Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Recovery Council (ERC) Wast to Energy (WTE) | Open Energy  

Open Energy Info (EERE)

Energy Recovery Council (ERC) Wast to Energy (WTE) Energy Recovery Council (ERC) Wast to Energy (WTE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Recovery Council (ERC) Wast to Energy (WTE) Agency/Company /Organization: Energy Recovery Council (ERC) Sector: Energy Focus Area: Biomass, - Waste to Energy Phase: Create a Vision Resource Type: Dataset, Publications, Guide/manual User Interface: Website Website: www.wte.org/ Cost: Free The Energy Recovery Council is a national trade organization representing the waste-to-energy industry and communities that own waste-to-energy facilities. Overview The Energy Recovery Council is a national trade organization representing the waste-to-energy industry and communities that own waste-to-energy facilities. The website includes information on waste-to-energy basics

2

Solid waste energy recovery for brackish water desalination  

SciTech Connect (OSTI)

Introduced is the concept of combining solid-waste energy recovery with brackish water desalination for water supply improvement. The history of such plants is briefly detailed, and performance and operating cost data of several existing desalination plants is given. It is concluded that the combination of solid waste energy recovery utilizing modular combustion units and brackish water desalination using the reverse osmosis process can cancel out the energy-related negative aspects of both technologies. Furthermore, with innovative planning and adequate political, financial and technical leadership, communities that meet criteria outlined in the report can convert a waste disposal problem into a resource for the betterment of the community and its surrounding neighbors.

Bailie, R.E.

1982-07-01T23:59:59.000Z

3

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

4

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect (OSTI)

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

5

Low Temperature Waste Energy Recovery at Chemical Plants and Refineries  

E-Print Network [OSTI]

Technologies to economically recover low-temperature waste energy in chemical plants and refineries are the holy grail of industrial energy efficiency. Low temperature waste energy streams were defined by the Texas Industries of the Future Chemical...

Ferland, K.; papar, R.; Quinn, J.; Kumar, S.

2013-01-01T23:59:59.000Z

6

Energy recovery from solid waste fuels using advanced gasification technology  

SciTech Connect (OSTI)

Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

1998-12-31T23:59:59.000Z

7

Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery  

E-Print Network [OSTI]

LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM waste (FW) and their mixture (MW) in batch digesters was evaluated under mesophilic conditions. BW waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION

Paris-Sud XI, Université de

8

Nanjing Green Waste Recovery Engineering Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Green Waste Recovery Engineering Co Ltd Green Waste Recovery Engineering Co Ltd Jump to: navigation, search Name Nanjing Green Waste Recovery Engineering Co. Ltd Place Nanjing, Jiangsu Province, China Zip 210024 Sector Biomass Product Chinese biomass project developer. The company developed a landfill gas plant in Nanjing, China. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Use of Thermal Energy Storage to Enhance the Recovery and Utilization of Industrial Waste Heat  

E-Print Network [OSTI]

evaluation involving process data from 12 industrial plants to determine if thermal energy storage (TES) systems can be used with commercially available energy management equipment to enhance the recovery and utilization of industrial waste heat. Results...

McChesney, H. R.; Bass, R. W.; Landerman, A. M.; Obee, T. N.; Sgamboti, C. T.

1982-01-01T23:59:59.000Z

10

Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom  

SciTech Connect (OSTI)

Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk [Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk [Strategy Unit, Welsh Assembly Government, Ty Cambria, 29 Newport Road, Cardiff CF24 0TP (United Kingdom); Coleman, Terry, E-mail: terry.coleman@erm.com [Environmental Resources Management Ltd, Eaton House, Wallbrook Court, North Hinksey Lane, Oxford OX2 0QS (United Kingdom); Rampling, Terence, E-mail: twa.rampling@hotmail.com [7 Thurlow Close, Old Town Stevenage, Herts SG1 4SD (United Kingdom)

2011-09-15T23:59:59.000Z

11

Waste to Energy Energy Recovery of Green Bin Waste: Incineration/Biogas Comparison  

Science Journals Connector (OSTI)

This study presents how to determine marginal incinerator energy efficiencies. This concept should be applied in ... depend on the technical level, the surrounding energy system, and the waste type/heating value ...

Lasse Tobiasen; Kristian Kahle

2014-12-01T23:59:59.000Z

12

Waste Energy Analysis Recovery for a Typical Food Processing Plant  

E-Print Network [OSTI]

An energy analysis made for the Joan of Arc Food Processing Plant in St. Francisville, Louisiana indicated that a significant quantity of waste heat energy was being released to the atmosphere in the forms of low quality steam and hot flue gases...

Miller, P. H.; Mann, L., Jr.

1980-01-01T23:59:59.000Z

13

Recovery of Energy and Chrome from Leather Waste  

E-Print Network [OSTI]

compounds can result in a saving of some 25 million dollars per year for the industry. The paper presents a pyrolysis method for handling leather tanning wastes to recover energy and chromium compounds for use in the tanning process. Energy and cost savings...

Muralidhara, H. S.; Maggin, B.

1979-01-01T23:59:59.000Z

14

Analysis of energy recovery potential using innovative technologies of waste gasification  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

Lombardi, Lidia, E-mail: lidia.lombardi@unifit.it [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Carnevale, Ennio [Dipartimento di Energetica, University of Florence, via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell'Informazione, University of Siena, via Roma 56, 56100 Siena (Italy)

2012-04-15T23:59:59.000Z

15

Status report on energy recovery from municipal solid waste: technologies, lessons and issues. Information bulletin of the energy task force of the urban consortium  

SciTech Connect (OSTI)

A review is presented of the lessons learned and issues raised regarding the recovery of energy from solid wastes. The review focuses on technologies and issues significant to currently operating energy recovery systems in the US - waterwall incineration, modular incineration, refuse derived fuels systems, landfill gas recovery systems. Chapters are: Energy Recovery and Solid Waste Disposal; Energy Recovery Systems; Lessons in Energy Recovery; Issues in Energy Recovery. Some basic conclusions are presented concerning the state of the art of energy from waste. Plants in shakedown or under construction, along with technologies in the development stages, are briefly described. Sources of additional information and a bibliography are included. (MCW)

None

1980-01-01T23:59:59.000Z

16

Thermal energy recovery of low grade waste heat in hydrogenation process; tervinning av lgvrdig spillvrme frn en hydreringsprocess.  

E-Print Network [OSTI]

?? The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which (more)

Hedstrm, Sofia

2014-01-01T23:59:59.000Z

17

Waste Heat Recovery  

Office of Environmental Management (EM)

DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

18

Recovery Act: Waste Energy Project at AK Steel Corporation Middletown  

SciTech Connect (OSTI)

In 2008, Air Products and Chemicals, Inc. (Air Products) began development of a project to beneficially utilize waste blast furnace topgas generated in the course of the iron-making process at AK Steel Corporations Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives by demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.

Joyce, Jeffrey

2012-06-30T23:59:59.000Z

19

Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry  

E-Print Network [OSTI]

, and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

1979-01-01T23:59:59.000Z

20

GreenWaste Recovery Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place: San Jose, California Zip: 95112 Product: California-based solid waste and recycling company that specialises in the collection and processing of residential and...

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Renewable energy of waste heat recovery system for automobiles  

Science Journals Connector (OSTI)

A system to recover waste heat comprised of eight thermoelectric generators (TEGs) to convert heat from the exhaust pipe of an automobile to electrical energy has been constructed. Simulations and experiments for the thermoelectric module in this system are undertaken to assess the feasibility of these applications. In order to estimate the temperature difference between thermoelectric elements a network of thermal resistors is constructed. The results assist in predicting power output of TEG module more precisely. Three configurations of heat sinks which are comprised of 10 22 and 44 fins are applied in this simulation. The results of the simulations show the average thermal resistance of these heat sinks in each section of the system with varied velocity of external flow. As the performance of a TEG module is influenced by an applied pressure through the effect of the thermal contact resistance we clamp the TE module to our experimental apparatus; the relation between power output and pressure applied in this case is presented. Besides simulations the system is designed and assembled. Measurements followed the connection of the system to the middle of an exhaust pipe. Through these simulations and experiments the power generated with a commercial TEG is presented. The results establish the fundamental development of materials that enhance the TEG efficiency for vehicles.

Cheng-Ting Hsu; Da-Jeng Yao; Ke-Jyun Ye; Ben Yu

2010-01-01T23:59:59.000Z

22

Waste Steam Recovery  

E-Print Network [OSTI]

An examination has been made of the recovery of waste steam by three techniques: direct heat exchange to process, mechanical compression, and thermocompression. Near atmospheric steam sources were considered, but the techniques developed are equally...

Kleinfeld, J. M.

1979-01-01T23:59:59.000Z

23

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect (OSTI)

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

24

Composites for Multi-energy conversion & waste heat recovery  

Broader source: Energy.gov [DOE]

Discusses development of a composite that transfers energy between thermal, electrical, magnetic, and mechanical types and a composite material that improves performance through in situ strengthening

25

Thermoeconomic optimization of sensible heat thermal storage for cogenerated waste-to-energy recovery  

SciTech Connect (OSTI)

This paper investigates the feasibility of employing thermal storage for cogenerated waste-to-energy recovery such as using mass-burning water-wall incinerators and topping steam turbines. Sensible thermal storage is considered in rectangular cross-sectioned channels through which is passed unused process steam at 1,307 kPa/250 C (175 psig/482 F) during the storage period and feedwater at 1,307 kPa/102 C (175 psig/216 F) during the recovery period. In determining the optimum storage configuration, it is found that the economic feasibility is a function of mass and specific heat of the material and surface area of the channel as well as cost of material and fabrication. Economic considerations included typical cash flows of capital charges, energy revenues, operation and maintenance, and income taxes. Cast concrete is determined to be a potentially attractive storage medium.

Abdul-Razzak, H.A. [Texas A and M Univ., Kingsville, TX (United States). Dept. of Mechanical and Industrial Engineering; Porter, R.W. [Illinois Inst. of Tech., chicago, IL (United States). Dept. of Mechanical and Aerospace Engineering

1995-10-01T23:59:59.000Z

26

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

27

Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery the Municipal Solid Wastes (the Municipal Solid Wastes (MSWMSW) of Beograd) of Beograd  

E-Print Network [OSTI]

Potential for Materials and Energy RecoveryPotential for Materials and Energy Recovery fromfrom;26.2World total 1.30.255.2Developing world 0.380.550.7 EU, Japan, Canada, Australia 0.331.10.3U.S.A. Tons MSW generated, billions Tons MSW per capita Population, billion Global generation of MSW Estimated SCG

Columbia University

28

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

29

Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration  

SciTech Connect (OSTI)

Incineration of municipal solid waste is a debated waste management technology. In some countries it is the main waste management option whereas in other countries it has been disregarded. The main discussion point on waste incineration is the release of air emissions from the combustion of the waste, but also the energy recovery efficiency has a large importance. The historical development of air pollution control in waste incineration was studied through life-cycle-assessment modelling of eight different air pollution control technologies. The results showed a drastic reduction in the release of air emissions and consequently a significant reduction in the potential environmental impacts of waste incineration. Improvements of a factor 0.85-174 were obtained in the different impact potentials as technology developed from no emission control at all, to the best available emission control technologies of today (2010). The importance of efficient energy recovery was studied through seven different combinations of heat and electricity recovery, which were modelled to substitute energy produced from either coal or natural gas. The best air pollution control technology was used at the incinerator. It was found that when substituting coal based energy production total net savings were obtained in both the standard and toxic impact categories. However, if the substituted energy production was based on natural gas, only the most efficient recovery options yielded net savings with respect to the standard impacts. With regards to the toxic impact categories, emissions from the waste incineration process were always larger than those from the avoided energy production based on natural gas. The results shows that the potential environmental impacts from air emissions have decreased drastically during the last 35 years and that these impacts can be partly or fully offset by recovering energy which otherwise should have been produced from fossil fuels like coal or natural gas.

Damgaard, Anders, E-mail: and@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Riber, Christian [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Fruergaard, Thilde [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Hulgaard, Tore [Ramboll, Consulting Engineers, Teknikerbyen 31, DK-2830 Virum (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

30

Waste heat recovery system for recapturing energy after engine aftertreatment systems  

SciTech Connect (OSTI)

The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

Ernst, Timothy C.; Nelson, Christopher R.

2014-06-17T23:59:59.000Z

31

Exhaust Energy Recovery | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications A Quantum Leap for Heavy-Duty Truck Engine Efficiency - Hybrid Power System of Diesel and WHR-ORC Engines Cummins Waste Heat Recovery Exhaust Energy...

32

Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery  

SciTech Connect (OSTI)

Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

Yang Na [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Hua, E-mail: zhanghua_tj@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Chen Miao; Shao Liming [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); He Pinjing, E-mail: xhpjk@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2012-12-15T23:59:59.000Z

33

Waste Isolation Pilot Plant Recovery Plan  

Broader source: Energy.gov [DOE]

This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nations defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Departments approach to meet that schedule while prioritizing safety, health, and environmental protection.

34

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

35

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Broader source: Energy.gov [DOE]

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

36

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

37

Industrial waste heat recovery and cogeneration involving organic Rankine cycles  

Science Journals Connector (OSTI)

This paper proposes a systematic approach for energy integration involving waste heat recovery through an organic Rankine cycle (ORC). The proposed approach is based...

Csar Giovani Gutirrez-Arriaga

2014-08-01T23:59:59.000Z

38

WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint |  

Broader source: Energy.gov (indexed) [DOE]

Uses Recovery Act Funding to Reduce Nuclear Waste Footprint Uses Recovery Act Funding to Reduce Nuclear Waste Footprint WIPP Uses Recovery Act Funding to Reduce Nuclear Waste Footprint August 1, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy's (DOE's) Carlsbad Field Office (CBFO) reduced the nuclear waste footprint by using American Recovery and Reinvestment Act funds to expedite the clean up of five transuranic (TRU) waste storage sites and to make important infrastructure improvements at the Waste Isolation Pilot Plant (WIPP). Expediting TRU waste shipments supports DOE's goal to dispose of 90 percent of legacy TRU waste by 2015, saving taxpayers million of dollars in storage and maintenance costs. Recovery Act funds allowed highly trained teams to safely prepare and load

39

Rankine cycle waste heat recovery system  

DOE Patents [OSTI]

This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

Ernst, Timothy C.; Nelson, Christopher R.

2014-08-12T23:59:59.000Z

40

Resource recovery - a byproduct of hazardous waste incineration  

SciTech Connect (OSTI)

Three principal areas of a chlorinated hydrocarbon waste disposal system for a typical vinyl chloride monomer (VCM) facility are described: the incinerator, the energy-recovery system, and the byproduct-recovery system. The overall efficiency of the energy- and *byproduct-recovery systems is dependent on the optimization of the primary combustor. An example is presented in table form which lists typical waste quantities for the plant and operating costs, including utility requirements for the incinerator system, the quench, absorber and scrubber. Savings that can result by the addition of the energy- and acid-recovery systems can pay for the waste disposal system and return money to the plant.

Santoleri, J.J.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery...

42

Energy recovery system  

DOE Patents [OSTI]

The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.

Moore, Albert S. (Morgantown, WV); Verhoff, Francis H. (Morgantown, WV)

1980-01-01T23:59:59.000Z

43

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

44

Energy recovery with turbo expanders  

SciTech Connect (OSTI)

In the oil, gas and petrochemical industry, there are many instances where energy is under-utilized, if not actually wasted. In many cases it may be possible to recover some of this energy and obtain useful work, thereby improving plant efficiency and the economics of the operation. The turbo expander is a simple device that can make a significant contribution to the recovery of energy in all kinds of plants. This paper considers some ways in which turbo expanders may be used and looks in detail at an application in the gas industry where the energy lost in pressure reduction may be recovered and used to assist in reducing operating costs. The design criteria for such turbo expanders are discussed and areas for future development are proposed. The paper concludes that there are significant gains to be made in the recovery of waste energy and that the turbo expander can play a major role in this activity.

Cleveland, A.

1986-01-01T23:59:59.000Z

45

Energy and materials savings from gases and solid waste recovery in the iron and steel industry in Brazil: An industrial ecology approach  

SciTech Connect (OSTI)

This paper attempts to investigate, from an entropic point of view, the role of selected technologies in the production, transformation, consumption and release of energy and materials in the Iron and Steel Industry in Brazil. In a quantitative analysis, the potential for energy and materials savings with recovery of heat, gases and tar are evaluated for the Iron and Steel Industry in Brazil. The technologies for heat recovery of gases include Coke Dry Quenching (CDQ), applied only in one of the five Brazilian coke integrated steel plants, Top Gas Pressure Recovery Turbines (TPRT), recovery of Coke Oven Gas (COG), recovery of Blast Furnace Gas (BFG), recovery of BOF gas, recovery of tar, and thermal plant. Results indicate that, in a technical scenario, some 5.1 TWh of electricity can be generated if these technologies are applied to recover these remaining secondary fuels in the Iron and Steel Industry in Brazil, which is equivalent to some 45% of current total electricity consumption in the integrated plants in the country. Finally, solid waste control technologies, including options available for collection and treatment, are discussed. Estimates using the best practice methodology show that solid waste generation in the Iron and Steel Industry in Brazil reached approximately 18 million metric tons in 1994, of which 28% can be recirculated if the best practice available in the country is applied thoroughly.

Costa, M.M.; Schaeffer, R.

1997-07-01T23:59:59.000Z

46

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

47

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

48

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

49

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

50

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

51

Prospects for energy recovery from plastic waste gasifiers by means of MHD topping cycle  

SciTech Connect (OSTI)

In this paper the authors present a feasibility study of a combined MagnetoHydroDynamic (MHD) and steam turbine plant in which the working gas is made of burnt plastic waste. The possibility of MHD retrofit of existing plant, especially fed by fossil fuel, is well known, and has been studied both for its economical and environmental benefits. The environmental impact and the elimination of pollution agents has become a prime necessity in waste digestion. Furthermore, plants in which the production of electrical power by means of burnt gases produced in the digestion process have been designed and built. In this field an MHD integration plant could be very attractive. This feasibility study has been developed by simulating an ideal plant with a plastic incinerator, an MHD device and conventional steam turbines. As a result, the simulations have indicated economic and environmental advantages with notable efficiency improvements in the generation of electrical power.

Geri, A.; Verdone, N.; Salvini, A.

1999-12-01T23:59:59.000Z

52

ISWA Study Tour WASTE-TO-ENERGY  

E-Print Network [OSTI]

for Waste Treatment and Energy Recovery" Fundamentals of drying, pyrolysis, gasification, and combustionISWA Study Tour WASTE-TO-ENERGY Programme, June 22-27, 2014 Czech Republic Austria Seminar;Practice Seminar on Sustainable Waste Management in Europe based on Prevention, Recycling, Recovery

53

Energy recovery from municipal solid waste and sewage sludge using multi-solid fluidized bed combustion technology  

SciTech Connect (OSTI)

This study was initiated to investigate the recovery of energy from municipal solid waste (MSW) and domestic sewage sludge (DSS) simultaneously by using Battelle's multi-solid fluidized-bed combustion (MS-FBC) technology. The concept was to recover energy as high and low pressure steam, simultaneously. High pressure steam would be generated from flue gas using a conventional tubular boiler. Low pressure steam would be generated by direct contact drying of DSS (as 4% solids) with hot sand in a fluidized bed that is an integral part of the MS-FBC process. It was proposed that high pressure steam could be used for district heating or electricity generation. The low pressure steam could be used for close proximity building heat. Alternatively, low pressure steam could be used to heat wastewater in a sewage treatment plant to enhance sedimentation and biological activity that would provide a captive market for this part of the recovered energy. The direct contact drying or tubeless steam generation eliminates fouling problems that are common during heat exchange with DSS. The MS-FBC process was originally developed for coal and was chosen for this investigation because its combustion rate is about three times that of conventional fluidized beds and it was projected to have the flexibility needed for accomplishing tubeless steam generation. The results of the investigation show that the MS-FBC process concept for the co-utilization of MSW and DSS is technically feasible and that the thermal efficiency of the process is 76 to 82% based on experiments conducted in a 70 to 85 lb/h pilot plant and calculations on three conceptual cases.

Not Available

1981-07-01T23:59:59.000Z

54

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

organic Rankine cycle waste heat power conversion system. Cycle (ORC) System for Waste Heat Recovery. Journal ofRankine Cycles in Waste Heat Uti- lizing Processes.

Luong, David

2013-01-01T23:59:59.000Z

55

Use Feedwater Economizers for Waste Heat Recovery  

SciTech Connect (OSTI)

This revised ITP tip sheet on feedwater economizers for waste heat recovery provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

56

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

57

[Waste water heat recovery system  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

58

Environmental Engineering: Energy Value of Replacing Waste Disposal with Resource Recovery  

Science Journals Connector (OSTI)

...such as UV disinfection. Geothermal Pyrolysis: An Opportunistic...petroleum-like materials by geothermal pyrolysis is an opportunistic...long-exploited fact that heating organic materials with little...be a less demanding use of geothermal energy than previous efforts...

R. Iranpour; M. Stenstrom; G. Tchobanoglous; D. Miller; J. Wright; M. Vossoughi

1999-07-30T23:59:59.000Z

59

Exhaust Energy Recovery  

Broader source: Energy.gov [DOE]

Exhaust energy recovery proposed to achieve 10% fuel efficiency improvement and reduce or eliminate the need for increased heat rejectioncapacity for future heavy duty engines in Class 8 Tractors

60

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and Chemicals, Inc. - Allentown, PA A microbial reverse electrodialysis...

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Broader source: Energy.gov (indexed) [DOE]

(ex: organic Rankine cycle) High installed KW capital Low temperature waste heat (<100C) is not practicable Further efficiency loss in electrolytic conversion to...

62

Recovery of Wasted Mechanical Energy from the Reduction of Natural Gas Pressure  

Science Journals Connector (OSTI)

Abstract At the present time in Romania, the transition from the natural gas transportation system to the distribution system is done only thru the use of pressure reducing stations. Here the pressure drop is usually done by using throttle valves or pressure reducing valves, where the gas energy is spent without doing any work. In this article we propose the use of turbo-expanders in the pressure reducing stations, where the natural gas pressure from the transportation grid is high and needs to drop to lower levels to enter the distribution grids, in this way part of the energy consumed in the compression stations are recovered. The plans are made at this time for a pilot project at the pressure reducing station in the city of Onesti, Bacau County.

Iancu Andrei; Tudorache Valentin; Tarean Cristina; Toma Niculae

2014-01-01T23:59:59.000Z

63

Department of Energy Releases WIPP Recovery Plan  

Broader source: Energy.gov [DOE]

Washington, D.C. Today, the Department of Energy (DOE) released the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP operations were suspended following an underground truck fire and a radiological release earlier this year.

64

Sundstrand waste heat recovery system  

SciTech Connect (OSTI)

The two programs discussed in this report deal with the use of organic Rankine cycle systems as a means of producing electrical or mechanical power from energy in industrial processes' exhaust. Both programs deal with the design, development, demonstration, and economic evaluation of a 600kWe organic Rankine cycle system designed to recover energy from the exhaust of industrial processes with exhaust gas temperatures of 600/sup 0/F or above. The work done has, through the successful operation of the units installed, demonstrated the technical feasibility of utilizing an organic Rankine cycle bottoming system as a means of conserving energy through waste heat utilization. Continued operation at several sites has also demonstrated the soundness of the design, overall system reliability, and low operating cost. In addition, the basis under which this technology is economically viable in industrial applications was established. As a result of market studies and experience gained from the application of the units addressed in this report, it is concluded that there is a significant market for the equipment at the installed cost level of $1200/kWe to $1500/kWe and that this goal is achievable in the proper manufacturing environment. 54 figs., 2 tabs.

