National Library of Energy BETA

Sample records for waste combustion human

  1. Municipal Waste Combustion (New Mexico) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Waste Combustion (New Mexico) Municipal Waste Combustion (New Mexico) < Back Eligibility Investor-Owned Utility Local Government MunicipalPublic Utility Rural Electric...

  2. Fluid Bed Combustion Applied to Industrial Waste 

    E-Print Network [OSTI]

    Mullen, J. F.; Sneyd, R. J.

    1985-01-01

    Because of its unique ability to handle a wide variety of liquids and solids in an energy efficient and environmentally acceptable manner, fluid bed combustion is being increasingly applied to the utilization of waste materials and low grade fuels...

  3. Combustion modeling in waste tanks

    SciTech Connect (OSTI)

    Mueller, C.; Unal, C.; Travis, J.R. |

    1997-08-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

  4. Particulate Waste Product Combustion System 

    E-Print Network [OSTI]

    King, D. R.; Chastain, C. E.

    1984-01-01

    sive. Their low nutritive properties, resistanre to weather, great bulk with variabl density, and possession of high ash or silica content present special problems when attf>...mpting to dispose of these wastes. In the past, eccnanics dictated... with high ash or silica content into burn.ers have produced problems of fly ash in the exhaust stream causing extensive darrage to boilers f1red by th gasification process. For exanple, the contlus ioo of the rice hull pre sents a unique problem due...

  5. Waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    1997-12-31

    This set of conference papers deals with the combustion of hazardous wastes in boilers and industrial furnaces. The majority of the papers pertain specifically to cement industry kiln incinerators and focus on environmental issues. In particular, stack emission requirements currently enforced or under consideration by the U.S. EPA are emphasized. The papers were drawn from seven areas: (1) proposed Maximum Achievable Control Technology rule, (2) trial burn planning and experience, (3) management and beneficial use of materials, (4) inorganic emissions and continuous emission monitoring, (5) organic emissions, (6) boiler and industrial furnace operations, and (7) risk assessment and communication.

  6. Waste incineration through pulsating combustion. Part I. Combustor characterization

    SciTech Connect (OSTI)

    Bai, Tiejun; Yeboah, Y.D.; Wang, Zhicheng [Clark Atlanta Univ., GA (United States)] [and others

    1996-12-31

    This paper describes work performed under the 1st phase of an on-going effort to develop pulsating combustion waste incineration technology. The primary objective of the effort is to study the effect of pulsating combustion upon the incineration of wastes, especially medical wastes, and to develop a laboratory scale experimental pulsating combustion medical waste incinerator. In this paper, the characteristics of the developed combustor are discussed. Specifically, emission measurement under various operating conditions of the combustor is discussed. The numerical analysis of the fluid flow is also presented.

  7. Interactive effects of maternal and environmental exposure to coal combustion wastes decrease survival of larval southern toads (Bufo terrestris)

    E-Print Network [OSTI]

    Georgia, University of

    Interactive effects of maternal and environmental exposure to coal combustion wastes decrease Accepted 29 January 2012 Keywords: Amphibian Coal combustion wastes Contaminants Trace elements Selenium terrestris). Previous maternal exposure to coal combustion wastes (CCW) reduced larval survival

  8. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect (OSTI)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  9. Utilization of ash from municipal solid waste combustion

    SciTech Connect (OSTI)

    Jones, C.; Hahn, J.; Magee, B.; Yuen, N.; Sandefur, K.; Tom, J.; Yap, C.

    1999-09-01

    This ash study investigated the beneficial use of municipal waste combustion combined ash from the H-POWER facility in Oahu. These uses were grouped into intermediate cover for final closure of the Waipahu landfill, daily cover at the Waimanalo Gulch Landfill, and partial replacement for aggregate in asphalt for road paving. All proposed uses examine combined fly and bottom ash from a modern waste-to-energy facility that meets requirements of the Clean Air Act Amendments for Maximum Achievable Control Technology.

  10. Towards a coherent European approach for taxation of combustible waste

    SciTech Connect (OSTI)

    Dubois, Maarten

    2013-08-15

    Highlights: • Current European waste taxes do not constitute a level playing field. • Integrating waste incineration in EU ETS avoids regional tax competition. • A differentiated incineration tax is a second-best instrument for NO{sub x} emissions. • A tax on landfilled incineration residues stimulates ash treatment. - Abstract: Although intra-European trade of combustible waste has grown strongly in the last decade, incineration and landfill taxes remain disparate within Europe. The paper proposes a more coherent taxation approach for Europe that is based on the principle of Pigovian taxation, i.e. the internalization of environmental damage costs. The approach aims to create a level playing field between European regions while reinforcing incentives for sustainable management of combustible waste. Three important policy recommendations emerge. First, integrating waste incineration into the European Emissions Trading System for greenhouse gases (EU ETS) reduces the risk of tax competition between regions. Second, because taxation of every single air pollutant from waste incineration is cumbersome, a differentiated waste incineration tax based on NO{sub x} emissions can serve as a second-best instrument. Finally, in order to strengthen incentives for ash treatment, a landfill tax should apply for landfilled incineration residues. An example illustrates the coherence of the policy recommendations for incineration technologies with diverse environmental effects.

  11. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  12. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  13. Drying and burning wood waste using pulse combustion

    SciTech Connect (OSTI)

    Buckkowski, A.G.; Eng, P.; Kitchen, J.A. [Novadyne Ltd., Ontario (Canada)

    1995-11-01

    Development of an industrial dryer using pulse combustion as a heating source for drying wood waste has continued. Pulse combustion offers the advantage of high heat transfer, efficient combustion, low NOx emissions and a source of kinetic energy for providing a motive force for a drying system. In our experiments, the drying system consists of a pulse combustor and a vertical drying column. The wood waste is injected into the exhaust gases from the combustor where the turbulence created by the pulsations enhance the drying process by reducing the boundary layer thicknesses. The material is further dried in the vertical drying column, then separated from the conveying airstream using a cyclone. The paper discusses two aspects of the drying system. Firstly, the performance of the drying tests are reviewed. Tests with the 1,000,000 BTU/hr test rig have shown that a gas-fired pulse combustion dryer can dry materials such as sawdust and pulverized hog fuel from a moisture content of 50% down to a 30% in a single pass, or further with multiple passes, without scorching or burning. Preliminary figures show that the operating costs of the dryer are reduced due to the kinetic energy created by the pulse combustor which offsets the use of electricity. Secondly, it has been shown that a pulse combustor can be fired with wood waste and thereby providing the potential to displace natural gas or propane as a fuel. The development of the wood burning combustor is reviewed.

  14. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Mixed Waste Before generating mixed waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534-2753. * Disinfectants other than bleach mustBiohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

  15. Balancing act creating the right regulation for coal combustion waste

    SciTech Connect (OSTI)

    Manuel, J.

    2009-11-15

    The December 2008 collapse of a coal ash pond in Tennessee threw safe management of coal combustion waste (CCW) into the spotlight. Millions of tons of CCW are produced in the United States each year, and a large percentage of that is recycled. The US Environmental Protection Agency is pursuing a host of initiatives that could directly or indirectly affect the disposition of CCW. States, too, are taking a look at how they regulate CCW. Among the options is the possibility of regulating CCW under the Resource Conservation and Recovery Act, a move that could have far-reaching implications for both the recycling and the disposal of this waste.

  16. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human

    E-Print Network [OSTI]

    Aluwihare, Lihini

    of biohazardous and chemical or radioactive waste), call Environment, Health & Safety: (858) 534Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Human Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (858

  17. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect (OSTI)

    Greenhalgh, W.O.; Olson, W.W.

    1995-06-01

    The Hanford Site has been used for the storage of solid waste including transuranic and low-level mixed wastes. The storage and handling of solid waste presents some fire safety questions because most of the solid waste contains combustible components. This report addresses the composition, average fuel loading, and some general observations about performance of steel-drummed solid waste in fire situations.

  18. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    SciTech Connect (OSTI)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of these tests are presented in the paper.

  19. Human factors in waste management

    SciTech Connect (OSTI)

    Moray, N.

    1994-10-01

    This article examines the role of human factors in radioactive waste management. Although few problems and ergonomics are special to radioactive waste management, some problems are unique especially with long term storage. The entire sociotechnical system must be looked at in order to see where improvement can take place because operator errors, as seen in Chernobyl and Bhopal, are ultimately the result of management errors.

  20. Applications of risk management to waste combustion in boilers and industrial furnaces

    SciTech Connect (OSTI)

    Chrostowski, P.C.; Foster, S.A.; Kimball, H.J.

    1996-12-31

    Human health and ecological risk assessments have become routine for waste combustion in boilers and industrial furnaces (BIFs) as a result of USEPA`s Combustion Strategy, questions raised by citizens about the health effects of incineration, and the desire for the regulated community to have a level playing field regarding emissions regulations. The USEPA, National Academy of Sciences, various trade organizations, and individual researchers have published widely regarding methods for facility-specific risk assessments. Often these risk assessments are highly complex, site-specific documents that use advanced techniques such as Monte Carlo simulation. However, the risks that are calculated in these risk assessments are usually only used to compare to criteria for health effects and, thereby, develop permit conditions that are protective of health and the environment. Thus, the risk assessment is only used to derive a simple set of numbers and most of the information derived in the complex risk computations is lost. The object of this paper is to demonstrate how to derive more information from risk assessments that can be used in making management decisions. This paper will discuss the theory of risk management and present applications to combustion of waste in BIFs. For example, a permit applicant needed to make a decision among alternative air pollution control (APC) equipment sequences including scrubbers, fabric filters, and electrostatic precipitators. Limited life cycle analysis was used to determine the amount of direct and total waste produced by each of the alternatives. Monte Carlo risk assessment was used to determine the health risks associated with each of the alternatives and reliability analysis was employed to minimize both waste production and health risk.

  1. Combustion and inorganic emissions of ground waste tires

    SciTech Connect (OSTI)

    Levendis, Y.A.; Atal, A.; Steciak, J.

    1995-12-31

    An experimental study was undertaken to assess the combustion characteristics and emissions of SO{sub 2}, NO{sub x} and CO{sub 2} gases from ground waste tires. Results were contrasted with those obtained from burning pulverized coal. Laboratory bench-scale experiments were conducted in a drop-tube, laminar-flow furnace, in air at fuel-lean conditions, at gas temperatures ranging from 1300 K to 1600 K. Two particle size cuts were burned from both materials, 75-90 {mu}m and 180-212 {mu}m. Blends of coal and tire particles, at equal weight ratios, were also burned. Pyrometric and cinematographic observations revealed that the coal particles exhibited distinct volatile and char combustion phases, while tire particles exhibited a distinct primary volatile phase followed by a char combustion phase, which was accompanied by burning of secondary pyrolysis products. SO{sub 2} emissions of burning ground tires increased from 160 to 500 ppm as the temperature increased from 1300 K to 1600 K. Combustion of coal produced SO{sub 2} emissions in the neighborhood of 200-300 ppm (corresponding to 40 to 60 wt% of its sulfur content) independent of the gas temperature. The blend of coal and tire particles (equal mass ratios) exhibited SO{sub 2} values which fell in between the above. NO{sub x} emissions were constant at approximately 175 ppm for tire crumb (corresponding to approximately 45 wt% of its fuel nitrogen content) and 625 ppm for coal (corresponding to 55 wt% of its fuel nitrogen content) in the temperature range studied. CO{sub 2} emissions from tire were 8-9 molar %, while for coal particles they were 5-7 molar %; the upper limits corresponded to approximately 100% combustion efficiency. As a means to reduce the SO{sub 2} emissions, pulverized coal and tire crumb were fluidized together with particles of a calcium bearing sorbent - calcium magnesium acetate (CMA). CMA has been identified as an effective SO{sub 2} scrubbing agent in previous studies.

  2. Water distillation using waste engine heat from an internal combustion engine

    E-Print Network [OSTI]

    Mears, Kevin S

    2006-01-01

    To meet the needs of forward deployed soldiers and disaster relief personnel, a mobile water distillation system was designed and tested. This system uses waste engine heat from the exhaust flow of an internal combustion ...

  3. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  4. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    SciTech Connect (OSTI)

    Greenhalgh, W.O.

    1994-08-08

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream.

  5. Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V

    SciTech Connect (OSTI)

    Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

    1993-08-01

    Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

  6. Determining site-specific drum loading criteria for storing combustible {sup 238}Pu waste

    SciTech Connect (OSTI)

    Marshall, R.S.; Callis, E.L.; Cappis, J.H.; Espinoza, J.M.; Foltyn, E.M.; Reich, B.T.; Smith, M.C.

    1994-02-01

    Waste containing hydrogenous-combustible material contaminated with {sup 238}Pu can generate hydrogen gas at appreciable rates through alpha radiolysis. To ensure safe transportation of WIPP drums, the limit for {sup 238}Pu-combustible waste published in the WIPP TRUPACT-11 CONTENT (TRUCON) CODES is 21 milliwafts per 55 gallon drum. This corresponds to about 45 milligrams of {sup 238}PuO{sub 2} used for satellite heat source-electrical generators. The Los Alamos waste storage site adopted a {sup 238}Pu waste storage criteria based on these TRCUCON codes. However, reviews of the content in drums of combustible waste generated during heat source assembly at Los Alamos showed the amount of {sup 238}Pu is typically much greater than 45 milligrams. It is not feasible to appreciably reduce Los Alamos {sup 238}Pu waste drum loadings without significantly increasing waste volumes or introducing unsafe practices. To address this concern, a series of studies were implemented to evaluate the applicability of the TRUCON limits for storage of this specific waste. Addressed in these evaluations were determination of the hydrogen generation rate, hydrogen diffusion rates through confinement layers and vent filters, and packaging requirements specific to Los Alamos generated {sup 238}Pu contaminated combustible waste. These studies also showed that the multiple-layer packaging practices in use at Los Alamos could be relaxed without significantly increasing the risk of contamination. Based on a model developed to predict H{sub 2} concentrations in packages and drum headspace, the site specific effective hydrogen generation rate, and hydrogen-diffusion values, and revising the waste packaging practices, we were able to raise the safe loading limit for {sup 238}Pu waste drums for on site storage to the gram levels typical of currently generated {sup 238}Pu waste.

  7. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect (OSTI)

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  8. Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal Combustion Waste

    E-Print Network [OSTI]

    Hopkins, William A.

    Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare

  9. Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators

    E-Print Network [OSTI]

    Kim, Yong Jung

    a legal requirement to minimize pollution in municipal solid waste incinerators. The conditions for in-furnace destruction of pollutants are stated as: good combustion is achieved when 2-second gas residence time at 850 C of potential pollutants. The residence time needs to be carefully determined based on the gas inlet position

  10. Application of pulse combustion to incineration to liquid hazardous waste. Final report, September 1991-August 1993

    SciTech Connect (OSTI)

    DeBenedictis, C.

