.K., 2014, Shigley's Mechanical Engineering Design-tolerance for cheating. Please refer to UW's Student Conduct Code. http://www.washington.edu/students/handbook

  5. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Engineering task plan for the 241-AZ-101 waste tank color video camera system

    SciTech Connect (OSTI)

    Robinson, R.S., Westinghouse Hanford

    1996-07-01

    This Engineering Task Plan (ETP) is to be distributed to communicate the design basis of the 241-AZ-101 camera system and to define system requirements and associated responsibilities.

  7. Engineer Regulation 1110-2-1150

    E-Print Network [OSTI]

    US Army Corps of Engineers

    CECW-EP Engineer Regulation 1110-2-1150 Department of the Army U.S. Army Corps of Engineers Washington, DC 20314-1000 ER 1110-2-1150 31 August 1999 Engineering and Design ENGINEERING AND DESIGN 1110-2-1150 U.S. Army Corps of Engineers CECW-EP Washington, D.C. 20314-1000 Regulation No. 1110

  8. EXPLORING ENGINEERING CONTROL THROUGH PROCESS MANIPULATION OF RADIOACTIVE LIQUID WASTE TANK CHEMICAL CLEANING

    SciTech Connect (OSTI)

    Brown, A.

    2014-04-27

    One method of remediating legacy liquid radioactive waste produced during the cold war, is aggressive in-tank chemical cleaning. Chemical cleaning has successfully reduced the curie content of residual waste heels in large underground storage tanks; however this process generates significant chemical hazards. Mercury is often the bounding hazard due to its extensive use in the separations process that produced the waste. This paper explores how variations in controllable process factors, tank level and temperature, may be manipulated to reduce the hazard potential related to mercury vapor generation. When compared using a multivariate regression analysis, findings indicated that there was a significant relationship between both tank level (p value of 1.65x10{sup -23}) and temperature (p value of 6.39x10{sup -6}) to the mercury vapor concentration in the tank ventilation system. Tank temperature showed the most promise as a controllable parameter for future tank cleaning endeavors. Despite statistically significant relationships, there may not be confidence in the ability to control accident scenarios to below mercury’s IDLH or PAC-III levels for future cleaning initiatives.

  9. Finding of no significant impact for the interim action for cleanup of Pit 9 at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0854, for an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The proposed action would be conducted at Pit 9, Operable Unit 7--10, located at the Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). The proposed action consists of construction of retrieval and processing buildings, excavation and retrieval of wastes from Pit 9, selective physical separation and chemical extraction, and stabilization of wastes either through thermal processing or by forming a stabilized concentrate. The proposed action would involve limited waste treatment process testing and full-scale waste treatment processing for cleaning up pre-1970 Transuranic (TRU) wastes in Pit 9. The purpose of this interim action is to expedite the overall cleanup at the RWMC and to reduce the risks associated with potential migration of Pit 9 wastes to the Snake River Plain Aquifer.

  10. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  11. The Molecular Group (TMG) --Environmental, Engineering, Consulting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Tanks (USTs) Storm Water Permitting & Compliance Wastewater Treatment Sewer Solid Waste Landfills Hazardous & Universal Waste ENGINEERING SERVICES TMG's...

  12. Washington: Putting More Solar on More Rooftops in Washington...

    Office of Environmental Management (EM)

    Putting More Solar on More Rooftops in Washington State Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis Mercer Island...

  13. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Foote, M. [MSE Technology Applications, Inc., Montana (United States); Taylor, P. [Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2008-07-01

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations were tested at bench scale, 19-liter (L) [5-gallon (gal)] bucket scale, and 208-L (55-gal) drum scale. The testing performed by MSE will help ORNL select the right solidification materials and wasteform generation methods for the design of a new treatment facility. The results could also be used to help demonstrate that ORNL could meet the waste acceptance criteria for the ultimate disposal site for the waste-forms. The organics will be solidified as transuranic waste for disposal at the Waste Isolation Pilot Plant, and the aqueous waste stream will be grouted and disposed of at the Nevada Test Site as low-level waste if real waste testing indicates similar results to the surrogate testing. The objective of this work was to identify a sorbent capable of solidifying PUREX, Pubex, and Cleanex organic wastes individually and a composite of the three organic waste streams. The sorbent and surrogate combinations must also be compatible with processing equipment and maintain stability under a variety of conditions that could occur during storage/shipment of the solidified wastes. (authors)

  14. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CRD) describes the public comment process for the Draft Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (Draft TC...

  15. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  16. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE...

  17. Tank Closure and Waste Management Environmental Impact Statement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site and lists the plants and animals evaluated in this Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington. Potential...

  18. Engineering design and test plan for demonstrating DETOX treatment of mixed wastes

    SciTech Connect (OSTI)

    Goldblatt, S.; Dhooge, P.

    1995-03-01

    DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

  19. Southeast Washington Subbasin Planning Ecoregion

    E-Print Network [OSTI]

    Southeast Washington Subbasin Planning Ecoregion Wildlife Assessment Paul R. Ashley and Stacey H. Stovall 2004 #12;SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT i Table of Contents

  20. George Washington Carver Recognition Day

    Broader source: Energy.gov [DOE]

    In commemoration of George Washington Carver’s life and work, Congress declared January 5 as George Washington Carver Recognition Day.

  1. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  2. AFFILIATIONS: Mass and Baars--Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Joslyn--

    E-Print Network [OSTI]

    Raftery, Adrian

    AFFILIATIONS: Mass and Baars--Department of Atmospheric Sciences, University of Washington, Seattle, Washington; Joslyn-- Department of Psychology, University of Washington, Seattle, Washington; Pyle, Tewson, Jones--Applied Physics Laboratory, University of Washington, Seattle, Washington; GneiTinG, raf

  3. Enterprise Assessments Review of Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Engineering and Procurement Processes - November 2015 Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering and Procurement Processes...

  4. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  5. THE GEORGE WASHINGTON UNIVERSITY UNDERGRADUATE PROGRAMS BULLETIN

    E-Print Network [OSTI]

    Vertes, Akos

    THE GEORGE WASHINGTON UNIVERSITY UNDERGRADUATE PROGRAMS BULLETIN 2013­2014 #12;Mission Statement of The George Washington University The George Washington University, an independent academic institution. The George Washington University, centered in the national and international crossroads of Washington, D

  6. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect (OSTI)

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  7. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  9. EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long-term management of the high-level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. The project was cancelled after the Draft Environmental Impact Statement was produced.

  10. Washington Environmental Permit Handbook - Dangerous Waste Treatment

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,VillageWarren Park,| Open Energy Information 401

  11. SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM

    SciTech Connect (OSTI)

    Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

    2012-03-06

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

  12. Energy Matters in Washington State

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

  13. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 1

    SciTech Connect (OSTI)

    Hofmann, P.L.; Breslin, J.J.

    1981-01-01

    The papers in this volume cover the following subjects: waste isolation and the natural geohydrologic system; repository perturbations of the natural system; radionuclide migration through the natural system; and repository design technology. Individual papers are abstracted.

  14. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOE Patents [OSTI]

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  15. My own, private Washington

    E-Print Network [OSTI]

    Galletly, Adam Benjamin

    2011-01-01

    Recent affairs in Washington D.C. are beginning to lay the foundation for a new exploration of architecture. The division line between national and corporate identities, their spatial relationship to the public realm are ...

  16. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    JEC187V3 UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Secretary O'Leary: At the Nuclear Waste Technical Review Board's October 1995 meeting, the DOE's Office of Civilian Radioactive Waste Management

  17. Karl-Friedrich BShringer University of Washington, Seattle

    E-Print Network [OSTI]

    , New Hampshire 037.55-3510, USA brd@cs.dartmouth.edu www.cs.dartmouth.edul"brd Noel C. MacKarl-Friedrich BShringer University of Washington, Seattle Department of Electrical Engineering 234Donald Cornell University Department of Electrical Engineering and Cornell Nanofabrication Facility 408 Phillips

  18. Cummins Waste Heat Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Cummins Waste Heat Recovery Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit,...

  19. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive Waste Heat Recovery Presentation given at the 2007 Diesel Engine-Efficiency & Emissions...

  20. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  1. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  2. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw...

  3. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  4. Fermilab Today | University of Washington Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington August 27, 2009 NAME: University of Washington HOME TOWN: Seattle, Washington MASCOT: Husky SCHOOL COLORS: Purple and gold PARTICLE PHYSICS COLLABORATIONS: DZero and...

  5. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  6. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent offsite locations, the EH&S Environmental Programs Office (EPO) will arrange directly with the recycling

  7. Three-Dimensional Groundwater Models of the 300 Area at the Hanford Site, Washington State

    SciTech Connect (OSTI)

    Williams, Mark D.; Rockhold, Mark L.; Thorne, Paul D.; Chen, Yousu

    2008-09-01

    Researchers at Pacific Northwest National Laboratory developed field-scale groundwater flow and transport simulations of the 300 Area to support the 300-FF-5 Operable Unit Phase III Feasibility Study. The 300 Area is located in the southeast portion of the U.S. Department of Energy’s Hanford Site in Washington State. Historical operations involving uranium fuel fabrication and research activities at the 300 Area have contaminated engineered liquid-waste disposal facilities, the underlying vadose zone, and the uppermost aquifer with uranium. The main objectives of this research were to develop numerical groundwater flow and transport models to help refine the site conceptual model, and to assist assessment of proposed alternative remediation technologies focused on the 300 Area uranium plume.

  8. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  9. Technology of high-level nuclear waste disposal. Advances in the science and engineering of the management of high-level nuclear wastes. Volume 2

    SciTech Connect (OSTI)

    Hofmann, P.L. (ed.)

    1982-01-01

    The twenty papers in this volume are divided into three parts: site exploration and characterization; repository development and design; and waste package development and design. These papers represent the status of technology that existed in 1981 and 1982. Individual papers were processed for inclusion in the Energy Data Base.

  10. Engineered Osmosis for Energy Efficient Separations: Optimizing Waste Heat Utilization FINAL SCIENTIFIC REPORT DOE F 241.3

    SciTech Connect (OSTI)

    NATHAN HANCOCK

    2013-01-13

    The purpose of this study is to design (i) a stripper system where heat is used to strip ammonia (NH{sub 3}) and carbon dioxide (CO{sub 2}) from a diluted draw solution; and (ii) a condensation or absorption system where the stripped NH{sub 3} and CO{sub 2} are captured in condensed water to form a re-concentrated draw solution. This study supports the Industrial Technologies Program of the DOE Office of Energy Efficiency and Renewable Energy and their Industrial Energy Efficiency Grand Challenge award solicitation. Results from this study show that stimulated Oasys draw solutions composed of a complex electrolyte solution associated with the dissolution of NH{sub 3} and CO{sub 2} gas in water can successfully be stripped and fully condensed under standard atmospheric pressure. Stripper bottoms NH{sub 3} concentration can reliably be reduced to < 1 mg/L, even when starting with liquids that have an NH{sub 3} mass fraction exceeding 6% to stimulate diluted draw solution from the forward osmosis membrane component of the process. Concentrated draw solution produced by fully condensing the stripper tops was show to exceed 6 M-C with nitrogen-to-carbon (N:C) molar ratios on the order of two. Reducing the operating pressure of the stripper column serves to reduce the partial vapor pressure of both NH{sub 3} and CO{sub 2} in solution and enables lower temperature operation towards integration of industrial low-grade of waste heat. Effective stripping of solutes was observed with operating pressures as low as 100 mbar (3-inHg). Systems operating at reduced pressure and temperature require additional design considerations to fully condense and absorb these constituents for reuse within the Oasys EO system context. Comparing empirical data with process stimulation models confirmed that several key parameters related to vapor-liquid equilibrium and intrinsic material properties were not accurate. Additional experiments and refinement of material property databases within the chosen process stimulation software was required to improve the reliability of process simulations for engineering design support. Data from experiments was also employed to calculate critical mass transfer and system design parameters (such as the height equivalent to a theoretical plate (HETP)) to aid in process design. When measured in a less than optimal design state for the stripping of NH{sub 3} and CO{sub 2} from a simulated dilute draw solution the HETP for one type of commercial stripper packing material was 1.88 ft/stage. During this study it was observed that the heat duty required to vaporize the draw solution solutes is substantially affected by the amount of water boilup also produced to achieve a low NH{sub 3} stripper bottoms concentration specification. Additionally, fluid loading of the stripper packing media is a critical performance parameter that affects all facets of optimum stripper column performance. Condensation of the draw solution tops vapor requires additional process considerations if being conducted in sub-atmospheric conditions and low temperature. Future work will focus on the commercialization of the Oasys EO technology platform for numerous applications in water and wastewater treatment as well as harvesting low enthalpy energy with our proprietary osmotic heat engine. Engineering design related to thermal integration of Oasys EO technology for both low and hig-grade heat applications is underway. Novel thermal recovery processes are also being investigated in addition to the conventional approaches described in this report. Oasys Water plans to deploy commercial scale systems into the energy and zero liquid discharge markets in 2013. Additional process refinement will lead to integration of low enthalpy renewable heat sources for municipal desalination applications.