Not Available

1984-03-01T23:59:59.000Z

65

Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes  

Broader source: Energy.gov [DOE]

A project to develop a microbial heat recovery cell (MHRC) system prototype using wastewater effluent samples from candidate facilities to produce either electric power or hydrogen

66

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

67

Use Feedwater Economizers for Waste Heat Recovery: Office of Industrial Technologies (OIT) Steam Energy Tips No.3  

SciTech Connect (OSTI)

A feedwater economizer reduces steam boiler fuel requirements by transferring heat from the flue gas to incoming feedwater. Boiler flue gases are often rejected to the stack at temperatures more than 100 F to 150 F higher than the temperature of the generated steam. Generally, boiler efficiency can be increased by 1% for every 40 F reduction in flue gas temperature. By recovering waste heat, an economizer can often reduce fuel requirements by 5% to 10% and pay for itself in less than 2 years. The table provides examples of the potential for heat recovery.

Not Available

2002-03-01T23:59:59.000Z

68

Waste Heat Recovery from Refrigeration  

E-Print Network [OSTI]

heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

Jackson, H. Z.

1982-01-01T23:59:59.000Z

69

Waste?to?Energy  

Broader source: Energy.gov [DOE]

Waste?to?Energy Roadmapping Workshop Waste?to?Energy Presentation by Jonathan Male, Director of the Bioenery Technolgies Office, Department of Energy

70

Recovery Act Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 22, 2011 August 22, 2011 Audit Report: OAS-RA-11-11 The Advanced Research Projects July 28, 2011 Audit Report: OAS-RA-11-10 The Department of Energy's American Recovery and Reinvestment Act - California State Energy Program July 21, 2011 Audit Report: OAS-RA-L-11-10 Department of Energy's Controls over Recovery Act Spending at the Idaho National Laboratory July 7, 2011 Audit Report: OAS-RA-L-11-09 Performance of Recovery Act Funds at the Waste Isolation Pilot Plant June 13, 2011 Audit Report: OAS-RA-11-09 The Department of Energy's Weatherization Assistance Program under the American Recovery and Reinvestment Act in the State of West Virginia June 6, 2011 Audit Report: OAS-RA-11-07 The Department of Energy's Weatherization Assistance Program Funded under the American Recovery and Reinvestment Act for the State of Wisconsin

71

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

72

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Broader source: Energy.gov (indexed) [DOE]

for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development...

73

American Reinvestment Recovery Act | Department of Energy  

Energy Savers [EERE]

American Reinvestment Recovery Act American Reinvestment Recovery Act Federal Energy Regulatory Commission Loan Program American Reinvestment Recovery Act More Documents &...

74

Training Underway for TRU Waste Employees Hired For Recovery...  

Office of Environmental Management (EM)

Training Underway for TRU Waste Employees Hired For Recovery Act Project Training Underway for TRU Waste Employees Hired For Recovery Act Project July 29, 2009 - 12:00pm Addthis...

75

Recovery Act | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

such as a private company or a state or local employing agency, who reports waste, fraud or abuse connected to the use of Recovery Act funds may not be discharged, demoted or...

76

Exhaust Gas Energy Recovery Technology Applications  

SciTech Connect (OSTI)

Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

Wagner, Robert M [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

77

The Conversion of Waste to Energy  

E-Print Network [OSTI]

Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

John, T.; Cheek, L.

1980-01-01T23:59:59.000Z

78

Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) |  

Broader source: Energy.gov (indexed) [DOE]

Louisiana Solid Waste Management and Resource Recovery Law Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) Louisiana Solid Waste Management and Resource Recovery Law (Louisiana) < Back Eligibility Agricultural Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Louisiana Program Type Environmental Regulations Provider Louisiana Department of Environmental Quality The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes rules and regulations that establish standards governing the storage, collection, processing, recovery and reuse, and disposal of solid waste; implement a management program that

79

Department of Energy Releases WIPP Recovery Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Waste Isolation Pilot Plant (WIPP) Recovery Plan, outlining the necessary steps to resume operations at the transuranic waste disposal site outside of Carlsbad, N.M. WIPP...

80

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Economy » Recovery Act Energy Economy » Recovery Act Recovery Act December 18, 2013 BPA Wins Platts Global Energy Award for Grid Optimization Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program. December 13, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through November 30, 2013. December 12, 2013 Energy Department Announces $150 Million in Tax Credits to Invest in U.S. Clean Energy Manufacturing Domestic Manufacturing Projects to Support Renewable Energy Generation as

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

82

Waste-to-Energy: Waste Management and Energy Production Opportunities...  

Office of Environmental Management (EM)

Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

83

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

84

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

85

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

86

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 -- commonly called the "stimulus" -- was designed to spur economic growth while creating new jobs and saving existing ones. Through the Recovery Act, the Energy Department invested more than $31 billion to support a wide range of clean energy projects across the nation -- from investing in the smart grid and developing alternative fuel vehicles to helping homeowners and businesses reduce their energy costs with energy efficiency upgrades and deploying carbon capture and storage technologies. The Department's programs helped create new power sources, conserve resources and aligned the nation to lead the global energy economy. Featured Leaders of the Fuel Cell Pack Fuel cell forklifts like the one shown here are used by leading companies across the U.S. as part of their daily business operations. | Energy Department file photo.

87

Energy Recovery Potential from Wastewater Utilities through Innovation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Potential from Wastewater Utilities through Innovation Conversion Technologies III: Energy from Our Waste-Will we Be Rich in Fuel or Knee Deep in Trash by 2025? July 30,...

88

Wood processing wastes recovery and composted product field test  

SciTech Connect (OSTI)

Lumber mill waste, more than 3,000 tons per month, is one of the main waste sources in I-Lan area. Most of the lumber mill waste is sawdust which takes a large parts of organic-containing wastes in I-Lan county. Wastes from seafood plants around the Sueou Harbor causes a treatment problem because of their high nitrogen and phosphorous concentrations. Furthermore, the distiller-by products in I-Lan Winery are easy to become spoiled and result in odor. In this study, the compost method is suggested to deal with these waste problems and make energy recovery. Microorganisms incubating in the laboratory provide the stable seed needed for composting. Flowers and vegetable raising are scheduled to be used in field to verify the efficiency of the products. The optimal combination ration of wastes and operation criteria then will be concluded in this study after economic analyzing. The results show that the Zinnia elegans leaves growth is relative with organic fertilizer. It can also be illustrated from the statistical value that the F value is 19.4 and above the critical value 9.4.

Chang, C.T.; Lin, K.L. [National Inst. of I-Lan Agriculture and Technology, I-Lan City (Taiwan, Province of China)

1997-12-31T23:59:59.000Z

89

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

31, 2009 31, 2009 Energy Secretary Chu Announces $755 Million in Recovery Act Funding for Environmental Cleanup in Tennessee New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $1.615 Billion in Recovery Act Funding for Environmental Cleanup in South Carolina New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $138 Million in Recovery Act Funding for Environmental Cleanup in Ohio New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $148 million in Recovery Act Funding for Environmental Cleanup in New York New Funding Will Create Jobs and Accelerate Cleanup Efforts March 31, 2009 Energy Secretary Chu Announces $384 Million in Recovery Act Funding for

90

Waste-heat recovery in batch processes using heat storage  

SciTech Connect (OSTI)

The waste-heat recovery in batch processes has been studied using the pinch-point method. The aim of the work has been to investigate theoretical and practical approaches to the design of heat-exchanger networks, including heat storage, for waste-heat recovery in batch processes. The study is limited to the incorporation of energy-storage systems based on fixed-temperature variable-mass stores. The background for preferring this to the alternatives (variable-temperature fixed-mass and constant-mass constant-temperature (latent-heat) stores) is given. It is shown that the maximum energy-saving targets as calculated by the pinch-point method (time average model, TAM) can be achieved by locating energy stores at either end of each process stream. This theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. A simple procedure for determining a number of heat-storage tanks sufficient to achieve the maximum energy-saving targets as calculated by the pinch-point method is described. This procedure relies on combinatorial considerations, and could therefore be labeled the combinatorial method for incorporation of heat storage in heat-exchanger networks. Qualitative arguments justifying the procedure are presented. For simple systems, waste-heat recovery systems with only three heat-storage temperatures (a hot storage, a cold storage, and a heat store at the pinch temperature) often can achieve the maximum energy-saving targets. Through case studies, six of which are presented, it is found that a theoretically large number of heat-storage tanks (twice the number of process streams) can be reduced to just a few tanks. The description of these six cases is intended to be sufficiently detailed to serve as benchmark cases for development of alternative methods.

Stoltze, S.; Mikkelsen, J.; Lorentzen, B.; Petersen, P.M.; Qvale, B. [Technical Univ. of Denmark, Lyngby (Denmark). Lab. for Energetics

1995-06-01T23:59:59.000Z

91

Resource recovery waste heat boiler upgrade  

SciTech Connect (OSTI)

The waste heat boilers installed in a 360 TPD waste to energy plant were identified as the bottle neck for an effort to increase plant capacity. These boilers were successfully modified to accommodate the increase of plant capacity to 408 TPD, improve steam cycle performance and reduce boiler tube failures. The project demonstrated how engineering and operation can work together to identify problems and develop solutions that satisfy engineering, operation, and financial objectives. Plant checking and testing, design review and specification development, installation and operation results are presented.

Kuten, P.; McClanahan, D.E. [Fluor Daniel, Inc., Houston, TX (United States); Gehring, P.R.; Toto, M.L. [SRRI, Springfield, MA (United States); Davis, J.J. [Deltak, Minon, MN (United States)

1996-09-01T23:59:59.000Z

92

Recovery Act | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act Act Recovery Act Total Federal Payments to OE Recovery Act Recipients by Month, through November 30, 2013 Total Federal Payments to OE Recovery Act Recipients by Month, through November 30, 2013 American Recovery and Reinvestment Act Overview PROJECTS TOTAL OBLIGATIONS AWARD RECIPIENTS Smart Grid Investment Grant $3,482,831,000 99 Smart Grid Regional and Energy Storage Demonstration Projects $684,829,000 42 Workforce Development Program $100,000,000 52 Interconnection Transmission Planning $80,000,000 6 State Assistance for Recovery Act Related Electricity Policies $48,619,000 49 Enhancing State Energy Assurance $43,500,000 50 Enhancing Local Government Energy Assurance $8,024,000 43 Interoperability Standards and Framework $12,000,000 1 Program Direction1 $27,812,000 --

93

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

26, 2010 26, 2010 200,000 Homes Weatherized Under the Recovery Act -- Video from Cathy Zoi Vice President Biden announced that 200,000 homes have been Weatherized under the Recovery Act. Hear what Cathy Zoi, Assistant Secretary for Energy Efficiency and Renewable Energy, has to say on Weatherization. August 26, 2010 200,000 homes weatherized under the Recovery Act August 25, 2010 The Recovery Act: Cutting Costs and Upping Capacity Secretary Chu joined Vice President Joe Biden at the White House to help unveil a new report on how investments made through the Recovery Act have been impacting innovation. While the report analyzed several major sectors, its most striking findings centered on energy. August 25, 2010 Eco Technologies, Inc., hired eleven workers to install these solar panels at the Hillsborough County judicial center. | Photo courtesy of Hillsborough County

94

Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 1. Executive summary  

SciTech Connect (OSTI)

Nuclear byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation.

None

1983-08-01T23:59:59.000Z

95

DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste  

Broader source: Energy.gov (indexed) [DOE]

Reaches Recovery Act Goal With Cleanup of All Legacy Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories DOE Reaches Recovery Act Goal With Cleanup of All Legacy Transuranic Waste at Sandia National Laboratories May 3, 2012 - 12:00pm Addthis Media Contact Deb Gill, U.S. DOE Carlsbad Field Office, (575) 234-7270 CARLSBAD, N.M., May 3, 2012 -The U.S. Department of Energy (DOE) completed cleanup of the Cold War legacy transuranic (TRU) waste at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico when four shipments of remote-handled (RH) TRU waste from Sandia arrived at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M. for permanent disposal on May 2, 2012. The DOE Carlsbad Field Office (CBFO) reached one of its final milestones under the American Recovery and Reinvestment Act (ARRA) with the legacy TRU

96

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

97

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nearly $80.7 Million in Weatherization Nearly $80.7 Million in Weatherization Funding and Energy Efficiency Grants for Oregon Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $107.6 Million in Weatherization Funding and Energy Efficiency Grants for Oklahoma Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $362.8 Million in Weatherization Funding and Energy Efficiency Grants for Ohio Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for

98

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

69.2 Million in 69.2 Million in Weatherization Funding and Energy Efficiency Grants for Maine Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $94.7 Million in Weatherization Funding and Energy Efficiency Grants for Kansas Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $121.3 Million in Weatherization Funding and Energy Efficiency Grants for Iowa Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for

99

Enhanced Oil Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years,...

100

Energy from Waste UK Joint Statement on Energy from Waste  

E-Print Network [OSTI]

Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

12, 2009 12, 2009 Obama-Biden Administration Announces More Than $89.8 Million in Weatherization Funding and Energy Efficiency Grants for Mississippi Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $122.3 Million in Weatherization Funding and Energy Efficiency Grants for Louisiana Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $123.4 Million in Weatherization Funding and Energy Efficiency Grants for Kentucky Part of nearly $8 billion in Recovery Act funding for energy efficiency

102

Gills Onions Advanced Energy Recovery System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gills Onions Gills Onions Advanced Energy Recovery System Turning a Waste Liability into a Renewable Resource Waste to Energy Using Fuel Cells Workshop Washington, DC J 13 2011 January 13, 2011 Dave Reardon, , PE National Director - Water Sustainability HDR Engineering, Inc., Folsom, CA t Gills Onions Backg ground ● 3 rd largest onion p producer in the nation ● 100,000 square-foot processing facility in Oxnard, CA ● 800,000 lbs of onions processed every day ● Prepackaged diced, sliced, whole, pureed, and ring product line P i l 6 ● Process is operati ional 6 days a week - - The Problem... ● 250,000 lbs/day waste onion hauled off site - H l Hauled b d by t tract tor and d wagon t to l local fi l field ld s t to incorporate into soil - Disrupted traffic

103

Cogeneration from glass furnace waste heat recovery  

SciTech Connect (OSTI)

In glass manufacturing 70% of the total energy utilized is consumed in the melting process. Three basic furnaces are in use: regenerative, recuperative, and direct fired design. The present paper focuses on secondary heat recovery from regenerative furnaces. A diagram of a typical regenerative furnace is given. Three recovery bottoming cycles were evaluated as part of a comparative systems analysis: steam Rankine Cycle (SRC), Organic Rankine Cycle (ORC), and pressurized Brayton cycle. Each cycle is defined and schematicized. The net power capabilities of the three different systems are summarized. Cost comparisons and payback period comparisons are made. Organic Rankine cycle provides the best opportunity for cogeneration for all the flue gas mass flow rates considered. With high temperatures, the Brayton cycle has the shortest payback period potential, but site-specific economics need to be considered.

Hnat, J.G.; Cutting, J.C.; Patten, J.S.

1982-06-01T23:59:59.000Z

104

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 12, 2010 August 12, 2010 Department of Energy Paves Way for Additional Clean Energy Projects and Jobs Through Manufacturing Solicitation Recovery Act Funds to Support New Renewable Energy Manufacturing Projects August 2, 2010 Department of Energy Announces $188 Million for Small Business Technology Commercialization Includes $73 million in Recovery Act Investments to Help Small Businesses Bring Clean Energy Ideas to the Marketplace July 22, 2010 Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products $106 Million Recovery Act Investment will Reduce CO2 Emissions and Mitigate Climate Change July 21, 2010 DOE Hosts Workshop on Transition to Electric Vehicles Washington, DC - On Thursday, July 22, 2010, the Department of Energy will

105

Federal Energy Management Program: Recovery Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act to Recovery Act to someone by E-mail Share Federal Energy Management Program: Recovery Act on Facebook Tweet about Federal Energy Management Program: Recovery Act on Twitter Bookmark Federal Energy Management Program: Recovery Act on Google Bookmark Federal Energy Management Program: Recovery Act on Delicious Rank Federal Energy Management Program: Recovery Act on Digg Find More places to share Federal Energy Management Program: Recovery Act on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Technical Assistance Projects Project Stories Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal

106

Development of a Waste Heat Recovery System for Light Duty Diesel Engines  

Broader source: Energy.gov [DOE]

Substantial increases in engine efficiency of a light-duty diesel engine, which require utilization of the waste energy found in the coolant, EGR, and exhaust streams, may be increased through the development of a Rankine cycle waste heat recovery system

107

(www.wtert.gr) Waste-to-Energy Research &  

E-Print Network [OSTI]

­ WTERT (www.wtert.gr) 1 Waste-to-Energy Research & Technology Council WTERT Greece ­ SYNERGIA Dr. Efstratios Kalogirou is the President of Waste-to-Energy Research & Technology Council (WTERT.S.A. (cooperating with Professor N. Themelis) , in the scientific fields: energy recovery from solid wastes, potable

108

Vehicle Technologies Office Merit Review 2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Presentation given by GMZ Energy Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about nanostructured high...

109

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

46.3 Million in 46.3 Million in Weatherization Funding and Energy Efficiency Grants for Alaska Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $127.3 Million in Weatherization Funding and Energy Efficiency Grants for Alabama Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 11, 2009 Statement of Steven Chu Secretary of Energy Before the Committee on the Budget March 11, 2009 March 5, 2009 Secretary Steven Chu Editorial in USA Today Washington, D.C. - This morning's edition of USA Today includes the following editorial from Energy Secretary Steven Chu highlighting President

110

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

185.5 Million in 185.5 Million in Weatherization Funding and Energy Efficiency Grants for Missouri Part of nearly $8 billion in Recovery Act funding for energy efficiency efforts nationwide that will create 100,000 jobs and cut energy bills for families March 12, 2009 Obama-Biden Administration Announces More Than $35.1 Million in Weatherization Funding and Energy Efficiency Grants for Wyoming Washington, DC -- Vice President Joe Biden and Energy Secretary Chu today announced Wyoming will receive $35,180,261 in weatherization and energy efficiency funding - including $10,239,261 for the Weatherization Assistance Program and $24,941,000 for the State Energy Program. This is part of a nationwide investment announced today of nearly $8 billion under the President's American Recovery and Reinvestment Act - an investment that

111

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

112

Steelcase's Closed-Loop Energy Recovery System Results in $250,000 Savings Annually  

E-Print Network [OSTI]

Steelcase Inc. put a closed-loop energy recovery system into operation in August, 1980, with the installation of a $1.1 million waste incinerator. The system provides steam for process applications in the company's main complex. Processable waste...

Wege, P. M.

1981-01-01T23:59:59.000Z

113

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Broader source: Energy.gov [DOE]

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

114

Recovery News Flashes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery News Flashes Recovery News Flashes Recovery News Flashes RSS January 29, 2013 "TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than 5,000 Cubic Meters of Nuclear Waste to WIPP With the American Recovery and Reinvestment Act funding, Savannah River Site (SRS) continues to safely treat and dispose of radioactive waste created while producing materials for nuclear weapons throughout the Cold War. The DOE site in Aiken, S.C., is safely, steadily, and cost-effectively making progress to analyze, measure, and then carefully cleanup or dispose of legacy transuranic (TRU) waste remaining at SRS after the lengthy nuclear arms race. November 2, 2012 Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now 74 Percent Remediated The Office of Environmental Management's (EM) American Recovery and

115

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 AcuTemp received a $900,000 48C manufacturing tax credit under the American Recovery and Reinvestment Act to increase production of the company's ThermoCor vacuum insulation panels for more efficient ENERGY STAR appliances. | Photo courtesy of AcuTemp | AcuTemp Expands as Appliances Become More Energy Efficient AcuTemp, a small U.S. company that manufactures vacuum insulation panels that are needed to maintain precise temperatures for cold-storage products, is expanding and creating jobs in Dayton, OH thanks in part to the Recovery Act. August 6, 2010 A $20 million Recovery Act award will help Solazyme take production from tens of thousands of gallons a year of its algae "drop-in" oil to an annual production capacity of over half a million gallons. | Photo courtesy of Solazyme, Inc. |

116

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

117

CEWEP -Confederation of European Waste-to-Energy Plants Boulevard Clovis 12A  

E-Print Network [OSTI]

CEWEP - Confederation of European Waste-to- Energy Plants Boulevard Clovis 12A B-1000 Brussels Tel. : +32 (0)2 770 63 11 Fax : +32 (0)2 770 68 14 info@cewep.eu www.cewep.eu 1 Waste-to-Energy: towards recovery CEWEP welcomes that `energy recovery' should cover the use of waste for generating energy through

Columbia University

118

Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule -  

Broader source: Energy.gov (indexed) [DOE]

Reaches Recovery Act Goal for Waste Cleanup Ahead of Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal July 26, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Andre_L_Armstrong@rl.gov 509-376-6773 Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 RICHLAND, Wash. - Today, the Department of Energy Hanford Site announced it reached a cleanup goal more than two months ahead of schedule at the Hanford Site in southeast Washington State. Supported by funding from the American Recovery and Reinvestment Act, workers retrieved containers of contaminated material from storage buildings and underground storage trenches and prepared them for treatment

119

Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule -  

Broader source: Energy.gov (indexed) [DOE]

Reaches Recovery Act Goal for Waste Cleanup Ahead of Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal Hanford Reaches Recovery Act Goal for Waste Cleanup Ahead of Schedule - Workers Shipped 1,800 Cubic Meters for Treatment and Disposal July 26, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL Andre_L_Armstrong@rl.gov 509-376-6773 Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 RICHLAND, Wash. - Today, the Department of Energy Hanford Site announced it reached a cleanup goal more than two months ahead of schedule at the Hanford Site in southeast Washington State. Supported by funding from the American Recovery and Reinvestment Act, workers retrieved containers of contaminated material from storage buildings and underground storage trenches and prepared them for treatment

120

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 25, 2010 February 25, 2010 Bluegrass State Getting Greener To help reduce Kentucky's energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings. February 19, 2010 Homes Weatherized by State for Calendar Year 2009 February 19, 2010 Secretary Chu's Remarks on the Anniversary of the Recovery Act February 19, 2010 January 26, 2010 Electric Cars Coming to Former Delaware GM Plant If a company's cars are luxurious enough for the Crown Prince of Denmark, then just imagine how the vehicles - which have a 50-mile, emission-free range on a single electric charge - might be received by folks in the U.S. January 15, 2010 Secretary Chu Announces More than $37 Million for Next Generation Lighting

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 22, 2010 April 22, 2010 Weatherization Subgrantees Reach More N.Y. Homes Why weatherization is booming in the South Bronx. April 21, 2010 Vice President Biden Kicks Off Five Days of Earth Day Activities with Announcement of Major New Energy Efficiency Effort 25 Communities Selected for Recovery Act "Retrofit Ramp-Up" Awards April 15, 2010 Arkansas Preparing for Wind Power Arkansas energy leaders are working to get the best data for potential wind energy decisions. April 1, 2010 Wisconsin LED Plant Benefits from Recovery Act "It's a win for everyone: the environment, the cities, buildings, for us," says Gianna O'Keefe, marketing manager for Ruud Lighting, which is producing LED lights that emit more light, have a longer life and provide anywhere from 50 to 70 percent in energy savings.