    1994-04-01

    The report gives results of a study to determine the effect of acoustic pulsations on the steady-state operation of a pulse combuster burning liquid hazardous waste. A horizontal tunnel furnace was retrofitted with a liquid injection pulse combustor that burned No. 2 fuel oil. The fuel oil was doped with surrogate principal organic hazardous constituents (POHCs). For each test condition, the burner was operated in both a pulsing and nonpulsing mode. Large amplitude acoustic pulses were generated by adjusting the burner frequency to match the natural frequency of the combustion chamber. The combustion gases were sampled to quantify organic and particulate emissions. The results showed destruction and removal efficiency (DRE) values that were greater than six nines (99.9999%) for both pulsing and nonpulsing operations. The pulse combustor for the study was equipped with a fuel vaporization unit which may have enhanced the destruction capabilities of the burner.

  11. Application of pulse combustion to solid and hazardous-waste incineration

    SciTech Connect (OSTI)

    Stewart, C.R.; Lemieux, P.M.; Zinn, B.T.

    1991-01-01

    The paper discusses the application of pulse combustion to solid and hazardous waste incineration. A rotary kiln incinerator simulator was retrofitted with a frequency-tunable pulse combustor to enhance the efficiency of combustion. The pulse combustor excites pulsations in the kiln and increases the completeness of combustion by promoting better mixing within the system. Tests were performed using toluene sorbed onto a ground corn cob sorbent and placed in cardboard containers. The burner was operated in a non-pulse mode as a baseline condition, and then in a pulse mode in which the frequency of the pulse combustor was adjusted to the natural frequency of the combustion chamber, creating resonant pulsations of large magnitude. The test was also performed using polyethylene tube bundles to simulate a solid waste and to investigate a surrogate which produces different puff characteristics. The addition of turbulence in the rotary kiln due to high amplitude acoustic pulsations has a strong tendency to reduce the amount of soot and/or semivolatile and non-volatile hydrocarbons. Mass emissions of soot were consistently reduced in all tests. Carbon monoxide increased during acoustic pulsations in the toluene tests. The paper also discusses unsatisfied oxygen demand and carbon penetration and how pulsations affect them.

  12. Reduction of carbon content in waste-tire combustion ashes by bio-thermal treatment

    SciTech Connect (OSTI)

    Chen, C.C.; Lee, W.J.; Shih, S.I.; Mou, J.L.

    2009-07-01

    Application of bio-catalyst (NOE-7F) in thermal treatment can adequately dispose dark-black fly ashes from co-combustion of both waste tires and coal. After thermal treatment of fly ashes by adding 10% NOE-7F, the carbon contents reduced by 37.6% and the weight losses increased by 405%, compared with the fly ashes without mixing with NOE-7F. The combustion behaviors of wasted tires combustion fly ashes with NOE-7F were also investigated by both thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results verify that NOE-7F has positive effects on the combustion of residual carbon and toxic polycyclic aromatic hydrocarbons (PAHs) enhance the energy release and reduce the toxicity during the process of thermal treatment. Furthermore, using NOE-7F to dispose high-carbon content fly ashes did improve the compressive strength of fly ashes and concrete mixtures. Therefore, NOE-7F is a promising additive which could decrease treatment cost of high-carbon content fly ashes and reduce the amount of survival toxic PAHs.

  13. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    1992-10-01

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  14. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect (OSTI)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

  15. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    SciTech Connect (OSTI)

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  16. Element partitioning in combustion- and gasification-based waste-to-energy units

    SciTech Connect (OSTI)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-15

    Highlights: ? Element partitioning of waste-to-energy units by means of a substance flow analysis. ? A comparison between moving grate combustors and high temperature gasifiers. ? Classification of key elements according to their behavior during WtE processes. ? Slags and metals from waste gasifiers are completely and immediately recyclable. ? Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  17. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  18. Open Defecation and the Human Waste Crisis in India

    E-Print Network [OSTI]

    Mozaffar, Parveen

    2014-05-31

    This thesis analyzes the human waste crisis in India. The lack of sanitation facilities as well as open defecation seriously impacts India's ability to achieve its sanitation goals by 2015. More importantly, if the World Health Organization...

  19. Municipal waste combustion assessment: Fossil fuel co-firing. Final report, October 1988-July 1989

    SciTech Connect (OSTI)

    Landrum, V.J.; Barton, R.G.

    1989-07-01

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; and describes the population of coal fired boilers that currently co-fire RDF, have previously co-fired RDF but have ceased to do so, and have been used in RDF co-firing demonstrations. (Fossil fuel co-firing, defined as the combustion of RDF with another fuel (usually coal) in a device designed primarily to burn the other fuel, is generally confined to commercial and utility boilers.) Model plants are developed and good combustion practices are recommended.

  20. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  1. Turbulent combustion

    SciTech Connect (OSTI)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  2. Method and apparatus for reducing mixed waste

    DOE Patents [OSTI]

    Elliott, Michael L. (Kennewick, WA); Perez, Jr., Joseph M. (Richland, WA); Chapman, Chris C. (Richland, WA); Peters, Richard D. (Pasco, WA)

    1995-01-01

    The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.

  3. An Energy Analysis of the Catalytic Combustion Burner 

    E-Print Network [OSTI]

    Dong, Q.; Zhang, S.; Duan, Z.; Zhou, Q.

    2006-01-01

    The gas boilers of conventional flame always produce varying degrees of combustion products NOx and CO, which pollute the environment and waste energy. As a new way of combustion, catalytic combustion breaks the flammable limits of conventional...

  4. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  5. Combustion of char-coal waste pellets for high efficiency and low NO{sub x}. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31

    Illinois coals are prime candidates for use in Integrated Gasification Combined Cycle (IGCC) plants because of their high volatility and good char reactivity. In these plants, partial gasification of the coal in the presence of limestone eliminates the major portion of the sulfur species in the product gases, which are used as fuel for the topping cycle. The char produced is high in ash content, the major portion of which is calcium sulfide. It is also low in volatiles and of low density, compared to the parent coal. The economic success of the gasification route depends on the subsequent utilization of the residual char for raising steam for use in a Rankine cycle bottoming plant and/or preheating the air to the gasifier. Fluidized bed combustion of the char appears an attractive way of utilizing the char. Areas of concern in the fluidized bed combustion of the high ash, low volatility char are: attainment of high carbon conversion efficiencies; reduction of oxides of nitrogen emissions; reduction/elimination of corrosive chlorine species; reduction/elimination of sodium and other alkali species; and efficient usage of the calcium present in the ash to reduce sulfur compounds. The aim of the present project is to investigate ways of improving the carbon conversion efficiency, sulfur capture efficiency and NO{sub x} reduction during the fluidized bed combustion by pelletizing the low density char with coal and coal wastes using cornstarch or wood lignin as binder. During this first quarter, the parent coals and the chars to be tested have been analyzed. Particle size distributions have been measured. Sample pellets have been made evaluation of their properties.

  6. An Economic Assessment of Market-Based Approaches to Regulating the Municipal Solid Waste Stream

    E-Print Network [OSTI]

    Menell, Peter S.

    2004-01-01

    combustion in mass burn facilities or by shredding and screening wastes to produce highly combustible fuel pellets (refuse-derived

  7. Combustion & Health 

    E-Print Network [OSTI]

    Hamilton, W.

    2012-01-01

    stream_source_info ESL-KT-12-10-18.pdf.txt stream_content_type text/plain stream_size 4107 Content-Encoding ISO-8859-1 stream_name ESL-KT-12-10-18.pdf.txt Content-Type text/plain; charset=ISO-8859-1 FFCOMBUSTION & HEALTH... Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health) ? Combustion of fossil fuels...

  8. Reducing the likelihood of future human activities that could affect geologic high-level waste repositories

    SciTech Connect (OSTI)

    Not Available

    1984-05-01

    The disposal of radioactive wastes in deep geologic formations provides a means of isolating the waste from people until the radioactivity has decayed to safe levels. However, isolating people from the wastes is a different problem, since we do not know what the future condition of society will be. The Human Interference Task Force was convened by the US Department of Energy to determine whether reasonable means exist (or could be developed) to reduce the likelihood of future human unintentionally intruding on radioactive waste isolation systems. The task force concluded that significant reductions in the likelihood of human interference could be achieved, for perhaps thousands of years into the future, if appropriate steps are taken to communicate the existence of the repository. Consequently, for two years the task force directed most of its study toward the area of long-term communication. Methods are discussed for achieving long-term communication by using permanent markers and widely disseminated records, with various steps taken to provide multiple levels of protection against loss, destruction, and major language/societal changes. Also developed is the concept of a universal symbol to denote Caution - Biohazardous Waste Buried Here. If used for the thousands of non-radioactive biohazardous waste sites in this country alone, a symbol could transcend generations and language changes, thereby vastly improving the likelihood of successful isolation of all buried biohazardous wastes.

  9. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect (OSTI)

    DeLallo, M.R.; Zaharchuk, R.; Reuther, R.B.; Bonk, D.L.

    1996-09-01

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  10. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion...

  11. IFRF Combustion Journal Article Number 200303, July 2003

    E-Print Network [OSTI]

    Columbia University

    IFRF Combustion Journal Article Number 200303, July 2003 ISSN 1562-479X Waste Incineration European-mail: klaus.goerner@uni-essen.den URL: http://www.luat.uni-essen.de #12;IFRF Combustion Journal - 2 - Goerner the lower calorific value of normal municipal waste increased with the consequence of increasing combustion

  12. Hazardous waste transportation risk assessment for the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement -- human health endpoints

    SciTech Connect (OSTI)

    Hartmann, H.M.; Policastro, A.J.; Lazaro, M.A.

    1994-03-01

    In this presentation, a quantitative methodology for assessing the risk associated with the transportation of hazardous waste (HW) is proposed. The focus is on identifying air concentrations of HW that correspond to specific human health endpoints.

  13. Buried waste integrated demonstration human engineered control station. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  14. Sealed Combustion

    SciTech Connect (OSTI)

    2009-05-12

    This information sheet discusses the benefits of sealed combustion appliance units in order to ensure good indoor air quality.

  15. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Evaluation of Waterless Human Waste Management Systems at North American Public Remote Sites

    E-Print Network [OSTI]

    of Waterless Human Waste Management Systems at North American Public Remote Sites GEOG 699 September 16, 2013; An Evaluation of Waterless Human Waste Management Systems at North American Public Remote Sites by GEOFFREY

  17. Energy from Waste November 4, 2011

    E-Print Network [OSTI]

    Columbia University

    Waste Combustion (MWC) · Power plant that combusts MSW and other non-hazardous wastes as fuel gas to energy facilities · 2 Hydro electric facilities · Recently broke ground on Durham / York

  18. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    SciTech Connect (OSTI)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agency's 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  19. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    CombustionCombustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Coupled Droplet Combustion . . . . . . . . . . . . Burning

  20. Computational Combustion

    SciTech Connect (OSTI)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  1. Is combustion of plastics desirable?

    SciTech Connect (OSTI)

    Piasecki, B.; Rainey, D.; Fletcher, K.

    1998-07-01

    Managing waste will always entail some tradeoffs. All of the three options--recycling, landfilling and combustion--have some disadvantages. Even landfilling, which produces no emissions, fails to take advantage of the energy value inherent in plastic. Waste combustion, on the other hand, recovers the energy in plastic materials and reduces the volume of disposed solid waste by up to 90% of its initial preburn volumes. However, this management option generates emissions and produces an ash residue that must be managed. As demonstrated by recent test burns, improvements in combustion and air-pollution-control technology have dramatically reduced the health risks from emissions and ash. Recent studies have shown that plastics--in quantities even higher than those normally found in municipal solid waste--do not adversely affect levels of emissions or the quality of ash from waste-to-energy facilities. In addition, waste-to-energy facilities may be a relatively economical source of fuel, and may be a more economic solution to waste management than the other available options. A waste-to-energy plant generally produces electricity that is sold to the electric utilities for approximately six cents per kilowatt-hour, a rate that is competitive with those offered by nuclear power plants and power plants that generate energy by burning fossil fuels.

  2. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-05

    Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

  3. Considerations Related To Human Intrusion In The Context Of Disposal Of Radioactive Waste-The IAEA HIDRA Project

    SciTech Connect (OSTI)

    Seitz, Roger; Kumano, Yumiko; Bailey, Lucy; Markley, Chris; Andersson, Eva; Beuth, Thomas

    2014-01-09

    The principal approaches for management of radioactive waste are commonly termed ‘delay and decay’, ‘concentrate and contain’ and ‘dilute and disperse’. Containing the waste and isolating it from the human environment, by burying it, is considered to increase safety and is generally accepted as the preferred approach for managing radioactive waste. However, this approach results in concentrated sources of radioactive waste contained in one location, which can pose hazards should the facility be disrupted by human action in the future. The International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA), and Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) agree that some form of inadvertent human intrusion (HI) needs to be considered to address the potential consequences in the case of loss of institutional control and loss of memory of the disposal facility. Requirements are reflected in national regulations governing radioactive waste disposal. However, in practice, these requirements are often different from country to country, which is then reflected in the actual implementation of HI as part of a safety case. The IAEA project on HI in the context of Disposal of RadioActive waste (HIDRA) has been started to identify potential areas for improved consistency in consideration of HI. The expected outcome is to provide recommendations on how to address human actions in the safety case in the future, and how the safety case may be used to demonstrate robustness and optimize siting, design and waste acceptance criteria within the context of a safety case.

  4. The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

    SciTech Connect (OSTI)

    Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States); Galson, D.A. [Galson Sciences Ltd., (United Kindgom); Patera, E.S. [Nuclear Energy Agency, 75 - Paris (France)

    1994-04-01

    For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

  5. Combustion Noise

    E-Print Network [OSTI]

    Dowling, Ann P.; Mahmoudi, Yasser

    2014-01-01

    Combustion noise is becoming increasingly important as a major noise source in aeroengines and ground based gas turbines. This is partially because advances in design have reduced the other noise sources, and partially because next generation...

  6. Sandia Energy - Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Home Transportation Energy Predictive Simulation of Engines Reacting Flow Experiments Turbulent Combustion Turbulent CombustionAshley Otero2015-10-30T01:39:47+00...

  7. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    Optical Measurement of Combustion Products by Zeeman Atomicand T. Hadeishi • . . • . • . • • . • Combustion Sources offrom Pulverized Coal Combustion J. Pennucci, R. Greif, F.