  11. Engineer Pamphlet Department of the Army

    E-Print Network [OSTI]

    US Army Corps of Engineers

    CECW-AG Engineer Pamphlet 1165-2-1 Department of the Army U.S. Army Corps of Engineers Washington;CECW-AG Pamphlet No. 1165-2-1 DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington, D POLICIES AND AUTHORITIES 1. Purpose. This pamphlet provides a brief summary, in digest form

  12. Preliminary parametric performance assessment of potential final waste forms for alpha low-level waste at the Idaho National Engineering Laboratory. Revision 1

    SciTech Connect (OSTI)

    Smith, T.H.; Sussman, M.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Myers, J.; Djordjevic, S.M.; DeBiase, T.A.; Goodrich, M.T.; DeWitt, D. [IT Corp., Albuquerque, NM (United States)

    1995-08-01

    This report presents a preliminary parametric performance assessment (PA) of potential waste disposal systems for alpha-contaminated, mixed, low-level waste (ALLW) currently stored at the Transuranic Storage Area of INEL. The ALLW, which contains from 10 to 100 nCi/g of transuranic (TRU) radionuclides, is awaiting treatment and disposal. The purpose of this study was to examine the effects of several parameters on the radiological-confinement performance of potential disposal systems for the ALLW. The principal emphasis was on the performance of final waste forms (FWFs). Three categories of FWF (cement, glass, and ceramic) were addressed by evaluating the performance of two limiting FWFs for each category. Performance at five conceptual disposal sites was evaluated to illustrate the effects of site characteristics on the performance of the total disposal system. Other parameters investigated for effects on receptor dose included inventory assumptions, TRU radionuclide concentration, FWF fracture, disposal depth, water infiltration rates, subsurface-transport modeling assumptions, receptor well location, intrusion scenario assumptions, and the absence of waste immobilization. These and other factors were varied singly and in some combinations. The results indicate that compliance of the treated and disposed ALLW with the performance objectives depends on the assumptions made, as well as on the FWF and the disposal site. Some combinations result in compliance, while others do not. The implications of these results for decision making relative to treatment and disposal of the INEL ALLW are discussed. The report compares the degree of conservatism in this preliminary parametric PA against that in four other PAs and one risk assessment. All of the assessments addressed the same disposal site, but different wastes. The report also presents a qualitative evaluation of the uncertainties in the PA and makes recommendations for further study.

  13. Engineer Pamphlet Department of the Army

    E-Print Network [OSTI]

    US Army Corps of Engineers

    CECW-A Engineer Pamphlet 1165-2-502 Department of the Army U.S. Army Corps of Engineers Washington-A Washington, D.C. 20314-1000 Pamphlet No. 1165-2-502 30 September 1999 Water Resources Policies OF THE ARMY EP 1165-2-502 U.S. Army Corps of Engineers CECW-A Washington, D.C. 20314-1000 Pamphlet No. 1165

  14. Washington: Washington's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Washington.

  15. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Bryant, Jeffrey W.

    2010-08-12

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, “Radioactive Waste Management Manual.” This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

  16. GUIDE TO WASHINGTON UNIVERSITY LIBRARIES UNIVERSITY ARCHIVES

    E-Print Network [OSTI]

    GUIDE TO WASHINGTON UNIVERSITY LIBRARIES UNIVERSITY ARCHIVES DEPARMENT OF SPECIAL COLLECTIONS of both Washington University and the St. Louis communities from 1853 to present day. Our collections. CONTACT INFORMATION: Our street address: Our mailing address: Washington University Archives Washington

  17. Use of hazardous waste in cement kilns backed

    SciTech Connect (OSTI)

    Krieger, J.

    1993-07-19

    Cement kiln operators who are making use of hazardous waste as a partial substitute for fossil fuel now have a better engineering foundation for determining what is going on in the kilns and how to optimize their operations. A just-released study by a scientific advisory board of experts commissioned by the Cement Kiln Recycling Coalition (CKRC) in Washington, DC, has provided an in-depth look, at such operations and finds the practice to be a fundamentally sound' technology. Long residence times and high temperatures in cement kilns maximize the combustion efficiency for waste-derived fuels, according to the study report. The scientific advisory board notes that all organic compounds can be destroyed in a kiln at 99.9999% efficiency. Also, the behavior of metals in cement kilns can be readily measured, predicted, and controlled. Cement kilns are extremely efficient in reducing metals emissions.

  18. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Energy Savers [EERE]

    CRAD, Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix...

  19. Double shell tank waste analysis plan

    SciTech Connect (OSTI)

    Mulkey, C.H.; Jones, J.M.

    1994-12-15

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

  20. UNIVERSITY OF WASHINGTON HONORARIA CHECKLIST

    E-Print Network [OSTI]

    Matrajt, Graciela

    UNIVERSITY OF WASHINGTON HONORARIA CHECKLIST FOR INVITED GUEST SPEAKERS PROCUREMENT SERVICES Date Number 35 QUESTIONS? Contact the Tax Office, Phone: 206-616-3003 or Email: taxofc@u.washington.edu If the person IS NOT an invited guest speaker, please use form UoW 1632 available at http://www.washington

  1. Appendix Three UNIVERSITY OF WASHINGTON

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Appendix Three UNIVERSITY OF WASHINGTON ACKNOWLEDGMENT OF RISK AN CONSENT FOR TREATMENT FOR MINOR of Washington does not provide health and accident insurance for field trip participants and I agree-6450 (voice): (206) 543-6452 (TTY); or (206) 543-3885 (FAX); or access@u.washington.edu (email). · To purchase

  2. September 18, 2012 Seattle, Washington

    E-Print Network [OSTI]

    Agenda September 18, 2012 Seattle, Washington Monday, September 17 6:00 pm Meet in hotel lobby:00 am Breakfast buffet/registration 60 8:00 am Welcome ­ Jeff Uhlmeyer, Washington DOT 15 8:15 am Final University 30 11:00 am LTPP SPS-2 Pavement Preservation Pooled Fund Opportunity ­ Jeff Uhlmeyer, Washington

  3. 1828 L Street, N.W. Washington, D.C. 20036

    E-Print Network [OSTI]

    Columbia University

    quality of technologies used in all aspects of waste management. Municipal solid waste (MSW.asme.org Waste-to-Energy: A Renewable Energy Source from Municipal Solid Waste EXECUTIVE SUMMARY ASME SWPD Supports WTE - The Solid Waste Processing Division (SWPD) of the American Society of Mechanical Engineers

  4. UNIVERSITY of WASHINGTON PRESS

    E-Print Network [OSTI]

    Manchak, John

    UNIVERSITY of WASHINGTON PRESS Fall 2014 #12;CONTENTS NEW BOOKS1 CONTACT INFO49 SALES REPRESENTATIVES49 PUBLISHING PARTNERS Canadian Museum of Civilization48 Fowler Museum at UCLA36 Lost Horse Press39 Lynx House Press41 National Gallery of Australia38 Silkworm Books42 UBC Press43 UCLA Chicano Studies

  5. Washington State Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

  6. GTS Duratek, Phase I Hanford low-level waste melter tests: 100-kg melter offgas report

    SciTech Connect (OSTI)

    Eaton, W.C. [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States)

    1995-11-01

    A multiphase program was initiated in 1994 to test commercially available melter technologies for the vitrification of the low-level waste (LLW) stream from defense wastes stored in underground tanks at the Hanford Site in southeastern Washington State. Phase 1 of the melter demonstration tests using simulated LLW was completed during fiscal year 1995. This document is the 100-kg melter offgas report on testing performed by GTS Duratek, Inc., in Columbia, Maryland. GTS Duratek (one of the seven vendors selected) was chosen to demonstrate Joule heated melter technology under WHC subcontract number MMI-SVV-384215. The document contains the complete offgas report on the 100-kg melter as prepared by Parsons Engineering Science, Inc. A summary of this report is also contained in the GTS Duratek, Phase I Hanford Low-Level Waste Melter Tests: Final Report (WHC-SD-WM-VI-027).

  7. Tank Farms and Waste Feed Delivery - 12507

    SciTech Connect (OSTI)

    Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

  8. An integrated systems approach to remote retrieval of buried transuranic waste using a telerobotic transport vehicle, innovative end effector, and remote excavator

    SciTech Connect (OSTI)

    Smith, A.M.; Rice, P.; Hyde, R. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Peterson, R. [RAHCO International, Spokane, WA (United States)

    1995-02-01

    Between 1952 and 1970, over two million cubic feet of transuranic mixed waste was buried in shallow pits and trenches in the Subsurface Disposal Area at the Idaho National Engineering Laboratory Radioactive Waste Management Complex. Commingled with this two million cubic feet of waste is up to 10 million cubic feet of fill soil. The pits and trenches were constructed similarly to municipal landfills with both stacked and random dump waste forms such as barrels and boxes. The main contaminants are micron-sized particles of plutonium and americium oxides, chlorides, and hydroxides. Retrieval, treatment, and disposal is one of the options being considered for the waste. This report describes the results of a field demonstration conducted to evaluate technologies for excavating, and transporting buried transuranic wastes at the INEL, and other hazardous or radioactive waste sites throughout the US Department of Energy complex. The full-scale demonstration, conduced at RAHCO Internationals facilities in Spokane, Washington, in the summer of 1994, evaluated equipment performance and techniques for digging, dumping, and transporting buried waste. Three technologies were evaluated in the demonstration: an Innovative End Effector for dust free dumping, a Telerobotic Transport Vehicle to convey retrieved waste from the digface, and a Remote Operated Excavator to deploy the Innovative End Effector and perform waste retrieval operations. Data were gathered and analyzed to evaluate retrieval performance parameters such as retrieval rates, transportation rates, human factors, and the equipment`s capability to control contamination spread.

  9. Environmental Engineering 1 Environmental Engineering

    E-Print Network [OSTI]

    Haller, Gary L.

    water, groundwater protection and remediation, wastewater treatment, indoor and outdoor air pollution assessment and development of engineering solutions to environmental problems affecting land, water, and air, solid and hazardous waste disposal, cleanup of contaminated sites, the prevention of pollution through

  10. Engineering Engineering

    E-Print Network [OSTI]

    Maroncelli, Mark

    Engineering Engineering Technology & A T P E N N S T A T E 2 0 1 0 ­ 2 0 1 1 #12;2 Join us at penn state! Since 1896, Penn State has been a leader in engineering and engineering technology education varieties of engineering and engineering technology majors found anywhere in the United States. This means

  11. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01

    Developing Integrated Solid Waste Management Plans at ArmyDeveloping Integrated Solid Waste Management Plans at Armyoil in diesel engines." Waste Management In Press, Corrected

  12. Corrosion-induced gas generation in a nuclear waste repository: Reactive geochemistry and multiphase flow effect

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    Lying Repositories for Nuclear Waste, NAGRA Technical Reporthost rock formation for nuclear waste storage. EngineeringGas Generation in a Nuclear Waste Repository: Reactive

  13. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01

    2004). "Deployed Force Waste Management." Barlaz, M. A. , R.Developing Integrated Solid Waste Management Plans at Armyoil in diesel engines." Waste Management In Press, Corrected

  14. Department of Civil Engineering University of Washington

    E-Print Network [OSTI]

    Eberhard, Marc O.

    and the effects of streamside vegetation. The second component uses the predicted stream surface downward solar-BASED TEMPERATURE MODEL FOR THE PREDICTION OF MAXIMUM STREAM TEMPERATURES IN THE CASCADE MOUNTAIN REGION by Amy L the performance of such measures, we describe a simple energy balance model, STRTEMP, for prediction of stream

  15. UNIVERSITY of WASHINGTON College of Engineering

    E-Print Network [OSTI]

    Anderson, Richard

    design competition. Zap Flow Z-Pinch Plasma Experiment..............................AERB 036 (6) Zap problems with this technology. Bioengineering Student Projects Wh

  16. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    SciTech Connect (OSTI)

    NONE

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  17. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    SciTech Connect (OSTI)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

  18. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear Profile 2010 KansasMarketsHanford TankENGINEERING the Future

  19. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    SciTech Connect (OSTI)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  20. The Polymers for Liquid Radioactive Waste Solidification: a Lost Chapter in the History of Engineering or a Step Forward? - 13529

    SciTech Connect (OSTI)

    Pokhitonov, Yury [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)] [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation); Kelley, Dennis [Pacific Nuclear Solutions, Indianapolis, Indiana (United States)] [Pacific Nuclear Solutions, Indianapolis, Indiana (United States)

    2013-07-01

    Ideas on the application of polymers for the liquid radioactive waste immobilization go a way back, and the first studies in the area were published 30-40 years ago. One should admit that regardless of the fairly large number of publications appeared in the past years currently the interest in this work came down greatly. It was the successful assimilation and worldwide implementation of the LRW cementation technology caused a slump in the interest in polymers. But today it's safe to say that the situation slowly changes, particularly due to the market appearance of the high-tech polymers manufactured by Nochar Company, and unique properties of these polymers gradually raise the demand in various countries. The results of multiple experiments performed with the simulated solutions have passed the comprehensive tests with actual waste. The economic effect from the implementation of the new technology is defined by the volume reduction of waste coming onto the repository, by the decline in the cost of transportation and of the repository construction on account of cutting down the construction volume. Interesting results have been obtained during the search for the technical decisions that would allow using the polymer materials in the processing technology of the industrial toxic waste. One more promising area of the possible application of polymers should be pointed out. It is the application of polymer materials as the assets for the emergency damage control when the advantages of the polymers become obvious. (authors)

  1. Tablet PC Enhanced Curricula University of Washington

    E-Print Network [OSTI]

    Anderson, Richard

    Tablet PC Enhanced Curricula University of Washington Richard Anderson http://www.cs.washington Classroom Presenter is free for educational and non-commercial use. It is available from: www.cs.washington University of Washington anderson@cs.washington.edu 1. Instructor displays a slide with an exercise

  2. Washington Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  3. Washington City Power- Net Metering

    Broader source: Energy.gov [DOE]

    Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

  4. Engineering Get to know

    E-Print Network [OSTI]

    Technology · Bioremediation · Polymer Formulations and Process Technology · Innovation & Entrepreneurship engineering Toxicology Waste management Water conservation *some careers may require additional t

  5. Performance of an Organic Rankine Cycle Waste Heat Recovery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty Diesel Engines Performance of an Organic Rankine Cycle Waste Heat Recovery System for Light Duty...