122

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 12, 2011 April 12, 2011 Department of Energy Offers Conditional Commitment for $1.187 Billion Loan Guarantee to Support California Solar Generation Project Recovery Act-Supported Project Estimated to Create Over 350 Jobs and Avoid over 430,000 Tons of Carbon Dioxide Annually March 3, 2011 Department of Energy Offers Conditional Commitment for a Loan Guarantee to Support Maine Wind Project Recovery Act-Funded Project Expected to Create Approximately 200 Jobs and Avoid over 70,000 Tons of Carbon Pollution Annually February 17, 2011 Department of Energy Offers Support for an Oregon Solar Manufacturing Project Project Estimated to Create Over 700 Jobs and Greater Efficiencies in the Production of Photovoltaic Panels February 15, 2011 Department of Energy Finalizes Loan Guarantee for New Transmission Project

123

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 7, 2011 February 7, 2011 Mechanics train with plasma arc cutting equipment at the Paducah Site | Courtesy of Paducah Gaseous Diffusion Plant 240 Jobs Later: The Recovery Act's Impact at the Paducah Site Workers at the Department of Energy's Paducah Site are doing great things with the training they've received as part of the Recovery Act. January 25, 2011 Watercolor print of the Aldo Leopold Nature Center (ALNC) with new facilities. How a Wisconsin Nature Center is Leading by Example With funding from the U.S. Department of Energy, this Wisconsin nature center will be at the forefront in demonstrating the latest energy efficiency and renewable energy technologies to thousands of visitors every year. January 24, 2011 Vids 4 Grids: Surge Arresters and Switchgears A new video series is increasing general public knowledge of the cutting

124

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 17, 2010 March 17, 2010 Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar and Wind Powering Wyoming Home Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. March 17, 2010 DOE Releases New Report on Benefits of Recovery Act for Small Businesses in Clean Energy, Environmental Management Sectors WASHINGTON - The Department of Energy today released a new report highlighting the benefits of the Recovery Act to small businesses throughout the clean, renewable energy industry and environmental management sector. The report found that as of early March 2010, small businesses have been selected to receive nearly $5.4 billion in funding

125

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 14, 2009 September 14, 2009 Obama Administration Delivers More than $60 Million for Weatherization Programs in Six States and Territories Recovery Act funding to expand weatherization assistance programs, create jobs and weatherize nearly 17,000 homes in American Samoa, Northern Arapahoe Tribe, Northern Mariana Islands, Puerto Rico, Tennessee and the U.S. Virgin Islands September 14, 2009 DOE Delivers More than $354 Million for Energy Efficiency and Conservation Projects in 22 States Washington, DC - Energy Secretary Steven Chu announced today that more than $354 million in funding from the American Recovery and Reinvestment Act is being awarded to 22 states to support energy efficiency and conservation activities. Under the Department of Energy's Efficiency and Conservation

126

Energy Recovery Potential from Wastewater Utilities through Innovation  

Broader source: Energy.gov [DOE]

Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Energy Recovery Potential from Wastewater Utilities through Innovation Lauren Fillmore, Senior Program Director, Water Environment Research Foundation

127

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 25, 2013 April 25, 2013 Economic Impact of Recovery Act Investments in the Smart Grid Report Now Available A report on the Economic Impact of Recovery Act Investments in the Smart Grid is now available. This study analyzes the economy-wide impacts of the Recovery Act funding for smart grid project deployment in the United States, administered by Office of Electricity Delivery and Energy Reliability. Key findings include: April 25, 2013 Smart Grid: Powering Our Way to a Greener Future Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money every day. April 9, 2013 The Notrees Wind Storage Demonstration Project is a 36-megawatt energy storage and power management system, which completed testing and became fully operational in December. It shows how energy storage can moderate the intermittent nature of wind by storing excess energy when the wind is blowing and making it available later to the electric grid to meet customer demand.

128

Waste Isolation Pilot Plant Recovery Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

measures were quickly implemented to establish a safe operating envelope for response and recovery. 5 An Operational Readiness Review is a disciplined, systematic, documented...

129

ARIZONA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ARIZONA RECOVERY ACT SNAPSHOT ARIZONA RECOVERY ACT SNAPSHOT ARIZONA RECOVERY ACT SNAPSHOT Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Arizona to play an important role in the new energy economy of the future. ARIZONA RECOVERY ACT SNAPSHOT More Documents & Publications

130

ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. ARKANSAS RECOVERY ACT SNAPSHOT More Documents & Publications

131

ARKANSAS RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT ARKANSAS RECOVERY ACT SNAPSHOT Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. ARKANSAS RECOVERY ACT SNAPSHOT More Documents & Publications

132

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 22, 2011 June 22, 2011 Recovery Act SGDP View a map which combines the above two maps View the full list of selected projects June 22, 2011 Recovery Act: Smart Grid Interoperability Standards and Framework May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development WASHINGTON - U.S. Commerce Secretary Gary Locke and U.S. Energy Secretary Steven Chu today announced significant progress that will help expedite development of a nationwide "smart" electric power grid. June 22, 2011 Strategic Plan A modern, reliable, secure, affordable and environmentally sensitive national energy infrastructure is fundamental to our quality of life and energy future. Yet since 1982, growth in peak demand for electricity has exceeded the growth and development of our electric grid. This demand

133

HVAC Energy Recovery Design and Economic Evaluation  

E-Print Network [OSTI]

ENRECO has prepared this paper on HVAC energy recovery to provide the engineer with an overview of the design engineering as well as the economic analysis considerations necessary to evaluate the potential benefits of energy recovery....

Kinnier, R. J.

1979-01-01T23:59:59.000Z

134

Waste Heat Recovery from Industrial Process Heating Equipment -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Heat Recovery from Industrial Process Heating Equipment - Waste Heat Recovery from Industrial Process Heating Equipment - Cross-cutting Research and Development Priorities Speaker(s): Sachin Nimbalkar Date: January 17, 2013 - 11:00am Location: 90-2063 Seminar Host/Point of Contact: Aimee McKane Waste heat is generated from several industrial systems used in manufacturing. The waste heat sources are distributed throughout a plant. The largest source for most industries is exhaust / flue gases or heated air from heating systems. This includes the high temperature gases from burners in process heating, lower temperature gases from heat treat, dryers, and heaters, heat from heat exchangers, cooling liquids and gases etc. The previous studies and direct contact with the industry as well as equipment suppliers have shown that a large amount of waste heat is not

135

HEAT RECOVERY FROM WASTE WATER BY MEANS OF A RECUPERATIVE HEAT EXCHANGER AND A HEAT PUMP  

Science Journals Connector (OSTI)

ABSTRACT The useful heat of warm waste water is generally transferred to cold water using a recuperative heat exchanger. Depending on its design, the heat exchanger is able to utilise up to 90% of the waste heat potential available. The electric energy needed to operate such a system is more than compensated for by an approximately 50-fold gain of useful heat. To increase substantially the waste heat potential available and the amount of heat recovered, the system for recuperative heat exchange can be complemented by a heat pump. Such a heat recovery system on the basis of waste water is being operated in a public indoor swimming pool. Here the recuperative heat exchanger accounts for about 60%, the heat pump for about 40% of the toal heat reclaimed. The system consumes only 1 kWh of electric energy to supply 8 kWh of useful heat. In this way the useful heat of 8 kWh is compensated for by the low consumption of primary energy of 2.8 kWh. Due to the installation of an automatic cleaning device, the heat transfer surfaces on the waste water side avoid deposits so that the troublesome maintenance work required in other cases on the heat exchangers is not required. KEYWORDS Shower drain water, recuperative heat recovery, heat recovery by means of a heat pump, combination of both types of heat recovery, automatic cleaning device for the heat exchangers, ratio of useful heat supply vs. electric energy consumption, economic consideration.

K. Biasin; F.D. Heidt

1988-01-01T23:59:59.000Z

136

Department of Energy - Recovery Act  

137

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 24, 2010 September 24, 2010 MONDAY: Secretary Chu Travels to New Jersey and Philadelphia WASHINGTON - On Monday, September 27, 2010, U.S. Energy Secretary Steven Chu and Representative Rush Holt will tour Applied Photovoltaics. With help from a Recovery Act-funded $1.1 million clean energy manufacturing tax credit, Applied Photovoltaics will manufacture solar energy modules for use in building-integrated photovoltaics. September 22, 2010 Assistant Secretary Cathy Zoi and Senior Advisor Matt Rogers to Participate in Platts Energy Reporter Roundtable WASHINGTON -Thursday, September 23, 2010, Cathy Zoi, Assistant Secretary of Energy Efficiency and Renewable Energy and Matt Rogers, Senior Advisor to the Secretary of Energy, will participate in a roundtable discussion with

138

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

139

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

140

ALASKA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT ALASKA RECOVERY ACT SNAPSHOT Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. ALASKA RECOVERY ACT SNAPSHOT More Documents & Publications

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

19, 2010 19, 2010 North Community Police Substation upgraded its solar energy system with the help of Recovery Act funds. The city's electric bill will be about $5,000 cheaper. | Courtesy of the City of Henderson Police Station Triples Solar Power - and Savings The Henderson, Nevada, police department is going above and beyond the call of duty by tripling the size of its solar panel system on its LEED-certified station, saving the city thousands of dollars in energy costs. July 15, 2010 VP 100: President Obama Hails Electric-Vehicle Battery Plant President Obama visits Compact Power in Holland, Michigan -- one of nine new battery plants under construction as a result of the $2.4 billion in Recovery Act advanced battery and electric vehicle awards the President announced last August.

142

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 2, 2009 December 2, 2009 Alabama Family Staying Nice and Cozy This Fall Recovery Act money to weatherize homes has resulted in much lower energy bills for Alabama families, including Mary, whose bill is about $300 cheaper now. December 2, 2009 Training Center Gets People Work, Teaches New Skills Corporation for Ohio Appalachian Development, a nonprofit organization comprised of 17 community action agencies involved in weatherization, has been awarded Recovery Act funds to help train weatherization providers and create jobs across Ohio. December 2, 2009 Former Auto Worker Gauges Efficiency of American Homes Holland, Michigan resident retools skills learned testing car parts to land new job assessing home energy efficiency as a weatherization inspector. October 15, 2009

143

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 11, 2013 July 11, 2013 Analysis of Customer Enrollment Patterns in TIme-Based Rate Programs: Initial Results from the SGIG Consumer Behavior Studies (July 2013) The Smart Grid Investment Grant program's consumer behavior study effort presents an opportunity to advance the electric power industry's understanding of consumer behaviors in terms of customer acceptance and retention, and energy and peak demand impacts. July 10, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through June 30, 2013. July 7, 2013 Voices of Experience: Insights on Smart Grid Customer Engagement (July 2013) The success of the Smart Grid will depend in part on consumers taking a more proactive role in managing their energy use. This document is the

144

An Introduction to Waste Heat Recovery  

E-Print Network [OSTI]

our dependence on petroleum-based fuels, paper, glass, and agricultural and automotive and hence improve our merchandise .trade balance. equipment industries have all had proven success with heat recovery projects. Solar, wind, geothermal, oil shale...

Darby, D. F.

145

Recovery News Flashes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery News Flashes Recovery News Flashes Recovery News Flashes RSS September 1, 2011 Workers Complete Asbestos Removal at West Valley to Prepare Facility for Demolition American Recovery and Reinvestment Act workers safely cleared asbestos from more than 5,500 feet of piping in the Main Plant Process Building. Project completion is an important step in preparing the former commercial nuclear fuel reprocessing building for demolition. August 29, 2011 Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste – each weighing up to 15 tons – to a facility for repackaging and shipment to a permanent disposal location.

146

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 23, 2012 August 23, 2012 New Report Highlights Growth of America's Clean Energy Job Sector Taking a moment to break-down key findings from the latest Clean Energy Jobs Roundup. August 13, 2012 INFOGRAPHIC: Wind Energy in America August 3, 2012 A worker suppresses dust during the final demolition stages of the historic DP West site, located at Los Alamos National Laboratory's (LANL) Technical Area 21. The demolition was funded by the American Recovery and Reinvestment Act (ARRA) and is part of $212 million in ARRA funds the Lab received for environmental remediation. | Photo courtesy of Los Alamos National Laboratory. Photo of the Week: August 3, 2012 Check out our favorite energy-related photos! August 2, 2012 With new pipes and controls, the natural gas kilns Highland Craftsmen uses to produce poplar bark shingles will operate about 40 percent more efficiently, saving the company $5,000 a year in energy costs. | Photo courtesy of Highland Craftsmen.

147

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 14, 2010 May 14, 2010 Club's Chairman Leading by Example Why the Sierra Club Oregon Chairman is helping his organization live up to its legacy. May 14, 2010 Cincinnati Non-profits Getting Help Saving Energy How one church is saving money and saving energy. May 14, 2010 Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Michigan Town Committed to Sustainable Future Charlevoix, Mich. residents are taking steps to become a more environmentally-conscious community, and a $50,000 Energy Efficiency and Conservation Block Grant will help that cause. The funding will be used to launch projects aimed at energy efficiency and sustainability, such as retrofitting the city's fire and emergency vehicles with new,

148

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 17, 2009 November 17, 2009 Obama Administration Announces Nearly $40 Million for Energy Efficiency and Conservation Projects in Florida and Maine Washington, DC - Energy Secretary Steven Chu announced today that DOE is awarding nearly $40 million in funding from the American Recovery and Reinvestment Act to Florida and Maine to support clean energy projects. Under DOE's Energy Efficiency and Conservation Block Grant (EECBG) program, these states will implement programs that lower energy use, reduce carbon pollution, and create green jobs locally. November 16, 2009 Oak Ridge 'Jaguar' Supercomputer is World's Fastest Six-core upgrade has 70 percent more computational muscle than last year's quad-core November 10, 2009 DOE Announces New Executive Director of Loan Guarantee Program

149

Recovery Act Workforce Development | Department of Energy  

Energy Savers [EERE]

Act Local Energy Assurance Planning Recovery Act Enhancing State Energy Assurance Planning Educational Resources Reporting Library New Reports & Other Materials Meetings & Events...

150

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 24, 2013 September 24, 2013 Carbon fiber material produced at SGL Automotive Carbon Fibers in Moses Lake, Wash. (Photo courtesy of SGL Automotive Carbon Fibers) Electric Car Featuring High-Tech Material Made in the USA Makes Its Debut One of the world's first electric vehicles built using ultra lightweight carbon fiber material manufactured in the U.S. was recently unveiled. September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. September 16, 2013 Cumulative Federal Payments to OE Recovery Act Recipients, through August 31, 2013 Graph of cumulative Federal Payments to OE Recovery Act Recipients, through

151

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect (OSTI)

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

152

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 15, 2012 May 15, 2012 Workers install the final LED streetlight for DC's EECBG-funded energy efficient lighting upgrade. | Energy Department photo, credit Chris Galm. Brighter Lights, Safer Streets Thanks to support from an Energy Department Recovery Act grant, Washington, DC streets are becoming brighter. May 1, 2012 A student gets hands-on experience in the electric sector during an internship and mentoring program with Northeast Utilities, through ARRA workforce development funding. | Photo courtesy of Office of Electricity Delivery and Energy Reliability. Building Tomorrow's Smart Grid Workforce Today Many community colleges, universities, utilities and manufacturers across America are taking smart, pragmatic steps to train the next generation of workers needed to modernize the nation's electric grid.

153

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 4, 2011 November 4, 2011 The Lawrence Community team, leadership pictured above, saved the highest total amount of any community. They hold a basketball signed by Kansas Governor Brownback. The basketball signifies both the sport's history in Kansas, as well as the fact that the average Kansas home has enough energy leaks in their home to equal a basketball-sized hole in their roof. 'Taking Charge': Kansans Save $2.3M in Challenge to Change Their Energy Behavior How did the Climate and Energy Project (CEP), a small environmental organization that has received Recovery Act funding, achieve $2.3 million in savings annually for Kansans? Learn more about the Take Charge Challenge, a 9-month competition in which residents across 16 communities competed against each other to save the most energy and money.

154

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 16, 2010 August 16, 2010 New energy recovery systems and occupancy sensors are greatly reducing energy costs at Woonsocket Middle School at Hamlet. | Photo courtesy of Woonsocket Education Department New School Year Means New Energy Systems for Two Rhode Island Schools How Woonsocket, R.I. is making two of their new middle schools energy efficient this time around. August 13, 2010 The Crayola solar farm became fully operational this week. Ten children from around the country, known as the "Crayola Green Team," helped dedicate the newest addition to the Easton, Pa.-plant. Photos courtesy of Crayola. | Photo Courtesy of Crayola Crayola's True Color Shines Through: Green About 26,000 "thin-film" solar panels - manufactured by First Solar in Perrysburg, Ohio - are providing enough power to make 1 billion crayons.

155

Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace  

SciTech Connect (OSTI)

This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

2014-01-01T23:59:59.000Z

156

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

157

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

158

Recovery Act Reports | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act » Recovery Act Reports Recovery Act » Recovery Act Reports Recovery Act Reports The following is a list of the oversight results by the Office of Inspector General regarding The Department's programs, grants, and projects funded under the Recovery Act. November 25, 2013 Audit Report: OAS-RA-14-02 The Department of Energy's American Recovery and Reinvestment Act Energy Efficiency and Conservation Block Grant Program - District of Columbia September 27, 2013 Audit Report: OAS-RA-13-31 The Department of Energy's Hydrogen and Fuel Cells Program September 19, 2013 Examination Report: OAS-RA-13-30 Alamo Area Council of Governments - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 September 9, 2013 Audit Report: IG-0893 Follow-up Audit of the Department of Energy's Financial Assistance for

159

Department of Energy Recovery Act Investment in Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Recovery Act Investment in Biomass Technologies Department of Energy Recovery Act Investment in Biomass Technologies The American Recovery and Reinvestment Act...

160

Penobscot Energy Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Penobscot Energy Recovery Biomass Facility Facility Penobscot Energy Recovery Sector Biomass Facility Type Municipal Solid Waste Location Penobscot County, Maine Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 1, 2010 November 1, 2010 Weatherizing Wilkes-Barre October 28, 2010 Baltimore resident Paul Bennett installed 14 solar panels such as these on his historic row home with the help of a state solar grant and federal tax credit through the Recovery Act. | Energy Department Photo | Baltimore Vet Cuts Energy Bills With Solar Baltimore resident and disabled veteran Paul Bennett shares his experience utilizing state and federal grants and tax credits to install solar panels on his historic row home and cut energy costs. October 27, 2010 Mississippi's Cowboy Maloney stores saw increases of up to 90 percent on front-loading washing machines in April. | Photo courtesy of Flickr user Andrew Kelsall via the Creative Commons license Mississippi Residents Save Through Appliance Rebate Program

162

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 7, 2010 September 7, 2010 MetroTek installed a 620kW solar panel system at Buckman's Inc. in Pottstown, PA. The Recovery Act-funded project is expected to save the pool chemical business $5 million over the next 25 years. | Photo Courtesy of MetroTek Electrical Services Pennsylvania Pool Chemical Business Soaks Up Rays Most people catching rays poolside don't realize this, but it takes a lot of energy to make swimming pool chemicals. So much so that Buckman's Inc., a small business in Pottstown, PA, decided to tap into a fitting energy source to help offset high energy costs from its pool chemical manufacturing facility: the sun. September 2, 2010 Ice storage coolers lie next to the central plant for the American Indian Cultural Center and Museum in Oklahoma City, OK. | Photo courtesy of the American Indian Cultural Center and Museum |

163

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

164

Waste Heat Recovery in Cement Plants By Fluidized Beds  

E-Print Network [OSTI]

. This is particularly true in the cement industry. Cement manufacture consists of mining and grinding rocks, melting them to form clinkers, then grinding those clinkers to a powder. Through recovery of waste heat and inclusion of technology such as flash calciners...

Fraley, L. D.; Ksiao, H. K.; Thunem, C. B.

1984-01-01T23:59:59.000Z

165

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

166

Catalytic bromine recovery from HBr waste  

SciTech Connect (OSTI)

Waste HBr is formed during the bromination of many organic molecules, such as flame retardants, pharmaceuticals, and agricultural chemicals. For over 50 years attempts to recover the bromine from waste HBr by catalytic oxidation have been unsuccessful due to low catalyst activity and stability. The discovery of a new high-activity catalysts with excellent long-term stability and life capable of high HBr conversion below 300{degrees}C has made catalytic oxidation of waste HBr commercially feasible. The oxidation of anhydrous HBr using oxygen is highly exothermic, giving an adiabatic temperature rise of 2000{degrees}C. Use of 48 wt% HBr in the oxidation reduces the adiabatic temperature rise to only 300{degrees}C. A multitubular heat exchanger type of reactor can then be used to manage the heat. A 5,000 kg/yr pilot plant was built to verify the performance of the catalyst, the suitability of the reactor materials of construction, and the multibular reactor concept. The pilot unit has a single full-scale reactor tube 4 m long and 2.54 cm in diameter with a hot oil jacket for heat management. Excellent catalyst stability was observed during a 600 h catalyst-life test. HBr conversion of 99% was maintained throughout the run, and over 360 kg of bromine was produced. The temperature at a localized hot spot near the reactor inlet was only 15-20{degrees}C above the reactor inlet temperature, indicating efficient heat management.

Schubert, P.F.; Beatty, R.D.; Mahajan, S. [Catalytica Inc., Mountain View, CA (United States)

1993-12-31T23:59:59.000Z

167

IOWA RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

IOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT SNAPSHOT IOWA RECOVERY ACT SNAPSHOT Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to the Ames Laboratory. Through these investments, Iowa's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Iowa to play an important role in the new energy economy of the future. IOWA RECOVERY ACT SNAPSHOT More Documents & Publications Iowa Recovery Act State Memo

168

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

169

Drain Water Heat Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Drain Water Heat Recovery Drain Water Heat Recovery Drain Water Heat Recovery June 15, 2012 - 6:20pm Addthis Diagram of a drain water heat recovery system. Diagram of a drain water heat recovery system. How does it work? Use heat from water you've already used to preheat more hot water, reducing your water heating costs. Any hot water that goes down the drain carries away energy with it. That's typically 80%-90% of the energy used to heat water in a home. Drain-water (or greywater) heat recovery systems capture this energy from water you've already used (for example, to shower, wash dishes, or wash clothing) to preheat cold water entering the water heater or going to other water fixtures. This reduces the amount of energy needed for water heating. How It Works Drain-water heat recovery technology works well with all types of water

170

Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation,OAS-RA-L-12-01  

Broader source: Energy.gov (indexed) [DOE]

Waste Disposal and Recovery Act Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation INS-RA-L-12-01 December 2011 Department of Energy Washington, DC 20585 December 16, 2011 MEMORANDUM FOR THE MANAGER, OAK RIDGE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Waste Disposal and Recovery Act Efforts at the Oak Ridge Reservation" BACKGROUND The Department of Energy's (Department) expends billions of dollars to clean up contaminated sites and dispose of hazardous waste. The Department's Oak Ridge Office (ORO) is responsible for processing and disposing of the Transuranic (TRU) waste on the Oak Ridge Reservation (ORR), including approximately 3,500 cubic meters of legacy remote-handled (RH) and contact-

171

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

19, 2010 19, 2010 The Blaine County Public Safety Facility houses between 60 and 80 prisoners and roughly 30 staffers. | Photo courtesy of Blaine High Water Heating Bills on Lockdown at Idaho Jail Using funds from the American Recovery and Reinvestment Act, the county is installing a solar thermal hot water system that will provide nearly 70 percent of the power required for heating 600,000 gallons of water for the jail annually. August 16, 2010 800,000 Jobs by 2012 President Barack Obama visited ZBB Energy Corporation in Wisconsin and declared that our commitment to clean energy is expected to lead to more than 800,000 jobs by 2012. August 16, 2010 An array of solar collectors | Photo courtesy of Trane Knox County Detention Facility Goes Solar for Heating Water Hot water demand soars at the six-building Knox County Detention Facility

172

Resouce recovery option in solid-waste management: a review guide for public officials  

SciTech Connect (OSTI)

The purposes of this document are to: serve as a guide for public-works directors and others interested in implementing resource-recovery systems; and (2) provide background material that can be used in presenting information on resource-recovery systems to city managers, mayors, legislative bodies, and citizen advisory groups. It raises some issues of which local communities must be aware before developing resource-recovery systems. Additionally, the document: (1) focuses on possible institutional problems that may arise in planning waste-to-energy systems and presents some solutions and alternatives, and (2) serve public-works officials as a reference for other publications on resource-recovery systems. It will aid public-works officials in the decision-making process concerning the implementation of waste-to-energy systems. Members of the public works profession who are fully aware of all the implementation procedures involved with resource-recovery systems can best decide if this is a feasible solid-waste-management option for their community.

Nemeth, D M

1981-04-01T23:59:59.000Z

173

Recovery Act: Local Energy Assurance Planning Initiatives  

Broader source: Energy.gov [DOE]

These emergency preparedness plans, funded under the American Recovery and Reinvestment Act, will help ensure local governments can recover and restore power quickly following any energy supply disruptions.

174

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Recovery Act Recovery Act Center Map PERFORMANCE The Department estimates the $6 billion Recovery Act investment will allow us to complete work now that would cost approximately $13 billion in future years, saving $7 billion. As Recovery Act work is completed through the cleanup of contaminated sites, facilities, and material disposition, these areas will becoming available for potential reuse by other entities. Recovery Act funding is helping the Department reach our cleanup goals faster. Through the end of December 2012, EM achieved a total footprint reduction of 74%, or 690 of 931 square miles. EM achieved its goal of 40% footprint reduction in April 2011, five months ahead of schedule. Recovery Act payments exceeded $5.9 billion in December 2012. Recovery Act

175

Waste-to-Energy: Waste Management and Energy Production Opportunities  

Broader source: Energy.gov [DOE]

The ninth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Tribes.