  8. 1 Copyright 2003 by ASME 17th International Conference on Fluidised Bed Combustion

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1 Copyright © 2003 by ASME 17th FBC 17th International Conference on Fluidised Bed Combustion May COMBUSTION OF HIGH-PVC SOLID WASTE WITH HCl RECOVERY Loay Saeed, Antti Tohka, Ron Zevenhoven* Helsinki.zevenhoven@hut.fi * Corresponding author ABSTRACT A process for two-stage combustion of high-PVC solid waste with HCl recovery

  9. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry DISI Combustion DISI CombustionAshley Otero2015-10-28T02:44:30+00:00...

  10. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels Spray Combustion Spray CombustionAshley Otero2015-10-28T02:17:06+00:00 Fuel...

  11. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty Spray Combustion Spray CombustionAshley Otero2015-10-28T02:00:56+00:00...

  12. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  13. Waste area Grouping 2 Phase I task data report: Human health risk assessment

    SciTech Connect (OSTI)

    Purucker, S.T.; Douthat, D.M.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow- up information to the Phase 1 Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that could cause potential human health risk and ecological risk within WAG2 at ORNL. The purpose of this report is to present a summary of the human health risk assessment results based on the data collected for the WAG 2 Phase 1 RI. Estimates of risk are provided based on measured concentrations in the surface water, floodplain soil, and sediment of White Oak Creek, Melton Branch, and their tributaries. The human health risk assessment methodology used in this risk assessment is based on Risk Assessment Guidance for Superfund (RAGS). First, the data for the different media are elevated to determine usability for risk assessment. Second, through the process of selecting chemicals of potential concern (COPCs), contaminants to be considered in the risk assessment are identified for each assessment of exposure potential is performed, and exposure pathways are identified. Subsequently, exposure is estimated quantitatively, and the toxicity of each of the COPCs is determined. The results of these analyses are combined and summarized in a risk characterization.

  14. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  15. Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues

    E-Print Network [OSTI]

    Ma, Lena

    Ma,BonzongoandGao/UniversityofFlorida Characterization and Leachability of Coal Combustion Residues an important solid waste in Florida, i.e., coal combustion residues (CCR) detailed in #2-4 of the current

  16. Expert judgment on markers to deter inadvertent human intrusion into the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Trauth, K.M.; Hora, S.C.; Guzowski, R.V.

    1993-11-01

    The expert panel identified basic principles to guide current and future marker development efforts: (1) the site must be marked, (2) message(s) must be truthful and informative, (3) multiple components within a marker system, (4) multiple means of communication (e.g., language, pictographs, scientific diagrams), (5) multiple levels of complexity within individual messages on individual marker system elements, (6) use of materials with little recycle value, and (7) international effort to maintain knowledge of the locations and contents of nuclear waste repositories. The efficacy of the markers in deterring inadvertent human intrusion was estimated to decrease with time, with the probability function varying with the mode of intrusion (who is intruding and for what purpose) and the level of technological development of the society. The development of a permanent, passive marker system capable of surviving and remaining interpretable for 10,000 years will require further study prior to implementation.

  17. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  18. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

  19. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  20. Simulation of lean premixed turbulent combustion

    E-Print Network [OSTI]

    2008-01-01

    turbulent methane combustion. Proc. Combust. Inst. , 29:in premixed turbulent combustion. Proc. Combust. Inst. ,for zero Mach number combustion. Combust. Sci. Technol. ,

  1. Experience in preparing fuel for combustion

    SciTech Connect (OSTI)

    Rude, J.

    1995-09-01

    The key phase seems to be that wood is the ORIGINAL FUEL. Certainly as man discovered fire, it was the most obvious as well as abundantly available fuel and it burned very well because man was smart enough to select the dry wood once he understood the basics of combustion. As the needs started to go beyond the most elementary, designs for burning ideal fuels were pretty well perfected, however, the burning of less ideal fuels still remain a challenge. To provide plant steam requirements by burning waste that must be disposed of anyway can reduce operating cost considerably. For most of us involved in producing steam, the experience we have with fuels such as bark, wood waste, sludge, and miscellaneous forms of solid combustible waste material, are a result of burning these fuels in an existing boiler supposedly designed for wood waste or possibly a combination of wood and other fuels such as coal, oil, or gas. For a supplier of fuel preparation systems, the typical application involves the sizing, cleaning, and drying of wood waste, and sludge from a pulp and/or paper mill. Other forms of combustible waste are dealt with occasionally and after proper preparation fired in the combustion system for the purpose of generating hot gas and/or steam for the plant process.

  2. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics Combustion KineticsAshley Otero2015-10-28T02:45:13+00:00 The...

  3. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive DISI Combustion DISI CombustionAshley Otero2015-10-28T02:06:42+00:00 DISI engine in...

  4. Method for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    DOE Patents [OSTI]

    Janikowski, Stuart K. (Idaho Falls, ID)

    2000-01-01

    A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  5. Communication across 300 generations: deterring human interference with waste deposit sites

    SciTech Connect (OSTI)

    Tannenbaum, P.H.

    1984-04-01

    The conditions attendant on the deep land burial of nuclear waste products raise a number of possible scenarios to cover the necessary 10,000 years of burial. However, no matter what kind of futuristic scenario obtains, it is desirable to develop an information system indicating the locale and nature of the deposit site and the types of materials stored, along with forewarnings not to interefere with the sites. A variety of such informational sites are suggested. Attention then turns to the recipients of such messages, recognizing from the outset that the psychological/perceptual makeup of individuals across the next 300 or so generations is virtually impossible to predict, particularly since new technologies may well alter that makeup in the furture. Nevertheless, current evidence suggests that certain human characteristics may be considered universal, and that these suggest the incorporation of selected sign signification into the message system. There are other such characteristics that, while probably not intrinsic, can probably be acquired with a minimum of formal training. That still leaves much of the message content to be deliberately created and, hence, learned. The common trefoil or other developed biohazardous signs emerge as the best candidates for a generic base symbol for the buried material.

  6. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01

    MSW to fuel 24 Non-biogenic waste transformation .. 25 Incineration (add citations) . 25 Incomplete combustion: pyrolysis and gasification ..

  7. Partially Premixed Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partially Premixed Combustion Partially Premixed Combustion Published materials on partial premixed combustion (PPC) combined with Volvo's own combustion research provides...

  8. Combustion chemistry

    SciTech Connect (OSTI)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  9. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  10. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  11. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  12. Numerical simulation of flow and mixing behavior of solids on a moving grate combustion system

    E-Print Network [OSTI]

    Columbia University

    Numerical simulation of flow and mixing behavior of solids on a moving grate combustion system by #12;ii Numerical simulation of flow and mixing behavior of solids on a moving grate combustion system, and to a large extent influences the combustion process. Municipal solid waste (MSW) is not a uniform fuel

  13. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  14. Transport Properties for Combustion Modeling

    E-Print Network [OSTI]

    Brown, N.J.

    2010-01-01

    a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

  15. Combustion 2000

    SciTech Connect (OSTI)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    This report is a presentation of work carried out on Phase II of the HIPPS program under DOE contract DE-AC22-95PC95144 from June 1995 to March 2001. The objective of this report is to emphasize the results and achievements of the program and not to archive every detail of the past six years of effort. These details are already available in the twenty-two quarterly reports previously submitted to DOE and in the final report from Phase I. The report is divided into three major foci, indicative of the three operational groupings of the program as it evolved, was restructured, or overtaken by events. In each of these areas, the results exceeded DOE goals and expectations. HIPPS Systems and Cycles (including thermodynamic cycles, power cycle alternatives, baseline plant costs and new opportunities) HITAF Components and Designs (including design of heat exchangers, materials, ash management and combustor design) Testing Program for Radiative and Convective Air Heaters (including the design and construction of the test furnace and the results of the tests) There are several topics that were part of the original program but whose importance was diminished when the contract was significantly modified. The elimination of the subsystem testing and the Phase III demonstration lessened the relevance of subtasks related to these efforts. For example, the cross flow mixing study, the CFD modeling of the convective air heater and the power island analysis are important to a commercial plant design but not to the R&D product contained in this report. These topics are of course, discussed in the quarterly reports under this contract. The DOE goal for the High Performance Power Plant System ( HIPPS ) is high thermodynamic efficiency and significantly reduced emissions. Specifically, the goal is a 300 MWe plant with > 47% (HHV) overall efficiency and {le} 0.1 NSPS emissions. This plant must fire at least 65% coal with the balance being made up by a premium fuel such as natural gas. To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization issues of fabrication and reliability, availability and maintenance. The program that has s

  16. Aalborg Universitet CFD modeling and experience of waste-to-energy plant burning waste wood

    E-Print Network [OSTI]

    Yin, Chungen

    -to-Energy (WtE) plants for CHP (combined heat and power) production from waste combustion/incineration. However-depth understanding of the fundamental mixing, combustion, heat transfer and pollutant formation in combustion (Computation Fluid Dynamics) is a powerful tool to aid in optimization of WtE plants to achieve higher

  17. Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Solution Combustion Synthesis Impregnated Layer Combustion Synthesis is a Novel Methodology Engineering University of Notre Dame University of Notre Dame #12;Outline: Overview of combustion synthesis Reaction system Combustion front analaysis Theoretical model results Conclusions Acknowledgements #12

  18. A method and apparatus for destroying hazardous organics and other combustible materials in a subcritical/supercritical reactor

    SciTech Connect (OSTI)

    Janikowski, Stuart K.

    1997-12-01

    A waste destruction method is described using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.

  19. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    relative to combustion in the single-pulse engine. FOOTNOTEto engine combustion have been conducted in a single- pulsecombustion in engines conducted in our laboratory by the use of the single pulse

  20. COMBUSTION RESEARCH - FY-1979

    E-Print Network [OSTI]

    ,

    2012-01-01

    boundary layer for propane/air combustion on a platinumDuring FY 1979 the combustion of lean propane/ air mixturescombustion characteristics of a two-dimensional flow of premixed propane/

  1. Reducing the environmental impact on solid wastes from a fluidized...

    Office of Scientific and Technical Information (OSTI)

    Subject: 01 COAL, LIGNITE, AND PEAT; COAL; FLUIDIZED-BED COMBUSTION; WASTE MANAGEMENT; AIR POLLUTION ABATEMENT; ALUMINIUM OXIDES; CALCIUM OXIDES; CHEMICAL ACTIVATION;...

  2. Resonance ionization detection of combustion radicals

    SciTech Connect (OSTI)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  3. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  4. Generating Steam by Waste Incineration 

    E-Print Network [OSTI]

    Williams, D. R.; Darrow, L. A.

    1981-01-01

    Combustible waste is a significant source of steam at the new John Deere Tractor Works assembly plant in Waterloo, Iowa. The incinerators, each rated to consume two tons of solid waste per hour, are expected to provide up to 100 percent of the full...

  5. DETECTION OF ALUMINUM WASTE REACTIONS AND WASTE FIRES Jeffrey W. Martin, M.S., P.G., R.S.

    E-Print Network [OSTI]

    , undesirable changes in leachate composition, increased leachate production, and most importantly smoldering combustion of the surrounding solid waste. The landfill liner and explosive gas extraction and leachate, landfill, leachate, leachate recirculation, salt cake, slope stability, smoldering, solid waste, Subtitle D

  6. Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  7. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  8. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    DOE Patents [OSTI]

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  9. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect (OSTI)

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  10. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  11. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  12. Structure and Combustion of Magnegases

    E-Print Network [OSTI]

    R. M. Santilli; A. K. Aringazin

    2001-12-20

    In this paper, we study the structure and combustion of magnegases$^{TM}$ (Patented and International Patents Pending), new clean fuels developed by one of us (R.M.S.) [1], which are produced as byproducts of recycling nonradioactive liquid feedstock such as antifreeze waste, engine oil waste, town sewage, crude oil, etc., and generally vary with the liquid used for their production. A new technology, called PlasmaArcFlow\\tm, flows the waste through a submerged electric arc between conventional electrodes. The arc decomposes the liquid molecules into their atomic constituents, and forms a plasma in the immediate vicinity of the electrodes at about 10,000$^o$ F. The technology then moves the plasma away from the electrodes, and controls its recombination into environmentally acceptable fuels. The new fuels possess a ew chemical structure first identified by one of us (R.M.S.), which is characterized by clusters of ordinary molecules and atoms under a new bond of electromagnetic nature. These clusters constitute a new chemical species different than the conventional molecules, since they are stable at ordinary conditions while exhibiting no infrared signature (other than those of conventional molecular constituents), thus confirming that the bond is not of valence type. For this reason the new chemical species is called ''Santilli's electromagnecules'' or ''magnecules''.

  13. Waste wood processing and combustion for energy

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This volume contains the proceedings of the Fifth Annual National Biofuels Conference and Exhibition held October 19--22, 1992 in Newton, Massachusetts. Individual papers have been abstracted and indexed for the database.

  14. Combustion & Fuels Waste Heat Recovery & Utilization Project

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  15. COMBUSTION SOURCES OF NITROGEN COMPOUNDS

    E-Print Network [OSTI]

    Brown, Nancy J.

    2011-01-01

    Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

  16. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  17. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25,...

  18. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process that...

  19. Experimental investigation of wood combustion in a fixed bed with hot air

    SciTech Connect (OSTI)

    Markovic, Miladin Bramer, Eddy A.; Brem, Gerrit

    2014-01-15

    Highlights: • Upward combustion is a new combustion concept with ignition by hot primary air. • Upward combustion has three stages: short drying, rapid devolatilization and char combustion. • Variation of fuel moisture and inert content have little influence on the combustion. • Experimental comparison between conventional and upward combustion is presented. - Abstract: Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T > 220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1 m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.

  20. The Conversion of Waste to Energy 

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01

    Almost every industrial operation produces some combustible waste, but conversion of this to useful energy is often more difficult than with other energy recovery projects and requires careful attention to design, operating and maintaining...

  1. Optimizing human reliability: Mock-up and simulation techniques in waste management

    SciTech Connect (OSTI)

    Caccamise, D.J.; Somers, C.S.; Sebok, A.L.

    1992-01-01

    With the new mission at Rocky Flats to decontaminate and decommission a 40-year old nuclear weapons production facility comes many interesting new challenges for human factors engineering. Because the goal at Rocky Flats is to transform the environment, the workforce that undertakes this mission will find themselves in a state of constant change, as they respond to ever-changing task demands in a constantly evolving work place. In order to achieve the flexibility necessary under these circumstances and still maintain control of human reliability issues that exist in a hazardous, radioactive work environment, Rocky Flats developed an Engineering Mock-up and Simulation Lab to plan, design, test, and train personnel for new tasks involving hazardous materials. This presentation will describe how this laboratory is used to develop equipment, tools, work processes, and procedures to optimize human reliability concerns in the operational environment. We will discuss a particular instance in which a glovebag, large enough to house two individuals, was developed at this laboratory to protect the workers as they cleaned fissile material from building ventilation duct systems.