  6. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  7. Nanoethics Graduate Education Symposium University of Washington

    E-Print Network [OSTI]

    Olmstead, Marjorie

    Nanoethics Graduate Education Symposium University of Washington September 2009 Original for Workforce Development University of Washington Special Edition Monograph National Science Foundation Grant. Brainard Editor: Deborah R. Bassett Assistant Editor: Amanda L. Wysocki University of Washington

  8. Bruin Feminists for Equality Go to Washington

    E-Print Network [OSTI]

    Petersen, Miranda; Duran, Myra; Le, Cindy

    2010-01-01

    Feminists for Equality Go to Washington UCLA Students AttendEleanor Holmes Norton (D-Washington, DC). The timing of ours Leadership conference in Washington, DC, with the generous

  9. Review: Rare Plants of Washington State

    E-Print Network [OSTI]

    Miller, Ryder W.

    2013-01-01

    to the Rare Plants of Washington Pamela Camp and John G.John G. , eds. Field Guide to the Rare Plants of Washington.Seattle, WA: University of Washington Press, 2011. 408pp.

  10. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  11. Recent developments: Washington focus

    SciTech Connect (OSTI)

    1990-02-01

    Congress reconvened on January 23, but most of Washington`s January new involves the Administration. DOE sent two letters to USEC customers, awarded a contract for the independent financial review of the enrichment program, and released a plan for demonstrating AVLIS by 1992. A General Accounting Office (GAO) report investigating the impact of imports of Soviet EUP into the US was made public. Both Congress and the administration are reportedly considering a full-scope US-Soviet Agreement for Nuclear Cooperation. Finally, published reports indicate Congress may consider ending the customs user fee which levies a charge of 0.17% on the value of all imported goods. The fee is felt to violate the General Agreement on Tariffs and Trade (GATT) and is not based on recovering actual Customs costs for processing a good. The fee brings the Treasury over $700 million per year, but the business community plans to lobby hard for its outright elimination or a change in authority to collect the fee based on actual costs.

  12. A Joint Interview with Professor Joonhong Ahn and Professor Cathryn Carson on Nuclear Waste Management: a Technical and Social Problem

    E-Print Network [OSTI]

    Chowdhary, Harshika; Gill, Manraj; Kim, Juwon; McGuinness, Philippa; Miller, Daniel; Nuckolls, Kevin

    2015-01-01

    field of radioactive waste management at the beginning theof nuclear engineering waste management to see majoragencies for nuclear waste management both from the

  13. BIOLOGICAL ENGINEERING Program of Study

    E-Print Network [OSTI]

    Thomas, Andrew

    The Master of Science in Biological Engineering prepares students to conduct research involving Professor. Conformation of interfacial species, surface spectroscopies/microscopies, binary polymer Sciences. Composites, coating layer mechanical properties. Barbara J. W. Cole, Ph.D. (Washington, 1986

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  15. INL Site Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Mamagement Programmatic Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2005-06-30

    In April 1995, the Department of Energy (DOE) and the Department of the Navy, as a cooperating agency, issued the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (1995 EIS). The 1995 EIS analyzed alternatives for managing The Department's existing and reasonably foreseeable inventories of spent nuclear fuel through the year 2035. It also included a detailed analysis of environmental restoration and waste management activities at the Idaho National Engineering and Environmental Laboratory (INEEL). The analysis supported facility-specific decisions regarding new, continued, or planned environmental restoration and waste management operations. The Record of Decision (ROD) was signed in June 1995 and amended in February 1996. It documented a number of projects or activities that would be implemented as a result of decisions regarding INL Site operations. In addition to the decisions that were made, decisions on a number of projects were deferred or projects have been canceled. DOE National Environmental Policy Act (NEPA) implementing procedures (found in 10 CFR Part 1 021.330(d)) require that a Supplement Analysis of site-wide EISs be done every five years to determine whether the site-wide EIS remains adequate. While the 1995 EIS was not a true site-wide EIS in that several programs were not included, most notably reactor operations, this method was used to evaluate the adequacy of the 1995 EIS. The decision to perform a Supplement Analysis was supported by the multi-program aspect of the 1995 EIS in conjunction with the spirit of the requirement for periodic review. The purpose of the SA is to determine if there have been changes in the basis upon which an EIS was prepared. This provides input for an evaluation of the continued adequacy of the EIS in light of those changes (i.e., whether there are substantial changes in the proposed action, significant new circumstances, or new information relevant to environmental concerns). This is not to question the previous analysis or decisions based on that analysis, but whether the environmental impact analyses are still adequate in light of programmatic changes. In addition, the information for each of the projects for which decisions were deferred in the ROD needs to be reviewed to determine if decisions can be made or if any additional NEP A analysis needs to be completed. The Supplement Analysis is required to contain sufficient information for DOE to determine whether (1) an existing EIS should be supplemented, (2) a new EIS should be prepared, or (3) no further NEP A documentation is required.

  16. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Presentation-given at the Fall 2012...

  17. Washington Energy Facility Site Evalutation Council - Siting...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Siting and Review Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Washington Energy...

  18. UNIVERSITY OF WASHINGTON DIPLOMA CERTIFICATION REQUEST FORM

    E-Print Network [OSTI]

    Eberhard, Marc O.

    UNIVERSITY OF WASHINGTON DIPLOMA CERTIFICATION REQUEST FORM GRADUATION AND ACADEMIC RECORDS OFFICE: _________________ Notes: Please return this form to: University of Washington, Graduation & Academic Records Box 355850

  19. Voluntary Protection Program Onsite Review, Washington Closure...

    Office of Environmental Management (EM)

    Washington Closure Hanford VPP Report - March 2009 Voluntary Protection Program Onsite Review, Washington Closure Hanford VPP Report - March 2009 March 2009 Evaluation to determine...

  20. Washington and Lee University STUDENT ORGANIZATION APPLICATION

    E-Print Network [OSTI]

    Marsh, David

    Washington and Lee University STUDENT ORGANIZATION APPLICATION Organization Name mission statement of your organization. How will your organization be beneficial to Washington and Lee

  1. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  2. Washington Energy Facility Site Evalutation Council - Generalized...

    Open Energy Info (EERE)

    Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

  3. Harold Washington Social Security Administration (SSA) Center...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation...

  4. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  5. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  6. High Level Waste Corporate Board Newsletter - 09/11/08

    Office of Environmental Management (EM)

    UPCOMING EVENTS: The Low-Level Waste Federal Review Group (LFRG) in Washington, DC on 16-18 September 2008. Contact Maureen O'Dell for details (MAUREEN.O'DELL@hq.doe.gov) Next...

  7. UNIVERSITY OF WASHINGTON University Center for Excellence in

    E-Print Network [OSTI]

    UNIVERSITY OF WASHINGTON University Center for Excellence in Developmental Disabilities Center and Disability University of Washington Box 357920 Seattle, Washington 98195-7920 206-543-7701 http://depts.washington__________________________________________________________________________ 9 Race Data for Washington State ____________________________________________________ 9 Home

  8. B Plant low level waste system integrity assessment report

    SciTech Connect (OSTI)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03.

  9. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  10. EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Bonneville Power Administration to fund the portion of the Washington Wildlife Mitigation Agreement...

  11. Hazard Analysis for the Pretreatment Engineering Platform (PEP)

    SciTech Connect (OSTI)

    Sullivan, Robin S.; Geeting, John GH; Lawrence, Wesley E.; Young, Jonathan

    2008-07-10

    The Pretreatment Engineering Platform (PEP) is designed to perform a demonstration on an engineering scale to confirm the Hanford Waste Treatment Plant Pretreatment Facility (PTF) leaching and filtration process equipment design and sludge treatment process. The system will use scaled prototypic equipment to demonstrate sludge water wash, caustic leaching, oxidative leaching, and filtration. Unit operations to be tested include pumping, solids washing, chemical reagent addition and blending, heating, cooling, leaching, filtration, and filter cleaning. In addition, the PEP will evaluate potential design changes to the ultrafiltration process system equipment to potentially enhance leaching and filtration performance as well as overall pretreatment throughput. The skid-mounted system will be installed and operated in the Processing Development Laboratory-West at Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  12. Country report Municipal solid waste composition determination supporting

    E-Print Network [OSTI]

    Columbia University

    Country report Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete E. Gidarakos *, G. Havas, P. Ntzamilis Laboratory of Toxic and Hazardous Waste Management, Department of Environmental Engineering, Technical University

  13. ISWA Study Tour WASTE-TO-ENERGY

    E-Print Network [OSTI]

    Columbia University

    .30 pm ­ 2.00 pm Development of Municipal Solid Waste Management and Treatment Facilities in Vienna;Practice Seminar on Sustainable Waste Management in Europe based on Prevention, Recycling, Recovery taught by senior experts in waste management, environmental policy and engineering 2. Visits to waste

  14. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    . Removed grit and sludge are mixed with the waste oil. Photon-counting spectrofluorimeter Substitution 54 or composted at the stump dump. Plant Engineering grounds vehicle wash system * Waste minimization 8,000 OilsWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2007 WASTE TYPE

  15. What is Environmental Engineering?

    E-Print Network [OSTI]

    addition Backwash with chlorate, N, P, acetate Contaminated water source Perchlorate free water Sand filter Engineering todayEngineering today...... Treatment of surface water,Treatment of surface water, groundwater, waste water, soil, & airgroundwater, waste water, soil, & air Management of wetlands & watersheds

  16. Enterprise Assessments Review of the Hanford Site Waste Treatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Engineering Processes - October 2015 Enterprise Assessments Review of the Hanford Site Waste Treatment and Immobilization Plant Project Engineering Processes - October 2015...

  17. Thermoelectrici Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  18. UNIVERSITY OF WASHINGTON DIPLOMA NAME REQUEST FORM

    E-Print Network [OSTI]

    Reh, Thomas A.

    UNIVERSITY OF WASHINGTON DIPLOMA NAME REQUEST FORM GRADUATION AND ACADEMIC RECORDS OFFICE http://www.washington.edu/students/reg/grad.html Email: ugradoff@u.washington.edu Phone: 206-543-1803 FAX: 206-685-3660 Current Students: Complete this form by the last day of the quarter you plan to graduate to: University of Washington Graduation

  19. UNIVERSITY OF WASHINGTON BOTHELL GENERAL FACULTY ORGANIZATION

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON BOTHELL GENERAL FACULTY ORGANIZATION BYLAWS UNIVERSITY OF WASHINGTON of Washington Bothell (UWB) establishes herewith, under Faculty Code, Section 23-45A, its organization and rules of procedures. ARTICLE I PURPOSE AND FUNCTION Section 1. The purpose of the University of Washington Bothell

  20. Having trouble viewing this email? Click here to view online Engineer your way.

    E-Print Network [OSTI]

    Subramanian, Venkat

    alumna Alice Ndikumana. READ MORE April 24 Wash U Racing Car Unveiling Washington University nets $3 at Wash U. Meet Washington University Engineering alumnus Col. Bob Behnken, PhD, chief astronaut at NASA

  1. Rev. 8/12 Registration | Washington border policy.doc Washington Border Policy

    E-Print Network [OSTI]

    Elzanowski, Marek

    Rev. 8/12 ­ Registration | Washington border policy.doc Washington Border Policy Guidelines and Application form The Washington Border Policy benefit allows Washington residents who live in 11 approved days prior to enrollment at PSU includes Washington driver's license (primary document), or may include

  2. Transformative Wave Technologies Kent, Washington

    E-Print Network [OSTI]

    California at Davis, University of

    Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

  3. Washington Gas- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Washington Gas as a part of the Maryland EmPOWER program offers incentives to its commercial customer for making energy efficiency improvements. Rebates are available for qualifying water heaters,...

  4. Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion

    E-Print Network [OSTI]

    Lee, Felix

    2012-01-01

    ect of working ?uids on organic Rankine cycle for waste heatof such devices. Organic Rankine cycles and Stirling engines

  5. Development of a Waste Heat Recovery System for Light Duty Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Waste Heat Recovery System for Light Duty Diesel Engines Development of a Waste Heat Recovery System for Light Duty Diesel Engines Substantial increases in engine efficiency of a...

  6. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    SciTech Connect (OSTI)

    E. Kent Barefield; Charles L. Liotta; Henry M. Neumann

    2002-04-08

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996.

  7. Environmental Engineering Is Environmental Engineering right for me?

    E-Print Network [OSTI]

    Martin, Ralph R.

    Environmental Engineering Is Environmental Engineering right for me? If you are interested in the improvement of environmental conditions through the use of engineering skills then Environmental Engineering is well suited to you. An Environmental Engineering degree programme will focus on aspects such as waste

  8. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  9. EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)

    Broader source: Energy.gov [DOE]

    This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

  10. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect (OSTI)

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  11. Washington -- SEP Summary of Reported Data | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary of Reported Data Washington -- SEP Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Washington -- SEP. Washington -- SEP...

  12. Old Silver Readings: Mythology, Portraits, and Booker T. Washington

    E-Print Network [OSTI]

    Schuckman, Hugh E

    2013-01-01

    R. (1988). Booker T. Washington in perspective: Essays ofBieze, M. (2008). Booker T. Washington and the art of self-2008). HOPE [Poster]. Washington, DC: Smithsonian Institute.