176

Waste2Energy Holdings | Open Energy Information  

Open Energy Info (EERE)

Holdings Holdings Jump to: navigation, search Name Waste2Energy Holdings Place Greenville, South Carolina Zip 29609 Sector Biomass, Renewable Energy Product The Waste2Energy Holdings is a supplier of proprietary gasification technology designed to convert municipal solid waste, biomass and other solid waste streams traditionally destined for landfill into clean renewable energy. References Waste2Energy Holdings[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Waste2Energy Holdings is a company located in Greenville, South Carolina . References ↑ "Waste2Energy Holdings" Retrieved from "http://en.openei.org/w/index.php?title=Waste2Energy_Holdings&oldid=352938

177

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 18, 2011 July 18, 2011 Secretary Chu speaks at the A123 Systems lithium-ion battery manufacturing plant in Romulus, Michigan, while employees look on. | Photo Courtesy of Damien LaVera, Energy Department Secretary Chu Visits Advanced Battery Plant in Michigan, Announces New Army Partnership Thirty new manufacturing plants across the country for electric vehicle batteries and components - including A123 in Michigan - were supported through the Recovery Act, meaning we'll have the capacity to manufacture enough batteries and components for 500,000 electric vehicles annually by 2015. July 26, 2011 Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat With already 32 days reaching over 100 degrees this summer, Oklahoma is certainly feeling the heat. But smart meters -- just one of the advanced

178

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 15, 2010 March 15, 2010 A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Jobs, sustainable heating coming to Vermont city Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. March 12, 2010 Reginald Speight, CEO of Martin County Community Action | Photo courtesy of Martin County Community Action N.C. Agency Growing, Helping Citizens Save Money MCCA runs a hybrid program in the state that has expanded energy efficiency services to municipalities and made advanced-income households eligible for weatherization, and this work helped prepare the agency for the workload it is seeing now under the Recovery Act.

179

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 14, 2010 May 14, 2010 PPG and MAG Team Up for Turbine Blade Research Two companies work together to move forward in the industry, researching materials and processes that could lead to stronger, more reliable wind blades. May 14, 2010 Energy Corps Takes Root in Montana, Seeks to Make America Greener For the last 17 years, AmeriCorps members have pledged to uphold their duties as public servants, vowing to "get things done for America-to make our people safer, smarter and healthier." But a new type of volunteering in Montana is adding one more thing to that list: making America greener. May 14, 2010 Recovery Act Funding Hundreds of Jobs in California Solar Power, Inc. of Roseville, Calif., does almost everything in solar photovoltaics - from manufacturing and testing to home solar panel

180

Department of Energy Completes Five Recovery Act Projects - Moves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Five Recovery Act Projects - Moves Closer to Completing Recovery Act Funded Work at Oak Ridge Site Department of Energy Completes Five Recovery Act Projects - Moves Closer to...

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recovery Act Milestones | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Milestones Milestones Recovery Act Milestones Addthis Description Every 100 days, the Department of Energy is held accountable for a progress report on the American Recovery and Reinvestment Act. Update at 200 days, hosted by Matt Rogers, Senior Advisor to Secretary Steven Chu for Recovery Act Implementation. Speakers Matt Rogers Duration 3:07 Topic Energy Efficiency Batteries Recovery Act Energy Policy Credit Energy Department Video MATTHEW ROGERS: So I'm Matt Rogers. I'm the senior adviser to the secretary for Recovery Act implementation. And Saturday, September the 5th, was the 200th day of the Recovery Act. And it should be no surprise that we are accountable every hundred days; so it was a good chance to reflect on what we've accomplished and where we're headed over the next

182

Waste-to-Energy Workshop  

Broader source: Energy.gov [DOE]

The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

183

Energy Recovery Associates | Open Energy Information  

Open Energy Info (EERE)

Associates Associates Jump to: navigation, search Name Energy Recovery Associates Place Avon, Connecticut Zip 06001 Sector Biofuels Product Landfill Gas, Digester Gas, mixed methane and Greenhouse gases recovery and utilization equipment and projects. Year founded 1986 Number of employees 1-10 Phone number 860-673-5659 Website http://www.Energy-Recovery-Ass Coordinates 41.7918396°, -72.8633635° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7918396,"lon":-72.8633635,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Broader source: Energy.gov (indexed) [DOE]

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

185

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES | Department of  

Broader source: Energy.gov (indexed) [DOE]

RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES October 1, 2010 - 12:00pm Addthis RECOVERY ACT LEADS TO CLEANUP OF TRANSURANIC WASTE SITES Carlsbad, NM - The recent completion of transuranic (TRU) waste cleanup at Vallecitos Nuclear Center (VNC) and Lawrence Livermore National Laboratory (LLNL) Site 300 in California brings the total number of sites cleared of TRU waste to 17. "Recovery Act funding has made this possible," Carlsbad Field Office (CBFO) Recovery Act Federal Project Director Casey Gadbury said of the VNC and LLNL cleanups funded with about $1.6 million in Recovery Act funds. "The cleanup of these and other small-quantity sites has been and will be accelerated because of the available Recovery Act funds."

186

Waste-to-Energy Roadmapping Workshop Agenda | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste-to-Energy Roadmapping Workshop Agenda Waste-to-Energy Roadmapping Workshop Agenda Waste-to-Energy Roadmapping Workshop Agenda, November 5-6, 2014, Arlington, Virginia....

187

Federal Energy Management Program: Recovery Act  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Act Recovery Act The American Recovery and Reinvestment Act of 2009 included funding for the Federal Energy Management Program (FEMP) to facilitate the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. FEMP completed nearly 120 technical assistance projects through this effort. FEMP national laboratory teams and contractor service providers visited more than 80 Federal sites located throughout the U.S. The site visits were a key component of FEMP Recovery Act funded technical assistance activity, which provided more than $13.2 million in funding for direct technical assistance to energy managers across the Federal Government. This service helped agencies accelerate their Recovery Act projects and make internal management decisions for investment in energy efficiency and deployment of renewable energy.

188

Waste-to-Energy Forum  

Broader source: Energy.gov [DOE]

The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum will focus on waste-to-energy...

189

Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

190

Quantum Well Thermoelectrics and Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

191

Evaluation of a fluidized-bed waste-heat recovery system. A technical case study  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R&D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R&D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA`s Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

192

Evaluation of a fluidized-bed waste-heat recovery system  

SciTech Connect (OSTI)

The US DOE Office of Industrial Technologies (OIT) sponsors research and development (R D) to improve the energy efficiency of American industry and to provide for fuel flexibility. Large amounts of heat escape regularly through the waste-gas streams of industrial processes, particularly those processes that use furnaces, kilns, and calciners. Recovering this waste heat will conserve energy; however, the extremely high temperatures and corrosive nature of many flue and exhaust gases make conventional heat recovery difficult. One solution is a waste-heat recovery system that can withstand the high temperatures and rids itself of corrosion-causing particulates. OIT and Aerojet Energy Conversion Company recently completed a joint project to develop just such a system and to evaluate its long-term operation. This technology, called fluidized-bed waste-heat recovery (FBWHR), offers several advantages over conventional heat recovery, including high gas-side heat-transfer coefficients and a self-cleaning capability. The FBWHR system can recover heat from high-temperature, dirty waste-gas streams, such as those found in the metals, glass, cement, chemical, and petroleum-refining industries. In this multiyear R D project, Aerojet designed and fabricated an FBWHR system that recovers heat from the corrosive flue gases of aluminum melt furnaces to produce process steam for the plant. The system was installed on a 34-million-Btu/h furnace used to melt aluminum scrap at ALCOA's Massena, New York plant. During a successful one-year field test, the system produced 26 million lb of 175-psig saturated steam, recovering as much as 28% of the fuel energy input to the furnace.

Not Available

1992-04-01T23:59:59.000Z

193

Waste-to-Energy 25 Years Later: Technology with a Past, Present  

E-Print Network [OSTI]

solution Quite a Ride: UpsQuite a Ride: Ups MacArthur Resource Recovery Facility Islip, New York #12; Waste-to-energy Falls, New York #12; European Union: waste-to- energy preferable to landfills European Union directives and Consulting Federation of New York Solid Waste Associations Solid Waste/Recycling Conference Federation of New

Columbia University

194

Treasury, Energy Announce More Than $3 Billion in Recovery Act...  

Energy Savers [EERE]

3 Billion in Recovery Act Funds for Renewable Energy Projects Treasury, Energy Announce More Than 3 Billion in Recovery Act Funds for Renewable Energy Projects July 9, 2009 -...

195

American Recovery & Reinvestment Act, ARRA, clean energy projects...  

Energy Savers [EERE]

Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean...

196

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

197

Waste Heat Recovery Submerged Arc Furnaces (SAF)  

E-Print Network [OSTI]

designed consumes power and fuel that yields an energy efficiency of approximately 40% (Total Btus required to reduce to elemental form/ Btu Input). The vast majority of heat is lost to the atmosphere or cooling water system. The furnaces can be modified...

O'Brien, T.

2008-01-01T23:59:59.000Z

198

ISWA commitments on waste and climate ISWA General Secretariat  

E-Print Network [OSTI]

of renewable energy. Incineration and other thermal processes for waste-to-energy, landfill gas recovery

199

Gills Onions Advanced Energy Recovery System  

Broader source: Energy.gov [DOE]

Presentation by Dave Reardon, HDR Engineering, Inc., at the Waste-to-Energy using Fuel Cell Workshop on Jan. 13, 2011

200

Energy Recovery Ventilator Membrane Efficiency Testing  

E-Print Network [OSTI]

A test setup was designed and built to test energy recovery ventilator membranes. The purpose of this test setup was to measure the heat transfer and water vapor transfer rates through energy recover ventilator membranes and find their effectiveness...

Rees, Jennifer Anne

2013-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Recovery in Industrial Distillation Processes  

E-Print Network [OSTI]

ENERGY RECOVERY IN INDUSTRIAL DISTILLATION PROCESSES Duane B. Paul General Electric Company Fitchburg, Massachusetts ABSTRACT Overhead separati on processes whi ch present attracti ve Distillation processes are energy intensive Condenser...

Paul, D. B.

1983-01-01T23:59:59.000Z

202

Water recovery using waste heat from coal fired power plants.  

SciTech Connect (OSTI)

The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

2011-01-01T23:59:59.000Z

203

OE Recovery Act News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Recovery Act News OE Recovery Act News RSS April 17, 2012 ARRA Program Celebrates Milestone 600,000 Smart Meter Installations On April 11, 2012, DOE Recovery Act funding recipient Sacramento Municipal Utility District (SMUD) celebrated a major milestone in the development of a regional smart grid in California: the installation of over 600,000 smart meters. February 15, 2011 Department of Energy Finalizes Loan Guarantee for New Transmission Project to Deliver Renewable Energy to Southwest Nevada Project Expected to Create Over 400 Jobs and Improve Grid Reliability September 16, 2009 Department of Energy Announces Start of Western Area Power Administration Recovery Act Project New transmission line to help move renewable energy resources to market May 18, 2009 Locke, Chu Announce Significant Steps in Smart Grid Development

204

Optimum energy and by-product recovery in chlorinated hydrocarbon disposal systems  

SciTech Connect (OSTI)

This paper covers the three principal areas of a chlorinated hydrocarbon waste disposal system for a typical vinyl chloride monomer facility. These are the incineration, the energy recovery system, and the by-product recovery system. It is shown that the overall efficiency of the energy and by-product recovery systems is dependent on the optimization of the primary combustor (incineration system). 11 refs.

Santoleri, J.J.

1982-01-01T23:59:59.000Z

205

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network [OSTI]

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

206

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

CALIFORNIA, SAN DIEGO Recycling of Wasted Energy : ThermalOF THE DISSERTATION Recycling of Wasted Energy : Thermal to

Lim, Hyuck

2011-01-01T23:59:59.000Z

207

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

Waste heat Pyroelectric energy3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using Relaxor

Lee, Felix

2012-01-01T23:59:59.000Z

208

IDAHO RECOVERY ACT SNAPSHOT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

IDAHO RECOVERY ACT SNAPSHOT IDAHO RECOVERY ACT SNAPSHOT IDAHO RECOVERY ACT SNAPSHOT Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new

209

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Cleanup » Waste Management Cleanup » Waste Management Waste Management November 12, 2013 U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal On Tuesday, November 12, 2013, the U.S. Department of Energy (DOE) will host a press call to discuss Consolidated Edison Uranium Solidification Project (CEUSP) shipment and disposal plans in Nevada. September 24, 2013 Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and

210

Pillars of Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pillars of Recovery Pillars of Recovery Pillars of Recovery July 29, 2010 - 4:00pm Addthis Energy Efficiency - $12.0 billion Helping millions of American families cut utility bills by making homes and appliances more energy efficient. $5 billion for the Weatherization Assistance Program $3.1 billion for the State Energy Program $2.73 billion for Energy Efficiency and Conservation Block Grants $454 million for Retrofit ramp-ups in energy efficiency $346 million for Energy efficient building technologies $300 million for Energy Efficient Appliance Rebates / ENERGY STAR® $256 million for the Industrial Technologies Program $104 million for National Laboratory Facilities $18 million for Small Business Clean Energy Innovation Projects Environmental Cleanup - $6.0 billion Creating jobs and reducing the legacy cold war footprint of the Department

211

Press Release Von Roll Inova to build the UK's largest energy-from-waste  

E-Print Network [OSTI]

, and regenerative heat recovery is used to boost the plant's overall energy efficiency. The majority of the wastePress Release Von Roll Inova to build the UK's largest energy-from-waste plant Zürich, September, 1 Roll Inova will build the UK's largest energy-from-waste facility. The contract is worth approximately

Columbia University

212

DOE Completes TRU Waste Cleanup at Bettis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

TRU Waste Cleanup at Bettis TRU Waste Cleanup at Bettis DOE Completes TRU Waste Cleanup at Bettis September 23, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) has successfully completed cleanup of all Cold War legacy transuranic (TRU) waste at the Bettis Atomic Power Laboratory (BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20th site to be completely cleaned of legacy TRU waste. This milestone was achieved using approximately $640,000 of a $172 million investment from the American Recovery and Reinvestment Act to expedite legacy waste cleanup activities across the DOE complex. This summer, TRU waste cleanup was also completed at the Nuclear Radiation Development, LLC,

213

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Office of Environmental Management (EM)

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

214

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Broader source: Energy.gov (indexed) [DOE]

Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pd...

215

Office of Electricity Delivery and Energy Reliability Recovery...  

Broader source: Energy.gov (indexed) [DOE]

Electricity Delivery and Energy Reliability Recovery Program Plan Office of Electricity Delivery and Energy Reliability Recovery Program Plan Microsoft Word - OE PSRP June 5 2009...

216

Mineral Recovery Creates Revenue Stream for Geothermal Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Mineral Recovery Creates Revenue Stream for Geothermal Energy Development January 21, 2014 - 12:00am...

217

Recovery Act: Wind Energy Consortia between Institutions of Higher...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry Recovery Act: Wind Energy Consortia between Institutions of Higher Learning and Industry A...

218

Treasury, Energy Announce More Than $2 Billion in Recovery Act...  

Energy Savers [EERE]

Recovery Act to increase US manufacturing output, improve energy efficiency, and develop alternative sources of energy." The Recovery Act created a new tax credit program by...

219

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

220

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California's Energy Recovery and Reinvestment Act  

E-Print Network [OSTI]

efficiency measures - $25 million · Green Job Workforce - $20 millionGreen Job Workforce $20 million · EnergyCalifornia's Energy Recovery and Reinvestment Act P I iti tiProgram Initiatives November 18, 2009 Director Economic Stimulus Program California Energy CommissionCalifornia Energy Commission #12

222

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

223

American Recovery & Reinvestment Act, ARRA, clean energy projects, energy  

Broader source: Energy.gov (indexed) [DOE]

American Recovery & Reinvestment Act, ARRA, clean energy projects, American Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy American Recovery & Reinvestment Act, ARRA, clean energy projects, energy efficiency, smart grid, alternative fuels, geothermal energy The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to

224

Recovery Act Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 19, 2013 February 19, 2013 Examination Report: OAS-RA-13-09 North Carolina State Energy Office - Energy Efficiency and Conservation Block Grant Program Funds Provided by the American Recovery and Reinvestment Act of 2009 February 8, 2013 Special Report: OAS-RA-13-10 The Department of Energy's Management of the Award of a $150 Million Recovery Act Grant to LG Chem Michigan Inc January 17, 2013 Audit Report: OAS-RA-13-07 The Department of Energy's Weatherization Assistance Program Funded under the American Recovery and Reinvestment Act for the State of Maryland January 17, 2013 Examination Report: OAS-RA-13-06 Montgomery County Department of Housing and Community Affairs - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009

225

Waste heat recovery steam curves with unfired HRSGs  

SciTech Connect (OSTI)

A compilation of waste heat recovery steam curves for a sampling of gas turbines ranging in output from around 1 MW to more than 200 MW is presented. The gas turbine output data shown with each set of curves differs from the values given in the Performance Specifications section of the Handbook. That's because the values have been calculated to reflect the effects of a 4 inch inlet and 10 inch outlet pressure drop on power output (lower), heat rate (higher), mass flow (higher), and exhaust temperature (higher).

Not Available

1993-01-01T23:59:59.000Z

226

Process for the recovery of curium-244 from nuclear waste  

SciTech Connect (OSTI)

A process has been designed for the recovery of curium from purex waste. Curium and americium are separated from the lanthanides by a TALSPEAK extraction process using differential extraction. Equations were derived for the estimation of the economically optimum conditions for the extraction using laboratory batch extraction data. The preparation of feed for the extraction involves the removal of nitric acid from the Purex waste by vaporization under reduced pressure, the leaching of soluble nitrates from the resulting cake, and the oxalate precipitation of a pure lanthanide-actinide fraction. Final separation of the curium from americium is done by ion-exchange. The steps of the process, except ion-exchange, were tested on a laboratory scale and workable conditions were determined.

Posey, J.C.

1980-10-01T23:59:59.000Z

227

Recovery Act Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 21, 2010 September 21, 2010 Audit Report: OAS-RA-10-17 Status Report: The Department of Energy's State Energy Program Formula Grants Awarded under the American Recovery and Reinvestment Act September 15, 2010 Audit Letter Report: OAS-RA-L-10-06 The Department of Energy's American Recovery and Reinvestment Act- Georgia State Energy Program August 27, 2010 Audit Letter Report: OAS-RA-L-10-09 Office of Science's Energy Frontier Research Centers August 12, 2010 Audit Letter Report: OAS-RA-L-10-05 Decommissioning and Demolition Activities at Office of Science Sites August 11, 2010 Audit Report: OAS-RA-10-16 The Department of Energy's Implementation of the Energy Efficiency and Conservation Block Grant Program under the Recovery and Reinvestment Act: A Status Report August 4, 2010

228

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 18, 2010 June 18, 2010 Energetx Composites was able to purchase equipment such as this mold for utility-scale wind turbine blades thanks to a Recovery Act grant that matched the company's $3.5 million investment. | Photo Courtesy of Energetx | VP 100: Retooling Michigan -- Yachts and Watts Tiara Yachts makes fiber composite structures for boats. Now the Holland, Mich.-based company is transforming part of its factory and using its 30 years of expertise in composites to establish a new company - Energetx Composites - that will produce commercial-sized wind turbine blades. June 18, 2010 Five More States Reach Major Recovery Act Weatherization Milestone Minnesota, Montana, New Hampshire, New Mexico, and Utah Have Weatherized Over 9,000 Homes with Recovery Act Funding

229

Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures  

SciTech Connect (OSTI)

Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In other applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.

Tomlinson, John J [ORNL; Christian, Jeff [Oak Ridge National Laboratory (ORNL); Gehl, Anthony C [ORNL

2012-09-01T23:59:59.000Z

230

Industrial Waste Heat Recovery by Use of Organic Rankine Cycles (ORC)  

Science Journals Connector (OSTI)

The project is a combined analytical and experimental programme to investigate the feasibility of the Organic Rankine Cycle principle for waste heat recovery in industry....

Dipl.-Phys. G. Huppmann

1983-01-01T23:59:59.000Z

231

Solid Waste as an Energy Source  

E-Print Network [OSTI]

. PROCESS The solLd waste energy conversion system bullt by Kelley Company consists of a combustion unit and an energy recovery boLler. The combustion unit uses a two stage process; the refuse is fLrst converted to gases by a pyrolysis process... wlll be conslderably lower than the temperature that woulq be achleved If stoichiometrlc air to fuel ratlo was malntained. The resulting temperatures In the pyrolysis chamber ranges from 1200 0 to 1500 o P. The low a lr lnput, as compared wlth...

Erlandsson, K. I.

1979-01-01T23:59:59.000Z

232

Department of Energy - Waste Management  

Broader source: Energy.gov (indexed) [DOE]

1 en U.S. Department of Energy to Host 1 en U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal http://energy.gov/articles/us-department-energy-host-press-call-radioactive-waste-shipment-and-disposal energy-host-press-call-radioactive-waste-shipment-and-disposal" class="title-link">U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment and Disposal

233

Feed Resource Recovery | Open Energy Information  

Open Energy Info (EERE)

Feed Resource Recovery Feed Resource Recovery Jump to: navigation, search Name Feed Resource Recovery Place Wellesley, Massachusetts Product Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates 42.29776°, -71.289744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.29776,"lon":-71.289744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

235

Fossil Energy Research Benefits Enhanced Oil Recovery  

Broader source: Energy.gov (indexed) [DOE]

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

236

DOE Achieves Second TRU Waste Cleanup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Achieves Second TRU Waste Cleanup Achieves Second TRU Waste Cleanup DOE Achieves Second TRU Waste Cleanup October 6, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This milestone was supported by $83,000 provided to the National Transuranic Waste Program as part of a $172 million American Recovery and Reinvestment Act investment to expedite legacy TRU waste disposal activities across the DOE complex.

237

DOE Achieves Second TRU Waste Cleanup | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Achieves Second TRU Waste Cleanup Achieves Second TRU Waste Cleanup DOE Achieves Second TRU Waste Cleanup October 6, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. -The U.S. Department of Energy has successfully removed all legacy contact-handled transuranic (TRU) waste from the Argonne National Laboratory (ANL), near Chicago, Illinois. In September, all legacy TRU waste was removed from the Bettis Atomic Power Laboratory (BAPL), near Pittsburgh, Pennsylvania. Maintained by the DOE, ANL is the country's first science and engineering research national laboratory. This milestone was supported by $83,000 provided to the National Transuranic Waste Program as part of a $172 million American Recovery and Reinvestment Act investment to expedite legacy TRU waste disposal activities across the DOE complex.

238

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network [OSTI]

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

239

Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin Governor's Task Force on Waste Materials Recovery  

E-Print Network [OSTI]

1 Landfill Disamenities And Better Utilization of Waste Resources Presented to the Wisconsin on Waste Materials Recovery and Disposal who have invited me to address you today on landfill disamenities in New York State in the 1960's. We had many problems with polluting solid waste dumps, landfill fires

Columbia University

240

Connecticut Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Connecticut are supporting abroad range of clean energy projects, from energy efficiency and the smartgrid to alternative fuels and geothermal energy. Through these investments, Connecticut's businesses, universities,non-profits, and local governments are creating quality jobs today and positioning Connecticut to play an important role in the new energy economy of the future. Connecticut Recovery Act State Memo More Documents & Publications California Recovery Act State Memo District of Columbia Recovery Act State Memo

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Waste heat recovery systems in the sugar industry: An Indian perspective  

SciTech Connect (OSTI)

This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries as well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.