  2. Optimizing human reliability: Mock-up and simulation techniques in waste management

    SciTech Connect (OSTI)

    Caccamise, D.J.; Somers, C.S.; Sebok, A.L.

    1992-10-01

    With the new mission at Rocky Flats to decontaminate and decommission a 40-year old nuclear weapons production facility comes many interesting new challenges for human factors engineering. Because the goal at Rocky Flats is to transform the environment, the workforce that undertakes this mission will find themselves in a state of constant change, as they respond to ever-changing task demands in a constantly evolving work place. In order to achieve the flexibility necessary under these circumstances and still maintain control of human reliability issues that exist in a hazardous, radioactive work environment, Rocky Flats developed an Engineering Mock-up and Simulation Lab to plan, design, test, and train personnel for new tasks involving hazardous materials. This presentation will describe how this laboratory is used to develop equipment, tools, work processes, and procedures to optimize human reliability concerns in the operational environment. We will discuss a particular instance in which a glovebag, large enough to house two individuals, was developed at this laboratory to protect the workers as they cleaned fissile material from building ventilation duct systems.

  3. Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air 

    E-Print Network [OSTI]

    Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

    1980-01-01

    The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel...

  4. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells...

  5. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    E-Print Network [OSTI]

    Cole, Lord Kahil

    2012-01-01

    CombustionEquations . . . . . . . . . . Combustion and Ionizationpulsating detonations. Combustion Theory and Modeling, 9:

  6. Theoretical studies on hydrogen ignition and droplet combustion

    E-Print Network [OSTI]

    Del Álamo, Gonzalo

    2006-01-01

    1.2 Droplet Combustion . . . . . . . . . . . . .Combustion . . . . . . . . . . . . . . . . . . . . . . . . . .Lewis, B. and von Elbe, G. Combustion, Flames and Explosions

  7. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  8. Dry low combustion system with means for eliminating combustion noise

    DOE Patents [OSTI]

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  9. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L. (Idaho Falls, ID)

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  10. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L. (Idaho Falls, ID)

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  11. Sandia Combustion Research: Technical review

    SciTech Connect (OSTI)

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  12. Four Lectures on Turbulent Combustion

    E-Print Network [OSTI]

    Peters, Norbert

    Four Lectures on Turbulent Combustion N. Peters Institut f¨ur Technische Mechanik RWTH Aachen Turbulent Combustion: Introduction and Overview 1 1.1 Moment Methods in Modeling Turbulence with Combustion and Velocity Scales . . . . . . . . . . . 11 1.4 Regimes in Premixed Turbulent Combustion

  13. Tank Waste System Integrated Project Team

    Office of Environmental Management (EM)

    to protect human health, the environment and national security are maintained. Tank Waste System Tank Waste System Integrated Project Team Integrated Project Team Steve...

  14. EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

  15. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The advantage of these advanced combustion systems is that the high concentration of CO2 in the flue gas reduces the cost and improves the performance of the CO2 capture...

  16. Combustion Air Control 

    E-Print Network [OSTI]

    Hughart, C. L.

    1979-01-01

    to 100%. If the air and fuel controls are on automatic but the flue gas oxygen content cannot be lowered to 4% oxygen without the boiler smoking, burner problems may be suspected. The trouble may be traced to dirty or improperly assembled oil guns..., combustion air distribution problems, vaporizing steam control problems, oil viscosity, or flow control problems. It is very important to have all oil guns operating properly before proceeding with a combustion test. The minimum stack gas oxygen level you...

  17. Large Steam Generating Units for the Combustion of Refuse 

    E-Print Network [OSTI]

    Adams, P. J.; Robinson, C. C.

    1981-01-01

    GENERATING UNITS FOR THE COMBUSTION OF REFUSE P. J. Adams and C. C. Robinson Foster Wheeler Limited, St. Catharines, Ontario, Canada INTRODUCTION Many by-products of our economy are considered "waste" and are disposed of as landfill or by incineration...

  18. Sandia Energy - Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxy-fuel combustion. However, properly designing new pressurized combustion burners and boilers requires accurate data on coal devolatilization and combustion rates...

  19. Development of Advanced Combustion Technologies for Increased...

    Broader source: Energy.gov (indexed) [DOE]

    Investigation of fuel effects on low-temperature combustion, particularly HCCI PCCI combustion deer09gehrke.pdf More Documents & Publications The Role of Advanced Combustion in...

  20. Engine Combustion Network (ECN): Global sensitivity analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion Network (ECN): Global sensitivity analysis of Spray A for different combustion vessels Title Engine Combustion Network (ECN): Global sensitivity analysis of Spray...

  1. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  2. Constant Volume During Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constant Volume During Combustion Constant Volume During Combustion This presentation covers constant volume during combustion and discusses how it can alter the kinematics of...

  3. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    Pollutants from Indoor Combustion Sources: I. Field Measure-Characteristics in Two Stage Combustion, paper presented atInternational) on Combustion, August, 1974, Tokyo, Japan. 8

  4. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research and...

  5. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2011-01-01

    Ext. 6782 Combustion -Generated Indoor Air Pollution Craigcontrol of air pollution from indoor combustion sources. Ifocused on combustion-generated indoor air pollution, namely

  6. Coal Combustion Products | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Combustion Products Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the...

  7. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  8. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    SciTech Connect (OSTI)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.; Clark, L.L.; Craig, R.A.; Nesbitt, J.F.; McCarthy, D.; Franklin, A.L.; Hazelton, R.F.; Lundgren, R.A.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases.

  9. Combustion chamber noise suppressor

    SciTech Connect (OSTI)

    Livingston, A.M.

    1986-08-19

    A combustion chamber is described for a hot fog generating machine comprising a hollow cylindrical combustion chamber shell having a closure plate at one end and outlet means at the opposite end for directing hot combustion gasses to a fogging nozzle, air inlet means disposed adjacent the outlet means, fuel inlet means and ignition means mounted in the closure plate and liner means disposed concentrically within the cylindrical combustion chamber for controlling the flow of air and combustion gasses within the shell. The liner means includes a liner base having a frustroconical configuration with the smaller diameter end thereof disposed in communication with the outlet means and with the larger diameter end thereof disposed in spaced relation to the shell, circumferentially spaced, longitudinally extending fins extending outwardly from the liner base intermediate the liner base and the shell, a cylindrical liner midsection having circumferentially spaced fins extending outwardly therefrom between the midsection and the shell with the fins supporting the midsection on the larger diameter end of the liner base.

  10. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  11. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  12. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  13. The feasibility of source segregation as the first step for a municipal solid waste disposal scheme 

    E-Print Network [OSTI]

    Fiedler, Charles Walter

    1982-01-01

    ) In later years the history of Great Britain, in particular London, documents the progress of waste disposal in the growing urban environment. In recent years the problems of waste disposal have been compounded by the migration of the majority..., plastics, cardboard, etc. , and less combustible or non-combustible items, i. e. , the remaining wastes like cans, bottles, food wastes, etc. The project was strictly voluntary even though it took place in a military environment. The study period lasted...

  14. DNS of inhomogeneous reactants premixed combustion

    E-Print Network [OSTI]

    Lim, Kian Min

    2015-02-03

    of the combustion. This ushers in a new mode of combustion, called the inhomogeneous reactants premixed combustion. The present study investigates the effects of inhomogeneous reactants on premixed combustion, specifically on the interactions of an initially...

  15. Studies in combustion dynamics

    SciTech Connect (OSTI)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  16. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  17. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  18. THERMODYNAMIC STUDY OF HEAVY METALS BEHAVIOUR DURING MUNICIPAL WASTE INCINERATION

    E-Print Network [OSTI]

    Boyer, Edmond

    is a porous medium of varying height and is made up of spherical particles of solid waste. The solid moves Me´tallurgie (LSG2M) Nancy, France T he incineration of municipal solid waste (MSW) contributes occurring during waste combustion. Second, results from the bed model were taken as boundary conditions

  19. renewable energy from waste 1730 RHODE ISLAND AVENUE, NW

    E-Print Network [OSTI]

    Columbia University

    , or about 90,000 tons each day. The nation's waste-to-energy plants have a baseload electric generation separate mechanisms: 1) by generating electrical power or steam, waste-to-energy avoids carbon dioxide (CO2) emissions from fossil fuel- based electrical generation; 2) the waste-to-energy combustion process

  20. Japanese RDF-fired power generation system and fundamental research on RDF combustion

    SciTech Connect (OSTI)

    Narukawa, Kimihito; Goto, Hidenori; Chen, Y.; Yamazaki, Ryouhei; Moi, Shiegkatsu; Fujima, Yukihisa; Hirama, Toshimasa; Hosoda, Hideo

    1997-12-31

    Power generation from refuse derived fuel (RDF) is one of the new technologies for municipal solid waste (MSW) management. This technology is strongly attracting the attention of the Japanese government. The results of a feasibility study of this system in Japan is presented. To develop this highly efficient RDF-fired CFB generating process, combustibility and dechlorination characteristics of RDF were investigated by both the thermo-balance technique and combustion tests with an electric furnace. RDF combustion tests by a bench scale CFBC were carried out and then the following experimental results were obtained: (1) RDF can be combusted almost completely even in small scale CFBC; (2) HCl and N{sub 2}O emissions are quite low at any conditions; and (3) NO{sub x} emissions are a little higher in single stage combustion, however they are reduced at 50% air bias ratio. Some of the results can be explained by a RDF combustion model.

  1. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  2. Nanoparticle Emissions from Internal Combustion Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  3. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  4. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  5. Industrial Wastes as a Fuel 

    E-Print Network [OSTI]

    Richardson, G.; Hendrix, W.

    1980-01-01

    available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only...

  6. Proceedings of the Combustion Institute. Volume 30

    SciTech Connect (OSTI)

    NONE

    2005-01-15

    Papers discussed combustion theory and modelling, turbulent combustion, laser diagnostics and control, chemical kinetics, computational combustion, flames, detonations, droplet combustion, catalysis/materials synthesis, pulse detonations engines, diagnosis, engine combustion, heterogeneous combustion, pollutants (PAH and soot), kinetics, flame diagnosis, propulsion, laminar diffusion flames, lifted turbulent flames, nanoparticles, premixed turbulent flames, solid oxide fuel cells, laminar flames, stationary power systems, and plasma supported flames.

  7. Packed Bed Combustion: An Overview

    E-Print Network [OSTI]

    Hallett, William L.H.

    Packed Bed Combustion: An Overview William Hallett Dept. of Mechanical Engineering Université d'Ottawa - University of Ottawa #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Introduction air fuel feedproducts xbed grate Packed Bed Combustion: fairly large particles of solid fuel on a grate, air supplied

  8. Mercury emission behavior during isolated coal particle combustion 

    E-Print Network [OSTI]

    Puchakayala, Madhu Babu

    2009-05-15

    and bioaccumulates in human and animal tissue. The largest source of human-caused mercury air emissions in the U.S is from combustion coal, a dominant fuel used for power generation. The Hg emitted from plants primarily occurs in two forms: elemental Hg and oxidized...

  9. 8th i-CIPEC8th International Conference/Exhibition on Combustion, Incineration/Pyrolysis, Emission and Climate Change

    E-Print Network [OSTI]

    Columbia University

    8th i-CIPEC8th International Conference/Exhibition on Combustion, Incineration/Pyrolysis, Emission Pyrolysis and Gasification / New Materials / New Processes ·Waste-to-Energy Conversion Traditional as well

  10. Combustion powered linear actuator

    DOE Patents [OSTI]

    Fischer, Gary J. (Albuquerque, NM)

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  11. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    SciTech Connect (OSTI)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  12. Internal combustion engine using premixed combustion of stratified charges

    DOE Patents [OSTI]

    Marriott, Craig D. (Rochester Hills, MI); Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  13. Pressure-gain combustion

    SciTech Connect (OSTI)

    Richards, G.A.; Yip, J.; Gemmen, R.S.; Janus, M.C.; Norton, T. [USDOE Morgantown Energy Technology Center, WV (United States); Rogers, W.A. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-11-01

    Pulse combustion has been proposed for gas turbine applications in many early articles and more recently has been demonstrated to produce so-called ``pressure-gain`` in a small gas turbine. The basic concept is that the oscillatory combustion occurs as a constant-volume process, producing a gain in the stagnation pressure of air flowing through the combustor, rather than the pressure loss associated with conventional, steady combustion. If properly utilized, this pressure-gain could enhance simple-cycle gas turbine efficiency several percent, depending on the operating conditions. In addition, pulse combustors have demonstrated relatively low NO{sub x} pollutant levels in some applications. The combined potential for higher cycle efficiency and lower pollutant levels is the basis for the present investigation. Tests in progress at the Morgantown Energy Technology Center (METC) have considered a baseline pulse combustor configuration that has shown good oscillating performance, low NO{sub x} emissions, but disappointing results in terms of pressure-gain. However, a combination of numeric simulations and test data suggest that pressure-gain can be produced by a select combination of operating conditions and combustor geometry, but is especially sensitive to the combustor inlet geometry. Tests in progress will evaluate the effect of inlet geometry and operating pressure on both pollutant emissions and pressure-gain.

  14. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins...

  15. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Broader source: Energy.gov (indexed) [DOE]

    Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion. acecroadmapjune2013.pdf More Documents & Publications Overview of the Advanced Combustion Engine...

  16. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion...

  17. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar...

  18. Assessment of Combustion and Turbulence Models for the Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...

  19. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle...

  20. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion 2009 DOE Hydrogen Program...

  1. IR-laser initiated combustion -- A step toward complete combustion

    SciTech Connect (OSTI)

    Laghai, A.; Nabavi, S.H.; Servati, H.B.; Syed, F.

    1996-09-01

    The new global environmental regulations for reducing the engine emissions from both moving and stationary sources, as well as improvement in fuel economy are the major motifs to obtain a perfect combustion process and exhaust aftertreatment methods. Infrared (IR)-Laser initiated combustion provides a very high initial temperature, which produces propagation of a turbulent thermopressure pulse that results in a fast burning and improved combustion. The role of IR is to maximize the heat generation efficiency.

  2. Internal combustion engine with rotary combustion chamber

    SciTech Connect (OSTI)

    Hansen, C.N.; Cross, P.C.