  13. No New Gimmicks: Continued Budget Challenges in Washington State

    E-Print Network [OSTI]

    Holland, Jenny L.; Benjamin, Francis

    2012-01-01

    summary.aspx? bill = 1997. Washington State Liquor Controlabout/ standard-hours. Washington State Senate Committeemade clear. Ultimately, Washington State is still battling a

  14. 2012 Washington State Budget: A Year of Political Earthquakes

    E-Print Network [OSTI]

    Benjamin, Francis; Chávez, Maria; Lovrich, Nicholas

    2013-01-01

    accessed March 1, 2013). Washington State RedistrictingCommission (2012) “2011 Washington State Redistricting1, 2013). Association of Washington Business (2011) 2012

  15. US hydropower resource assessment for Washington

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-07-01

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

  16. 2009 UK/US Nuclear Engineering Workshop Report

    SciTech Connect (OSTI)

    Richard Rankin

    2009-04-01

    This report summarizes the 2009 UK/US Nuclear Engineering Workshop held April 20-21, 2010, in Washington, D.C. to discuss opportunities for nuclear engineering collaboration between researchers in the United States and the United Kingdom.

  17. CIVIL & ENVIRONMENTAL ENGINEERING Information for Employers and Recruiters

    E-Print Network [OSTI]

    over paper announcements, as the latter take more time to process and circulate. CEE Career Fair accessed by engineering and pre-engineering students of all disciplines. (Website:http://www.engr.washington.edu/industry/recruit/coop_industry

  18. Enterprise Assessments Operational Awareness Record, Waste Isolation...

    Office of Environmental Management (EM)

    - March 2015 March 2015 Review of the Waste Isolation Pilot Plant Limited Review of Engineering Configuration Management Processes The Office of Nuclear Safety and Environmental...

  19. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  20. To decrease the resonant frequency of the engine compared to a previous engine using Silicon Nitride, which had a resonant

    E-Print Network [OSTI]

    Collins, Gary S.

    ·To decrease the resonant frequency of the engine compared to a previous engine using Silicon on the engine OBJECTIVES Fabrication and Characterization of PDMS Membranes for MEMS-based Micro Heat Engine M and Materials Engineering, Washington State University REU CONCLUSION ·The PDMS membranes were successfully

  1. Black Pine Engineering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  2. Creating A More Inclusive Campus Rev. Dr. Jamie Washington

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    Creating A More Inclusive Campus Community Rev. Dr. Jamie Washington President, The Washington Washington, M.Div., Ph.D. President, Washington Consulting Group Founder, Social Justice Training Institute

  3. Engineering Engineering

    E-Print Network [OSTI]

    Davis President APS Neil E. Hejny Engineering Manager Raytheon Joseph W. Jackson Director Retrofit Manager Brooks-PRI Bill Twardy Manager, Research for SRP SRP Sam Werner IBM John Wood Hardware Design

  4. Technetium Incorporation in Glass for the Hanford Tank Waste Treatment and Immobilization Plant

    SciTech Connect (OSTI)

    Kruger, Albert A.; Kim, Dong Sang

    2015-01-14

    A priority of the United States Department of Energy (U.S. DOE) is to dispose of nuclear wastes accumulated in 177 underground tanks at the Hanford Nuclear Reservation in eastern Washington State. These nuclear wastes date from the Manhattan Project of World War II and from plutonium production during the Cold War. The DOE plans to separate high-level radioactive wastes from low activity wastes and to treat each of the waste streams by vitrification (immobilization of the nuclides in glass) for disposal. The immobilized low-activity waste will be disposed of here at Hanford and the immobilized high-level waste at the national geologic repository. Included in the inventory of highly radioactive wastes is large volumes of 99Tc (?9 × 10E2 TBq or ?2.5 × 104 Ci or ?1500 kg). A problem facing safe disposal of Tc-bearing wastes is the processing of waste feed into in a chemically durable waste form. Technetium incorporates poorly into silicate glass in traditional glass melting. It readily evaporates during melting of glass feeds and out of the molten glass, leading to a spectrum of high-to-low retention (ca. 20 to 80%) in the cooled glass product. DOE-ORP currently has a program at Pacific Northwest National Laboratory (PNNL), in the Department of Materials Science and Engineering at Rutgers University and in the School of Mechanical and Materials Engineering at Washington State University that seeks to understand aspects of Tc retention by means of studying Tc partitioning, molten salt formation, volatilization pathways, and cold cap chemistry. Another problem involves the stability of Tc in glass in both the national geologic repository and on-site disposal after it has been immobilized. The major environmental concern with 99Tc is its high mobility in addition to a long half-life (2.1×105 yrs). The pertechnetate ion (TcO4-) is highly soluble in water and does not adsorb well onto the surface of minerals and so migrates nearly at the same velocity as groundwater. Long-term corrosion of glass waste forms is an area of current interest to the DOE, but attention to the release of Tc from glass has been little explored. It is expected that the release of Tc from glass should be highly dependent on the local glass structure as well as the chemistry of the surrounding environment, including groundwater pH. Though the speciation of Tc in glass has been previously studied, and the Tc species present in waste glass have been previously reported, environmental Tc release mechanisms are poorly understood. The recent advances in Tc chemistry that have given rise to an understanding of incorporation in the glass giving rise to significantly higher single-pass retention during vitrification are presented. Additionally, possible changes to the baseline flowsheet that allow for relatively minor volumes of Tc reporting to secondary waste treatment will be discussed.

  5. U.S. GOVERNMENT PRINTING OFFICE WASHINGTON

    E-Print Network [OSTI]

    Heller, Don

    U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : For sale by the Superintendent of Documents, U­1800 Fax: (202) 512­2250 Mail: Stop SSOP, Washington, DC 20402­0001 90-136 PDF 2004 H.R. 3039

  6. 1400 WASHINGTON AVENUE ALBANY, NY 12222

    E-Print Network [OSTI]

    Alexandrova, Ivana

    1400 WASHINGTON AVENUE ALBANY, NY 12222 CAMPUS CENTER 116 (CC116) www.albany.edu/sasenate sasenate University of New York at Albany, Inc. Campus Center 116 1400 Washington Ave. Albany, NY 12222

  7. Biohazardous Waste Management Plan Page 2 of 15 Section Topic Page Number

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    #12;Biohazardous Waste Management Plan Page 2 of 15 INDEX Section Topic Page Number I Roster #12;Biohazardous Waste Management Plan Page 3 of 15 I. Scope The University of Washington Biohazardous Waste Management Plan (The Plan) applies to all University facilities in the City of Seattle

  8. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  9. QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington, DC: Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities QER Public Meeting in Washington, DC: Enhancing Energy Infrastructure Resiliency and...

  10. Washington's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    7th congressional district ARCH Venture Partners (Washington) Northwest National Marine Renewable Energy Center Washington Technology Center Registered Networking...

  11. GWU, RPI, VCU All Rights Reserved Washington State Ferry Risk Assessment Appendix I The Washington State

    E-Print Network [OSTI]

    van Dorp, Johan René

    © GWU, RPI, VCU ­ All Rights Reserved Washington State Ferry Risk Assessment ­ Appendix I The Washington State Ferries Risk Assessment Appendix I: Historical Data Analysis Results JULY 1, 1999 Prepared for: Blue Ribbon Panel on Washington State Ferry Safety and Washington State Transportation Commission

  12. EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington

    Broader source: Energy.gov [DOE]

    This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

  13. Maritime Industry in Washington Washington's maritime industry is central to the economic and cultural history of the

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Maritime Industry in Washington Washington's maritime industry is central the backbone of our economy, providing the transportation critical to Washington to destination is a well-choreographed and profitable venture. Washington's Ferry System

  14. Trade in Washington State Since 2001, the value of Washington exports has averaged more than $44 billion

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Trade in Washington State Since 2001, the value of Washington exports has averaged more than $44 billion annually, making Washington the most trade, Washington has the largest locally controlled public port system in the world

  15. Expanded public notice: Washington State notice of intent for corrective action management unit, Hanford Environmental Restoration Disposal

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This document is to serve notice of the intent to operate an Environmental Restoration Disposal Facility (ERDF), adjacent to the 200 West Area of the Hanford Facility, Richland, Washington, as a Corrective Action Management Unit (CAMU), in accordance with 40 Code of Federal Regulation (CFR) 264.552. The ERDF CAMU will serve as a management unit for the majority of waste (primarily soil) excavated during remediation of waste management sites on the Hanford Facility. Only waste that originates from the Hanford Facility can be accepted in this ERDF CAMU. The waste is expected to consist of dangerous waste, radioactive waste, and mixed waste. Mixed waste contains radioactive and dangerous components. The primary features of the ERDF could include the following: one or more trenches, rail and tractor/trailer container handling capability, railroads, an inventory control system, a decontamination building, and operational offices.

  16. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

  17. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

  18. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion...

  19. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-11, 2010 -- Washington D.C. ace020reitz2010o.pdf More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel...

  20. U.S. GOVERNMENT PRINTING OFFICE WASHINGTON

    E-Print Network [OSTI]

    U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : For sale by the Superintendent of Documents, U­1800 Fax: (202) 512­2104 Mail: Stop IDCC, Washington, DC 20402­0001 52­894PDF 2010 THE NEXT GENERATION WU, Oregon BRIAN BAIRD, Washington BRAD MILLER, North Carolina DANIEL LIPINSKI, Illinois GABRIELLE

  1. Lucas Patzek Washington State University, Mount Vernon

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    - 1 - Lucas Patzek Address: Washington State University, Mount Vernon Department of Crop and Soil), Aug. 2008 ­ Graduating Feb. 2012 Washington State University, Mount Vernon, WA. Major advisor: Dr factors on diverse small grain production systems of Washington State. B.S. in Molecular, Cellular

  2. Planning & Budgeting Brief opb.washington.edu

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Planning & Budgeting Brief opb.washington.edu Page 1 Date: November 10, 2014 Subject: Earnings Information for Washington Graduates As part of the final 2014 supplemental operating budget (ESSB 6002, Sec 129), the Washington legislature required that the Education Research & Data Center

  3. THE GEORGE WASHINGTON UNIVERSITY EMERGENCY OPERATIONS PLAN

    E-Print Network [OSTI]

    Vertes, Akos

    THE GEORGE WASHINGTON UNIVERSITY EMERGENCY OPERATIONS PLAN #12;University Emergency Operations Plan. Sincerely, Steven Knapp President The George Washington University Page i July 2013 #12;University Emergency to make the George Washington University a safe and prepared community. Steven Lerman Provost

  4. UNIVERSITY OF WASHINGTON OFFICE OF THE PRESIDENT

    E-Print Network [OSTI]

    MacCready, Parker

    #12;UNIVERSITY OF WASHINGTON OFFICE OF THE PRESIDENT Mark A. Emmert, President September 3, 2009 of Washington's (UW's) Climate Action Plan is a compilation of ideas and strategies from across our three this challenging economic time. Working across our University of Washington community to achieve climate neutrality

  5. University of Washington Learning Space Assessment

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    University of Washington Learning Space Assessment Report - June 2014 #12;#12;University of Washington Learning Space Assessment Report - June 2014 #12;#12;1.0 Executive Summary 1 2.0 Goals and Process.0 Recommendations 127 8.0 Acknowledgments 141 9.0 Appendix 143 Table of Contents #12;#12;University of Washington

  6. UNIVERSITY OF WASHINGTON TRAVEL CARD APPLICATION

    E-Print Network [OSTI]

    Matrajt, Graciela

    UNIVERSITY OF WASHINGTON TRAVEL CARD APPLICATION US 01745 UW CTS Box 351120 206-543-7171 CARD DATA the following conditions: · The card must be used only for University of Washington business related and travel expenses as described in card policies http://f2.washington.edu/fm

  7. WASHINGTON TECHNICAL WRRC Report No. ~6

    E-Print Network [OSTI]

    District of Columbia, University of the

    WASHINGTON TECHNICAL INSTITUTE WRRC Report No. ~6 SURVEY, ECOLOGY, AND SYSTEMATICS OF THE UPPER Resources Research Center Washington Technical Institute Washington, D. C. 20008 August 1975 #12;FOREWARN standards of 96% removal of U.O.D. (ultimate oxygen demand), 96% removal of . phosphate, and 85% removal

  8. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2001-01-25

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  9. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  10. Biofuels in Oregon and Washington

    E-Print Network [OSTI]

    's Office of Energy Efficiency and Renewable Energy, Office of Biomass Programs Prepared by Pacific within the Office of Energy Efficiency and Renewable Energy, particularly Mr. Zia Haq, for co- fundingPNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities

  11. November, 2014 UNIVERSITY OF WASHINGTON

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    Health and Safety is the owner's representative. DESIGN CRITERIA General Fire Protection shallNovember, 2014 UNIVERSITY OF WASHINGTON Environmental Health and Safety Design Guide Fire floor within a stair enclosure in multi-story buildings The design criteria for the fire sprinkler

  12. 8 PE MAY 2015 In March, engineering

    E-Print Network [OSTI]

    CONCEPTS 8 PE MAY 2015 In March, engineering deans from across the US gathered in Washington, D.C., to embrace a new movement that promises to transform engineering education--and equip a new generation engineering schools announced plans to prepare a new generation of engi- neers to tackle some of soci- ety

  13. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    SciTech Connect (OSTI)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facility intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.