Madnaik, S.D.; Jadhav, M.G. [Walchand Inst. of Tech., Maharashtra (India)

1996-04-01T23:59:59.000Z

242

OE Recovery Act Blog | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recovery Recovery Act Blog OE Recovery Act Blog RSS September 20, 2013 Electrical transmission lines cross a snow-covered field in Dallas Dam, Oregon. | Energy Department photo. Top 9 Things You Didn't Know About America's Power Grid Ever wonder how electricity gets to your home? Test your knowledge with these top power grid facts. July 11, 2013 Demand Response: Lessons Learned with an Eye to the Future Under the Recovery Act, the Energy Department awarded $3.5 billion in funds to the electricity industry, including OG&E, to help catalyze the adoption of smart grid tools, technologies and techniques such as demand response that are designed to increase the electric grid's flexibility, reliability, efficiency, affordability, and resiliency. Understanding lessons learned from these projects is vital.

243

Recovery Act Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 22, 2012 February 22, 2012 Audit Report: OAS-RA-12-06 The Management of Post-Recovery Act Workforce Transition at Office of Environmental Management Sites February 9, 2012 Inspection Report: INS-RA-12-01 Alleged Misuse of American Recovery and Reinvestment Act Grant Funds by the Western Arizona Council of Governments January 26, 2012 Audit Report: OAS-RA-L-12-03 The Department of Energy's American Recovery and Reinvestment Act - Arizona State Energy Program January 20, 2012 Examination Report: OAS-RA-12-05 Saratoga County Economic Opportunity Council, Inc. -Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 January 20, 2012 Audit Report: OAS-RA-12-04 The Department's Management of the Smart Grid Investment Grant Program

244

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

245

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

26, 2009 26, 2009 Obama Administration Announces Additional $112,175,600 for Local Energy Efficiency Improvements in Illinois Block Grants to Support Jobs, Cut Energy Bills, and Increase Energy Independence March 26, 2009 Obama Administration Announces Additional $42,243,200 for Local Energy Efficiency Improvements in Tennessee Block Grants to Support Jobs, Cut Energy Bills, and Increase Energy Independence March 26, 2009 Obama Administration Announces Additional $16,956,700 for Local Energy Efficiency Improvements in Idaho Block Grants to Support Jobs, Cut Energy Bills, and Increase Energy Independence March 26, 2009 Obama Administration Announces Additional $13,969,700 for Local Energy Efficiency Improvements in Alaska Block Grants to Support Jobs, Cut Energy Bills, and Increase Energy

246

Recovery Act State Summaries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act State Summaries Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act State Memo Arkansas Recovery Act State Memo California Recovery Act State Memo Colorado Recovery Act State Memo Connecticut Recovery Act State Memo Delaware Recovery Act State Memo District of Columbia Recovery Act State Memo Florida Recovery Act State Memo Georgia Recovery Act State Memo Guam Recovery Act State Memo Hawaii Recovery Act State Memo Idaho Recovery Act State Memo Illinois Recovery Act State Memo Indiana Recovery Act State Memo Iowa Recovery Act State Memo Kansas Recovery Act State Memo Kentucky Recovery Act State Memo Louisiana Recovery Act State Memo Maine Recovery Act State Memo

247

Energy utilization: municipal waste incineration. Final report  

SciTech Connect (OSTI)

An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

LaBeck, M.F.

1981-03-27T23:59:59.000Z

248

WASTE-TO-ENERGY ROADMAPPING WORKSHOP | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

WASTE-TO-ENERGY ROADMAPPING WORKSHOP WASTE-TO-ENERGY ROADMAPPING WORKSHOP The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key...

249

EnergyEfficiency Energy:Waste  

E-Print Network [OSTI]

EnergyEfficiency­ Energy:Waste Copyright © 2012 by Taylor & Francis. All rights reserved. Encyclopedia of Environmental Management DOI: 10.1081/E-EEM-120046144 808 Energy: Physics Milivoje M. Kostic The concept and definition of energy are elaborated, as well as different forms and classifications of energy

Kostic, Milivoje M.

250

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce...  

Broader source: Energy.gov (indexed) [DOE]

factsheet describing how ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler was constructed and installed with DOE Recovery Act Funding. Blast Furnace Gas...

251

Energy Secretary Chu Announces $148 million in Recovery Act Funding...  

Broader source: Energy.gov (indexed) [DOE]

48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces 148 million in Recovery Act Funding for Environmental Cleanup in New York...

252

Energy Secretary Chu Announces $384 Million in Recovery Act Funding...  

Energy Savers [EERE]

384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces 384 Million in Recovery Act Funding for Environmental Cleanup in New...

253

Treasury, Energy Surpass $1 Billion Milestone in Recovery Act...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Secretary Steven Chu hosted a group of clean energy developers and manufacturers at the White House to discuss how the American Recovery and Reinvestment Act (Recovery Act) is...

254

Department of Energy Issues Loan Guarantee Supported by Recovery...  

Energy Savers [EERE]

Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project Department of Energy Issues Loan Guarantee Supported by Recovery Act for Nevada Geothermal Project September...

255

Caustic Recovery Technology | Department of Energy  

Office of Environmental Management (EM)

Caustic Recovery Technology Caustic Recovery Technology Full Document and Summary Versions are available for download Caustic Recovery Technology Summary - Caustic Recovery...

256

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

26, 2009 26, 2009 Obama Administration Announces Additional $12,522,900 for Local Energy Efficiency Improvements in New Hampshire Block Grants to Support Jobs, Cut Energy Bills, and Increase Energy Independence March 26, 2009 Obama Administration Announces Additional $75,468,200 for Local Energy Efficiency Improvements in New Jersey Block Grants to Support Jobs, Cut Energy Bills, and Increase Energy Independence March 19, 2009 Remarks of President Barack Obama at Southern California Edison Electric Vehicle Technical Center March 19, 2009 March 17, 2009 Statement of Steven Chu Secretary of Energy before the Committee on Science and Technology March 17, 2009 March 12, 2009 Obama-Biden Administration Announces More Than $545.7 Million in Weatherization Funding and Energy Efficiency Grants for Texas

257

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 7, 2013 February 7, 2013 Energy Department, Treasury Announce Availability of $150 Million in Tax Credits for Clean Energy Manufacturers The U.S. Departments of Energy and the Treasury announced the availability of $150 million in Advanced Energy Manufacturing Tax Credits for clean energy and energy efficiency manufacturing projects across the United States. February 7, 2013 FACT SHEET: 48C MANUFACTURING TAX CREDITS The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7, 2013, the IRS announced the availability of additional 48C allocations, releasing $150 million remaining tax credits that were never fully utilized by previous

258

OE Recovery Act News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News OE Recovery Act News RSS December 18, 2013 BPA Wins Platts Global Energy Award for Grid Optimization Platts awarded the Bonneville Power Administration (BPA) a Global Energy Award for grid optimization on December 12 in New York City for its development of a synchrophasor network. BPA is part of the Recovery Act-funded Western Interconnection Synchrophasor Program. October 21, 2013 SGIG Program Progress Report II Now Available The Smart Grid Investment Grant (SGIG) Program Progress Report II, which updates the SGIG Progress Report published in July 2012, is now available for downloading. August 15, 2013 Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available The Office of Electricity Delivery and Energy Reliability has released a

259

OE Recovery Act Archive | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act » OE Recovery Act Archive Act » OE Recovery Act Archive OE Recovery Act Archive 2011 July 26, 2011: BLOG Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart meters -- just one of the advanced technologies being used to modernize the grid -- are helping Oklahoma businesses and home owners beat high electricity bills not only during these summer months, but year-round. July 26, 2011: PRESS RELEASE CenterPoint Energy has released survey results from a 500 participant smart meter In-Home Display pilot program showing that 71 percent of customers changed their electricity consumption behavior as a result of the energy use data they accessed on their in-home displays. The results were released while U.S. Deputy Secretary of Energy Daniel B. Poneman visited Houston to

260

Energy from Waste: A good practice guide  

E-Print Network [OSTI]

Energy from Waste: A good practice guide #12;9 Saxon Court, St Peter's Gardens, Marefair: www.ciwm.co.uk Energy from Waste: A good practice guide ISBN: 0-902944-54-1 Published November 2003 by IWM Business Services Ltd on behalf of: Energy from Waste Working Group #12;1 Energy from Waste

Columbia University

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

21, 2011 21, 2011 Smart grid technology installations provided not only new work, but new customers for Narrows Electric owner Gary Miklethun, far l., and his team, from l. to r., Ken Dehart, Rodney Thomas and Dave Brosie. Smart Grid Technology Gives Small Business New Light Gary Miklethun, the owner of Narrows Electric, a small electrical contractor in Gig Harbor, Wash., that specializes in residential and small commercial projects, definitely felt it when the economy slowed down. But installing new smart grid technology in 500 homes not only gave his team new work, but new customers. September 21, 2011 Communications and Guidance Issued Guidance: Throughout the life of the Recovery Act, it has at times been necessary to issue guidance around certain policies or procedures.

262

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce  

Broader source: Energy.gov (indexed) [DOE]

Remediate and Restore Former Waste Sites, Help Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint More Documents & Publications 2011 ARRA Newsletters Workers at Hanford Site Achieve Recovery Act Legacy Cleanup Goals Ahead of

263

Recovery Act Project Stories | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Project Stories Project Stories Recovery Act Project Stories October 7, 2013 - 3:43pm Addthis Funded by the American Recovery and Reinvested Act, these Federal Energy Management Program (FEMP) projects exemplify the range of technical assistance provided to Federal agencies. U.S. Pacific Command The U.S. Department of Defense (DOD) U.S. Pacific Command (USPACOM) is collaborated with FEMP and six DOE national laboratories to solve some of USPACOM's most pressing energy needs. The USPACOM energy goal was to develop an integrated, expanded approach for all Oahu, Hawaii, military installations. The Oahu work developed a template to be applied next in Guam, Alaska, Japan, and Korea. This work advanced USPACOM's energy efficiency, renewable energy, energy manager training, and micro grid

264

Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V  

SciTech Connect (OSTI)

Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

1993-08-01T23:59:59.000Z

265

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 Judith Mondre meets with members of the Mondre Energy team. | Photo courtesy of Judith Mondre Energy Detectives Help Pennsylvania Town Reduce Costs Judith Mondre spent the past two months learning the ins and outs of Upper Darby Township, Pa.'s energy usage. She's analyzed energy bills, observed town facilities and interviewed staff to put together a plan to help the municipality reduce its total energy usage. July 23, 2010 Kansas City Weatherization Efforts Exceed Goals Why it pays for one Kansas City weatherization organization to take a "whole house" approach. July 22, 2010 Byron Washom, Director of Strategic Energy Initiatives at the University of California at San Diego, poses with an electric vehicle and some of the solar panels that cover UCSD's campus.| Photo courtesy of UCSD

266

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 29, 2010 November 29, 2010 The Central Florida Energy Efficiency Alliance has started a "Kilowatt Crackdown" challenge to help reduce commercial energy use and an "Energy Specialist" program that trains college students on ENERGY STAR portfolio manager. | Photo courtesy of CFEEA College Students to Central Florida: Go for 'Low-Hanging Fruit' Spend a summer interning at the Department of Energy in Washington, D.C., and you're bound to start quoting Secretary Steven Chu's well-known mantra to the people back home. November 18, 2010 Fort Collins, Colorado on Track to Net Zero The City of Fort Collins, Colorado, is embarking on an exciting new project that aims to reduce peak demand and help the city reduce its energy footprint to zero. Yes, zero. Find out how.

267

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 The EnergySmart Jobs program is a three-pronged approach to creating "green jobs" for Californians while also increasing energy efficiency at businesses around the state. | File photo Concrete Company Aims Higher for More Wind Energy Today, most steel towers that support utility-scale turbines stand about 80 meters tall, but the Tindall Corporation wants to go higher using precast concrete to raise turbines over 100 meters in height to capture stronger, steadier winds - and more energy. July 29, 2010 The new chiller system at the Dunn Building replaced an outdated rooftop-based HVAC system. | Photo courtesy of Deborah Hammond Energy Savings, Improved Comfort for West Virginia County Government On any given day up to 2,000 people visit the Dunn Building in Martinsburg,

268

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 27, 2010 January 27, 2010 Florida Residents See Energy Bill Reductions Indiantown nonprofit's home weatherization efforts help homeowners see drastic cuts in their energy bills. January 21, 2010 Union Helps Produce Women Workers Female weatherization technicians indicate the beginning of a new era in the clean energy economy. January 12, 2010 Massachusetts on Track with Weatherization Boost Massachusetts strives to weatherize 17,000 homes in three years, and hires new workers in the process. January 12, 2010 Maryland Small Business Helping Lower Solar Costs Though panels can produce mounds of energy savings over a long period of time, the expense of installation is still too high for many. January 7, 2010 Idahoan Who Needed Hope Now Delivers It Joe was a laid-off construction worker. Now he works in clean energy as a

269

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 2, 2011 May 2, 2011 A123 battery in passenger vehicle application | Photo Courtesy of A123 Systems Innovation in Electric Vehicle Technology? Easy as A123 How A123 Systems evolved from a team of researchers at MIT to becoming the world's second largest producer of lithium-ion batteries. April 25, 2011 Senator Debbie Stabenow at the Revitalizing Innovation in Michigan for Clean Energy Manufacturing Workshop Revitalizing Innovation in Michigan for Clean Energy Manufacturing To create jobs and win the clean energy race, we need to make sure technologies are invented in America and made in America. Michigan is working hard to do it's share, diversifying manufacturing expertise beyond automobiles to become a leader in clean energy products. April 25, 2011 President Obama Talks Clean Energy At Facebook Town Hall

270

An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland  

SciTech Connect (OSTI)

Highlights: An enhanced process-based LCA model for MSWI is featured and applied in case study. LCA modeling of recent technological developments for metal recovery from fly ash. Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

Boesch, Michael E. [Aveny GmbH, Schwandenholzstr. 212, CH-8046 Zrich (Switzerland); Vadenbo, Carl, E-mail: vadenbo@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland); Saner, Dominik [Swiss Post, Communications, Politics and Social Responsibility, Viktoriastrasse 21, P.O. Box, CH-3030 Berne (Switzerland); Huter, Christoph [City of Zrich, ERZ Entsorgung - Recycling Zrich, Hagenholzstrasse 110, P.O. Box, CH-8050 Zrich (Switzerland); Hellweg, Stefanie [ETH Zurich, Institute of Environmental Engineering, Schafmattstrasse 6, CH-8093 Zurich (Switzerland)

2014-02-15T23:59:59.000Z

271

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

solar radiation, and the geothermal energy. [16] Fig. 1.1.thermal energy, geothermal energy, wasted heat from athermal energy, geothermal energy, ocean thermal energy,

Lim, Hyuck

2011-01-01T23:59:59.000Z

272

Energy Recovery from Potato Chip Fryers  

E-Print Network [OSTI]

permits heat recovery from the fryer cooking fumes. The fumes consist primarily of water vapor (11 psia) and air (3.7 psia) at a temperature of 275 F. About 10% of the available energy is dissipated in a scrubber which removes particulate material...

McKee, H. B.; Kympton, H. W.; Arnold, J. W.; Paisan, J. J.

1980-01-01T23:59:59.000Z

273

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 County Partners with Siemens on Energy Upgrades Why McHenry County, Illinois is leading the way in terms of energy efficiency. July 6, 2010 Tom Bos is one of nine employees hired at wind turbine blade manufacturer Energetx Composites from the first class of students to graduate from Grand Rapids Community College's composites technician course. | Photo courtesy Energetx Michigan Wind Maufacturer Teams with College on Training After graduating from a four-week community college course in composites training, Tom Bos landed a job at Energetx Composites, a Holland, Michigan-based wind turbine blade manufacturer. July 2, 2010 The Orlando Science Center has installed a new energy efficient HVAC unit. | Photo courtesy of Orlando Science Center Keeping Cool, Saving Water and Money

274

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

27, 2010 27, 2010 A worker synchronizes a traffic light on State Road A1A in St. Augustine, FL. | Energy Department Photo | Florida County Seeks to Reduce Emissions and Improve Traffic St. Johns County, Florida is tackling its traffic-timing problem with a little help from an Energy Department Energy Efficiency and Conservation Block grant. The county will use the grant to improve traffic flow by re-synchronizing signals at five major road segments. In total, 23 traffic signals will be retimed and synchronized, resulting in lower fuel consumption, shorter travel times, increased travel speed, less stopping and less engine idling. September 23, 2010 Solar panels have been installed at a shelter facility near Ulster County Fairgrounds. | Photo courtesy of Ulster County

275

Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act Workers Recovery Act Workers Remediate and Restore Former Waste Sites, Help Reduce Cold War Footprint RICHLAND, Wash. - The Hanford Site is looking greener these days after American Recovery and Reinvestment Act workers revegetated 166 acres across 12 waste sites, planting over 1,100 pounds of seeds and about 280,000 pounds of mulch. The largest of the sites, known as the BC Control Area, is an approximately 13-square-mile area associated with a waste disposal system used during Hanford operations. Recovery Act workers remediated and reseeded a densely contaminated 140- acre portion of that area after disposing of more than 370,000 tons of contaminated soil. Recovery Act workers employed by DOE contractor CH2M HILL Plateau Remediation Company have remediated 61 waste sites,

276

Waste Isolation Pilot Plant Update | Department of Energy  

Office of Environmental Management (EM)

Isolation Pilot Plant Update Waste Isolation Pilot Plant Update Waste Isolation Pilot Plant Update More Documents & Publications TRUPACT-III Quick Facts "TRU" Success: SRS Recovery...

277

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6, 2011 6, 2011 16 R&D Projects Across 11 States to Advance Hydropower in U.S. Today, Secretary Chu announced that the Energy Department is funding 16 projects that will make hydropower production even more efficient, cost-effective and environmentally friendly. August 31, 2011 Dr. Anthony Atti, CEO of Phononic Devices, demonstrates the standard semiconductor bonding equipment used to fabricate Phononic's high performance thermoelectric devices. Phononic Devices is one of the five innovative ARPA-E Awardees that have attracted over $100 million in outside capital investments. | Photo Courtesy of Phononic Devices. A Major Milestone for ARPA-E To create jobs and lead in the global clean energy economy, the Obama Administration has made a point of supporting game-changing innovations -

278

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 10, 2012 February 10, 2012 A crew from Electric Power Board (EPB) of Chattanooga, TN, install an S&C IntelliRupter PulseCloser on its distribution network. EPB is installing more than 1,000 of the smart switches which can detect customer outages remotely, isolate damaged sections of the power lines and quickly restore power to customers. | Photo courtesy of EPB Chattanooga Modernizing the Grid: Getting More out of America's Energy As modernization of the nation's electric grid moves forward, consumers and businesses are experiencing fewer outages, faster power restoration when outages do occur, more efficient operations, and cost savings. Here are some of the latest examples of how Smart Grid Investment Grants from the Energy Department are helping the electric grid to better serve the

279

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 Working with the Private Sector to Achieve a Clean Energy Economy Financial Institution Partnership Program is one way the U.S. renewable energy sector can be accelerated through clear and effective government policy and incentives. November 1, 2010 Randy Turk, Elyria Site Manager; Rep. Betty Sutton (OH); Frank Bozich, President Catalysts, BASF and Patrick Davis, DOE Program Manager participate in groundbreaking ceremony for BASF battery materials plant in Elyria, Ohio | Photo Courtesy of Nat Clymer Photography, LLC | Driving Battery Production in Ohio Vehicle Technologies Program Manager, Pat Davis, blogs about his most recent visit to Elyria, OH for the groundbreaking of BASF Catalysts, LLC's new cathode material production facility. November 2, 2010

280

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0, 2010 0, 2010 North Lauderdale Gets 'Smart' on Cars The Parks and Recreation Department of North Lauderdale, Fla., is saving money and reducing its carbon footprint, thanks to the recent addition of two energy efficient "Smart Cars" to the city's fleet. September 10, 2010 Smart Meters on Tap for Owasso, Oklahoma Saving 10 percent of annual energy and increasing response time for electrical emergencies? Find out how smart meters can make cities smarter. September 9, 2010 Arkansas Students Get Their Hands Dirty in Solar Panel Project Wallie Shaw remembers where he got the idea to do a hands-on solar panel project for his Jobs for America's Graduates (JAG) students, a school-to-work transition program focused on helping at-risk youth graduate from high school.

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

November 19, 2012 November 19, 2012 This ChargePoint station is located in the Columbia River Gorge National Scenic Area in Stevenson, WA, -- an area that is adjacent to the city's shops, restaurants, spas and art galleries. | Photo courtesy of Port of Skamania. EV Charging Stations Take Off Across America Finding a charging station is getting more convenient than ever thanks to companies like ChargePoint, which recently finished installing 4,600 charging stations across the United States. October 15, 2012 A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar.

282

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 16, 2010 April 16, 2010 Urban League of St. Louis Ramps Up Weatherization Production and Hiring Why some residents in St. Louis are doing a double take when looking at the savings on their energy bills. April 15, 2010 New North Dakota Factory to Produce Wind Towers, Jobs Wind tower factory could bring back some of the jobs lost when a machine manufacturing plant closed. April 14, 2010 Solar Project to Spark Students' Studies, School's Savings City officials applied for the grants to install the 38-kW solar energy system. April 9, 2010 Weatherization Provides Boost for New Jersey Business Why one small New Jersey business is already seeing 15-20% increases in sales. April 9, 2010 Hydrogen Fuel Cells Providing Critical Backup Power ReliOn, Inc., specializes in hydrogen fuel-cell backups for businesses have

283

Federal Energy Management Program: Recovery Act Project Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Project Stories to someone by E-mail Project Stories to someone by E-mail Share Federal Energy Management Program: Recovery Act Project Stories on Facebook Tweet about Federal Energy Management Program: Recovery Act Project Stories on Twitter Bookmark Federal Energy Management Program: Recovery Act Project Stories on Google Bookmark Federal Energy Management Program: Recovery Act Project Stories on Delicious Rank Federal Energy Management Program: Recovery Act Project Stories on Digg Find More places to share Federal Energy Management Program: Recovery Act Project Stories on AddThis.com... Energy Savings Performance Contracts ENABLE Utility Energy Service Contracts On-Site Renewable Power Purchase Agreements Energy Incentive Programs Recovery Act Technical Assistance Projects Project Stories Recovery Act Project Stories

284

Recovery Act Recipient Data | Department of Energy  

Office of Environmental Management (EM)

Recovery Act Recipient Data Recovery Act Recipient Data A listing of all Recovery Act recipients and their allocations. Updated weekly. recoveryactfunding.xls More Documents &...