    1986-09-23

    This patent describes an internal combustion engine comprising: a block having at least one cylindrical wall surrounding a piston chamber, piston means located in the piston chamber means operable to reciprocate the piston means in the chamber, head means mounted on the block covering the chamber. The head means has an air and fuel intake passage, and exhaust gas passage, a rotary valve assembly operatively associated with the head means for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gas from rotary valve assembly and the piston chamber. The means has a housing with a bore open to the piston chamber accommodating the rotary valve assembly, the valve assembly comprising a cylindrical sleeve located in the bore, the sleeve having an inner surface, an ignition hole, and intake and exhaust ports aligned with the intake passage and exhaust gas passage, spark generating means mounted on the housing operable to generate a spark. The rotatable valving means is located within the sleeve for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gases out of the rotary valve assembly and piston chamber.

  3. Vehiculos de combustible flexible: brindando opciones en combustible...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    actualizada para convertidores de combustible alternativo de la EPA en su sitio web, www.epa.govotaq certdearmfrcisd0602.pdf. El E85 afecta el desempeo del...

  4. Advanced Combustion Technology to Enable High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions.

  5. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  6. Research in Industrial Combustion Systems - Current and Future R&D 

    E-Print Network [OSTI]

    Rebello, W. J.; Keller, J. G.

    1987-01-01

    recuperators, regenerators, waste heat boilers, heat pumps, etc. Fuel savings can also be achieved by improving the efficiency of the combustion process where the internal energy in the fuel is converted to thermal energy. An applied research and develop... Opportunity Assessment", DOE/DIP positionnpaper, June 1983. 2. Lukasiewicz, M.A., "Industrial Utilization R&D Status Report '85-'86, GRI, September 1986. 3. Lukasiewicz, M.A.,"Industrial Combustion Technologies" Symp.Proc., ASM, April 29, '86...

  7. Vehicle Technologies Office: Advanced Combustion Strategies

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office (VTO) funds research focused on developing a greater understanding of engine combustion and how emissions form within engine cylinders. This work includes research on low temperature combustion, dilute (lean-burn) gasoline combustion, and clean diesel combustion, all of which can substantially contribute to increasing efficiency and lowering emissions in internal combustion engines.

  8. The use of protective barriers to deter inadvertent human intrusion into a mined geologic facility for the disposal of radioactive waste: A review of previous investigations and potential concepts

    SciTech Connect (OSTI)

    Tolan, T.L. [Tolan, Beeson and Associates, Kennewick, WA (United States)

    1993-06-01

    Sandia National Laboratories is evaluating the feasibility of developing protective barrier system for the Waste Isolation Pilot Plant (WIPP) to thwart inadvertent human intrusion into this radioactive-waste disposal system for a period of 9,900 years after assumed loss of active institutional controls. The protective barrier system would be part of a series of enduring passive institutional controls whose long-term function will be to reduce the likelihood of inadvertent human activities (e.g., exploratory drilling for resources) that could disrupt the WIPP disposal system.

  9. Tire gassification and combustion system

    SciTech Connect (OSTI)

    Nance, D.; Towne, G.A.

    1992-04-07

    This patent describes a system for disposing of a material such as vehicle tires and similar substantially organic matter and generating useful heat therefrom. It comprises gasification means for holding an amount of the material to be disposed while the material is allowed to partially combust and for containing combustible gas produced thereby, the gasification means comprising a substantially air tight gasification chamber having at least one access way for inserting the material therein; inlet means for receiving a controlled amount of oxygen containing gas into the gasification means, the inlet means comprising a tuyere disposed in the air tight gasification chamber and a blower connected to the tuyere; removal means for removing the combustible gas from the gasification means, the removal means comprising a gas outlet located above the tuyere in the gasification chamber such that substantially amounts of the combustible gases produced by the partially combusted material exits through the gas outlet; primary combustion means for receiving and mixing the combustible gas removed from the gasification means with an oxygen containing gas and burning the combustible gas; and means for directing the combustion products to a heat utilizing device.

  10. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...

  11. Sandia Energy - Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and they form the basis for the creation of validated submodels that bridge fundamental energy sciences with applied device engineering and optimization. Turbulent-combustion-lab...

  12. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    SciTech Connect (OSTI)

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.

  13. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  14. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P. (Windsor, CT); Matthews, Francis T. (Poquonock, CT)

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  15. Sandia Energy - Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergy ConversionEngine Combustion Home

  16. Sandia Energy - Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumniProjects Caterpillar, SandiaCombustion Kinetics Home

  17. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEARSolarSpray Combustion Home

  18. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEARSolarSpray Combustion

  19. Hybrid systems process mixed wastes

    SciTech Connect (OSTI)

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  20. Combustion Catalysts in Industry- An Update 

    E-Print Network [OSTI]

    Merrell, G. A.; Knight, R. S.

    1985-01-01

    combustibles in the refuse and help a plant attain emissions compliance requirements that are not always achieved with pollution-control equipment. Combustion catalysts promote the combustion process by lowering the ignition temperature of the fuel, allowing...

  1. Path planning during combustion mode switch

    DOE Patents [OSTI]

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  2. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01

    x A Emission Characteristics in Two Stage Combustion. PaperInternational) on Combustion, Tokyo (August, 1974). Chang,fll , J I ___F J "J LBL-S9lS COMBUSTION-GENERATED INDOOR AIR

  3. COMBUSTION-GENERATED INDOOR AIR POLLUTION

    E-Print Network [OSTI]

    Hollowell, C.D.

    2010-01-01

    of indoor combustion-generated air pollution in residen-LBL-S9lS COMBUSTION-GENERATED INDOOR AIR POLLUTION Dr. C. D.L,BL-5918 COMBUSTION-GENERATED INDOOR AIR POLLUTION C. D.

  4. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  5. HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)

    SciTech Connect (OSTI)

    Gilmore, Walter E.; Stender, Kerith K.

    2012-08-29

    This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

  6. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  7. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  8. Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using...

  9. Sandia Energy - Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 and H2O (from flue gas recirculation) create very different physical and chemical properties of the combustion medium, influencing coal ignition and combustion rates....

  10. Optimizing Low Temperature Diesel Combustion | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Low Temperature Diesel Combustion Optimizing Low Temperature Diesel Combustion Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  11. Hydrogen engine and combustion control process

    DOE Patents [OSTI]

    Swain, Michael R. (Coral Gables, FL); Swain, Matthew N. (Miami, FL)

    1997-01-01

    Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

  12. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  13. Combustion Model for Engine Concept Development | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Engine Concept Development Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an...

  14. Particle Sensor for Diesel Combustion Monitoring | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensor for Diesel Combustion Monitoring Particle Sensor for Diesel Combustion Monitoring 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: University of...

  15. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  16. Theoretical studies on hydrogen ignition and droplet combustion

    E-Print Network [OSTI]

    Del Álamo, Gonzalo

    2006-01-01

    the combustion of hydrogen and carbon monoxide. Combustionfor carbon-monoxide hydrogen oxygen kinetics. Combustion

  17. Co-combustion feasibility study. Final report

    SciTech Connect (OSTI)

    Handcock, D.J.

    1995-01-01

    This report investigates the technical and economic feasibility of co-combusting municipal sewage sludge produced by the Saratoga County Sewer District No. 1 with paper mill sludge produced by the Cottrell Paper Company, Encore Paper Company, International Paper Company, Mohawk Paper Mills, and TAGSONS Papers at the Saratoga County Sewer District No. 1`s secondary wastewater treatment plant and recovering any available energy products. The co-combustion facility would consist of sludge and wood chip storage and conveying systems, belt filter presses, screw presses, fluidized-bed incinerators, venturi scrubbers and tray cooling systems, ash dewatering facilities, heat recovery steam generators, gas-fired steam superheaters, and a back-pressure steam turbine system. Clean waste wood chips would be used as an auxiliary fuel in the fluidized-bed incinerators. It is recommended that the ash produced by the proposed facility be beneficially used, potentially as a raw material in the manufacture of cement and/or as an interim barrier layer in landfills.

  18. SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin

    E-Print Network [OSTI]

    Columbia University

    1 SMALL SCALE WASTE-TO-ENERGY TECHNOLOGIES Claudine Ellyin Advisor: Prof. Nickolas J. Themelis for large Waste-to-Energy (WTE) facilities is combustion on a moving grate of "as-received" municipal solid, one in Germany, and one in the UK; they range in capacity from 30 tons/day per unit to a high of 118

  19. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  20. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 28152820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION

    E-Print Network [OSTI]

    Moses, Elisha

    2815 Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1998/pp. 2815­2820 FINGERING INSTABILITY IN SOLID FUEL COMBUSTION: THE CHARACTERISTIC SCALES OF THE DEVELOPED STATE ORY ZIK, Israel We present new results on the fingering instability in solid fuel combustion. The instability

  1. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    E-Print Network [OSTI]

    Teshome, Sophonias

    2012-01-01

    Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

  2. Maintain Combustion Systems 

    E-Print Network [OSTI]

    Fletcher, R. J.

    1979-01-01

    of inattention to the ignitor can abort the start of a process, resulting in costly delays. Fuel Nozzles and Orifices Oil gun tips and plugs are carefully machined components that control oil spray pattern and flow. Under normal use and maintenance, tips.... Some specific problems and their results include: Oil leakage and drooling -- oil waste Carbonizing -- tip and oil flow blockage, lowered efficiency, smoking Poor atomization -- lowered efficiency, increased emissions Thread galling -- eventual gun...

  3. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP

  4. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  5. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-06-01

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for extraction of groundwater from the deep carbonate aquifer. Grazing and hunting are unlikely to be potential causes for inadvertent human intrusion into waste areas because of vegetation characteristics and lack of significant game animal populations.

  6. Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    , wood, glass, metals and food waste. During combustion, nearly all of the chlorine content1 Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008 of commercial tubing in Waste-to-Energy (WTE) boilers, a corrosion test was made by altering the HCl

  7. The Combustion Institute 5001 Baum Boulevard

    E-Print Network [OSTI]

    Tennessee, University of

    The Combustion Institute 5001 Baum Boulevard Pittsburgh, Pennsylvania, USA 15213-1851 CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE CALL FOR PAPERS TECHNICAL MEETING - SPRING 2002 COMBUSTION 7-9, 2002 #12;CENTRAL STATES SECTION OF THE COMBUSTION INSTITUTE www.cssci.org CALL FOR PAPERS

  8. COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS

    E-Print Network [OSTI]

    Mukasyan, Alexander

    COMBUSTION SYNTHESIS OF ADVANCED MATERIALS: PRINCIPLESAND APPLICATIONS Arvind Varma, Alexander S. Gasless Combustion SynthesisFrom Elements B. Combustion Synthesis in Gas-Solid Systems C. Products of Thermite-vpe SHS D. Commercial Aspects IV. Theoretical Considerations A. Combustion Wave Propagation Theory

  9. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B2

  10. Combustion Science for Cleaner Fuels

    SciTech Connect (OSTI)

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  11. Loop-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Slagle, Frank D. (Kingwood, WV); Notestein, John E. (Morgantown, WV)

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  12. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in incomplete combustion of organic matter (e.g., in engines and incinerators, when biomass burns in forest fires). PAHs may also be abundant in the universe, and are...

  13. Predictive modeling of combustion processes

    E-Print Network [OSTI]

    Sharma, Sandeep, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    Recently, there has been an increasing interest in improving the efficiency and lowering the emissions from operating combustors, e.g. internal combustion (IC) engines and gas turbines. Different fuels, additives etc. are ...

  14. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  15. Rotary-reciprocal combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-06

    This patent describes an internal combustion engine of the rotary-reciprocal type. It comprises a housing formed with a peripheral wall; a rotor; and a shaft for the rotor.

  16. Reducing mode circulating fluid bed combustion

    DOE Patents [OSTI]

    Lin, Yung-Yi (Katy, TX); Sadhukhan, Pasupati (Katy, TX); Fraley, Lowell D. (Sugarland, TX); Hsiao, Keh-Hsien (Houston, TX)

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  17. Pulse enhanced fluidized bed combustion

    SciTech Connect (OSTI)

    Mueller, B.; Golan, L. [South Carolina Energy Research and Development Center, Clemson, SC (United States); Toma, M.; Mansour, M. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States)

    1996-12-31

    Various technologies are available for the combustion of high-sulfur, high-ash fuels, particularly coal. From performance, economic and environmental standpoints, fluidized bed combustion (FBC) is the leading candidate for utilization of high sulfur coals. ThermoChem, Inc., and the South Carolina Energy Research and Development Center (SCERDC) are installing a hybrid fluidized bed combustion system at Clemson University. This hybrid system, known as the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC), will augment the University`s steam system by providing 50--60,000 lbs/hr of saturated process steam. The PAFBC, developed by Manufacturing and Technology Conversion International, Inc., (MTCI), integrates a pulse combustor with a bubbling-bed-type atmospheric fluidized bed coal combustor. The pulse combustion system imparts an acoustic effect that enhances combustion efficiency, SO{sub 2} capture, low NO{sub x} emissions, and heat transfer efficiency in the fluidized bed. These benefits of pulse combustion result in modestly sized PAFBC units with high throughput rates and lower costs when compared to conventional fluidized bed units.

  18. Aerovalve pulse combustion: Technical note

    SciTech Connect (OSTI)

    Richards, G.A.; Gemmen, R.S.; Narayanaswami, L.

    1994-07-01

    The authors present a mathematical model and an experimental investigation of aerodynamically valved pulse combustion. The model uses a control-volume approach to solve conservation laws in several regions of a pulse combustor. Mixing between the fresh charge and combustion products is modeled as a two-step process, with the mixing occurring slowly for a specified eddy time during each cycle, and then changing to a higher rate. Results of model simulations demonstrate that eddy time plays a significant role in determining the frequency and amplitude of combustion oscillation. The authors show that short eddy times produce steady, rather than pulsating, combustion. And they show that changes to the mixing process alter the temperature-species history of combustion gases in a manner that could prevent or promote the formation of nitrogen oxides, depending on specific mixing rates. The relatively simple control-volume approach used in this model allows rapid investigation of a wide range of geometric and operating parameters, and also defines characteristic length and time scales relevant to aerovalve pulse combustion. Experimental measurements compare favorably to model predictions. The authors place particular emphasis on time-averaged pressure differences through the combustor, which act as an indicator of pressure gain performance. They investigate both operating conditions and combustor geometry, and they show that a complex interaction between the inlet and exit flows of a combustor makes it difficult to produce general correlations among the various parameters. They use a scaling rule to produce a combustor geometry capable of producing pressure gain.

  19. Radioactive waste storage issues

    SciTech Connect (OSTI)

    Kunz, D.E.