  14. Vitrification technology for Hanford Site tank waste

    SciTech Connect (OSTI)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

  15. Engineering test report: paint waste reduction fluidized-bed process demonstration at Letterkenny Army Depot Chambersburg, Pennsylvania. Final report, May 90-Jul 91

    SciTech Connect (OSTI)

    Murphy, J.P.; Parker, D.

    1991-07-01

    Degreasing and removal of paint from metal parts are processes performed at several Army depots across the country as part of vehicle and equipment rebuilding operations. These processes generate many tons of hazardous waste and release some hazardous materials into the workplace because most of them incorporate toxic chlorinated solvents or caustic soda. These substances also produce sludges that are classified as hazardous waste. U.S. Army Depot Support Command (DESCOM), as part of its hazardous waste minimization program, has established as a goal the elimination of hazardous waste generation from paint stripping operations. Through specific research and development projects, the U.S. Army's Toxic and Hazardous Materials Agency (USATHAMA) assists Army Depots in developing and evaluating methods for minimizing the quantities of hazardous wastes that they generate.

  16. DOE Announces Strategic Engineering and Technology Roadmap for...

    Energy Savers [EERE]

    Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War...

  17. Tank 241-CX-70 waste removal and packaging

    SciTech Connect (OSTI)

    DuVon, D.K.

    1993-06-01

    Tank 241-CX-70, located on the Hanford Site in Washington State, is a 30,000 gal single-shell storage tank built in 1952 to hold high-level process waste from pilot tests of the reduction-oxidation process. In 1979 decommissioning operations were begun by pumping liquid waste from the tank to the double-shell tank (DST) 101-AY. Not all the waste was removed at that time. Approximately 10,300 gal of sludge remained. On September 25, 1987, operations were resumed to remove the remaining waste using a sluicing and pumping method. This report documents the final removal of waste from Tank 241-CX-70.

  18. Tank 241-CX-70 waste removal and packaging

    SciTech Connect (OSTI)

    DuVon, D.K.

    1993-01-01

    Tank 241-CX-70, located on the Hanford Site in Washington State, is a 30,000 gal single-shell storage tank built in 1952 to hold high-level process waste from pilot tests of the reduction-oxidation process. In 1979 decommissioning operations were begun by pumping liquid waste from the tank to the double-shell tank (DST) 101-AY. Not all the waste was removed at that time. Approximately 10,300 gal of sludge remained. On September 25, 1987, operations were resumed to remove the remaining waste using a sluicing and pumping method. This report documents the final removal of waste from Tank 241-CX-70.

  19. EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM supported DOE in its role as the lead technical agency to produce a report recently for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

  20. Waste Heat-to-Power Using Scroll Expander for Organic Rankine...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle DE-EE0005767 TIAX LLC and...

  1. Mixed Waste Working Group report

    SciTech Connect (OSTI)

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  2. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  3. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  4. 300 Area dangerous waste tank management system: Compliance plan approach. Final report

    SciTech Connect (OSTI)

    1996-03-01

    In its Dec. 5, 1989 letter to DOE-Richland (DOE-RL) Operations, the Washington State Dept. of Ecology requested that DOE-RL prepare ``a plant evaluating alternatives for storage and/or treatment of hazardous waste in the 300 Area...``. This document, prepared in response to that letter, presents the proposed approach to compliance of the 300 Area with the federal Resource Conservation and Recovery Act and Washington State`s Chapter 173-303 WAC, Dangerous Waste Regulations. It also contains 10 appendices which were developed as bases for preparing the compliance plan approach. It refers to the Radioactive Liquid Waste System facilities and to the radioactive mixed waste.

  5. Geological Engineering Geological Engineering

    E-Print Network [OSTI]

    Wehlau, David

    1 Geological Engineering l 1 Geological Engineering www.geol.ca Queen's Geological Engineering Vicki Remenda, PEng ­ GEOENG Head Department of Geological Sciences and Geological Engineering Miller Hall Welcome to... Orientation CLASS OF 2018 What is Geological Engineering ? Geological Engineering

  6. EIS-0189-S1: Tank Waste Remediation System, Richland, Washington

    Broader source: Energy.gov [DOE]

    For this Supplement Analysis, in each of the potential impact areas for Project W-314, the proposed action was evaluated and compared to the TWRS EIS evaluation of the preferred alternative (Section 5.0). Qualitative and/or quantitative comparisons are then provided in this Supplement Analysis to support a determination on the need for additional National Environmental Policy Act (NEPA) analysis. Based on this Supplement Analysis, the potential impacts for Project W -314 would be small in comparison to and are bounded by the impacts assessed for the TWRS EIS preferred alternative, and therefore no additional NEPA analysis is required.

  7. EIS-0391: Hanford Tank Closure and Waste Management, Richland, Washington |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c iGoldendaleEnvironmentalDraftEnergy Oak Ridge,

  8. What does it take to create a clean energy future for Washington? Solar, Wind, Hydro

    E-Print Network [OSTI]

    Hochberg, Michael

    Flexible Solar Film Atomic Force Microscope Materials Science Molecule Polymers Nanostructured Solar Cells Solar, Wind, Hydro A Complete Energy System Home and Commercial Generation Demand Response 10-10 m 10 established the Clean Energy Institute to support science & engineering research that sustains Washington

  9. Jan. 6 Introduction and course overview Waste generation and characterization EPA 2011 Waste Characterization Report (Exec. Sum., Ch. 1-

    E-Print Network [OSTI]

    Barlaz, Morton A.

    Policy & Global Solid Waste Management 24 Regulatory Policy & Global Solid Waste Management 27 Regulatory Policy & Global Solid Waste Management 29 Life-cycle analysis (LCA) Life-Cycle Assessment Principles Final exam at 8 AM 2014 Course Syllabus CE 477/CE 577 Solid Waste Engineering #12;

  10. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  11. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  12. A Joint Interview with Professor Joonhong Ahn and Professor Cathryn Carson on Nuclear Waste Management: a Technical and Social Problem

    E-Print Network [OSTI]

    Chowdhary, Harshika; Gill, Manraj; Kim, Juwon; McGuinness, Philippa; Miller, Daniel; Nuckolls, Kevin

    2015-01-01

    agencies for nuclear waste management both from theI expected of nuclear engineering waste management to seewaste management at the beginning the fact that the nuclear

  13. Autonomous Hazardous Waste Inspection Vehicle Eric Byler, Wendell Chun, William Hoff, Dan Layne

    E-Print Network [OSTI]

    Hoff, William A.

    Engineering Laboratory, and Rocky Flats Plant). 1.1 Problem Most waste storage facilities contain 5,000 to 20

  14. Project Plan for the evaluation of REDC waste for TRU-waste radionuclides

    SciTech Connect (OSTI)

    Nguyen, L.; Yong, L.; Chapman, J.

    1996-09-01

    This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy`s definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary.

  15. 1. Exit at Washington Ave. (Exit 17C) 2. Le at Washington Ave. S.

    E-Print Network [OSTI]

    Thomas, David D.

    From I-35W Southbound 1. Exit at Washington Ave. (Exit 17C) 2. Le at Washington Ave. S. 3. Con nue Straight as Washington Ave S becomes Cedar Ave 5. Le on 3rd St S. 6. For 19th Ave Ramp, turn right 17C) 2. Stay in the middle lane and follow the signs for Washington Ave./U of M/West Bank. 3

  16. 1. Exit at Washington Ave. (Exit 17C) 2. Le at Washington Ave. S.

    E-Print Network [OSTI]

    Thomas, David D.

    From I-35W Southbound 1. Exit at Washington Ave. (Exit 17C) 2. Le at Washington Ave. S. 3. Con nue Straight as Washington Ave S becomes Cedar Ave 5. Le on 3rd St S. 6. Con nue to 19th Ave S. Turn right. Con the signs for Washington Ave./U of M/West Bank. 3. Then move to the right lane and take the exit for U of M

  17. 1. Exit at Washington Ave. (Exit 17C) 2. Le at Washington Ave. S.

    E-Print Network [OSTI]

    Thomas, David D.

    From I-35W Southbound 1. Exit at Washington Ave. (Exit 17C) 2. Le at Washington Ave. S. 3. Le at the 2nd signal to con nue on Washington Ave S. 4. Con nue through the signal at 19th Ave. On to 2nd St./U of M (Exit 17C) 2. Stay in the middle lane and follow the signs for Washington Ave./U of M/West Bank. 3

  18. ,"Washington Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  19. ,"Washington Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  20. Robert Wood, University of Washington many contributors

    E-Print Network [OSTI]

    Wood, Robert

    Robert Wood, University of Washington many contributors VOCALS Education and Outreach Snider (Wyoming) · Dave Spencer (NCSU) · Cindy Twohy (OSU) · Rob Wood/Chris Bretherton/Rhea George

  1. Energy Northwest, Washington Bonneville Power Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APRIL 9, 2015 1 1393164 | 300019859 Energy Northwest, Washington Bonneville Power Administration, Oregon; Wholesale Electric Credit Profile US329.455 mil columbia generating...

  2. Energy Northwest, Washington Bonneville Power Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEPTEMBER 25, 2015 1 1455301 | 300019859 Energy Northwest, Washington Bonneville Power Administration, Oregon; Wholesale Electric Credit Profile US43.1 mil proj 1 elec rev rfdg...

  3. Bonneville Power Administration, Oregon Energy Northwest, Washington...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

  4. USDA Rural Development Washington State Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Agriculture is hosting a Washington Rural Development Workshop. Speakers will cover local and regional broadband initiatives program and broadband success stories,...

  5. Spotlight on Seattle, Washington: Community Partnerships Work...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revised July 2011 Version 2 Spotlight on Seattle, Washington: Community Partnerships Work to Extend Program Reach Getting Started 1 Seattle Moves the Needle With the Help of Its...

  6. ,"Washington Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release...

  7. ,"Washington Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  8. Voluntary Protection Program Onsite Review, Washington River...

    Broader source: Energy.gov (indexed) [DOE]

    February 13, 2014 Evaluation to determine whether Washington River Protection Solutions, LLC, Hanford is performing at a level deserving DOE-VPP Star recognition. Voluntary...

  9. ,"Washington Natural Gas Input Supplemental Fuels (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2014 ,"Release Date:","09...

  10. ,"Washington Natural Gas Underground Storage Capacity (MMcf)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Underground Storage Capacity (MMcf)",1,"Annual",2014 ,"Release...

  11. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  12. Washington Environmental Permit Handbook - NPDES Construction...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - NPDES Construction Stormwater General Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  13. Washington Environmental Permit Handbook - NPDES Individual Permit...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - NPDES Individual Permit Coverage Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  14. SSL Demonstration: Parking Garage Lighting, Washington, DC

    SciTech Connect (OSTI)

    2013-06-01

    GATEWAY program report brief summarizing an SSL parking garage demonstration at the Dept. of Labor headquarters parking garage in Washington, DC.

  15. Clean Cities: Western Washington Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies where her studies focused on policies to stimulate the growth of renewable energy. 1904 Third Ave, Ste 105 Seattle, WA 98101 Western Washington Success Stories Watch...

  16. University of Washington Department of Aeronautics & Astronautics

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    University of Washington Department of Aeronautics & Astronautics Undergraduate and Graduate Discrimination Act of 1975. COMPLETE AND RETURN THIS FORM TO William E. Boeing Department of Aeronautics

  17. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    SciTech Connect (OSTI)

    Duncan, Garth M.; Saunders, Scott A.

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2; - Development of a set of alternatives to the current baseline that involve aspects of direct feed, feed conditioning, and design changes. The One System Technical Organization has served WTP, TOC, and DOE well in managing and resolving issues at the interface. This paper describes the organizational structure used to improve the interface and several examples of technical interface issues that have been successfully addressed by the new organization. (authors)

  18. Wood to Energy in Washington Page 1 of 5 Wood to Energy in Washington

    E-Print Network [OSTI]

    Brown, Sally

    energy or when used as transportation fuels. Woody biomass is an attractive alternative energy sourceWood to Energy in Washington Page 1 of 5 Wood to Energy in Washington: Imperatives, Opportunities Washington State lacks a cohesive strategy to reduce green house gases and for renewable energy development

  19. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    SciTech Connect (OSTI)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.

  20. 1999 GWU, RPI, VCU All Rights Reserved Washington State Ferries Risk Assessment Final Report The Washington State

    E-Print Network [OSTI]

    van Dorp, Johan René

    © 1999 GWU, RPI, VCU ­ All Rights Reserved Washington State Ferries Risk Assessment Final Report The Washington State Ferries Risk Assessment Executive Summary JULY 1, 1999 Prepared for: Blue Ribbon Panel on Washington State Ferry Safety and Washington State Transportation Commission Olympia, Washington By

  1. Washington State 2010 Supplemental Budget Bottom Line: New Taxes

    E-Print Network [OSTI]

    Holland, Jenny L; Lovrich, Nicholas P

    2011-01-01

    2010. “Scorecard for the 2010 Washington Legislature. ” TheNews/Budgetnews4-14-10.asp>. Washington Secretary of State’swww.sos.wa.gov/elections/>. Washington State Economic and

  2. The Top Two Primary: What Can California Learn from Washington?

    E-Print Network [OSTI]

    Donovan, Todd

    2012-01-01

    and C. Tol- bert. Washington, D.C. : Brookings InstitutionPolitics 40(4): 681–86. ———. 2011. “Washington Elections,”in Governing Washington, ed. C. Clayton and N. Lovrich.