285

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 23, 2010 July 23, 2010 Energy Efficient Appliance Sales Soar in North Carolina It took just eight days for retailers to rack up $64 million in sales of appliances through the state's Appliance Rebate Program. July 21, 2010 Rebate Program Serves Alaskans with Disabilities Alaska uses an State Appliance Rebate Program funds to help bolster an existing rebate program. July 20, 2010 Hired and Helping with Heating in North Dakota The story of a North Dakota father who went from juggling jobs to steady work in weatherization. July 15, 2010 Solar Hot Water Creates Savings for Homeless Shelters The state of Arizona and the House of Refuge Sunnyslope are partnering to install solar hot water systems at five Phoenix-area housing sites for homeless men. July 15, 2010 UQM will manufacture electric vehicle propulsion systems like this at its new facility in Longmont, Colo. | Photo courtesy of UQ

286

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2010 5, 2010 A Boost for Small Business Phase III Xlerator awards go out to 33 small businesses in 16 states to make clean energy technology a commercial reality. September 15, 2010 Most Catalyst Management Group employees had no previous experience with weatherization. | Photo by CMG Minority-Owned Business Creating Career Opportunities Leon Brown, an engineer by trade, started his career as a manufacturing engineer in the automobile industry in Detroit. After earning his master in business administration, and with the decline of jobs in the automobile industry, he decided to take a part-time contracting business and go fulltime toward a new industry he felt had great potential in the metro Detroit area: weatherization. Brown now owns and operates Catalyst Management Group, a small,

287

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 7, 2010 October 7, 2010 Eco-Friendly Complex Blends into Desert Rooftop solar panels provide 27 percent of White Tank Library and Nature Center's energy. October 6, 2010 Technicians implement smart meters as part of the Naperville Smart Grid Initiative, which is projected to save the city $3 million a year over a 15 year period. | Photo courtesy of Naperville VP 100: A Smart Grid Initiative in an Eco-Conscious Town Naperville, Illinois is improving their long-term electricity distribution through the implementation of the Naperville Smart Grid Initiative (NSGI) -- to the tune of $3million in savings over a 15-year period. October 5, 2010 EnerDel is expanding its Mt. Comfort-based factory to produce advanced lithium-ion batteries such as this.| Photo courtesy of EnderDel

288

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 26, 2011 July 26, 2011 Small business owner Steve Kaplan told ABC News' "Show Me the Money" on Good Morning America that he's saving over $320 per month compared to last summer, which they calculated could result in $1,300 a year. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart meters -- just one of the advanced technologies being used to modernize the grid -- are helping Oklahoma businesses and home owners beat high electricity bills not only during these summer months, but year-round. July 15, 2011 More About "Topic A" and "Topic B" Awards The awards pursuant to the Department of Energy's Interconnection-wide Transmission Planning Initiative cover two broad topics. "Topic A" covers Interconnection-Level Analysis and Planning. "Topic B" covers

289

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 22, 2010 June 22, 2010 Weatherization Training for South Carolina's Muggy Weather Why it makes sense for one technical college in Charleston, South Carolina is adding weatherization programs to their curriculum. June 18, 2010 Launching Green Entrepreneurship in New Hampshire Green Launching Pad initiative accelerates funding and expertise to grow environmentally-oriented businesses. June 18, 2010 Residential Tax Credits Boost Maryland Geothermal Business Demand for residential geothermal systems grows as homeowners look for ways to cut expenses. June 16, 2010 Retooled Machines Bring New Green Jobs to Illinois Rockford plant works to reinvent itself, moves from heavy construction equipment to a clean energy focus with wind turbine components. June 16, 2010 Sensor Switch's Bright Manufacturing Future

290

Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 3, 2013 June 3, 2013 Investments in the nation's electric power grid are delivering significant benefits to consumers and businesses. | Photo courtesy of Pacific Northwest National Laboratory. Progress on Our 21st Century Grid: Powering Our Country and Our Economy Since the start of the new year, I have spoken at more than a dozen events about ways in which investment in the electric power grid is delivering significant benefits to consumers, businesses, and communities across the nation. June 3, 2013 Introducing Smart Grid Week. | Photo courtesy of Pacific Northwest National Laboratory. Smart Grid Week: Working to Modernize the Nation's Electric Grid Our latest Energy.gov series -- Smart Grid Week -- highlights efforts across the country to transform the nation's electric grid. Learn how you

291

Puente Hills Energy Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Puente Hills Energy Recovery Biomass Facility Puente Hills Energy Recovery Biomass Facility Jump to: navigation, search Name Puente Hills Energy Recovery Biomass Facility Facility Puente Hills Energy Recovery Sector Biomass Facility Type Landfill Gas Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

biological thermal energy, geothermal energy, wasted heatpower plants, solar thermal energy, geothermal energy, oceansolar radiation, and the geothermal energy. [16] Fig. 1.1.

Lim, Hyuck

2011-01-01T23:59:59.000Z

293

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network [OSTI]

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate...

Graham, E. L.

1980-01-01T23:59:59.000Z

294

Recovery of Electrical Energy in Microbial Fuel Cells  

Science Journals Connector (OSTI)

Recovery of Electrical Energy in Microbial Fuel Cells ... Further improvement of energy recovery through optimizing configuration, operation, microbiology, and materials will make MFCs more attractive. ... This research indicates that microbial electricity generation offers perspectives for optimization. ...

Zheng Ge; Jian Li; Li Xiao; Yiran Tong; Zhen He

2013-09-04T23:59:59.000Z

295

Energy Efficiency Improvement and Cost Saving Opportunities for the Dairy Processing Industry  

E-Print Network [OSTI]

Gets Free Cooling Through Waste Heat Recovery. Washington,Process Integration and Waste Heat Recovery in Lithuanianto make good use of waste heat and solar energy." Progress

Brush, Adrian

2012-01-01T23:59:59.000Z

296

Experimental and Analytical Studies on Pyroelectric Waste Heat Energy Conversion  

E-Print Network [OSTI]

3 Pyroelectric Waste Heat Energy Harvesting Using Heat4 Pyroelectric Waste Heat Energy Harvesting Using RelaxorWaste heat Pyroelectric energy

Lee, Felix

2012-01-01T23:59:59.000Z

297

Waste Processing | Department of Energy  

Office of Environmental Management (EM)

Processing Waste Processing Workers process and repackage waste at the Transuranic Waste Processing Centers Cask Processing Enclosure. Workers process and repackage waste at...

298

Wastes from plutonium conversion and scrap recovery operations  

SciTech Connect (OSTI)

This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

1988-03-01T23:59:59.000Z

299

New York Recovery Act Snapshot | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New York Recovery Act Snapshot New York Recovery Act Snapshot New York Recovery Act Snapshot Summary Funding for selected DOE projects: $1.8 billion DOE Recovery Act projects in New York: 138 Clean energy tax credits and grants: 32 Total Recovery Act funding for DOE projects and clean energy tax programs (as of June 1): $1,678.89 million The number of New York jobs created from Recovery Act funding can be found at Recovery.gov The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a broad range of clean energy projects from energy efficiency and the Smart Grid to advanced battery manufacturing, the Brookhaven National Lab in Upton, and cleanup of the

300

American Samoa Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo American Samoa Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in American Samoa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, American Samoa's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning American Samoa to play an important role in the new energy economy of the future. American Samoa Recovery Act State Memo More Documents & Publications AMERICAN SAMOA RECOVERY ACT SNAPSHOT Guam Recovery Act State Memo State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

California Energy Commission GUIDANCE ON WASTE  

E-Print Network [OSTI]

California Energy Commission GUIDANCE GUIDANCE ON WASTE MANAGEMENT PLANS FOR ENERGY EFFICIENCY) obtain waste management plans for each proposed project receiving funding under the Energy Efficiency of waste. The Energy Commission is providing the following guidance to assist recipients of EECBG Program

302

Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems  

DOE Patents [OSTI]

Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

Meisner, Gregory P

2013-10-08T23:59:59.000Z

303

Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control  

Broader source: Energy.gov [DOE]

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

304

High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

305

Process Waste Heat Recovery in the Food Industry - A System Analysis  

E-Print Network [OSTI]

An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

Lundberg, W. L.; Mutone, G. A.

1983-01-01T23:59:59.000Z

306

Recovery Act Reports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 21, 2009 October 21, 2009 Special Report: OAS-RA-10-01 The Department of Energy's Quality Assurance Process for Prime Recipients' Reporting for the American Recovery and Reinvestment Act of 2009 October 14, 2009 Audit Report: IG-0827 The Department's Management of the ENERGY STAR Program September 30, 2009 Auit Report: IG-0825 The Department of Energy's Management of Contractor Fines, Penalties and Legal Costs September 29, 2009 Audit Report: IG-0824 Bonneville Power Administration's Acquisition of Transmission-Related Materials and Equipment September 10, 2009 Audit Report: IG-0822 Management of Energy Savings Performance Contract Delivery Orders at the Department of Energy September 4, 2009 Audit Report: OAS-RA-09-04 Department of Energy's Efforts to Meet Accountability and Performance

307

Energy from waste via coal/waste co-firing  

SciTech Connect (OSTI)

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

308

Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

Not Available

1993-08-01T23:59:59.000Z

309

Colorado Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Colorado Recovery Act State Memo Colorado Recovery Act State Memo Colorado Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Colorado are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar power and biofuels. Through these investments, Colorado's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Colorado to play an important role in the new energy economy of the future. Colorado Recovery Act State Memo More Documents & Publications California Recovery Act State Memo Nevada Recovery Act State Memo District of Columbia Recovery Act State Memo

310

Maryland Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maryland Recovery Act State Memo Maryland Recovery Act State Memo Maryland Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maryland are supporting a broad range of clean energy projects, from energy efficiency and smart grid to advanced battery manufacturing. Through these investments, Maryland's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Maryland to play an important role in the new energy economy of the future. Maryland Recovery Act State Memo More Documents & Publications District of Columbia Recovery Act State Memo Virginia Recovery Act State Memo Nevada Recovery Act State Memo

311

Guam Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Guam Recovery Act State Memo Guam Recovery Act State Memo Guam Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Guam are supporting abroad range of clean energy projects, from solar power and wind. Through these investments, Guam's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Guam to play an important role in the new energy economy of the future. Guam Recovery Act State Memo More Documents & Publications GUAM RECOVERY ACT SNAPSHOT State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery and Reinvestment Act (ARRA) Funding Opportunity Number: DE-FOA-0000119 American Samoa Recovery Act State Memo

312

A Waste Heat Recovery System for Light Duty Diesel Engines  

SciTech Connect (OSTI)

In order to achieve proposed fuel economy requirements, engines must make better use of the available fuel energy. Regardless of how efficient the engine is, there will still be a significant fraction of the fuel energy that is rejected in the exhaust and coolant streams. One viable technology for recovering this waste heat is an Organic Rankine Cycle. This cycle heats a working fluid using these heat streams and expands the fluid through a turbine to produce shaft power. The present work was the development of such a system applied to a light duty diesel engine. This lab demonstration was designed to maximize the peak brake thermal efficiency of the engine, and the combined system achieved an efficiency of 44.4%. The design of the system is discussed, as are the experimental performance results. The system potential at typical operating conditions was evaluated to determine the practicality of installing such a system in a vehicle.

Briggs, Thomas E [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Curran, Scott [ORNL; Nafziger, Eric J [ORNL

2010-01-01T23:59:59.000Z

313

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network [OSTI]

Industry by Cascade Use of waste Energy, Energy Conversion.186] Sternlicht B (1982) Waste Energy Recovery: An Excellentterms of reuse of waste and lost energy streams. Enterprise/

2012-01-01T23:59:59.000Z

314

The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat  

E-Print Network [OSTI]

The conservation of energy by its recovery from low temperature waste heat is of increasing importance in today's world energy crisis. The Organic Rankine Cycle is a cost efficient and proven method of converting low temperature (200-400o F) waste...

Sawyer, R. H.; Ichikawa, S.

1980-01-01T23:59:59.000Z

315

[Waste water heat recovery system]. Final report, September 30, 1992  

SciTech Connect (OSTI)

The production capabilities for and field testing of the heat recovery system are described briefly. Drawings are included.

Not Available

1993-04-28T23:59:59.000Z

316

Steel Mill Powered by Waste Heat Recovery System  

Office of Energy Efficiency and Renewable Energy (EERE)

ArcelorMittal USA reduces carbon dioxide emissions by 340,000 tons annually with new efficient recovery boiler.

317

Waste to Energy: Biogas CHP  

E-Print Network [OSTI]

Southside Wastewater Treatment Plant Biogas Cogeneration Project November 9, 2011 2011 Clean Air Through Energy Efficiency Conference ?Turning Waste Into Energy? What to Expect ? ? Southside Overview ? Wastewater Treatment Process... gallons per day ? Processes and disposes over 150 tons of solids/day from both of the City?s wastewater treatment plants What is Biogas? ? Biogas is the methane (CH4) produced as a by-product of the anaerobic digestion process at the Southside...

Wagner, R.

2011-01-01T23:59:59.000Z

318

Towards model-based control of a steam Rankine process for engine waste heat recovery  

E-Print Network [OSTI]

Towards model-based control of a steam Rankine process for engine waste heat recovery Johan Peralez steam process for exhaust gas heat recovery from a spark-ignition engine, focusing in particular results on a steam process for SI engines, [3] on generic control issues and [4] which provides a comp

Paris-Sud XI, Université de

319

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network [OSTI]

Nanoporous Thermal-to-Electrical Energy Conversion System (of Wasted Energy : Thermal to Electrical Energy Conversion AArticles: 1. Thermal to electrical energy conversion , Yu

Lim, Hyuck

2011-01-01T23:59:59.000Z

320

Michigan Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Michigan Recovery Act State Memo Michigan Recovery Act State Memo Michigan Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Michigan are supporting abroad range of clean energy projects from battery manufacturing to energy efficiency and the smart grid, renewable energy, and carbon capture and storage. Through these investments, Michigan's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Michigan to play an important role in the new energy economy of the future. Michigan Recovery Act State Memo More Documents & Publications Indiana Recovery Act State Memo Ohio Recovery Act State Memo

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

High efficiency waste to energy facility -- Pilot plant design  

SciTech Connect (OSTI)

Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

1998-07-01T23:59:59.000Z

322

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect (OSTI)

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

323

Recovery Act: Enhancing State Energy Assurance | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancing State Enhancing State Energy Assurance Recovery Act: Enhancing State Energy Assurance States are using these funds to plan for energy supply disruption risks and vulnerabilities to lessen the devastating impact that such incidents can have on the economy and the health and safety of the public. Each state is required to track energy emergencies to assess the restoration and recovery times of any supply disruptions; to train appropriate personnel on energy infrastructure and supply systems; and conduct and participate in state and regional energy emergency exercises to evaluate the effectiveness of their energy assurance plans. The awards for energy assurance capabilities also help states address cyber security concerns and prepare for the challenges of integrating smart grid

324

Energy Secretary Chu Announces $99 Million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

Energy Secretary Chu Announces $99 Million in Recovery Act Funding Energy Secretary Chu Announces $99 Million in Recovery Act Funding for Environmental Cleanup in Illinois Energy Secretary Chu Announces $99 Million in Recovery Act Funding for Environmental Cleanup in Illinois March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Illinois. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up

325

Energy Secretary Chu Announces $79 Million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

Energy Secretary Chu Announces $79 Million in Recovery Act Funding Energy Secretary Chu Announces $79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky Energy Secretary Chu Announces $79 Million in Recovery Act Funding for Environmental Cleanup in Kentucky March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Kentucky. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up

326

Energy Secretary Chu Announces $384 Million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

Energy Secretary Chu Announces $384 Million in Recovery Act Funding Energy Secretary Chu Announces $384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico Energy Secretary Chu Announces $384 Million in Recovery Act Funding for Environmental Cleanup in New Mexico March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in New Mexico. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up

327

Energy Conservation Within the Paper Machine Room  

E-Print Network [OSTI]

their startling waste of energy, the corrective measures taken to reduce this waste of energy, the potential for waste recovery and equipment available for waste heat recovery. Areas under study include the press section, paper machine dryer section, and machine...

Walker, P. J.; Erskine, K. J.

1979-01-01T23:59:59.000Z

328

A review of different heat exchangers designs for increasing the diesel exhaust waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, after a short review of waste heat recovery technologies from diesel engines, the heat exchangers (HEXs) used in exhaust of engines is introduced as the most common way. So, a short review of the technologies that increase the heat transfer in \\{HEXs\\} is introduced and the availability of using them in the exhaust of engines is evaluated and finally a complete review of different \\{HEXs\\} which previously were designed for increasing the exhaust waste heat recovery is presented. Also, future view points for next \\{HEXs\\} designs are proposed to increase heat recovery from the exhaust of diesel engines.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2014-01-01T23:59:59.000Z

329

EM Recovery Act Performance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act program. Milestones The EM Recovery Act Program set a goal of achieving accelerated completion of 46 regulatory milestones by the end of FY 2011 using Recovery Act...

330

Material Recovery and Waste Form Development FY 2014 Accomplishments Report  

SciTech Connect (OSTI)

Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

Lori Braase

2014-11-01T23:59:59.000Z

331

North Carolina Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

North Carolina Recovery Act State Memo North Carolina Recovery Act State Memo North Carolina Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Carolina are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, North Carolina's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning North Carolina to play an important role in the new energy economy of the future. North Carolina Recovery Act State Memo More Documents & Publications South Carolina Recovery Act State Memo Nevada Recovery Act State Memo

332

Indiana Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Indiana Recovery Act State Memo Indiana Recovery Act State Memo Indiana Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Indiana are supporting a broad range of clean energy projects from advanced battery manufacturing and alternative fuels and vehicles to energy efficiency and the smart grid. Through these investments, Indiana's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Indiana to play an important role in the new energy economy of the future. Indiana Recovery Act State Memo More Documents & Publications Louisiana Recovery Act State Memo Colorado Recovery Act State Memo California

333

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

141 Open ORC Systemfor Open Organic Rankine Cycle (ORC)138 Evaporatorof an Organic Rankine Cycle (ORC) System for Waste Heat

Luong, David

2013-01-01T23:59:59.000Z

334

Enhanced Oil Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between...

335

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

The American Recovery and Reinvestment Act (ARRA) Energy Assurance The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 1. January 2012 Energy Assurance Planning Bulletin Volume 3 No 1.pdf More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

336

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 2, 2012 August 2, 2012 Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant, specifically as it relates to the facility's "black cells." July 9, 2012 Spencer Isom, second year engineering intern for Savannah River Remediation (SRR) and fourth summer at Savannah River Site (SRS), performs a standard equipment check at Saltstone Production Facility. | Photo courtesy of Savannah River Site Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity College intern Spencer Isom recently began her second summer with Savannah River Remediation (SRR), and her fourth year at Savannah River Site (SRS),

337

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop  

SciTech Connect (OSTI)

This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

Donna Post Guillen

2012-11-01T23:59:59.000Z

338

Energy implications of mechanical and mechanicalbiological treatment compared to direct waste-to-energy  

SciTech Connect (OSTI)

Highlights: Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} Savings magnitude is foremost determined by chosen primary energy and materials production. Energy consumption and process losses can be upset by increased technology efficiency. Material recovery accounts for significant shares of primary energy savings. Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanicalbiological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 39.5%, 118% and 18% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.

Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik

2013-07-15T23:59:59.000Z

339

Solid Waste Policies (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policies (Iowa) Policies (Iowa) Solid Waste Policies (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are required to establish and operate a comprehensive solid waste reduction program. These regulations discuss land application of processed wastes as well as requirements for sanitary landfills and for groundwater monitoring near land disposal sites

340

District of Columbia Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

District of Columbia Recovery Act State Memo District of Columbia Recovery Act State Memo District of Columbia Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the District of Columbia reflect a broad range of clean energy projects, from energy efficiency and the smart grid to renewable energy and advanced battery manufacturing. Through these investments, the District of Columbia's businesses, non-profits, and local governments are creating quality jobs today and positioning the District of Columbia to play an important role in the new energy economy of the future. Washington, D.C. Recovery Act State Memo More Documents & Publications New York Recovery Act State Memo

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

342

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

The American Recovery and Reinvestment Act (ARRA) Energy Assurance The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3

343

Environmental, economic, and energy impacts of material recovery facilities. A MITE Program evaluation  

SciTech Connect (OSTI)

This report documents an evaluation of the environmental, economic, and energy impacts of material recovery facilities (MRFs) conducted under the Municipal Solid Waste Innovative Technology Evaluation (MITE) Program. The MITE Program is sponsored by the US Environmental Protection Agency to foster the demonstration and development of innovative technologies for the management of municipal solid waste (MSW). This project was also funded by the National Renewable Energy Laboratory (NREL). Material recovery facilities are increasingly being used as one option for managing a significant portion of municipal solid waste (MSW). The owners and operators of these facilities employ a combination of manual and mechanical techniques to separate and sort the recyclable fraction of MSW and to transport the separated materials to recycling facilities.

NONE

1995-10-01T23:59:59.000Z

344

EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System,  

Broader source: Energy.gov (indexed) [DOE]

62: Oneida Seven Generation Corporation Waste-To-Energy 62: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin Summary This EA evaluates the environmental impacts of a proposal by Oneida's Energy Recovery Project to construct and operate a solid waste-to-electricity power plant on vacant property within the Bayport Industrial Center in the City of Green Bay, Brown County, Wisconsin. This energy recovery process would involve bringing municipal solid waste into the plant for sizing (shredding), sorting (removing recyclable material), and conveying into one of three pyrolytic gasification systems. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download

345

Hawaii Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments, Hawaii's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Hawaii to play an important role in the new energy economy of the future. Hawaii Recovery Act State Memo More Documents & Publications Slide 1 Arizona Recovery Act State Memo

346

Ohio Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio Recovery Act State Memo Ohio Recovery Act State Memo Ohio Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Ohio are supporting a broad range of clean energy projects from the smart grid and energy efficiency to advanced batter manufacturing, biofuels, carbon capture and storage, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, Ohio's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. Ohio Recovery Act State Memo More Documents & Publications Ohio.pdf Indiana Recovery Act State Memo

347

Virgin Islands Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo Virgin Islands Recovery Act State Memo The American Recovery & Reinvestment Act( ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in the U.S. Virgin Islands are supporting a broad range of clean energy projects from energy efficiency and the smart grid to solar power and biofuels. Through these investments, the U.S. Virgin Islands' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning the U.S. Virgin Islands to play an important role in the new energy economy of the future. Virgin Islands Recovery Act State Memo More Documents & Publications Slide 1 MP_recovery_act_memo__updated.pdf Northern Mariana Islands

348

Nebraska Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nebraska Recovery Act State Memo Nebraska Recovery Act State Memo Nebraska Recovery Act State Memo Nebraska has substantial natural resources, including oil, coal, wind, and hydro electric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nebraska are supporting abroad range of clean energy projects, from weatherization and retrofits to the smart grid and wind power. Through these investments, Nebraska's businesses, non-profits, and local governments are creating quality jobs today and positioning Nebraska to play an important role in the new energy economy of the future. Nebraska Recovery Act State Memo More Documents & Publications Slide 1 State Energy Efficient Appliance Rebate Program (SEEARP) American Recovery

349

Kansas Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kansas Recovery Act State Memo Kansas Recovery Act State Memo Kansas Recovery Act State Memo Kansas has substantial natural resources, including oil, gas, biomass and wind power.The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kansas are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to geothermal and carbon capture and storage. Through these investments, Kansas' businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kansas to play an important role in the new energy economy of the future. Kansas Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

350

Maine Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Maine Recovery Act State Memo Maine Recovery Act State Memo Maine Recovery Act State Memo Maine has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Maine are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind. Through these investments, Maine's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Maine to play an important role in the new energy economy of the future. Maine Recovery Act State Memo More Documents & Publications Slide 1 District of Columbia Recovery Act State Memo

351

Wisconsin Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin Recovery Act State Memo Wisconsin has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wisconsin are supporting a broad range of clean energy projects from energy efficiency and the smart grid to alternative fuel vehicles. Through these investments, Wisconsin's businesses, non-profits, and local governments are creating quality jobs today and positioning Wisconsin to play an important role in the new energy economy of the future. Wisconsin Recovery Act State Memo More Documents & Publications California Recovery Act State Memo

352

Hawaii Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii Recovery Act State Memo Hawaii has substantial natural resources, including solar, biomass , geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Hawaii are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind power and biofuels. Through these investments, Hawaii's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Hawaii to play an important role in the new energy economy of the future. Hawaii Recovery Act State Memo More Documents & Publications Slide 1 Arizona Recovery Act State Memo

353

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

for Open Organic Rankine Cycle (ORC)138 Evaporatorand Simulation of an Organic Rankine Cycle (ORC) System forControl of Organic Rankine Cycles in Waste Heat Uti- lizing

Luong, David

2013-01-01T23:59:59.000Z

354

Recovery Act Workforce Development | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Act Workforce Act Workforce Development Recovery Act Workforce Development Map of Smart Grid Workforce Development 19 Awards Read more Map of Workforce Development Programs for the Electric Power Sector 33 Awards Read more View the full list of selected projects U.S. Secretary of Energy Steven Chu announced that the Department of Energy announced award selections for nearly $100 million for 54 smart grid workforce development programs that will help prepare the next generation of workers in the utility and electrical manufacturing industries. These projects will leverage more than $95 million in funding from community colleges, universities, utilities and manufacturers to develop and implement training programs. The selectees estimate that the programs will train approximately 30,000 Americans. These workers will help to modernize

355

OE Recovery Act Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 8, 2010 October 8, 2010 CenterPoint Energy employees are installing smart meters and automated distribution equipment in the company's electric grid in Houston, Texas. | Photo courtesy of CenterPoint Energy Houston Smart Grid System Almost Ready for Launch Find out Houston is at the forefront of another technological revolution, and thanks to Recovery Act money, is supporting local jobs to implement their electric grid. October 6, 2010 Technicians implement smart meters as part of the Naperville Smart Grid Initiative, which is projected to save the city $3 million a year over a 15 year period. | Photo courtesy of Naperville VP 100: A Smart Grid Initiative in an Eco-Conscious Town Naperville, Illinois is improving their long-term electricity distribution through the implementation of the Naperville Smart Grid Initiative (NSGI)

356

Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference  

E-Print Network [OSTI]

require pre-processing of the MSW, combust the resulting syngas to generate steam, and produce a vitrified used globally for energy recovery from municipal solid wastes is combustion of "as received" MSW combustion of solid wastes. In China, there have been some mass-burn new plants and also over forty

Columbia University

357

Hazardous Waste Management (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) Hazardous Waste Management (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Transportation Utility Program Info State Arkansas Program Type Environmental Regulations Sales Tax Incentive Provider Department of Environmental Quality The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7-202.) The Hazardous Waste Program is based off of the Federal Resource Conservation and Recovery Act set forth in 40 CFR parts 260-279. Due to the great similarity to the

358

Waste-to-Energy Workshop | Department of Energy  

Office of Environmental Management (EM)

Waste-to-Energy Workshop Waste-to-Energy Workshop November 5, 2014 9:00AM EST to November 6, 2014 12:00PM EST DoubleTree Hotel Crystal City 300 Army Navy Drive Arlington, VA 22202...