    1994-08-15

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

  20. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  1. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  2. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01

    J.M. , liThe F1uidised Combustion of Coal," Sixteenth Sm osium {International} on Combustion, August 1976 (to beof Various Polymers Under Combustion Conditions," Fourteenth

  3. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  4. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    1979. J.B. Heywood, Internal Combustion Engine Fundamentals.Ignition Engine with Optimal Combustion Control. ” US PatentIntroduction to Internal Combustion Engines (3rd Edition).

  5. COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES

    E-Print Network [OSTI]

    Matthews, Ronald D.

    2013-01-01

    SAE Paper 750173, 1975. L. , Fifteenth Symposium Combustion,The Combustion Institute, International Pittsburgh, on 64.chemistry of products of combustion: nitrogenous The

  6. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

  7. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    of combustion systems while minimizing the pollutionthe combustion process to reduce the associa- ted pollution.combustion problems. Several are directly related to pollution

  8. Method and apparatus for conserving waste energy

    SciTech Connect (OSTI)

    Eldifrawi, A.A.

    1981-05-12

    A method and apparatus are disclosed for conserving waste energy by transferring waste heat from an internal combustion engine, solar energy or from any other source of waste heat energy of a temperature of 200/sup 0/F or above, to a carrier liquid includes conveying the heated carrier liquid to a heat exchanger, pressurizing a refrigerant by heating the refrigerant with heat energy extracted from the heated carrier liquid and performing work with the pressurized refrigerant. The preferred embodiments include a modified Rankine-Sterling cycle engine and a dual absorption generator system.

  9. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

  10. Internal combustion engine

    SciTech Connect (OSTI)

    Evans, H.G.; Speer, S.

    1991-12-31

    This patent describes improvement in a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the central longitudinal axis of each cylinder being within a common plane extending longitudinally of the engine block, the axially extending internal wall surface of each cylinder being closed at one end and having at least one air intake port therethrough, a piston axially and reciprocally movable within each cylinder over a permitted stroke distance, so as to alternately cover and expose each air intake port for a finite time period; an exhaust port at the closed end of the cylinder above the piston, and a mechanically operated valve for opening and closing such exhaust port located immediately adjacent such port, a substantially rigid connecting rod pivotably connected at one end of each piston, and a crankshaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate connecting means between the piston and the connecting rod. The improvement comprises the diameter of the cylinder is greater than the permitted stroke distance of the piston within the cylinder, and the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance sufficient to form an angle alpha between the connecting rod and the axis of the cylinder, when the piston is at top-dead center, of at least about 12 degrees, such that the time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crankshaft offset from the common plane.

  11. Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    used globally for energy recovery from municipal solid wastes is combustion of "as received" MSW of thermal treatment of MSW in the world (40 million tonnes) and some of the newest plants use stoker require pre-processing of the MSW, combust the resulting syngas to generate steam, and produce a vitrified

  12. Turbulent Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  13. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOE Patents [OSTI]

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  14. Assessment of chemical vulnerabilities in the Hanford high-level waste tanks

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-02-15

    The purpose of this report is to summarize results of relevant data (tank farm and laboratory) and analysis related to potential chemical vulnerabilities of the Hanford Site waste tanks. Potential chemical safety vulnerabilities examined include spontaneous runaway reactions, condensed phase waste combustibility, and tank headspace flammability. The major conclusions of the report are the following: Spontaneous runaway reactions are not credible; condensed phase combustion is not likely; and periodic releases of flammable gas can be mitigated by interim stabilization.

  15. Limiting human exposures through the ``as low as reasonably achievable`` process at a Department of Energy mixed waste site

    SciTech Connect (OSTI)

    MacDonell, M.; Peterson, J.; Haroun, L.; Blunt, D.; Dunning, D.

    1994-09-01

    Applying a process to reduce human exposures to levels as low as reasonably achievable (ALARA) is a cornerstone of the US Department of Energy`s radiation protection program, and this process is being used to develop cleanup levels for contaminated sites across the country. Under the ALARA process, exposures and risks are reduced as far below protective criteria as can reasonably be achieved--considering technical, economic, and social factors. Risk-based cleanup levels have been developed for radionuclides and chemicals in surface water and soil at the Weldon Spring site in Missouri, following explicit applications of the ALARA process. Among the lessons learned during these applications were the importance of three factors: (1) soliciting early input from the parties involved--because the ALARA process involves a range of technical and nontechnical issues; (2) maintaining site specificity for the ALARA analyses--because contaminant types and distributions will vary, as will local conditions and constraints; and (3) identifying cleanup levels in the planning phase that are distinct from those developed for the field phase--because remedies can be over-designed if the decision levels are the same as the ALARA goals for field work, such that little increased risk reduction is achieved for substantially higher costs.

  16. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  17. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  18. Economic evaluation of volume reduction for Defense transuranic waste

    SciTech Connect (OSTI)

    Brown, C.M.

    1981-07-01

    This study evaluates the economics of volume reduction of retrievably stored and newly generated DOE transuranic waste by comparing the costs of reduction of the waste with the savings possible in transportation and disposal of the waste. The report develops a general approach to the comparison of TRU waste volume reduction costs and cost savings, establishes an initial set of cost data, and develops conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled newly generated, and retrievably stored DOE transuranic waste. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal, and transportation savings with volume reduction and the volume reduction techniques and savings.

  19. Combustion instability modeling and analysis

    SciTech Connect (OSTI)

    Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  20. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    SciTech Connect (OSTI)

    1996-01-16

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

  1. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  2. Combustion synthesis method and products

    DOE Patents [OSTI]

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  3. Engine Combustion Network Experimental Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

  4. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  5. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  6. Formation mechanisms of combustion chamber deposits

    E-Print Network [OSTI]

    O'Brien, Christopher J. (Christopher John)

    2001-01-01

    Combustion chamber deposits are found in virtually all internal combustion engines after a few hundred hours of operation. Deposits form on cylinder, piston, and head surfaces that are in contact with fuel-air mixture ...

  7. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    William D. Harris

    2012-01-11

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  8. Free Energy and Internal Combustion Engine Cycles

    E-Print Network [OSTI]

    Harris, William D

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  9. Computation of azimuthal combustion instabilities in an helicopter combustion chamber

    E-Print Network [OSTI]

    Nicoud, Franck

    to compute azimuthal combustion instabilities is presented. It requires a thermoacoustic model using a n is investigated. Introduction Thermoacoustic instabilities result from the coupling between unstationary low CPU time cost. A thermoacoustic model is used to solve the wave equation in reactive media

  10. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics...

  11. Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Combustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S. Mukasyan University of Notre Dame USA 1. Introduction Combustion synthesis (CS) is an effective technique by which combustion synthesis can occur: self - propagating high-temperature synthesis (SHS) and volume

  12. Supersonic combustion studies using a multivariate quadrature based method for combustion modeling

    E-Print Network [OSTI]

    Raman, Venkat

    Supersonic combustion studies using a multivariate quadrature based method for combustion modeling function (PDF) of thermochemical variables can be used for accurately computing the combustion source term of predictive models for supersonic combustion is a critical step in design and development of scramjet engines

  13. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  14. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  15. Combustor nozzle for a fuel-flexible combustion system

    DOE Patents [OSTI]

    Haynes, Joel Meier (Niskayuna, NY); Mosbacher, David Matthew (Cohoes, NY); Janssen, Jonathan Sebastian (Troy, NY); Iyer, Venkatraman Ananthakrishnan (Mason, OH)

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  16. Reduced No.sub.x combustion method

    DOE Patents [OSTI]

    Delano, Mark A. (Briarcliff Manor, NY)

    1991-01-01

    A combustion method enabling reduced NO.sub.x formation wherein fuel and oxidant are separately injected into a combustion zone in a defined velocity relation, combustion gases are aspirated into the oxidant stream prior to intermixture with the fuel, and the fuel is maintained free from contact with oxygen until the intermixture.

  17. Fifteen Lectures on Laminar and Turbulent Combustion

    E-Print Network [OSTI]

    Peters, Norbert

    Fifteen Lectures on Laminar and Turbulent Combustion N. Peters RWTH Aachen Ercoftac Summer School in Combustion Systems 1 Lecture 2: Calculation of Adiabatic Flame Temperatures and Chemical Equilibria 20: Laminar Diffusion Flames: Different Flow Geometries 156 Lecture 11: Turbulent Combustion: Introduction

  18. Pressure Gain Combustion Rotating Detonation Engines (RDE)

    E-Print Network [OSTI]

    Pressure Gain Combustion Rotating Detonation Engines (RDE) Dr. Chris Brophy, David Dausen, Lee Van Houtte Students LT Culwell, ENS Khol, Robert Wright, Andrew Chaves Rocket Propulsion & Combustion Lab-based combustion to extract increase thermodynamic cycle efficiency for work/thrust apps. · Higher Enthalpy

  19. BEP Proposal: Towards Cleaner Industrial Combustion -

    E-Print Network [OSTI]

    Vuik, Kees

    BEP Proposal: Towards Cleaner Industrial Combustion - How to Reduce the Formation of Pollutants furnace fired by the combustion of natural gas. The chemical reaction of the gas and oxygen mixture releases heat and side products such as water and carbon monoxide. The combustion also produces undesired

  20. Combustion joining of refractory materials: Carboncarbon composites

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Combustion joining of refractory materials: Carbon­carbon composites Jeremiah D.E. White Department­carbon composite is achieved by employing self-sustained, oxygen-free, high-temperature combustion reactions to a used "core" to produce a brake that meets the performance specifications. The combustion-joining (CJ

  1. Limestone calcination during pulsating combustion

    SciTech Connect (OSTI)

    James, R.E. III (Oak Ridge Associated Universities, Inc., TN (United States)); Richards, G.A. (USDOE Morgantown Energy Technology Center, WV (United States))

    1992-01-01

    METC is currently conducting research on enhanced calcination during pulsating combustion as part of the Heat Engines program. It has been shown elsewhere that rapid, high temperature calcination will result in a calcined product with relatively large surface area, as desired for sulfur capture. It is proposed that such a process may occur during pulsating combustion where the oscillating pressure/velocity field around a particle increases the heat/mass transfer to and from the particle. To test this hypothesis, calcination tests in progress at METC use a novel form of pulse combustion called thermal'' pulse combustion, operating at 60000 BTUH, 100 Hz, and 5--15 psig peak-to- peak amplitude. Two configurations are being studied during the testing: one configuration is injection of sorbent into a refractory lined drop tube being heated by the pulse combustor, and the other configuration is injection of the sorbent into the pulse combustor through its centerbody and along the tailpipe at various positions. To understand the observed behavior, a characterization study of the pulse combustor is being conducted. Different flow rates, equivalence ratios, and injection positions are being tested.

  2. Structural Analysis of Combustion Models

    E-Print Network [OSTI]

    Tóth, J; Zsély, I

    2013-01-01

    Using ReactionKinetics, a Mathematica based package a few dozen detailed models for combustion of hydrogen, carbon monoxide and methanol are investigated. Essential structural characteristics are pulled out, and similarities and differences of the mechanisms are highlighted. These investigations can be used before or parallel with usual numerical investigations, such as pathway analysis, sensitivity analysis, parameter estimation, or simulation.

  3. Zinc Bromide Combustion: Implications for the Consolidated Incinerator Facility

    SciTech Connect (OSTI)

    Oji, L.N.

    1998-12-16

    In the nuclear industry, zinc bromide (ZnBr2) is used for radiation shielding. At Savannah River Site (SRS) zinc bromide solution, in appropriate configurations and housings, was used mainly for shielding in viewing windows in nuclear reactor and separation areas. Waste stream feeds that will be incinerated at the CIF will occasionally include zinc bromide solution/gel matrices.The CIF air pollution systems control uses a water-quench and steam atomizer scrubber that collects salts, ash and trace metals in the liquid phase. Water is re-circulated in the quench unit until a predetermined amount of suspended solids or dissolved salts are present. After reaching the threshold limit, "dirty liquid", also called "blowdown", is pumped to a storage tank in preparation for treatment and disposal. The air pollution control system is coupled to a HEPA pre-filter/filter unit, which removes particulate matter from the flue gas stream (1).The objective of this report is to review existing literature data on the stability of zinc bromide (ZnBr2) at CIF operating temperatures (>870 degrees C (1600 degrees F) and determine what the combustion products are in the presence of excess air. The partitioning of the combustion products among the quencher/scrubber solution, bottom ash and stack will also be evaluated. In this report, side reactions between zinc bromide and its combustion products with fuel oil were not taken into consideration.

  4. Fluidized-bed combustion of scrap tires: Technical note

    SciTech Connect (OSTI)

    Shang, J.Y.; Mei, J.S.; Notestein, J.E.

    1981-10-01

    An introduction to fluidized-bed combustion (FBC) is presented in Section 2.0. Based on this discussion of its technical development, FBC is then presented as a means of scrap tire disposal. In Section 3.0, scrap tire disposal is reviewed in the categories of (1) physical applications, (2) chemical applications, (3) pyrolysis, and (4) incineration for thermal energy recovery. Scrap tire disposal is reviewed on the basis of (1) environmental acceptability, (2) conservation of resources, (3) impact on existing industries, (4) operational feasibility, and (5) special features. The focus of this report is the fluidized-bed incineration of scrap tires for thermal energy recovery. The factors that affect scrap tire combustion are discussed in Section 4.0. These factors are (1) agitation, (2) temperature, (3) excess air, (4) residence time, (5) feed uniformity, (6) solid waste handling, and (7) pollutants emission control. In reviewing these incineration processes, (1) fuel flexibility, (2) environmental acceptability, (3) combustion efficiency, and (4) operational reliability are discussed. The results from a tire incineration experiment conducted at the Morgantown Energy Technology Center are presented in Section 5.0, and a conceptual fluidized-bed combustor is discussed in Section 6.0. Future considerations in the FBC of scrap tires are discussed in Section 7.0. 8 refs., 6 figs., 6 tabs.

  5. Method for recovering materials from waste

    DOE Patents [OSTI]

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  6. Modeling of Laser-Induced Metal Combustion

    SciTech Connect (OSTI)

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  7. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  8. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  9. Combustion diagnostic for active engine feedback control

    DOE Patents [OSTI]

    Green, Jr., Johney Boyd (Knoxville, TN); Daw, Charles Stuart (Knoxville, TN); Wagner, Robert Milton (Knoxville, TN)

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  10. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

  11. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

  12. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  13. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally, the transient demonstration was performed in Phase IV. The project demonstrated the achievement of meeting US10 emissions without NOx aftertreatment. The successful execution of the project has served to highlight the effectiveness of closely matched combustion predictive tools to engine testing. It has further served to highlight the importance of key technologies and future areas of research and development. In this regard, recommendations are made towards further improvements in the areas of engine hardware, fuel injection systems, controls and fuels.