  3. The Revolution Revised: A Guided Tour of Davis v. Washington

    E-Print Network [OSTI]

    Graham, Kenneth

    2006-01-01

    for Petitoner, Davis v. Washington, No. 05-5524, Dec. 22,WL 3597706, p. 15. Davis v. Washington, No. 05-5224, Oralfor Respondent, Davis v. Washington, No. 05-5524, Feb. 2,

  4. Washington University in St. Louis Institutional Biological & Chemical Safety Committee

    E-Print Network [OSTI]

    Kroll, Kristen L.

    Washington University in St. Louis Institutional Biological & Chemical Safety Committee Written and are instructed to report to Student & Employee Health or Washington University's contracted occupational health will report to Student & Employee Health or Washington University's contracted occupational health provider

  5. Alcohol Outlets and Violent Crime in Washington D.C.

    E-Print Network [OSTI]

    Franklin, F. Abron; LaVeist, Thomas A.; Webster, Daniel W.; Pan, William K.

    2010-01-01

    of Violence and Disorder. Washington, D.C. : The Urbanand Violent Crime in Washington D.C. F. Abron Franklin II,Involvement in Crime. Washington, D.C. : U.S. Department of

  6. The Short (?), Happy (?) Life of Crawford v. Washington

    E-Print Network [OSTI]

    Graham, Kenneth

    2006-01-01

    Originalism in Crawford v. Washington, 2005, 71 Brook.L.Rev.Professors, Crawford v. Washington, 541 U.S. 36 , 2004, No.Originalism in Crawford v. Washington, 2005, 71 Brook.L.Rev.

  7. WASHINGTON PUD ASSOCIATON COMMENTS ON THE NWPCC'S DRAFT RECOMMENDATIONS

    E-Print Network [OSTI]

    WASHINGTON PUD ASSOCIATON COMMENTS ON THE NWPCC'S DRAFT RECOMMENDATIONS REGARDING BPA'S FUTURE ROLE April 22, 2004 INTRODUCTION These comments are submitted by the Washington PUD Association in response binding dispute resolution mechanisms before anobjective third party. #12;Washington PUD Association

  8. Secretary Chu Tours the 2013 Washington Auto Show | Department...

    Energy Savers [EERE]

    Tours the 2013 Washington Auto Show Secretary Chu Tours the 2013 Washington Auto Show January 31, 2013 - 5:04pm Addthis 1 of 10 While at the Washington Auto Show, Energy Secretary...

  9. Aerospace & Energetics Research Program -University of Washington Plasma Dynamics Group

    E-Print Network [OSTI]

    Shumlak, Uri

    - University of Washington Plasma Dynamics Group q The Boltzmann equation is seven dimensional. qAerospace & Energetics Research Program - University of Washington Plasma Dynamics Group Plasma Research Program - University of Washington Plasma Dynamics Group Abstract Many current plasma simulation

  10. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    SciTech Connect (OSTI)

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  11. Washington

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs SearchAMERICA'S FUTURE. regulators02-03 AUDITWash ington, DC 20585

  12. Alumni & Industry Magazine Chemical Engineering & Applied Chemistry

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    grease, waste animal fats, recycled veg- etable oils and agricultural seed oils into biodiesel. BioxAlumni & Industry Magazine Chemical Engineering & Applied Chemistry University of Toronto Volume 10

  13. Environmental, safety, and health engineering

    SciTech Connect (OSTI)

    Woodside, G.; Kocurek, D.

    1997-12-31

    A complete guide to environmental, safety, and health engineering, including an overview of EPA and OSHA regulations; principles of environmental engineering, including pollution prevention, waste and wastewater treatment and disposal, environmental statistics, air emissions and abatement engineering, and hazardous waste storage and containment; principles of safety engineering, including safety management, equipment safety, fire and life safety, process and system safety, confined space safety, and construction safety; and principles of industrial hygiene/occupational health engineering including chemical hazard assessment, personal protective equipment, industrial ventilation, ionizing and nonionizing radiation, noise, and ergonomics.

  14. Hanford's Simulated Low Activity Waste Cast Stone Processing

    SciTech Connect (OSTI)

    Kim, Young

    2013-08-20

    Cast Stone is undergoing evaluation as the supplemental treatment technology for Hanford’s (Washington) high activity waste (HAW) and low activity waste (LAW). This report will only cover the LAW Cast Stone. The programs used for this simulated Cast Stone were gradient density change, compressive strength, and salt waste form phase identification. Gradient density changes show a favorable outcome by showing uniformity even though it was hypothesized differently. Compressive strength exceeded the minimum strength required by Hanford and greater compressive strength increase seen between the uses of different salt solution The salt waste form phase is still an ongoing process as this time and could not be concluded.

  15. Secondary Waste Form Development and Optimization—Cast Stone

    SciTech Connect (OSTI)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  16. Export Control Laws and Washingtonand Washington

    E-Print Network [OSTI]

    1 Export Control Laws and Washingtonand Washington University For Washington University Faculty Authors: Cindy White, Research Office Tina Tyson, Office of General Counsel May 2006 What are export of foreign policy and national security. *NOTE: Export control laws apply to all activities -- not just

  17. Department of Civil, Architectural, and Environmental Engineering Department of Civil, Architectural, and Environmental Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    research areas include air pollution, energy and sustainability, hazardous waste engineering, indoor air Engineering Hazardous Waste Management Indoor Air Quality Infrastructure Engineering and Management with state-of-the-art hardware and software. Research Areas The main research areas in the department

  18. The Smart Approach to Intelligence:[FINAL Edition] John Deutch. The Washington Post. Washington, D.C.: Sep 9, 2002.

    E-Print Network [OSTI]

    Deutch, John

    The Smart Approach to Intelligence:[FINAL Edition] John Deutch. The Washington Post. Washington, D.C.: Sep 9, 2002. pg. A.17 Full Text (1023 words) Copyright The Washington Post Company Sep 9, 2002 Defense

  19. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2011 Eight Required Courses Chart: 120 points College

  20. Engineering Electrical &

    E-Print Network [OSTI]

    Hickman, Mark

    Computer Engineering Electrical & Electronic Engineering Mechatronics Engineering Mechanical Engineering Civil Engineering Natural Resources Engineering Forest Engineering Chemical & Process Engineering ELECTIVE 2 Required Engineering Intermediate Year 2012 Eight Required Courses Chart: 120 points College

  1. Energy Secretary Chu, EPA Administrator Jackson, Washington State...

    Broader source: Energy.gov (indexed) [DOE]

    decree with Washington or invoke judicial dispute resolution proceedings under its terms. Oregon and Washington will also enter into a separate Memorandum of Agreement that...

  2. Federal Utility Partnership Working Group 2011 Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Meeting: Washington Update Federal Utility Partnership Working Group 2011 Meeting: Washington Update Presentation-given at the Fall 2011 Federal Utility Partnership Working...

  3. DOE - Office of Legacy Management -- Carnegie Institute of Washington...

    Office of Legacy Management (LM)

    Carnegie Institute of Washington Dept of Genetics - NY 0-07 FUSRAP Considered Sites Site: Carnegie Institute of Washington (Dept. of Genetics) (NY.0-07 ) Eliminated from...

  4. Making the Grade: Washington School District Invest in Energy...

    Office of Environmental Management (EM)

    Making the Grade: Washington School District Invest in Energy Efficiency Making the Grade: Washington School District Invest in Energy Efficiency September 10, 2015 - 11:55am...

  5. Type B Accident Investigation At Washington Closure Hanford,...

    Office of Environmental Management (EM)

    part of a Washington Closure Hanford, LLC (WCH) team of craft personnel preparing a bridge crane for removal from the 336 Building. Type B Accident Investigation At Washington...

  6. State of Washington Clean Energy Opportunity: Technical Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August 2010 State of Washington Clean Energy Opportunity: Technical Market Potential for CHP, August...

  7. EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Oregon LNG Export Project (Warrenton, OR) and Washington Expansion Project (between Sumas and Woodland, WA) EIS-0492: Oregon LNG Export Project (Warrenton, OR) and Washington...

  8. Seattle, Washington: Solar in Action (Brochure), Solar America...

    Office of Environmental Management (EM)

    Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

  9. UW Computer Science & Engineering Industrial Affiliates Program

    E-Print Network [OSTI]

    Anderson, Richard

    UW Computer Science & Engineering Industrial Affiliates Program 2011-12 Contributions for the CSE Industrial Affiliates Program are to be used to further the Computer Science & Engineering program with this completed form to: Kay Beck-Benton Industrial Affiliates Program University of Washington Computer Science

  10. State waste discharge permit application: 200 Area Treated Effluent Disposal Facility (Project W-049H)

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    As part of the original Hanford Federal Facility Agreement and Concent Order negotiations, US DOE, US EPA and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground to the Hanford Site are subject to permitting in the State Waste Discharge Permit Program (SWDP). This document constitutes the SWDP Application for the 200 Area TEDF stream which includes the following streams discharged into the area: Plutonium Finishing Plant waste water; 222-S laboratory Complex waste water; T Plant waste water; 284-W Power Plant waste water; PUREX chemical Sewer; B Plant chemical sewer, process condensate, steam condensate; 242-A-81 Water Services waste water.

  11. chemical_waste_fact_sheet.docx_ Revision Date: 10/26/2012 Page 1 of 4

    E-Print Network [OSTI]

    , Construction/Renovation Managers, Engineering and other University personnel with proper hazardous wastechemical_waste_fact_sheet.docx_ Revision Date: 10/26/2012 Page 1 of 4 CHEMICAL WASTE FACT SHEET Chemical Waste (also called Hazardous waste) is a category of waste which poses a threat to employees

  12. Multi-function Waste Tank Facility path forward engineering analysis -- Technical Task 3.6, Estimate of operational risk in 200 West Area

    SciTech Connect (OSTI)

    Coles, G.A.

    1995-04-28

    Project W-0236A has been proposed to provide additional waste tank storage in the 200 East and 200 West Areas. This project would construct two new waste tanks in the 200 West Area and four new tanks in the 200 East Area, and a related project (Project W-058) would construct a new cross-site line. These projects are intended to ensure sufficient space and flexibility for continued tank farm operations, including tank waste remediation and management of unforeseen contingencies. The objective of this operational risk assessment is to support determination of the adequacy of the free-volume capacity provided by Projects W-036A and W-058 and to determine related impacts. The scope of the assessment is the 200 West Area only and covers the time period from the present to the year 2005. Two different time periods were analyzed because the new cross-site tie line will not be available until 1999. The following are key insights: success of 200 West Area tank farm operations is highly correlated to the success of the cross-site transfer line and the ability of the 200 East Area to receive waste from 200 West; there is a high likelihood of a leak on a complexed single-shell tank in the next 4 years (sampling pending); there is a strong likelihood, in the next 4 years, that some combination of tank leaks, facility upsets, and cross-site line failure will require more free tank space than is currently available in Tank 241-SY-102; in the next 4 to 10 years, there is a strong likelihood that a combination of a cross-site line failure and the need to accommodate some unscheduled waste volume will require more free tank space than is presently available in Tank 241-SY-102; the inherent uncertainty in volume projections is in the range of 3 million gallons; new million-gallon tanks increase the ability to manage contingencies and unplanned events.

  13. Enterprise Assessments Review of Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Review of Waste Isolation Pilot Plant Engineering and Procurement Processes November 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and...

  14. High-Level Waste Corporate Board Presentation Archive | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Triay High-Level Waste Corporate Board, Mark Gilbertson EM Engineering & Technology Roadmap and Major Technology Demonstrations Office of River Protection Idaho National...

  15. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted by: Harry Harmon, Team Lead CivilStructural Sub Team Facility Safety Sub Team Engineering...

  16. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace45yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric...

  17. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste...

  18. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using thermoelectrics on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  19. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  20. EA-0874: Low-level Waste Drum Staging Building at Weapons Engineering Tritium Facility, TA-16 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to place a 3 meter (m) by 4.5 m prefabricated storage building (transportainer) adjacent to the existing Weapons Engineering Tritium...

  1. Nuclear waste management. Quarterly progress report, July-September 1980

    SciTech Connect (OSTI)

    Chikalla, T.D.

    1980-11-01

    Research is reported on: high-level waste immobilization, alternative waste forms, TRU waste immobilization and decontamination, krypton solidification, thermal outgassing, /sup 129/I fixation, unsaturated zone transport, well-logging instrumentation, waste management system and safety studies, effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, backfill material, spent fuel storage (criticality), barrier sealing and liners for U mill tailings, and revegetation of inactive U tailings sites. (DLC)

  2. Engineering Engineering Education

    E-Print Network [OSTI]

    Simaan, Nabil

    E School of Engineering Engineering Education in a University Setting 292 Degree Programs in Engineering 294 Special Programs 296 Honors 298 Academic Regulations 300 Courses of Study 305 Engineering of Engineering is the largest and oldest private engineering school in the South. Classes offering engineering

  3. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-12-31

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington`s industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state`s total industrial fuel demand. This is a sizable contribution to the state`s energy needs.

  4. Engineering Property Prediction Tools for Tailored Polymer Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. lm11smith.pdf More Documents & Publications Engineering Property Prediction Tools for Tailored...

  5. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ace009wallner2010o.pdf More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2...

  6. The Integrated Waste Tracking System - A Flexible Waste Management Tool

    SciTech Connect (OSTI)

    Anderson, Robert Stephen

    2001-02-01

    The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets the needs of both operations and management while providing a high level of management flexibility.

  7. Hanford facility dangerous waste permit application

    SciTech Connect (OSTI)

    none,

    1991-09-18

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit.