359

Waste-to-Energy Roadmapping Workshop | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste-to-Energy Roadmapping Workshop Waste-to-Energy Roadmapping Workshop November 5, 2014 9:00AM EST to November 6, 2014 12:00PM EST DoubleTree Hotel Crystal City 300 Army Navy...

360

Recovery Act: Enhancing State Energy Assurance | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

emergencies to assess the restoration and recovery times of any supply disruptions; to train appropriate personnel on energy infrastructure and supply systems; and conduct and...

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermoelectrical Energy Recovery From the Exhaust of a Light...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Progress in Thermoelectrical Energy Recovery from a...

362

Energy Secretary Chu Announces $138 Million in Recovery Act Funding...  

Energy Savers [EERE]

Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced 6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental...

363

ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INDUSTRIAL TECHNOLOGIES PROGRAM Improved Heat Recovery in Biomass-Fired Boilers Reducing Superheater Corrosion to Enable Maximum Energy Effi ciency This project will develop...

364

Progress in Thermoelectrical Energy Recovery from a Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Automotive Thermoelectric Generators and HVAC...

365

Puerto Rico Recovery Act State Memo | Department of Energy  

Energy Savers [EERE]

play an important role in the new energy economy of the future. Puerto Rico Recovery Act State Memo More Documents & Publications Slide 1 Slide 1 MPrecoveryactmemoupdated.pdf...

366

Rhode Island Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island Recovery Act State Memo Rhode Island has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Rhode Island are supporting a broad range of clean energy projects, from weatherization to smart grid workforce training. Through these investments, Rhode Island's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Rhode Island to play an important role in the new energy economy of the future. Rhode Island Recovery Act State Memo More Documents & Publications Slide 1 Guam Recovery Act State Memo

367

New Hampshire Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hampshire Recovery Act State Memo Hampshire Recovery Act State Memo New Hampshire Recovery Act State Memo New Hampshire has substantial natural resources, including wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Hampshire are supporting a broad range of clean energy projects, from weatherization and retrofits to the smart grid. Through these investments, New Hampshire's businesses, non-profits, and local governments are creating quality jobs today and positioning New Hampshire to play an important role in the new energy economy of the future. New Hampshire Recovery Act State Memo More Documents & Publications Slide 1 Virginia Recovery Act State Memo

368

Energy Secretary Chu Announces $6 Billion in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

6 Billion in Recovery Act Funding 6 Billion in Recovery Act Funding for Environmental Cleanup Energy Secretary Chu Announces $6 Billion in Recovery Act Funding for Environmental Cleanup March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects our commitment to future generations as well as to help local economies get

369

Energy Secretary Chu Announces $138 Million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

38 Million in Recovery Act Funding 38 Million in Recovery Act Funding for Environmental Cleanup in Ohio Energy Secretary Chu Announces $138 Million in Recovery Act Funding for Environmental Cleanup in Ohio March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Ohio. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

370

Energy Secretary Chu Announces $148 million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

48 million in Recovery Act Funding 48 million in Recovery Act Funding for Environmental Cleanup in New York Energy Secretary Chu Announces $148 million in Recovery Act Funding for Environmental Cleanup in New York March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in New York. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

371

Energy Secretary Chu Announces $62 Million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

62 Million in Recovery Act Funding 62 Million in Recovery Act Funding for Environmental Cleanup in California Energy Secretary Chu Announces $62 Million in Recovery Act Funding for Environmental Cleanup in California March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in California. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

372

Energy Secretary Chu Announces $108 Million in Recovery Act Funding for  

Broader source: Energy.gov (indexed) [DOE]

108 Million in Recovery Act Funding 108 Million in Recovery Act Funding for Environmental Cleanup in Utah Energy Secretary Chu Announces $108 Million in Recovery Act Funding for Environmental Cleanup in Utah March 31, 2009 - 12:00am Addthis WASHINGTON, DC -- Energy Secretary Steven Chu today announced $6 billion in new funding under the American Recovery and Reinvestment Act to accelerate environmental cleanup work and create thousands of jobs across 12 states - including a major investment in Utah. Projects identified for funding will focus on accelerating cleanup of soil and groundwater, transportation and disposal of waste, and cleaning and demolishing former weapons complex facilities. "These investments will put Americans to work while cleaning up contamination from the cold war era," said Secretary Chu. "It reflects

373

Arizona Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona Recovery Act State Memo Arizona has substantial natural resources, including coal, solar, and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arizona reflect a broad range of clean energy projects, from energy efficiency and the smart grid to transportation, carbon capture and storage, and geothermal energy. Through these investments, Arizona's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Arizona to play an important role in the new energy economy of the future. Arizona Recovery Act State Memo More Documents & Publications

374

Alabama Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama Recovery Act State Memo Alabama has substantial natural resources, including gas, coal, biomass, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alabama are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to renewable energy and carbon capture and storage. Through these investments, Alabama's businesses, universities, nonprofits, and local governments are creating quality jobs today and positioning Alabama to play an important role in the new energy economy of the future. Alabama Recovery Act State Memo More Documents & Publications

375

Arkansas Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas Recovery Act State Memo Arkansas has substantial natural resources, including gas, oil, wind, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Arkansas are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to advanced battery manufacturing and renewable energy. Through these investments, Arkansas's businesses, non-profits, and local governments are creating quality jobs today and positioning Arkansas to play an important role in the new energy economy of the future. Arkansas Recovery Act State Memo More Documents & Publications

376

Waste Management | Department of Energy  

Energy Savers [EERE]

Management Waste Management Oak Ridge has an onsite CERCLA disposal facility, the Environmental Management Waste Management Facility, that reduces cleanup and transportation costs....

377

Waste Disposal | Department of Energy  

Office of Environmental Management (EM)

Disposal Waste Disposal Trucks transport debris from Oak Ridges cleanup sites to the onsite CERCLA disposal area, the Environmental Management Waste Management Facility....

378

An energy recovery filter for HVDC systems  

SciTech Connect (OSTI)

The paper investigates the use of a novel filter arrangement for eliminating harmonic instability. The CIGRE benchmark model is selected as the base system. Presented in the paper is an example of harmonic instability which is first eliminated using a conventional low Q filter. Subsequently an energy recovery filter (ER-filter) replaces the conventional low Q filter. It is shown that the ER-filter provides similar performance with a fraction of the power loss when compared with a low Q filter. The dynamic performance of the ER-filter is also demonstrated via the simulations of system start-up and faults. The tool used for this investigation is an electromagnetic transient simulation program.

Jiang, X.; Gole, A.M. (Univ. of Manitoba, Winnipeg (Canada). Dept. of Electrical and Computer Engineering)

1994-01-01T23:59:59.000Z

379

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

October 1, 2012, Volume 3 No. 4 October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1, 2012, Volume 3 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 4. October 2012 Energy Assurance Planning Bulletin Volume 3 No 4 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

380

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

3 2012, Volume 3 No. 1 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2012, Volume 3 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 1. January 2012 Energy Assurance Planning Bulletin Volume 3 No 1.pdf More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

April 2, 2012, Volume 3 No. 2 April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 2, 2012, Volume 3 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 3, NUMBER 2. April 2012 Energy Assurance Planning Bulletin Volume 3 No 2.pdf More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning

382

Global Waste to Energy Conversion Company GWECC | Open Energy Information  

Open Energy Info (EERE)

Waste to Energy Conversion Company GWECC Waste to Energy Conversion Company GWECC Jump to: navigation, search Name Global Waste to Energy Conversion Company (GWECC) Place Washington, DC Product GWECC is a global alternative energy company headquartered in Washington DC, USA. References Global Waste to Energy Conversion Company (GWECC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Waste to Energy Conversion Company (GWECC) is a company located in Washington, DC . References ↑ "Global Waste to Energy Conversion Company (GWECC)" Retrieved from "http://en.openei.org/w/index.php?title=Global_Waste_to_Energy_Conversion_Company_GWECC&oldid=345924" Categories: Clean Energy Organizations

383

Audit Report: Department of Energy's Controls over Recovery Act Spending at  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy's Controls over Recovery Act Department of Energy's Controls over Recovery Act Spending at the Idaho National Laboratory Audit Report: Department of Energy's Controls over Recovery Act Spending at the Idaho National Laboratory The Department of Energy's (Department) Office of Environmental Management (EM) oversees two major contracts for cleaning up the legacy contamination at the Idaho National Laboratory (INL). The 7 year, $2.9 billion contract with CH2M♦WG Idaho, LLC (CWI), was established in 2005, for a wide range of INL clean-up functions and is scheduled to end September 30, 2012. Under this contract, CWI was entitled to incentive fees if it completed work for less than target costs. The second contract, valued at $843 million, was with Bechtel BWXT Idaho, LLC (Bechtel) to operate the Advanced Mixed Waste

384

State Solid Waste Management and Resource Recovery Plan (Montana)  

Broader source: Energy.gov [DOE]

The State supports the "good management of solid waste and the conservation of natural resources through the promotion or development of systems to collect, separate, reclaim, recycle, and dispose...

385

Idaho Workers Complete Last of Transuranic Waste Transfers Funded by Recovery Act  

Broader source: Energy.gov (indexed) [DOE]

August 29, 2011 August 29, 2011 IDAHO FALLS, Idaho - American Recovery and Reinvestment Act workers successfully transferred 130 containers of remote-handled transuranic waste - each weighing up to 15 tons - to a facility for repackaging and shipment to a permanent disposal location. As part of a project funded by $90 million from the Recovery Act, the final shipment of the containers from the Materials and Fuels Com- plex recently arrived at the Idaho Nuclear Technology and Engineering Center (INTEC). Each of the containers moved to INTEC is shielded and specially designed and fabricated for highly radioactive waste. Once at INTEC, the containers are cut open, emptied, and repackaged. After the waste is removed and put in casks, it is shipped to the Waste Isolation Pilot

386

Virginia Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia Recovery Act State Memo Virginia has substantial natural resources, including coal and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuel vehicles and the Thomas Jefferson National Accelerator Facility in Newport News. Through these investments, Virginia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Virginia to play an important role in the new energy economy of the future. Virginia Recovery Act State Memo

387

Louisiana Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana Recovery Act State Memo Louisiana has substantial natural resources, including abundant oil, gas, coal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Louisiana are supporting a broad range of clean energy projects, from energy efficiency and smart grid to solar and geothermal, advanced battery manufacturing and biofuels. Through these investments, Louisiana's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Louisiana to play an important role in the new energy economy of the future. Louisiana Recovery Act State Memo

388

State Energy Program Formula Grants American Recovery and Reinvestment Act  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program Formula Grants American Recovery and State Energy Program Formula Grants American Recovery and Reinvestment Act (ARRA) State Energy Program Formula Grants American Recovery and Reinvestment Act (ARRA) A funding opportunity Projects under this FOA will be funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009, Pub. L. 111-5, (Recovery Act or Act). State Energy Program Formula Grants American Recovery and Reinvestment Act (ARRA) More Documents & Publications Smart Grid Demonstration Funding Opportunity Announcement DE-FOA-0000036: Frequently Asked Questions Research Call to DOE/Federal Laboratories: Technical Support for Interconnection-Level Electric Infrastructure Planning RC-BM-2010; Due May 3, 2010. CX-004660: Categorical Exclusion Determination

389

Wyoming Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are supporting a broad range of clean energy projects from energy efficiency and the smart grid to carbon capture and storage. Through these investments, Wyoming's businesses, the University of Wyoming, non-profits, and local governments are creating quality jobs today and positioning Wyoming to play an important role in the new energy economy of the future. Recovery_Act_Memo_Wyoming.pdf More Documents & Publications Slide 1

390

New York Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

York Recovery Act State Memo York Recovery Act State Memo New York Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New York are supporting a broad range of clean energy projects from energy efficiency and the smart grid to advanced battery manufacturing, the Brookhaven National Lab in Upton, and cleanup of the state's Cold War legacy nuclear sites. Through these investments, New York's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning New York to play an important role in the new energy economy of the future. New York Recovery Act State Memo More Documents & Publications

391

Kentucky Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

392

Oklahoma Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oklahoma are supporting a broad range of clean energy projects from energy efficiency and the smart grid to environmental cleanup and geothermal. Through these investments, Oklahoma's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. Oklahoma Recovery Act State Memo More Documents & Publications

393

Alaska Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

394

Iowa Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Iowa Recovery Act State Memo Iowa Recovery Act State Memo Iowa Recovery Act State Memo Iowa has substantial natural resources, including wind power and is the largest ethanol producer in the United States. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Iowa are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to the Ames Laboratory. Through these investments, Iowa's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Iowa to play an important role in the new energy economy of the future. Iowa Recovery Act State Memo More Documents & Publications

395

Kentucky Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Kentucky's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Kentucky to play an important role in the new energy economy of the future. Kentucky Recovery Act State Memo More Documents & Publications

396

Missouri Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Missouri Recovery Act State Memo Missouri Recovery Act State Memo Missouri Recovery Act State Memo Missouri has substantial natural resources, including wind and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Missouri are supporting a broad range of clean energy projects from energy efficiency and the smart grid to advanced biofuels and transportation electrification initiatives. Through these investments, Missouri's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Missouri to play an important role in the new energy economy of the future. Missouri Recovery Act State Memo More Documents & Publications

397

Georgia Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. Georgia Recovery Act State Memo More Documents & Publications

398

Montana Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Recovery Act State Memo Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments, Montana's businesses, Montana Tech of the University of Montana, non-profits, and local governments are creating quality jobs today and positioning Montana to play an important role in the new energy economy of the future. Montana Recovery Act State Memo More Documents & Publications

399

South Dakota Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

South Dakota Recovery Act State Memo South Dakota Recovery Act State Memo South Dakota Recovery Act State Memo South Dakota has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Dakota are supporting a broad range of clean energy projects, from energy efficiency to smart grid and geothermal power. Through these investments, South Dakota's businesses, the University of South Dakota, non-profits, and local governments are creating quality jobs today and positioning South Dakota to play an important role in the new energy economy of the future. South Dakota Recovery Act State Memo

400

Nevada Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada Recovery Act State Memo Nevada has substantial natural resources, including geothermal, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Nevada are supporting a broad range of clean energy projects from energy efficiency and the smart grid to geothermal, advanced battery manufacturing, and environmental cleanup. Through these investments, Nevada's businesses, non-profits, and local governments are creating quality jobs today and positioning Nevada to play an important role in the new energy economy of the future. Nevada Recovery Act State Memo More Documents & Publications

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Montana Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Montana Recovery Act State Memo Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments, Montana's businesses, Montana Tech of the University of Montana, non-profits, and local governments are creating quality jobs today and positioning Montana to play an important role in the new energy economy of the future. Montana Recovery Act State Memo More Documents & Publications

402

Utah Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Utah Recovery Act State Memo Utah Recovery Act State Memo Utah Recovery Act State Memo Utah has substantial natural resources, including oil, coal, natural gas, wind, geothermal, and solar power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Utah are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, alternative fuel vehicles, and the clean-up of legacy uranium processing sites. Through these investments, Utah's businesses, non-profits, and local governments are creating quality jobs today and positioning Utah to play an important role in the new energy economy of the future. Utah Recovery Act State Memo

403

New Jersey Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jersey Recovery Act State Memo Jersey Recovery Act State Memo New Jersey Recovery Act State Memo New Jersey has substantial natural resources, including wind and biomass. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Jersey are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to alternative fuels and vehicles, as well as the Princeton Plasma Physics Laboratory in Plainsboro. Through these investments, New Jersey's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning New Jersey to play an important role in the new energy economy of the future. New Jersey Recovery Act State Memo

404

Pennsylvania Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pennsylvania Recovery Act State Memo Pennsylvania Recovery Act State Memo Pennsylvania Recovery Act State Memo Pennsylvania has substantial natural resources, including coal reserves, wind power and abundant hydropower. The American Recovery and Reinvestment Act( ARRA) is making a meaningful downpayment on the nation's energy and environmental future. The Recovery Act investments in Pennsylvania are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal, hydro and biofuels. Through these investments, Pennsylvania's businesses, non-profits, and local governments are creating quality jobs today and positioning Pennsylvania to play an important role in the new energy economy of the future. Pennsylvania Recovery Act State Memo More Documents & Publications

405

Texas Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Texas Recovery Act State Memo Texas Recovery Act State Memo Texas Recovery Act State Memo Texas has substantial natural resources, including oil, gas, solar, biomass, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Texas are supporting a broad range of clean energy projects, from carbon capture and storage to energy efficiency, the smart grid, solar, geothermal, and biomass projects. Through these investments, Texas's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Texas to play an important role in the new energy economy of the future. Texas Recovery Act State Memo More Documents & Publications

406

Georgia Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. Georgia Recovery Act State Memo More Documents & Publications

407

Alaska Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska Recovery Act State Memo Alaska has substantial natural resources, including oil, gas, coal, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Alaska are supporting a broad range of clean energy projects, from energy efficiency and electric grid improvements to geothermal power. Through these investments, Alaska's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Alaska to play an important role in the new energy economy of the future. Alaska Recovery Act State Memo More Documents & Publications

408

Oklahoma Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma Recovery Act State Memo Oklahoma has substantial natural resources, including oil, gas, solar, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oklahoma are supporting a broad range of clean energy projects from energy efficiency and the smart grid to environmental cleanup and geothermal. Through these investments, Oklahoma's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Ohio to play an important role in the new energy economy of the future. Oklahoma Recovery Act State Memo More Documents & Publications

409

Howard Waste Recycling Ltd | Open Energy Information  

Open Energy Info (EERE)

Product: London-based project developer and manufacturer of biomass feedstock for energy production. References: Howard Waste Recycling Ltd1 This article is a stub. You can help...

410

EM Recovery Act Performance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mission » Recovery Act » EM Recovery Act Performance Mission » Recovery Act » EM Recovery Act Performance EM Recovery Act Performance Footprint Reduction The Office of Environmental Management's (EM) American Recovery and Reinvestment Act Program recently achieved 74 percent footprint reduction, exceeding the originally established goal of 40 percent. EM has reduced its pre-Recovery Act footprint of 931 square miles, established in 2009, by 690 square miles. Reducing its contaminated footprint to 241 square miles has proven to be a monumental task, and a challenge the EM team was ready to take on from the beginning. In 2009, EM identified a goal of 40 percent footprint reduction by September 2011 as its High Priority Performance Goal. EM achieved that goal in April 2011, five months ahead of schedule, and continues to achieve

411

Enhanced Oil Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

412

Recovery Act Funds at Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Information Center » Recovery Act » Recovery Act Funds at Work Information Center » Recovery Act » Recovery Act Funds at Work Recovery Act Funds at Work Funds from the American Recovery and Reinvestment Act of 2009 (Recovery Act) are being put to work to improve safety, reliability, and service in systems across the country. Idaho Power Company is accelerating development of renewable energy integration, improving access to clean power resources, and overhauling their customer information and communications systems. Oklahoma Gas and Electric has completed the 2-year pilot of a time-based rate program to reduce peak demand, which resulted in an average bill reduction of $150/customer over the summer periods. Powder River Energy Corporation is meeting the challenges of terrain and weather by building a microwave communications network to ensure higher

413

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

January 3 2011, Volume 2 No. 1 January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 2, NUMBER 1. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2011, Volume 2 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4

414

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

0, Volume 1 No. 2 0, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2010, Volume 1 No. 2 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3

415

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

1 2010, Volume 1 No. 3 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 3. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4

416

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

October 1 2010, Volume 1, No. 4 October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 1, NUMBER 4. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 1 2010, Volume 1, No. 4 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2010, Volume 1 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, January 3 2011, Volume 2 No. 1

417

The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning  

Broader source: Energy.gov (indexed) [DOE]

1, Volume 2 No. 2 1, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin provides information on energy assurance planning resources, upcoming events, training opportunities, and important grant deliverable dates. VOLUME 2, NUMBER 2. The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, April 1 2011, Volume 2 No. 2 More Documents & Publications The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, July 1 2011, Volume 2 No. 3 The American Recovery and Reinvestment Act (ARRA) Energy Assurance Planning (EAP) Bulletin, October 3 2011, Volume 2 No. 4

418

Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs  

Broader source: Energy.gov [DOE]

ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding

419

Energy recovery from biosolids: The City of Los Angeles experience  

SciTech Connect (OSTI)

The City of Los Angeles` Hyperion Treatment Plant serves an area of 1,500 sq km (600 sq mi) with a contributory population of nearly 4 million. The plant currently produces more than 250 dry tonnes per day (dtpd) of digested, dewatered biosolids and is being expanded and upgraded to provide pure oxygen, full secondary treatment by 1998. The modern Hyperion Plant began operating in 1951. Since that time, Hyperion has provided anaerobic digestion for its biosolids and has used the produced biogas for power generation. In the 1980`s the City completed a major expansion of its power generation and biosolids handling facilities at Hyperion. These facilities became known as the Hyperion Energy Recovery System (HERS) and their objective is to maximize the recovery of energy from the renewable biosolids. Today, these facilities are operational and continue to be modified to optimize performance and expanded to meet the increased loadings from full secondary treatment. Biogas produced by the anaerobic digestion process is compressed, scrubbed to remove H{sub 2}S, and used to power a gas turbine, combined cycle cogeneration system. Emergency flares are provided in the event of a power plant outage. A portion of the biosolids are transported offsite for beneficial reuse, such as composting and direct land application. The remaining solids are centrifugally dewatered and dried by indirect rotary dryers to produce about 50 dtpd of dried biofuel. Biofuel produced from the drying processes is fired in a fluidized bed gasification and staged combustion process (FBC) designed to recover energy and reduce air emissions. Superheated steam is produced in a waste heat boiler and converted to electrical power is a condensing steam turbine. Bioash from the FBC`s is contracted for off-site reuse, primarily as a fluxing agent in copper smelting and as a source of silica, aluminum, iron and calcium for manufacture of portland cement.

Haug, R.T.; Moore, G.L. [Bureau of Engineering, Los Angeles, CA (United States); Harrison, D.S. [Montgomery Watson Americas, Inc., Pasadena, CA (United States)

1995-11-01T23:59:59.000Z

420

The Economics of Resource Recovery from Municipal Solid Waste  

Science Journals Connector (OSTI)

...Eq. 2 when the unrecovered fraction is disposed of by incineration...worth of resource recovery in light of other demands such as those...Utilization of the Organic Fraction Figure 4 shows that 47 percent...that the value of the organic fraction as a fuel exactly offsets the...

James G. Abert; Harvey Alter; J. Frank Bernheisel

1974-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Department of Energy Recovery Act Investment in Biomass Technologies  

Broader source: Energy.gov [DOE]

The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.