  14. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    E-Print Network [OSTI]

    McMeeking, Gavin R.

    2009-01-01

    mercury emissions during biomass combustion: Controllingin biomass smoke from residential wood combustion: Emissions1997), Emissions from smoldering combustion of biomass

  15. Determination of temperature and concentration from radiometric measurements in combustion systems

    E-Print Network [OSTI]

    Ren, Tao

    2015-01-01

    vii Spectral Bands for Combustion Gases . . . . . .Spectral Bands for Combustion Gases . . . . . . . . . 1.1.3for combustion gases . . . . . . . . . . . . . . . .

  16. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  17. Internal combustion engine fuel feed

    SciTech Connect (OSTI)

    Cochard, P.; Guicherd, C.

    1980-02-19

    In a method and apparatus for controlling the fuel feed to a stratified-charge internal combustion engine, from idle up to the position corresponding with the maximum flow of air, the overall richness (Rg) of the combustible mixture is reduced by acting simultaneously upon the flow of fuel feeding the main chamber and upon the flow of fuel injected into the auxiliary chamber. For higher loads the maximum flow of air is kept constant and rg is increased by continuing to act upon both fuel flows. By keeping the richness of the mixture in the auxiliary chamber substantially constant, it is possible to obtain the best compromise between the performance of the engine and the emission of pollutant gases.

  18. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, Alfred J. (Oak Ridge, TN)

    1995-01-01

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  19. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, Alfred J. (Oak Ridge, TN)

    1994-01-01

    A submergible torch for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution.

  20. Submergible torch for treating waste solutions and method thereof

    DOE Patents [OSTI]

    Mattus, A.J.

    1994-12-06

    A submergible torch is described for removing nitrate and/or nitrite ions from a waste solution containing nitrate and/or nitrite ions comprises: a torch tip, a fuel delivery mechanism, a fuel flow control mechanism, a catalyst, and a combustion chamber. The submergible torch is ignited to form a flame within the combustion chamber of the submergible torch. The torch is submerged in a waste solution containing nitrate and/or nitrite ions in such a manner that the flame is in contact with the waste solution and the catalyst and is maintained submerged for a period of time sufficient to decompose the nitrate and/or nitrite ions present in the waste solution. 2 figures.

  1. Management of immunization solid wastes in Kano State, Nigeria

    SciTech Connect (OSTI)

    Oke, I.A. [Civil Engineering Department, Obafemi Awolowo University, Ile-Ife (Nigeria)], E-mail: okeia@oauife.edu.ng

    2008-12-15

    Inadequate management of waste generated from injection activities can have a negative impact on the community and environment. In this paper, a report on immunization wastes management in Kano State (Nigeria) is presented. Eight local governments were selected randomly and surveyed by the author. Solid wastes generated during the Expanded Programme on Immunization were characterised using two different methods: one by weighing the waste and the other by estimating the volume. Empirical data was obtained on immunization waste generation, segregation, storage, collection, transportation, and disposal; and waste management practices were assessed. The study revealed that immunization offices were accommodated in either in local government buildings, primary health centres or community health care centres. All of the stations demonstrated a high priority for segregation of the infectious wastes. It can be deduced from the data obtained that infectious waste ranged from 67.6% to 76.7% with an average of 70.1% by weight, and 36.0% to 46.1% with an average of 40.1% by volume. Non-infectious waste generated ranged from 23.3% to 32.5% with an average of 29.9% by weight and 53.9% to 64.0% with an average of 59.9% by volume. Out of non-infectious waste (NIFW) and infectious waste (IFW), 66.3% and 62.4% by weight were combustible and 33.7% and 37.6% were non-combustible respectively. An assessment of the treatment revealed that open pit burning and burial and small scale incineration were the common methods of disposal for immunization waste, and some immunization centres employed the services of the state or local government owned solid waste disposal board for final collection and disposal of their immunization waste at government approved sites.

  2. Homogeneous catalysts in hypersonic combustion

    SciTech Connect (OSTI)

    Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

    1989-01-01

    Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

  3. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    During this first quarter, a lab-scale water-cooled pulse combustor was designed, fabricated, and integrated with old pilot-scale PAFBC test systems. Characterization tests on this pulse combustor firing different kinds of fuel -- natural gas, pulverized coal and fine coal -- were conducted (without fluidized bed operation) for the purpose of finalizing PAFBC full-scale design. Steady-state tests were performed. Heat transfer performance and combustion efficiency of a coal-fired pulse combustor were evaluated.

  4. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  5. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOE Patents [OSTI]

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  6. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  7. Steam Production from Waste Stack Gases in a Carbon Black Plant 

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01

    Waste stack gases from carbon black plant bag filters are used as fuel to produce superheated steam - G25 PSIG and 7500F. This steam is out into a steam header that serves Conoco plants in the Lake Charles, Louisiana area. Combustion of the waste...

  8. COMBUSTION RESEARCH Chapter from the Energy and Environment Division Annual Report 1980

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01

    Heat Transfer with Combustion R. Greif, H. Heperkan, J.H. Stewart . • . • • . COMBUSTION CHEMISTRY AND POLLUTANTInternational) on Combustion, The Combustion institute,

  9. Assessment of factors affecting boiler tube lifetime in waste-fired generators: New opportunities for research and technology development

    SciTech Connect (OSTI)

    Wright, I.; Krause, H.H.

    1996-07-01

    The disposal of municipal solid waste (MSW) is a major problem in numerous communities in the United States. In this country, approximately 195.7 million tons of MSW were produced in 1990 of which 17 percent was recovered for recycling or composting, 16 percent was combusted, and about 67 percent was disposed of in landfills. This paper discusses the combustion of refuse derived fuels and municipal wastes. The corrosion of the alloys used in boilers is described.

  10. Medical waste treatment and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC); Schulz, Rebecca L. (Aiken, SC); Clark, David E. (Gainesville, FL)

    2001-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which hybrid microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional hybrid microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  11. Tandem microwave waste remediation and decontamination system

    DOE Patents [OSTI]

    Wicks, George G. (North Aiken, SC); Clark, David E. (Gainesville, FL); Schulz, Rebecca L. (Gainesville, FL)

    1999-01-01

    The invention discloses a tandem microwave system consisting of a primary chamber in which microwave energy is used for the controlled combustion of materials. A second chamber is used to further treat the off-gases from the primary chamber by passage through a susceptor matrix subjected to additional microwave energy. The direct microwave radiation and elevated temperatures provide for significant reductions in the qualitative and quantitative emissions of the treated off gases. The tandem microwave system can be utilized for disinfecting wastes, sterilizing materials, and/or modifying the form of wastes to solidify organic or inorganic materials. The simple design allows on-site treatment of waste by small volume waste generators.

  12. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect (OSTI)

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  13. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  14. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    #12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines

  15. Engine Valve Actuation For Combustion Enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Researchers create successful predictions of combustion reaction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure-dependent chemical reaction rates, an important breakthrough in combustion and atmospheric chemistry that is expected to benefit auto and engine manufacturers, oil and...

  17. Engine valve actuation for combustion enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys (Madison, WI); Rutland, Christopher J. (Madison, WI); Jhavar, Rahul (Madison, WI)

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  18. Pyrolysis reactor and fluidized bed combustion chamber

    DOE Patents [OSTI]

    Green, Norman W. (Upland, CA)

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  19. A Generalized Pyrolysis Model for Combustible Solids

    E-Print Network [OSTI]

    Lautenberger, Chris

    2007-01-01

    combustion chemistry is not all that well understood, experimental data [212] for the spontaneous ignition delay time of a lean propane/

  20. Advancing Internal Combustion Engine Simulations using Sensitivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Internal Combustion Engine Simulations using Sensitivity Analysis PI Name: Sibendu Som PI Email: ssom@anl.gov Institution: Argonne National Laboratory Allocation Program:...

  1. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  2. A Generalized Pyrolysis Model for Combustible Solids

    E-Print Network [OSTI]

    Lautenberger, Chris

    2007-01-01

    fluid mechanics, heat transfer, radiation, and combustion toJ.R. , Thermal Radiation Heat Transfer . Third Edition,to account for radiation heat transfer across pores. The

  3. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  4. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  5. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  6. MUNICIPAL SOLID WASTE MANAGEMENT IN ITALY L. Rigamonti

    E-Print Network [OSTI]

    Columbia University

    of the North of Italy are those that send to WTE facilities the largest quantity of MSW and RDF (Refuse Derived.5%, the Center 18.3% and the South 8.1%. The tonnage of MSW combusted at waste-to-energy (WTE) facilities more Fuel). In 2004, the mechanical-biological treatment (MBT) facilities managed about 9 million tonnes

  7. Waste heat recovery in automobile engines : potential solutions and benefits

    E-Print Network [OSTI]

    Ruiz, Joaquin G., 1981-

    2005-01-01

    Less than 30% of the energy in a gallon of gasoline reaches the wheels of a typical car; most of the remaining energy is lost as heat. Since most of the energy consumed by an internal combustion engine is wasted, capturing ...

  8. Theoretical studies of combustion dynamics

    SciTech Connect (OSTI)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  9. Rotary reciprocating internal combustion engine

    SciTech Connect (OSTI)

    Ogren, W.

    1992-06-23

    This patent describes a rotary reciprocating internal combustion engine. It comprises a housing which comprises a cylindrical head with two end and frame plates mounted on both ends of the head enclose the head, the head including a pair of fuel into ports and a pair of exhaust ports, a pair of ring gears; a rotor axially aligned in the cylindrical head and comprising a set of four radially extending cylinders and pistons reciprocable in the cylinders; a power take off shaft fixed to the crank support plates and axially aligned with the rotor; oiling means for oiling the rotary engine; and a set of eight crank gears.

  10. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden DocumentationAccommodationsRegister /Advanced EnergyCombustion Advanced

  11. Sandia Energy - Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) byMultidayAlumni >ScientificApplied Turbulent Combustion Home

  12. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    E-Print Network [OSTI]

    Cole, Lord Kahil

    2012-01-01

    Combustion and Magnetohydrodynamic Processes in Advanced PulseCombustion and Magnetohydrodynamic Processes in Advanced PulseCombustion Theory and Modeling, 9:159170, [16] Jean-Luc Cambier. Development of numerical tools for pulse

  13. NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL

    E-Print Network [OSTI]

    Ghoniem, A.F.

    2013-01-01

    of turbulent combustion in a 1 ean propane~a1 of high sp r mturbulent combustion stabilized behind a step in a propane~combustion behind a step at R while Su corresponding to a propane-

  14. The Measurement and Application of Electric Effects in Combustion

    E-Print Network [OSTI]

    Murphy, Daniel Corrigan

    2015-01-01

    radiation on a propane-air flame”. In: Combustion and Flameradiation on a propane-air flame”. In: Combustion and Flamein premixed propane–air flames”. In: Combustion and Flame

  15. NUMERICAL MODELING OF TURBULENT FLOW IN A COMBUSTION TUNNEL

    E-Print Network [OSTI]

    Ghoniem, A.F.

    2013-01-01

    1VJcDona·ld, H. (1979) Combustion r 1 iodeJ·ing in Two and1979) Practical Turbulent-Combustion Interaction Models forInternation on Combustors. Combustion The 17th Symposium

  16. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion...

  17. AN EXPERIMENTAL AND THEORETICAL STUDY OF HEAT TRANSFER WITH COMBUSTION

    E-Print Network [OSTI]

    Heperkan, Hasan A.

    2013-01-01

    HDyna.mics of the Exothermic Process in Combustion,n 15thSymposium (International) on Combustion, Tokyo, 1974. H, S.Methods L Glassman, Combustion, Academic Press, 1977. D. J.

  18. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram...

  19. COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Applied to Turbulent Combustion Flows J. W. Daily and C.Metals from Pulverized Coal Combustion P. Sherman and F.Applied to Turbulent Combustion Flows J. W. Daily and C.

  20. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K. (Berkeley, CA)

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  1. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  2. Sandia combustion research program: Annual report, 1987

    SciTech Connect (OSTI)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A.

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  3. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  4. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  5. Coal slurry combustion and technology. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  6. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

    2012-01-01

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

  7. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  8. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  9. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact...

  10. Sandia Energy - Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce engine-out emissions. These approaches could allow advanced diesel combustion or low-temperature combustion strategies with potential for enabling both increased fuel...

  11. High Efficiency Clean Combustion for Heavy-Duty Engine

    Broader source: Energy.gov [DOE]

    Explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize engine-out emissions while optimizing fuel economy.

  12. Catalyst for Improving the Combustion Efficiency of Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

  13. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines...

  14. Computationally Efficient Modeling of High-Efficiency Clean Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines...

  15. Variable Valve Actuation for Advanced Mode Diesel Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Valve Actuation for Advanced Mode Diesel Combustion Variable Valve Actuation for Advanced Mode Diesel Combustion Presentation from the U.S. DOE Office of Vehicle Technologies...

  16. ¿Aceite vegetal puro como combustible diesel? (Straight Vegetable...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    sobre combustibles alternativos y vehculos de combustibles alternativos. El sitio web de la Oficina de Eficiencia Energtica y de Energa Renovable del DOE, www.eere....

  17. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report 2010advcombustionengine.pdf More Documents &...

  18. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf More Documents &...

  19. Unregulated Emissions from High-Efficiency Clean Combustion Modes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

  20. Characterization of Particulate Emissions from GDI Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis...

  1. Idling Emissions Reduction Technology with Low Temperature Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idling Emissions Reduction Technology with Low Temperature Combustion of DI Biodiesel and PFI n-Butanol Idling Emissions Reduction Technology with Low Temperature Combustion of DI...

  2. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

  3. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

  4. Fuel Formulation Effects on Diesel Fuel Injection, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission Control Fuel Formulation Effects on Diesel Fuel Injection, Combustion, Emissions and Emission...

  5. A University Consortium on Low Temperature Combustion (LTC) for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission Engines A University Consortium on Low Temperature Combustion (LTC) for High Efficiency, Ultra-Low Emission...

  6. Building America Webinar: Solutions for Combustion Safety in...

    Office of Environmental Management (EM)

    Building America Webinar: Solutions for Combustion Safety in Existing Homes Building America Webinar: Solutions for Combustion Safety in Existing Homes December 16, 2015 3:00PM to...

  7. Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen...

  8. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel...

  9. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

  10. Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2008 Advanced Combustion R&D Annual Progress Report 2008advcombustionengine.pdf More Documents & Publications...

  11. Demonstrating Optimum HCCI Combustion with Advanced Control Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimum HCCI Combustion with Advanced Control Technology Demonstrating Optimum HCCI Combustion with Advanced Control Technology Presentation given at the 2007 Diesel...