  8. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  9. High-Level Waste Melter Study Report

    SciTech Connect (OSTI)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  10. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  11. MANUFACTURING ENGINEERING Manufacturing engineering

    E-Print Network [OSTI]

    MANUFACTURING ENGINEERING Manufacturing engineering transforms raw materials, parts, and operations, following a well- organized plan for each activity. Manufacturing engineering involves designing assuring a competitive level of productivity. The manufacturing engineering curriculum at WSU focuses

  12. EXPERIMENTAL METHODS TO ESTIMATE ACCUMULATED SOLIDS IN NUCLEAR WASTE TANKS

    SciTech Connect (OSTI)

    Duignan, M.; Steeper, T.; Steimke, J.

    2012-12-10

    The Department of Energy has a large number of nuclear waste tanks. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles, e.g., plutonium containing, could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids and supernatant were charged to the test tank and rotating liquid jets were used to remove most of the solids. Then the volume and shape of the residual solids and the spatial concentration profiles for the surrogate for plutonium were measured. This paper discusses the overall test results, which indicated heavy solids only accumulate during the first few transfer cycles, along with the techniques and equipment designed and employed in the test. Those techniques include: Magnetic particle separator to remove stainless steel solids, the plutonium surrogate from a flowing stream; Magnetic wand used to manually remove stainless steel solids from samples and the tank heel; Photographs were used to determine the volume and shape of the solids mounds by developing a composite of topographical areas; Laser rangefinders to determine the volume and shape of the solids mounds; Core sampler to determine the stainless steel solids distribution within the solids mounds; Computer driven positioner that placed the laser rangefinders and the core sampler over solids mounds that accumulated on the bottom of a scaled staging tank in locations where jet velocities were low. These devices and techniques were very effective to estimate the movement, location, and concentrations of the solids representing plutonium and are expected to perform well at a larger scale. The operation of the techniques and their measurement accuracies will be discussed as well as the overall results of the accumulated solids test.

  13. Energy Matters in Washington State Page 1 Energy Matters

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

  14. Federal Utility Partnership Working Group Seminar: Washington Update

    Broader source: Energy.gov [DOE]

    Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

  15. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2010 State of Washington Water mission of the State of Washington Water Research Center (SWWRC) has been to: i) facilitate, coordinate, conduct, and administer water-related research important to the State of Washington and the region, ii

  16. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2012 State of Washington Water, the overarching strategic mission of the State of Washington Water Research Center (SWWRC) has been to: i) facilitate, coordinate, conduct, and administer water-related research important to the State of Washington

  17. UNIVERSITY OF WASHINGTON FACULTY COUNCIL ON TRI-CAMPUS POLICY

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    UNIVERSITY OF WASHINGTON FACULTY COUNCIL ON TRI-CAMPUS POLICY The Faculty Council on Tri, Chancellor, University of Washington, Bothell; Vicky Carwein, Chancellor, University of Washington, Tacoma; and Weldon Ihrig, Executive Vice President, University of Washington. ABSENT: Ex officio members Fugate

  18. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2007 State of Washington Water of Washington Water Research Center (SWWRC) is to facilitate, coordinate, conduct, and administer water throughout the State of Washington. Activities include presentations to watershed groups, participation

  19. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2011 State of Washington Water strategic mission of the State of Washington Water Research Center (SWWRC) has been to: i) facilitate, coordinate, conduct, and administer water-related research important to the State of Washington

  20. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2013 State of Washington Water, the overarching strategic mission of the State of Washington Water Research Center (SWWRC) has been to: i) facilitate, coordinate, conduct, and administer water-related research important to the State of Washington

  1. State of Washington Water Research Center Annual Technical Report

    E-Print Network [OSTI]

    State of Washington Water Research Center Annual Technical Report FY 2009 State of Washington Water of the State of Washington Water Research Center (SWWRC) is to: i) facilitate, coordinate, conduct, and administer water-related research important to the State of Washington and the region, ii) educate and train

  2. UNIVERSITY OF WASHINGTON DEPARTMENT OF RECREATIONAL SPORTS PROGRAMS

    E-Print Network [OSTI]

    Billey, Sara

    UNIVERSITY OF WASHINGTON DEPARTMENT OF RECREATIONAL SPORTS PROGRAMS RETURN TO: IMA PROGRAMS OFFICE OR cwigton@u.washington.edu PERSONAL TRAINING PROGRAM SURVEY FORM 1. How did you find out about the IMA OF WASHINGTON DEPARTMENT OF RECREATIONAL SPORTS PROGRAMS RETURN TO: IMA PROGRAMS OFFICE OR cwigton@u.washington

  3. XRETRIEVE (request, i.a.) (iris.washington.edu)

    E-Print Network [OSTI]

    Laske, Gabi

    XRETRIEVE (request, i.a.) BDSN MEDNET IRIS DMC (iris.washington.edu) GEOSCOPE BREQ_FAST (request) email to BREQ_FAST@sob.iris.washington.edu interactive non-interactive customized pre-assembled customized pre-assembled www.iris.washington.edu (seismiquery/data sources) www.iris.washington.edu (FARM

  4. UNIVERSITY OF WASHINGTON FACULTY COUNCIL ON TRI-CAMPUS RELATIONS

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    by Alex Bolton Council Support Analyst bolt@u.washington.edu Present: Faculty: Collins (Chair), Wood

  5. UNIVERSITY OF WASHINGTON FACULTY COUNCIL ON ACADEMIC STANDARDS

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Bolton Council Support Analyst bolt@u.washington.edu Present: Faculty: Schaufelberger (Chair), Holman

  6. UNIVERSITY OF WASHINGTON FACULTY COUNCIL ON UNIVERISITY FACILITIES AND SERVICES

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    Bolton Council Support Analyst bolt@u.washington.edu Present: Faculty: Rorabaugh (Chair), Gates, Little

  7. UNIVERSITY OF WASHINGTON FACULTY COUNCIL ON INSTRUCTIONAL QUALITY

    E-Print Network [OSTI]

    Van Volkenburgh, Elizabeth

    by Alex Bolton Council Support Analyst bolt@u.washington.edu Present: Faculty: Wenderoth (Chair), Edgar

  8. Washington Success Story—A Performance Contracting Program

    Broader source: Energy.gov [DOE]

    Provides an overview case study of Washington's Performance Contracting Program. Author: Energy Services Coalition

  9. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  10. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect (OSTI)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  11. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  12. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect (OSTI)

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  13. Last Revised: 10/2013 Battery Waste Collection Request

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    Only Storage Location Mixed Batteries (alkaline, carbon zinc, Ni-Cad, nickel metal hydride, mercuryLast Revised: 10/2013 Battery Waste Collection Request www.ehs.washington.edu/forms/epo/1943.pdf Instructions: Fill out the approximate weight of each battery type KG For Environmental Health and Safety Use

  14. Mineral formation during simulated leaks of Hanford waste tanks

    E-Print Network [OSTI]

    Flury, Markus

    Mineral formation during simulated leaks of Hanford waste tanks Youjun Deng a , James B. Harsh a at the US DOE Hanford Site, Washington, caus- ing mineral dissolution and re-precipitation upon contact with subsurface sediments. The main mineral precipitation and transformation pathways were studied in solutions

  15. Nuclear waste package fabricated from concrete

    SciTech Connect (OSTI)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

  16. Exhaust Heat Driven Rankine Cycle for a Heavy Duty Diesel Engine

    Broader source: Energy.gov [DOE]

    Presents progress to date and plans to develop a viable Rankine engine to harness useful brake power from wasted heat energy in heavy duty truck engine exhaust

  17. The George Washington University Washington, D.C.

    E-Print Network [OSTI]

    Everstine, Gordon C.

    ­ Main Campus References: Elasticity in Engineering Mechanics, third edition, by A.P. Boresi, K.P. Chong (Spring Break), April 30 (designated Monday) Final Exam: May 7 Description: Introduction to Cartesian elasticity problems; to apply the fundamental equations by solving elementary elasticity problems. Grading

  18. Waste control alternatives for chlorinated hydrocarbons 

    E-Print Network [OSTI]

    Pearce, Terry Allan

    1975-01-01

    WASTE CONTROL ALTERNATIVES FOR CHLORINATED HYDROCARBONS A Thesis by TERRY ALLAN PEARCE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Chemical Engineering WASTE CONTROL ALTERNATIVES FOR CHLORINATED HYDROCARBONS A Thesis by TERRY ALLAN PEARCE Approved as to style and content by: , ~ I ' p Chairman of Committee ead of Departmen em er Member May 1975 ABSTRACT Waste...

  19. The effect of concentration on the structure and crystallinity of a cementitious waste form for caustic wastes

    SciTech Connect (OSTI)

    Chung, Chul-Woo; Turo, Laura A.; Ryan, Joseph V.; Johnson, Bradley R.; McCloy, John S.

    2013-06-01

    Cement-based waste forms have long been considered economical technologies for disposal of various types of waste. A solidified cementitious waste form, Cast Stone, was developed to immobilize the radioactive secondary waste from vitrification processes. In this work, Cast Stone was considered for a Na-based caustic liquid waste, and its physical properties were analyzed as a function of liquid waste loading up to 2 M Na. Differences in crystallinity (phase composition), microstructure, mesostructure (pore size distribution, surface area), and macrostructure (density, compressive strength) were investigated using various analytical techniques, in order to assess the suitability of Cast Stone as a chemically durable waste. It was found that the concentration of secondary waste simulant (caustic waste) had little effect on the relevant engineering properties of Cast Stone, showing that Cast Stone could be an effective and tolerant waste form for a wide range of concentrations of high sodium waste.

  20. Archaeological mounds as analogs of engineered covers for waste disposal sites: Literature review and progress report. [Appendix contains bibliography and data on archaeological mounds

    SciTech Connect (OSTI)

    Chatters, J C; Gard, H A

    1991-09-01

    Closure caps for low-level radioactive waste disposal facilities are typically designed as layered earthen structures, the composition of which is intended to prevent the infiltration of water and the intrusion of the public into waste forms. Federal regulations require that closure caps perform these functions well enough that minimum exposure guidelines will be met for at least 500 years. Short-term experimentation cannot mimic the conditions that will affect closure caps on the scale of centuries, and therefore cannot provide data on the performance of cap designs over long periods of time. Archaeological mounds hundreds to thousands of years old which are closely analogous to closure caps in form, construction details, and intent can be studied to obtain the necessary understanding of design performance. Pacific Northwest Laboratory conducted a review and analysis of archaeological literature on ancient human-made mounds to determine the quality and potential applicability of this information base to assessments of waste facility design performance. A bibliography of over 200 English-language references was assembled on mound structures from the Americas, Europe, and Asia. A sample of these texts was read for data on variables including environmental and geographic setting, condition, design features, construction. Detailed information was obtained on all variables except those relating to physical and hydrological characteristics of the mound matrix, which few texts presented. It is concluded that an extensive amount of literature and data are available on structures closely analogous to closure caps and that this information is a valuable source of data on the long-term performance of mounded structures. Additional study is recommended, including an expanded analysis of design features reported in the literature and field studies of the physical and hydraulic characteristics of different mound designs. 23 refs., 10 figs., 12 tabs.

  1. Charging Up in King County, Washington

    Broader source: Energy.gov [DOE]

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

  2. University of Washington ENTERPRISE RISK MANAGEMENT

    E-Print Network [OSTI]

    Kaminsky, Werner

    University of Washington ENTERPRISE RISK MANAGEMENT 2010 Annual Report #12;ERM 2010 Annual Report 2 December 2010 "Enterprise Risk Management" (ERM) - a process - to integrate risk into strategic UW Enterprise Risk Management Framework . . . . . . . . . 6 Illustration of ERM Components

  3. Physicists and Technologists in Washington | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicists and Technologists in Washington April 4, 2012 Last week we were visited by Dr. Gerald Blazey, the assistant director for Physical Sciences of the Office of Science and...