422

Successes of the Recovery Act - January 2012 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Successes of the Recovery Act - January 2012 Successes of the Recovery Act - January 2012 Successes of the Recovery Act - January 2012 Through the Recovery Act, the Obama Administration is investing more than $90 billion in government investments and tax incentives to lay the foundation for the clean energy economy of the future. These Recovery Act investments are putting Americans back to work making our homes and businesses more energy efficient, increasing the use of clean and renewable electricity, cutting our dependence on oil, and modernizing the electric grid. This document provides an overview of the Department's successes as of January 2012. RecoveryActSuccess_Jan2012final.pdf More Documents & Publications Before the Senate Energy and Natural Resources Committee Before the House Ways and Means Committee

423

Oregon Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oregon Recovery Act State Memo Oregon Recovery Act State Memo Oregon Recovery Act State Memo Oregon has substantial natural resources, including wind, geothermal, biomass, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Oregon reflect a broad spectrum of opportunities, from energy efficiency and the smart grid to advanced fuels, battery manufacturing, and geothermal and solar power. Through these investments, Oregon's businesses, non-profits, and local governments are creating quality jobs today and positioning Oregon to play an important role in the new energy economy of the future. Oregon Recovery Act State Memo More Documents & Publications

424

Recovery News Flashes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 10, 2011 March 10, 2011 American Recovery and Reinvestment Act Payments Surge Past $4 Billion EM has made more than $4 billion in Recovery Act payments, or 32 percent of the DOE's $12.4 billion in Recovery Act payments. DOE received $35.2 billion from the Recovery Act, and EM's portion of that was $6 billion, or 17 percent. March 7, 2011 Recovery Act-Funded Study Assesses Contamination at Former Test Site in California Workers in a study funded by $38 million from the American Recovery and Reinvestment Act to assess radiological contamination have collected more than 600 soil samples and surveyed 120 acres of land for gamma radiation. Under an interagency agreement with DOE, the Environmental Protection Agency (EPA) is conducting the study at Santa Susana Field Laboratory

425

Waste-to-Energy Workshop Agenda  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key technical barriers to the commercial deployment of liquid transportation fuels from waste feedstocks. As a part of this effort, BETO is organizing a Waste-to-Energy Roadmapping workshop. Workshop participants will join facilitated breakout sessions to discuss anaerobic digestion, hydrothermal liquefaction, and other processes that make productive use of wastewater residuals, biosolids, foodstuffs, and organic municipal solid waste. These discussions will be synthesized and used in developing a waste-to-energy technology roadmap.

426

Process for recovery of palladium from nuclear fuel reprocessing wastes  

DOE Patents [OSTI]

Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

Campbell, D.O.; Buxton, S.R.

1980-06-16T23:59:59.000Z

427

West Virginia Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia Recovery Act State Memo West Virginia has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in West Virginia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid, to carbon capture and storage, transportation electrification, and the National Energy Technology Laboratory in Morgantown. Through these investments, West Virginia's businesses, West Virginia University, the National Energy Technology Laboratory, non-profits, and local governments are creating quality jobs today and positioning West Virginia to play an

428

Waste Minimization: A Hidden Energy Savings?  

E-Print Network [OSTI]

WASTE MINIMIZATION: A HIDDEN ENERGY SAVINGS? R. 1. GOOD Principal Engineer, Environmental Protection and Energy Union Carbide Chemicals & Plastics Company, Inc. Seadrift, Texas ABSTRACT Several changes in the last few years have forced a re...-examination of waste generation within the petro chemical industry. In today's political/regulatory arena, industrial waste, both hazardous and non hazardous, has become an extreme potential liability in handling, storing, and disposal. Traditional methods...

Good, R. L.; Hunt, K. E.

429

EA-1769: Battleground Energy Recovery Project, Harris County, Texas |  

Broader source: Energy.gov (indexed) [DOE]

69: Battleground Energy Recovery Project, Harris County, Texas 69: Battleground Energy Recovery Project, Harris County, Texas EA-1769: Battleground Energy Recovery Project, Harris County, Texas Summary This EA evaluates the environmental impacts of a proposal to provide $1.94 million in cost-shared funding to the Houston Advanced Research Center for the Battleground Energy Recovery Project, which would produce 8 megawatts of electricity from high pressure steam generated by capturing heat that is currently lost at the Clean Harbors Deer Park facility. The proposed project was selected by the DOE's Office of Energy Efficiency and Renewable Energy to advance research and demonstration of energy efficiency and renewable energy technologies. Public Comment Opportunities No public comment opportunities available at this time.

430

Secretary Chu Highlights Recovery Act Tax Credits for Home Energy  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Highlights Recovery Act Tax Credits for Home Energy Secretary Chu Highlights Recovery Act Tax Credits for Home Energy Efficiency Improvements Secretary Chu Highlights Recovery Act Tax Credits for Home Energy Efficiency Improvements March 26, 2010 - 12:00am Addthis ERIE, Pa. - Today while visiting Seaway Manufacturing Corporation - an energy efficient window manufacturing company in Erie, Pa. - Secretary Chu highlighted the tax credits available to American families as a result of the American Recovery and Reinvestment Act. Taxpayers are eligible for up to $1,500 in tax credits for a range of home energy efficiency improvements - such as adding insulation, installing energy efficient windows, or replacing water heaters. "Investing in energy efficiency is one of the quickest and most cost-effective ways reduce the energy bills in your home," said Secretary

431

Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affects the Future Energy Mix Enhanced Oil Recovery Affects the Future Energy Mix Trevor Kirsten 2012.11.19 One of the fascinating things about my job is contemplating questions...

432

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Broader source: Energy.gov [DOE]

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

433

WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY  

SciTech Connect (OSTI)

Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

2007-05-01T23:59:59.000Z

434

Heat-Exchanger Network Synthesis Involving Organic Rankine Cycle for Waste Heat Recovery  

Science Journals Connector (OSTI)

This article aims to present a mathematical model for the synthesis of a heat-exchanger network (HEN) which can be integrated with an organic Rankine cycle (ORC) for the recovery of low-grade waste heat from the heat surplus zone of the background ...

Cheng-Liang Chen; Feng-Yi Chang; Tzu-Hsiang Chao; Hui-Chu Chen; Jui-Yuan Lee

2014-04-23T23:59:59.000Z

435

Recovery Act Progress at Idaho National Lab | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Progress at Idaho National Lab Progress at Idaho National Lab Recovery Act Progress at Idaho National Lab August 19, 2010 - 5:09pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Idaho National Laboratory (INL) is a hot bed of activity with various Recovery Act projects funded through the Office of Environmental Management. For example, North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations. Pictures of Recovery Act Projects at Idaho National Lab Down the road at the Advanced Test Reactor Complex, TerranearPMC is working

436

Waste-to-Energy Technologies and Project Development | Department...  

Office of Environmental Management (EM)

Waste-to-Energy Technologies and Project Development Waste-to-Energy Technologies and Project Development Presentation at Waste-to-Energy using Fuel Cells Webinar, July 13, 2011...

437

Washington Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Washington Recovery Act State Memo Washington Recovery Act State Memo Washington Recovery Act State Memo Washington State has substantial natural resources, including biomass, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA)is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Washington are supporting a broad range of clean energy projects from energy efficiency and the smart grid to wind, biomass, and geothermal, as well as cleaning up the legacy of Cold War nuclear facilities at Hanford. Through these investments, Washington's businesses, non-profits, and local governments are creating quality jobs today and positioning Washington to play an important role in the new energy economy of the

438

Faces of the Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Faces of the Recovery Act Faces of the Recovery Act Faces of the Recovery Act Addthis Jobs by the 1000s 1 of 37 Jobs by the 1000s At the Savannah River Site, the job numbers keep rising. Image: Energy Department Image "Hector" 2 of 37 "Hector" The HCTRW Reactor at Savannah River Site is one of the primary projects being worked on through the Recovery Act. Image: Energy Department Image NOvA Project 3 of 37 NOvA Project Through the Recovery Act, the Office of Science is facilitating their NOvA Project in Orr, Minnesota. Image: Energy Department Image NOvA Project 2 4 of 37 NOvA Project 2 Because of the infusion of workers, the town has seen a trickle-down effect ..stores, hotels, and the town of Orr is doing more business. Image: Energy Department Image Moab UMTRA Project

439

North Dakota Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture and storage. Through these investments, North Dakota's businesses, the University of North Dakota, non-profits, and local governments are creating quality jobs today and positioning North Dakota to play an important role in the new energy economy of the future.

440

Tennessee Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tennessee Recovery Act State Memo Tennessee Recovery Act State Memo Tennessee Recovery Act State Memo Tennessee has substantial natural resources, including coal and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Tennessee are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and advanced batteries, as well as over $580 million to accelerate environmental cleanup efforts on the Oak Ridge Reservation. Through these investments, Tennessee's businesses, Oak Ridge National Laboratory, non-profits, and local governments are creating quality jobs today and positioning Tennessee to play an important role in the new energy economy

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

California Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California Recovery Act State Memo California Recovery Act State Memo California Recovery Act State Memo California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

442

The Pace of Recovery Act Spending | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pace of Recovery Act Spending Pace of Recovery Act Spending The Pace of Recovery Act Spending August 20, 2010 - 2:49pm Addthis Matt Rogers Matt Rogers McKinsey & Company Sometimes the media is quick to criticize the pace of Recovery Act spending in the energy sector. Here's a key fact that is often overlooked: more than 90 percent of the Department of Energy's $32 billion in Recovery Act funds has been allocated to clean energy projects around the country, creating tens of thousands of direct jobs and even more along the supply chain - doing everything from installing wind turbines and solar panels, to manufacturing electric car batteries, to making homes more energy-efficient. Focusing on the amount that has been "paid out" or "reimbursed" misses the impact that these funds have had in creating jobs from the

443

South Carolina Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carolina Recovery Act State Memo Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Carolina reflect a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, as well as nearly $1.6 billion to accelerate the environmental cleanup efforts at the Savannah River Site. Through these investments, South Carolina's businesses, Clemson University, non-profits, and local governments are creating quality jobs today and positioning South Carolina to play an important role in the new energy economy of the future.

444

South Carolina Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

South Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina Recovery Act State Memo South Carolina has substantial nuclear and hydroelectric resources. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in South Carolina reflect a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, as well as nearly $1.6 billion to accelerate the environmental cleanup efforts at the Savannah River Site. Through these investments, South Carolina's businesses, Clemson University, non-profits, and local governments are creating quality jobs today and positioning South Carolina to play an important role in the new energy economy of the future.

445

Idaho Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new energy economy

446

North Dakota Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota Recovery Act State Memo North Dakota has substantial natural resources, including coal, natural gas, oil, wind, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in North Dakota are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to clean coal, wind, and carbon capture and storage. Through these investments, North Dakota's businesses, the University of North Dakota, non-profits, and local governments are creating quality jobs today and positioning North Dakota to play an important role in the new energy economy of the future.

447

Idaho Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho Recovery Act State Memo Idaho has substantial natural resources, including wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Idaho are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to geothermal and alternative fuels, as well as major commitments to research efforts and environmental cleanup at the Idaho National Laboratory in Idaho Falls. Through these investments, Idaho's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Idaho to play an important role in the new energy economy

448

Minnesota Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Recovery Act State Memo Minnesota Recovery Act State Memo Minnesota Recovery Act State Memo Minnesota has substantial natural resources, including biomass, wind power, and is a large ethanol producer. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Minnesota are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal power, and the Fermi National Accelerator Laboratory. Through these investments, Minnesota's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning Minnesota to play an important role in the new energy economy of the future.

449

FE Implementation of the Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

FE Implementation of the Recovery Act FE Implementation of the Recovery Act FE Implementation of the Recovery Act The American Recovery and Reinvestment Act of 2009 (Recovery Act) was signed into law by President Obama on February 17th, 2009. It is an unprecedented effort to jumpstart our economy, create or save millions of jobs, and put a down payment on addressing long-neglected challenges so our country can thrive in the 21st century. As the centerpiece of the President's commitment to transparency and accountability, this site will feature projections for how, when, and where the Office of Fossil Energy funds will be spent. The Office of Fossil Energy has received $3.4 billion from the Recovery Act. Initiatives will focus on research, development and deployment of technologies to use coal more cleanly and efficiently. Investments will go

450

Zero Waste, Renewable Energy & Environmental  

E-Print Network [OSTI]

· Dioxins & Furans · The `State of Waste' in the US · WTE Technologies · Thermal Recycling ­ Turnkey dangerous wastes in the form of gases and ash, often creating entirely new hazards, like dioxins and furans

Columbia University

451

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

452

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect (OSTI)

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

453

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Caterpillar/U.S. Department of Energy

454

Fluidized-bed waste-heat recovery system development: Final report  

SciTech Connect (OSTI)

A major energy loss in industry is the heat content of the flue gases from industrial process heaters. One effective way to utilize the energy, which is applicable to all processes, is to preheat the combustion air for the process heater. Although recuperators are available to preheat this air when the flue gases are clean, recuperators to recover the heat from dirty and corrosive flue gases do not exist. The Fluidized-Bed Waste-Heat Recovery (FBWHR) system is designed to preheat this combustion air using the heat available in dirty flue gas streams. In this system, recirculating alumina particles are heated by the flue gas in a raining bed. The hot particles are then removed from the bed and placed in a fluidized bed where they are fluidized by the combustion air. Through this process, the combustion air is preheated. The cooled particles are then returned to the raining bed. Initial development of this concept is for the aluminum smelting industry. In this final report, the design, development, fabrication, and installation of a full-scale FBWHR system is detailed.

Patch, K.D.; Cole, W.E.

1988-06-01T23:59:59.000Z

455

Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies  

SciTech Connect (OSTI)

The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

none,

1992-10-01T23:59:59.000Z

456

Huntington Resource Recovery Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Huntington Resource Recovery Facility Biomass Facility Huntington Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Miami Dade County Resource Recovery Fac Biomass Facility | Open Energy  

Open Energy Info (EERE)

Miami Dade County Resource Recovery Fac Biomass Facility Miami Dade County Resource Recovery Fac Biomass Facility Jump to: navigation, search Name Miami Dade County Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida Coordinates 25.7889689°, -80.2264393° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.7889689,"lon":-80.2264393,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Southeast Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Southeast Resource Recovery Biomass Facility Southeast Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Pioneer Valley Resource Recovery Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Pioneer Valley Resource Recovery Biomass Facility Pioneer Valley Resource Recovery Biomass Facility Jump to: navigation, search Name Pioneer Valley Resource Recovery Biomass Facility Facility Pioneer Valley Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hampden County, Massachusetts Coordinates 42.1172314°, -72.6624209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1172314,"lon":-72.6624209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Hillsborough County Resource Recovery Biomass Facility | Open Energy  

Open Energy Info (EERE)

Hillsborough County Resource Recovery Biomass Facility Hillsborough County Resource Recovery Biomass Facility Jump to: navigation, search Name Hillsborough County Resource Recovery Biomass Facility Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Montgomery County Resource Recovery Biomass Facility | Open Energy  

Open Energy Info (EERE)

Montgomery County Resource Recovery Biomass Facility Montgomery County Resource Recovery Biomass Facility Jump to: navigation, search Name Montgomery County Resource Recovery Biomass Facility Facility Montgomery County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Montgomery County, Maryland Coordinates 39.1547426°, -77.2405153° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1547426,"lon":-77.2405153,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Flexible Distributed Energy and Water from Waste for the Food...  

Energy Savers [EERE]

Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry - Fact Sheet, 2014 Flexible Distributed Energy and Water from Waste for the Food and Beverage...

463

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

464

New Mexico Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

New Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Mexico are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, geothermal and hydro, biofuels and nuclear, as well as a major commitment to cleaning up the Cold War- legacy nuclear sites in the state. Through these investments, New Mexico's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning New

465

New Mexico Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mexico Recovery Act State Memo Mexico Recovery Act State Memo New Mexico Recovery Act State Memo New Mexico has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in New Mexico are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to wind and solar, geothermal and hydro, biofuels and nuclear, as well as a major commitment to cleaning up the Cold War- legacy nuclear sites in the state. Through these investments, New Mexico's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning New

466

Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract In order to improve the electric efficiency of a stationary compressed natural gas (CNG) engine, a set of organic Rankine cycle (ORC) system with internal heat exchanger (IHE) is designed to recover exhaust energy that is used to generate electricity. R416A is selected as the working fluid for the waste heat recovery system. According to the first and second laws of thermodynamics, the performances of the ORC system for waste heat recovery are discussed based on the analysis of engine exhaust waste heat characteristics. Subsequently, the stationary CNG engine-ORC with IHE combined system is presented. The electric efficiency and the brake specific fuel consumption (BSFC) are introduced to evaluate the operating performances of the combined system. The results show that, when the evaporation pressure is 3.5MPa and the engine is operating at the rated condition, the net power output and the thermal efficiency of the ORC system with IHE can reach up to 62.7kW and 12.5%, respectively. Compared with the stationary CNG engine, the electric efficiency of the combined system can be increased by a maximum 6.0%, while the BSFC can be reduced by a maximum 5.0%.

Songsong Song; Hongguang Zhang; Zongyong. Lou; Fubin Yang; Kai Yang; Hongjin Wang; Chen Bei; Ying Chang; Baofeng Yao

2014-01-01T23:59:59.000Z

467

Reducing Waste and Harvesting Energy This Halloween | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween Reducing Waste and Harvesting Energy This Halloween October 30, 2013 - 9:57am Addthis This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department This graphic shows how seasonal waste can be used to generate power. | Graphic by BCS for the Energy Department Paul Grabowski Demonstration and Deployment, Bioenergy Technologies Office This Halloween, think of turning seasonal municipal solid waste (MSW) to energy as a very important "trick" that can have a positive environmental impact. Usually, these seasonal items including hay, pumpkins, candy, and leaves, are thrown away and sent to landfills. From there, the MSW decomposes and eventually turns into methane-a harmful

468

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

469

Fossil energy waste management. Technology status report  

SciTech Connect (OSTI)

This report describes the current status and recent accomplishments of the Fossil Energy Waste Management (FE WM) projects sponsored by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The primary goal of the Waste Management Program is to identify and develop optimal strategies to manage solid by-products from advanced coal technologies for the purpose of ensuring the competitiveness of advanced coal technologies as a future energy source. The projects in the Fossil Energy Waste Management Program are divided into three types of activities: Waste Characterization, Disposal Technologies, and Utilization Technologies. This technology status report includes a discussion on barriers to increased use of coal by-products. Also, the major technical and nontechnical challenges currently being addressed by the FE WM program are discussed. A bibliography of 96 citations and a list of project contacts is included if the reader is interested in obtaining additional information about the FE WM program.

Bossart, S.J.; Newman, D.A.

1995-02-01T23:59:59.000Z

470

Waste to Energy Developers WTED | Open Energy Information  

Open Energy Info (EERE)

Waste-to-Energy Developers (WTED) Place: California Sector: Services Product: WTED is an engineering company that provides services in the areas of industrial processes, electric...

471

Recovery Act Smart Grid Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects Recovery Act Smart Grid Projects...

472

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network [OSTI]

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

473

Modeling, Estimation, and Control of Waste Heat Recovery Systems  

E-Print Network [OSTI]

with a reciprocat- ing steam engine (SE). Energy, 34:13155 ? 1): the steam flows out of the engine, and the pressure

Luong, David

2013-01-01T23:59:59.000Z

474

Wisconsin LED Plant Benefits from Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wisconsin LED Plant Benefits from Recovery Act Wisconsin LED Plant Benefits from Recovery Act Wisconsin LED Plant Benefits from Recovery Act April 1, 2010 - 6:58pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? LED lights emit more light, have a longer life and provide anywhere from 50 to 70 percent in energy savings. Rudd Lighting has seen a boost from cities tapping Recovery Act funds and seeking energy efficient lighting that will reduce costs. The BetalLED facility, which produced hundreds of thousands of LED products last year, employs about 600 people, and for every job in the plant, eight to 10 more are created outside the company. Workers at a Racine, Wis., manufacturing company are busy filling orders for American cities seeking to brighten their communities with energy

475

An Investigation Of The Potential For Geothermal-Energy Recovery...  

Open Energy Info (EERE)

For Geothermal-Energy Recovery In The Calgary Area In Southern Alberta, Canada, Using Petroleum-Exploration Data Jump to: navigation, search OpenEI Reference LibraryAdd to library...

476

EM Recovery Act Press Releases | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Surpasses Cleanup Target Ahead of Schedule: Recovery Act Investment Saves Money, Trains Workers, Creates Jobs WASHINGTON, D.C. - The U.S. Department of Energy announced today...

477

DOE Completes Five Recovery Act Projects | Department of Energy  

Office of Environmental Management (EM)

Projects DOE Completes Five Recovery Act Projects August 18, 2011 - 12:00pm Addthis OAK RIDGE, Tenn. - The U.S. Department of Energy's (DOE) Environmental Management (EM) program...

478

Wisconsin LED Plant Benefits from Recovery Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wisconsin LED Plant Benefits from Recovery Act Wisconsin LED Plant Benefits from Recovery Act Wisconsin LED Plant Benefits from Recovery Act April 1, 2010 - 6:58pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What does this mean for me? LED lights emit more light, have a longer life and provide anywhere from 50 to 70 percent in energy savings. Rudd Lighting has seen a boost from cities tapping Recovery Act funds and seeking energy efficient lighting that will reduce costs. The BetalLED facility, which produced hundreds of thousands of LED products last year, employs about 600 people, and for every job in the plant, eight to 10 more are created outside the company. Workers at a Racine, Wis., manufacturing company are busy filling orders for American cities seeking to brighten their communities with energy

479

Technological options for management of hazardous wastes from US Department of Energy facilities  

SciTech Connect (OSTI)

This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

1982-08-01T23:59:59.000Z

480

Property:RecoveryFunding | Open Energy Information  

Open Energy Info (EERE)

RecoveryFunding RecoveryFunding Jump to: navigation, search This is a property of type Number. Pages using the property "RecoveryFunding" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 5,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 1,544,004 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 4,000,000 + American Transmission Company LLC II Smart Grid Project + 11,444,180 + American Transmission Company LLC Smart Grid Project + 1,330,825 + Atlantic City Electric Company Smart Grid Project + 18,700,000 + Avista Utilities Smart Grid Project + 20,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 200,000,000 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 88,821,251 +

Note: This page contains sample records for the topic "waste energy recovery" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy implications of mechanical and mechanicalbiological treatment compared to direct waste-to-energy  

Science Journals Connector (OSTI)

Abstract Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanicalbiological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140MJprimary/100MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 39.5%, 118% and 18% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.

Ciprian Cimpan; Henrik Wenzel

2013-01-01T23:59:59.000Z

482

Energy aspects of solid waste management: Proceedings  

SciTech Connect (OSTI)

The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

Not Available

1990-12-31T23:59:59.000Z

483

Fuel Recovery: Valorization of RDF and PDF  

Science Journals Connector (OSTI)

Energy recovery of used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel recovery for co-combustion with conventional fuels. Recovered fuels are refuse derived fuel (RDF) wh...

Martin Frankenhaeuser; Helena Manninen

1996-01-01T23:59:59.000Z

484

Waste-to-Energy Roadmapping Workshop Agenda  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste-to-Energy Workshop Agenda November 5-6, 2014 DoubleTree Hotel Crystal City Arlington, VA 22202 Day 1: Wednesday, November 5, 2014 Time Activity 7:30 am Registration and...

485

Minimum variance control of organic Rankine cycle based waste heat recovery  

Science Journals Connector (OSTI)

Abstract In this paper, an online self-tuning generalized minimum variance (GMV) controller is proposed for a 100KW waste heat recovery system with organic Rankine cycle (ORC). The ORC process model is formulated by the controlled autoregressive moving average (CARMA) model whose parameters are identified using the recursive least squares (RLS) algorithm with forgetting factor. The generalized minimum variance algorithm is applied to regulate ORC based waste heat recovery system. The contributions of this work are twofold: (1) the proposed control strategy is formulated under the data-driven framework, which does not need the precise mathematic model; (2) this proposed method is applied to handle tracking set-point variations and process disturbances by improved minimum objective GMV function. The performance of GMV controller is compared with the PID controller. The simulation results show that the proposed strategy can achieve satisfactory set-point tracking and disturbance rejection performance.

Guolian Hou; Shanshan Bi; Mingming Lin; Jianhua Zhang; Jinliang Xu

2014-01-01T23:59:59.000Z