  4. Charging Up in King County, Washington

    ScienceCinema (OSTI)

    Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

    2013-05-29

    King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

  5. ATTACHMENT 1 Washington State University Vancouver

    E-Print Network [OSTI]

    ATTACHMENT 1 Washington State University Vancouver Stormwater Management Program (SWMP) WSU PERMIT VANCOUVER STORMWATER MANAGEMENT PROGRAM TABLE OF CONTENTS S6.A Stormwater Management Program (SWMP Site Stormwater Runoff Control_______________________ 8 S6.D.5 Post-Construction Stormwater Management

  6. 2015 GRADUATE STUDIES ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    waste engineering; ground water modeling and treatment; air quality monitoring, pollution control: environmental biotechnology; water quality and treatment; wastewater reclamation and reuse; hazardous and solid Principles · Contaminant Sediment Geochemistry · Design of Treatment Facilities for Drinking Water

  7. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect (OSTI)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  8. William A. Stein References Cited (858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

    E-Print Network [OSTI]

    Stein, William

    William A. Stein References Cited (858) 220-6876 wstein@math.washington.edu http://sage.math.washington and Number Theory, http://modular.math.washington.edu/msri07/. [BMSW06] B. Bektemirov, B. Mazur, W. Stein), http://sage.math.washington.edu/papers/bmsw-rank/. [CDR+07] J. Cremona, H. Darmon, K. Ribet, R. Sharifi

  9. William A. Stein References Cited (858) 220-6876 wstein@math.washington.edu http://sage.math.washington.edu

    E-Print Network [OSTI]

    Stein, William

    William A. Stein References Cited (858) 220-6876 wstein@math.washington.edu http://sage.math.washington Theory, (Jan. 29­Feb. 2, 2007), http://modular.math.washington.edu/msri07/. [2] J. Cremona, H. Darmon, K://matplotlib.sourceforge.net/ (2005). [10] D. Joyner and W. Stein, Workshop: SAGE Days 1, UC San Diego (February 2006), http://sage.math.washington

  10. 1999 GWU, RPI, VCU All Rights Reserved Washington State Ferries Risk Assessment -Appendix III The Washington State

    E-Print Network [OSTI]

    van Dorp, Johan René

    © 1999 GWU, RPI, VCU ­ All Rights Reserved Washington State Ferries Risk Assessment - Appendix III The Washington State Ferries Risk Assessment Appendix III: Detailed Discussion of Modeling Methodology and Assumptions. JULY 1, 1999 Prepared for: Blue Ribbon Panel on Washington State Ferry Safety and Washington

  11. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    = head, T = tail. Then = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. Example: Toss a coin until the first three times. Describe the following events. 1 E1: three heads occur. E1 = {HHH}. 2 E2: exactly two heads(TTH) = 1, N(HHH) = 3, N(HTH) = 2, N(TTT) = 0. Example: Sample a product from an assembly line. Let

  12. Math/Stat 370: Engineering Statistics, Washington State University

    E-Print Network [OSTI]

    Li, Haijun

    a fair coin three times. The sample space = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}. Let N denote University Week 4 3 / 19 #12;Example Toss a fair coin three times. The sample space = {HHH, HHT, HTH, THH University Week 4 3 / 19 #12;Example Toss a fair coin three times. The sample space = {HHH, HHT, HTH, THH

  13. Central Washington University: 2014 Engineering Technologies, Safety & Construction Fair

    Broader source: Energy.gov [DOE]

    Location: 400 E. University Way Ellensburg, WA 98926, SURC BallroomPOC: Heather BainWebsite: http://bit.ly/1pgOpN7

  14. Biomass groups: 13 April 2012 H222c Ener&Env 1. Gillian kenagyg@u.washington.edu , kenagyg@u.washington.edu

    E-Print Network [OSTI]

    Biomass groups: 13 April 2012 H222c Ener&Env 1. Gillian kenagyg@u.washington.edu , kenagyg@u.washington.edu Tarra ttheisen@u.washington.edu Emily halvoe@u.washington.edu Alex adadgar@u.washington.edu Maddy mjyoung@u.washington.edu 2. Leslie lhedwards2@gmail.com , leslie2@u.washington.edu Addy adairpc@u.washington

  15. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    SciTech Connect (OSTI)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Crawford, C. L.; Daniel, W. E.; Fox, K. M.; Herman, C. C.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.; Brown, C. F.; Qafoku, N. P.; Neeway, J. J.; Valenta, M. M.; Gill, G. A.; Swanberg, D. J.; Robbins, R. A.; Thompson, L. E.

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  16. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    #12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

  17. S. M. PENNY Department of Atmospheric Sciences, University of Washington, Seattle, Washington

    E-Print Network [OSTI]

    Battisti, David

    Reply S. M. PENNY Department of Atmospheric Sciences, University of Washington, Seattle, Washington received 4 November 2010, in final form 2 March 2011) ABSTRACT Penny et al. recently showed and the amplitude compares well with the midwinter suppression. 1. Introduction Penny et al. (2010, hereafter PRB10

  18. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    SciTech Connect (OSTI)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  19. Maintenance study for W-340 Waste Retrieval System

    SciTech Connect (OSTI)

    Christensen, C.; Conner, C.C.; Sekot, J.P.

    1994-05-01

    This study was performed to identify attributes and maintainability requirements for the Tank Waste Retrieval System (TWRS). The system will be developed for Westinghouse Hanford Company in Richland, Washington, as an integrated system to perform waste removal in Tank C-106 and, thus, demonstrate technologies for tank remediation that will satisfy requirements of the Tri-Party Agreement. The study examines attributes of the TWRS, scope of maintenance operations required for the TWRS, maintenance requirements, and potential methods of performing maintenance functions. Recommendations are provided for consideration in the development of both the conceptual design and performance specification, which will be used in procuring the W-340 Waste Retrieval System.

  20. An Exploration of the Perceptions and Utilizations of Networking Systems in Washington, D.C.

    E-Print Network [OSTI]

    Lindsey, Robynne

    2013-01-01

    Personal Interview. Washington, D.C. , July 25, 2013.Personal Interview. Washington, D.C. , August 12, 2013.Personal Interview. Washington, D.C. , July 17, 2013. 12

  1. Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves

    E-Print Network [OSTI]

    2015-01-01

    oxygen variability on the Washington and Oregon continentalin Juan de Fuca Canyon, Washington, Geophys. Res. Lett. ,oxygen ?uxes on the Washington shelf and slope: A comparison

  2. Washington State Department of Transportation Bridge Maintenance and Inspection Guidance for Protected Terrestrial Species

    E-Print Network [OSTI]

    Carey, Marion

    2007-01-01

    7404, careym@WSDOT.wa.gov), Washington State Department ofspecies that utilize the Washington State Department ofspecies that utilize the Washington State Department of

  3. Vegetation stability and the habitat associations of the endemic taxa of the Olympic Peninsula, Washington, USA

    E-Print Network [OSTI]

    Gavin, Daniel G.

    2015-01-01

    Olympic Peninsula, Washington (USA). Ecological Monographs,gradients, Olympic Peninsula, Washington, USA. Holocene, 15,forests, Olympic Peninsula, Washington, USA. Holocene, 11,

  4. The Economic Impact of Extending Marriage to Same-Sex Couples in Washington State

    E-Print Network [OSTI]

    Kastanis, Angeliki; Badgett, M.V. Lee; Herman, Jody L.

    2012-01-01

    tax burden for the State of Washington according to the Taxsurvey/. State of Washington Department of Commerce. (2011). Washington State Travel Impacts 1991-2010p. Retrieved

  5. Historical Shoreline Evolution as a Response to Dam Placement on the Elwha River, Washington

    E-Print Network [OSTI]

    Nagid, Bethany Marie

    2015-01-01

    of the Elwha River, Washington- Biological and physicalthe Elwha River, Washington, U.S. , Fisheries Management &on the Elwha River, Washington, USA: River channel and

  6. The Impact of Washington's Budget of Allowing Same-Sex Couples to Marry

    E-Print Network [OSTI]

    Badgett, M.V. Lee; Sears, Brad; Kukura, Elizabeth; Lau, Holning S.

    2006-01-01

    and Rubenstein, at 4. 93 Washington State Department ofFinancial Report, at 94 Washington State Department ofLongwoods International, “Washington State Visitor Profile:

  7. Washington – Sexual Orientation and Gender Identity Law and Documentation of Discrimination

    E-Print Network [OSTI]

    Sears, Brad

    2009-01-01

    a 2007 complaint to the Washington State Human Rightsdriver employed by the Washington Department of Wash. StateExec. Order No. 93-07 (1993). WASHINGTON Williams Institute

  8. 2013 Washington State Budget-Recession and Basic Education as a Constitutional Paramount Duty

    E-Print Network [OSTI]

    Benjamin, Francis; Chavez, Maria; Lovrich, Nicholas

    2015-01-01

    Commission. 2012. “2011 Washington State Redistricting Com-P. Lovrich. Pullman, WA: Washington State University Press.eds. 2011. Governing Washington: Political and Government in

  9. Method and apparatus for conserving waste energy

    SciTech Connect (OSTI)

    Eldifrawi, A.A.

    1981-05-12

    A method and apparatus are disclosed for conserving waste energy by transferring waste heat from an internal combustion engine, solar energy or from any other source of waste heat energy of a temperature of 200/sup 0/F or above, to a carrier liquid includes conveying the heated carrier liquid to a heat exchanger, pressurizing a refrigerant by heating the refrigerant with heat energy extracted from the heated carrier liquid and performing work with the pressurized refrigerant. The preferred embodiments include a modified Rankine-Sterling cycle engine and a dual absorption generator system.

  10. Hanford facility dangerous waste permit application, general information portion

    SciTech Connect (OSTI)

    Hays, C.B.

    1998-05-19

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in this report).

  11. Appendix A Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    , and Asia and on energy-facility siting, including nuclear waste shipping and storage. In addition to his in the management of engineering projects, including uranium processing facilities and their quality assurance has received is the 1996 Joan Hodges Queneau Medal for outstanding engineering achievement

  12. Appendix A Nuclear Waste Technical Review Board

    E-Print Network [OSTI]

    , and Asia and on energy facility siting, including nuclear waste ship- ping and storage. In addition to his exten- sive experience in the management of engineering projects, including uranium processing Queneau Medal for outstanding engineering achievement in environmental conservation, awarded jointly

  13. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    SciTech Connect (OSTI)

    Hamel, W. F. [Office of River Protection, U.S. Department of Energy, 2400 Stevens Drive, Richland, WA 99354 (United States); Gerdes, K. [U.S. Department of Energy, 19901 Germantown Road, Germantown, MD 20874 (United States); Holton, L. K. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States); Pegg, I.L. [Vitreous State Laboratory, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Bowan, B.W. [Duratek, Inc., 10100 Old Columbia Road, Columbia, Maryland 21046 (United States)

    2006-07-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  14. Waste Information Management System with 2012-13 Waste Streams - 13095

    SciTech Connect (OSTI)

    Upadhyay, H.; Quintero, W.; Lagos, L.; Shoffner, P.; Roelant, D. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)

    2013-07-01

    The Waste Information Management System (WIMS) 2012-13 was updated to support the Department of Energy (DOE) accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to waste treatment and disposal were potential critical path issues under the accelerated schedule. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of radioactive waste that would be generated by DOE sites over the next 40 years. Each local DOE site historically collected, organized, and displayed waste forecast information in separate and unique systems. In order for interested parties to understand and view the complete DOE complex-wide picture, the radioactive waste and shipment information of each DOE site needed to be entered into a common application. The WIMS application was therefore created to serve as a common application to improve stakeholder comprehension and improve DOE radioactive waste treatment and disposal planning and scheduling. WIMS allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, developed and deployed the web-based forecast and transportation system and is responsible for updating the radioactive waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  15. Tank waste remediation system operational scenario

    SciTech Connect (OSTI)

    Johnson, M.E.

    1995-05-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the strontium and cesium capsules) in an environmentally sound, safe, and cost-effective manner (DOE 1993). This operational scenario is a description of the facilities that are necessary to remediate the Hanford Site tank wastes. The TWRS Program is developing technologies, conducting engineering analyses, and preparing for design and construction of facilities necessary to remediate the Hanford Site tank wastes. An Environmental Impact Statement (EIS) is being prepared to evaluate proposed actions of the TWRS. This operational scenario is only one of many plausible scenarios that would result from the completion of TWRS technology development, engineering analyses, design and construction activities and the TWRS EIS. This operational scenario will be updated as the development of the TWRS proceeds and will be used as a benchmark by which to evaluate alternative scenarios.

  16. 33engineering EnginEEring and

    E-Print Network [OSTI]

    Wagner, Stephan

    33engineering EnginEEring and ThE builT EnvironmEnT www.wits.ac.za/ebe #12;34 guide for applicants 2015 The study of Engineering Career opportunities for engineers are limitless and extend beyond the formal engineering sector. A career in engineering requires special talents ­ engineers need

  17. Civil, Architectural, and Environmental Engineering Department of Civil, Architectural, and Environmental Engineering

    E-Print Network [OSTI]

    Heller, Barbara

    research areas include air pollution, energy and sustainability, hazardous waste en- gineering, indoor air Engineering Hazardous Waste Management Indoor Air Quality Infrastructure Engineering and Management with state-of-the-art hardware and software. Research Areas The main research areas in the department

  18. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 2, Chapter C, Appendix C1--Chapter C, Appendix C3 (beginning), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  19. 1994 Washington State directory of Biomass Energy Facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1994-03-01

    This is the fourth edition of the Washington Directory of Biomass Energy Facilities, the first edition was published in 1987. The purpose of this directory is to provide a listing of and basic information about known biomass producers and users within the state to help demonstrate the importance of biomass energy in fueling our state`s energy needs. In 1992 (latest statistical year), estimates show that the industrial sector in Washington consumed nearly 128 trillion Btu of electricity, nearly 49.5 trillion Btu of petroleum, over 82.2 trillion Btu of natural gas, and over 4.2 trillion Btu of coal. Facilities listed in this directory generated approximately 114 trillion Btu of biomass energy - 93 trillion were consumed from waste wood and spent chemicals. In the total industrial energy picture, wood residues and chemical cooking liquors placed second only to electricity. This directory is divided into four main sections biogas production, biomass combustion, ethanol production, and solid fuel processing facilities. Each section contains maps and tables summarizing the information for each type of biomass. Provided in the back of the directory for reference are a conversion table, a table of abbreviations, a glossary, and an index. Chapter 1 deals with biogas production from both landfills and sewage treatment plants in the state. Biogas produced from garbage and sewage can be scrubbed and used to generate electricity. At the present time, biogas collected at landfills is being flared on-site, however four landfills are investigating the feasibility of gas recovery for energy. Landfill biogas accounted for approximately 6 percent of the total biomass reported. Sewage treatment biogas accounted for 0.6 percent. Biogas generated from sewage treatment plants is primarily used for space and process heat, only one facility presently scrubs and sells methane. Together, landfill and sewage treatment plant biogas represented over 6.6 percent of the total biomass reported.

  20. 1990 Washington State directory of biomass energy facilities

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1990-01-01

    This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.