  12. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine 2004 Diesel...

  13. Exploring Advanced Combustion Regimes for Efficiency and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring Advanced Combustion Regimes for Efficiency and Emissions Exploring Advanced Combustion Regimes for Efficiency and Emissions 2003 DEER Conference Presentation: Oak Ridge...

  14. Use of Low Cetane Fuel to Enable Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Document:  ace011_ciatti_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Steve CiattiPresenting Organization: Argonne National Laboratory (ANL...

  15. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine...

  16. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Energy Savers [EERE]

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert...

  17. Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines

    Broader source: Energy.gov [DOE]

    Document:  ace012_flowers_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Dan FlowersPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

  18. Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

  19. CRADA with Cummins on Characterization and Reduction of Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells...

  20. Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Clean Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies...

  1. Singular perturbation problem in boundary/fractional combustion

    E-Print Network [OSTI]

    2015-08-18

    reaction-diffusion equation, where the reaction term is of combustion type. ... Free boundary problem, combustion theory, boundary reaction- diffusion, fractional ...

  2. Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2010 Advanced Combustion R&D Annual Progress Report 2010advcombustionengine.pdf More Documents &...

  3. Modeling of HCCI and PCCI Combustion Processes | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI and PCCI Combustion Processes Modeling of HCCI and PCCI Combustion Processes 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  4. Overview of Sonex Combustion Systems (SCS) for DI Engines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sonex Combustion Systems (SCS) for DI Engines Overview of Sonex Combustion Systems (SCS) for DI Engines The SCS system has undergone computational and experimental verification and...

  5. 2.61 Internal Combustion Engines, Spring 2004

    E-Print Network [OSTI]

    Heywood, John B.

    Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

  6. Enabling High Efficiency Low Temperature Combustion by Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion by Adaptive In-Situ Jet Cooling Enabling High Efficiency Low Temperature Combustion by Adaptive In-Situ Jet Cooling A new approach, called...

  7. Oxygen-Enriched Combustion for Military Diesel Engine Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and...

  8. Advanced Post-Combustion CO2 Capture Prepared for the

    E-Print Network [OSTI]

    Advanced Post-Combustion CO2 Capture Prepared for the Clean Air Task Force under a grant from...................................................................................... 3 2. Current Status of Post-Combustion Capture

  9. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  10. Dilute Clean Diesel Combustion Achieves Low Emissions and High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

  11. Advancement in Fuel Spray and Combustion Modeling for Compression...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine Applications Advancement in Fuel Spray and Combustion Modeling for Compression Ignition Engine...

  12. Numerical Modeling of PCCI Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PCCI Combustion Numerical Modeling of PCCI Combustion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Livermore National LaboratoryUniversity of...

  13. CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry

    Broader source: Energy.gov [DOE]

    A method is presented that allows for efficient conditional moment closure combustion simulations through the use of a progress variable based parameterization of the combustion chemistry.

  14. CFD Combustion Modeling with Conditional Moment Closure using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is...

  15. Accurate Predictions of Fuel Effects on Combustion and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using...

  16. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Energy Savers [EERE]

    Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on...

  17. Improve Your Boiler's Combustion Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system. STEAM TIP SHEET 4 Improve...

  18. Improve Your Boiler's Combustion Efficiency, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Improve Your Boiler's Combustion Efficiency Combustion Efficiency Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve...

  19. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

  20. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  1. Factors Affecting HCCI Combustion Phasing for Fuels with Single...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry 2004...

  2. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions...

  3. Guide to Low-Emission Boiler and Combustion Equipment Selection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Emission Boiler and Combustion Equipment Selection Guide to Low-Emission Boiler and Combustion Equipment Selection The guide provides background information about various types...

  4. Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions Heavy-Duty Engine Combustion Optimization for High Thermal Efficiency Targeting EPA 2010 Emissions...

  5. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel...

  6. Improving Combustion Software to Solve Detailed Chemical Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

  7. Low Temperature Combustion with Thermo-chemical Recuperation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use Engine Efficiency Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use...

  8. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI...

    Office of Scientific and Technical Information (OSTI)

    Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing Citation Details In-Document Search Title: Combustion, Control, and Fuel...

  9. Application of advanced hydrocarbon characterization and its consequences on future fuel properties and advanced combustion research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Research on future fuels chemistry and effects on combustion in advanced internal combustion engines

  10. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOE Patents [OSTI]

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  11. 2003 Laser Diagnostic in Combustion Conference

    SciTech Connect (OSTI)

    Mark G. Allen

    2004-09-10

    The GRC Laser Diagnostics in Combustion aims at bringing together scientists and engineers working in the front edge of research and development to discuss and find new ways to solve problems connected to combustion diagnostics. Laser-based techniques have proven to be very efficient tools for studying combustion processes thanks to features as non-intrusiveness in combination with high spatial and temporal resolution. Major tasks for the community are to develop and apply techniques for quantitative measurements with high precision e.g of species concentrations, temperatures, velocities and particles characteristics (size and concentration). These issues are of global interest, considering that the major part of the World's energy conversion comes from combustion sources and the influence combustion processes have on the environment and society.

  12. Combustion of refuse derived fuel in a fluidized bed

    SciTech Connect (OSTI)

    Piao, Guilin; Aono, Shigeru; Mori, Shigekatsu; Deguchi, Seiichi; Fujima, Yukihisa; Kondoh, Motohiro; Yamaguchi, Masataka

    1998-12-31

    Power generation from Refuse Derived Fuel (RDF) is an attractive utilization technology of municipal solid waste. To explain the behavior of RDF-fired fluidized bed incinerator, the commercial size RDF was continuously burnt in a 30 x 30 cm bubbling type fluidized-bed combustor. It was found that 12 kg/h of RDF feed rate was too high feed for this test unit and the Co level was higher than 500 ppm. However, 10 kg/h of RDF was a proper feed rate and the Co level was kept under 150 ppm. Secondary air injection and changing air ratio from the pipe grid were effective for the complete combustion of RDE. It was also found that HCl concentration in flue gas was controlled by the calcium component contained in RDF and its level was decreased with decreasing the combustor temperature.

  13. COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K.; Gray, J.

    2012-03-30

    Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

  14. Small boiler uses waste coal

    SciTech Connect (OSTI)

    Virr, M.J.

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  15. Second Law Analysis of Constant Temperature Diesel Combustion

    SciTech Connect (OSTI)

    Druecke, Dr. Ben [University of Wisconsin; Foster, Prof. Dave [University of Wisconsin; Klein, Prof. Sandy [University of Wisconsin; Daw, C Stuart [ORNL; Chakravarthy, Veerathu K [ORNL; Graves, Ronald L [ORNL

    2006-01-01

    The results from a second law analysis of a constant temperature diesel combustion process are presented and show that this process is not significantly more reversible than conventional combustion. In addition to quantifying the total availability destruction in combustion, the magnitudes of the combustion irreversibilities attributable to each irreversible subprocess (mixing, oxidation and internal heat transfer) were determined. The primary contributor to combustion irreversibilities is the thermal interaction of reacting and non-reacting species during the oxidation and internal thermal energy transfer subprocesses. Increasing combustion temperature significantly decreases availability destruction by making the oxidation and internal thermal energy transfer processes more reversible. While increasing combustion temperature decreases combustion irreversibility, it also results in an increase in exhaust temperature. A tradeoff exists between large availability destruction at low combustion temperatures and large amounts of availability discarded in the exhaust at high combustion temperatures. The optimum amount of work was found to occur for a combustion temperature of approximately 1600 K.

  16. Real-time combustion controller

    DOE Patents [OSTI]

    Lindner, J.S.; Shepard, W.S.; Etheridge, J.A.; Jang, P.R.; Gresham, L.L.

    1997-02-04

    A method and system are disclosed for regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO{sub 2}, and H{sub 2}O. The differences between the ratios of CO to CO{sub 2} and H{sub 2}O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO{sub 2} and H{sub 2}O to CO fall on a desired set point on the control curve. 20 figs.

  17. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The design of the Pulsed Atmospheric Fluidized Bed Combustor (PAFBC) as described in the Quarterly Report for the period April--June, 1992 was reviewed and minor modifications were included. The most important change made was in the coal/limestone preparation and feed system. Instead of procuring pre-sized coal for testing of the PAFBC, it was decided that the installation of a milling system would permit greater flexibility in the testing with respect to size distributions and combustion characteristics in the pulse combustor and the fluid bed. Particle size separation for pulse combustor and fluid bed will be performed by an air classifier. The modified process flow diagram for the coal/limestone handling system is presented in Figure 1. The modified process flow diagrams of the fluidized bed/steam cycle and ash handling systems are presented in Figures 2 and 3, respectively.

  18. Fluidized-bed combustion fuel

    SciTech Connect (OSTI)

    Rich, J.W. Jr.

    1990-10-09

    This patent describes a process for producing from a solid carbonaceous refuse a high ash fuel for use in a circulating fluidized-bed combustion chamber. It comprises separating from the refuse a carbonaceous portion having an ash content in a selected range percent by weight; separating the carbonaceous portion into first and second fractions, the first fraction being at or above a selected size; crushing the first fraction; and combining the crushed first fraction with the second fraction. Also described is a process wherein the selected ash content range is between about 30 percent and about 50 percent, by weight. Also described is a process wherein the selected size is above about 1/4 inch.

  19. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    WASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From Waste to Energy To Energy from Waste #12;9.00-9.30: Registration 9.30-9.40: Chairman Ella Stengler opens

  20. Environmental, Economic, and Energy Assessment of the Ultimate Analysis and Moisture Content of Municipal Solid Waste in a Parallel

    E-Print Network [OSTI]

    Alvarez, Pedro J.

    -combustion is a waste-to-energy technology that can use MSW and coal as co-fuels, offering potential energy recoveryEnvironmental, Economic, and Energy Assessment of the Ultimate Analysis and Moisture Content ABSTRACT: Use of municipal solid waste (MSW) as fuel for electricity generation reduces landfill disposal

  1. Copyright 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference

    E-Print Network [OSTI]

    Columbia University

    , New York, NY 10027 ABSTRACT The dominant waste-to-energy technology is combustion of "asCopyright © 2009 by ASME Proceedings of the 17th Annual North American Waste-to-Energy Conference and environmentally benign disposal of MSW, with energy recovery being a secondary consideration. There have been

  2. Multiple vane rotary internal combustion engine

    SciTech Connect (OSTI)

    Pangman, E.L.

    1994-01-11

    A three-piece housing enclosing a cavity has rotatably mounted therein a rotor having a plurality of slots, each slot supporting a vane. Each vane has a retention end guided in its revolution around the rotor by an internal, non-circular vane retention track. Two adjacent vanes define opposite sides of a combustion chamber, while the housing and the portion of the rotor between the adjacent vanes form the remaining surfaces of the combustion chamber. Each combustion chamber is rotated past an intake port, a diagonal plasma bleed-over groove, and an exhaust port to accomplish the phases of a combustion cycle. Fuel ignition is provided to more than one combustion chamber at a time by expanding gases passing through a plasma bleed-over groove and being formed into a vortex that ignites and churns the charge in a succeeding combustion chamber. Exhaust gases remaining after primary evacuation are removed by a secondary evacuation system utilizing a venturi creating negative pressure which evacuates the combustion chamber. Lubrication is circulated through the engine without the use of a lubricant pump. The centrifugal force of the rotating rotor causes the lubricant therein to be pressurized thereby drawing additional lubricant into the closed system and forcing lubricant within the engine to be circulated. 9 figs.

  3. Influence of assumptions about household waste composition in waste management LCAs

    SciTech Connect (OSTI)

    Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  4. Misfire tolerant combustion-powered actuation

    DOE Patents [OSTI]

    Spletzer, Barry L. (Albuquerque, NM); Fischer, Gary J. (Albuquerque, NM); Marron, Lisa C. (Albuquerque, NM); Kuehl, Michael A. (Albuquerque, NM)

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  5. Chaotic Combustion in Spark Ignition Engines

    E-Print Network [OSTI]

    M. Wendeker; J. Czarnigowski; G. Litak; K. Szabelski

    2002-12-27

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process.

  6. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect (OSTI)

    Hawk, Jeffrey; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  7. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  8. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect (OSTI)

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new particulate filtration technologies. Major tasks during this period of the funded project's timeframe included: (1) Conducting pretests on a laboratory-scale simulated FBC system; (2) Completing detailed design of the bench-scale CFBC system; (3) Contracting potential bidders to fabricate of the component parts of CFBC system; (4) Assembling CFBC parts and integrating system; (5) Resolving problems identified during pretests; (6) Testing with available Powder River Basin (PRB) coal and co-firing of PRB coal with first wood pallet and then chicken wastes; and (7) Tuning of CFBC load. Following construction system and start-up of this 0.6 MW CFBC system, a variety of combustion tests using a wide range of fuels (high-sulfur coals, low-rank coals, MSW, agricultural waste, and RDF) under varying conditions were performed to analyze and monitor air pollutant emissions. Data for atmospheric pollutants and the methodologies required to reduce pollutant emissions were provided. Integration with a selective catalytic reduction (SCR) slipstream unit did mimic the effect of flue gas composition, including trace metals, on the performance of the SCR catalyst to be investigated. In addition, the following activities were also conducted: (1) Developed advanced mercury oxidant and adsorption additives; (2) Performed laboratory-scale tests on oxygen-fuel combustion and chemical looping combustion; and (3) Conducted statistical analysis of mercury emissions in a full-scale CFBC system.

  9. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  10. Pulse combustion: an assessment of opportunities for increased efficiency

    SciTech Connect (OSTI)

    Brenchley, D.L.; Bomelburg, H.J.

    1984-12-01

    The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

  11. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    blending fuels with different properties can yield small changes in combustion timing. Using fuel components

  12. Impact of Variable Valve Timing on Low Temperature Combustion

    Broader source: Energy.gov [DOE]

    Documents effects of variable valve actuation in implementing low temperature combustion in production engine platform.

  13. Using Biofuel Tracers to Study Alternative Combustion Regimes

    E-Print Network [OSTI]

    Mack, John Hunter; Flowers, Daniel L.; Buchholz, Bruce A.; Dibble, Robert W.

    2006-01-01

    Section B (NIMB) Using Biofuel Tracers to Study Alternativeinjection. We investigate biofuel HCCI combustion, and use

  14. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  15. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  16. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect (OSTI)

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  17. Internal combustion engine utilizing stratified charge combustion process

    SciTech Connect (OSTI)

    Artman, N.G.

    1991-07-16

    This patent describes an internal combustion engine in which a piston is reciprocal alternately toward and from the upper end of a cylinder within a variable volume space adjacent to such end, a cylinder head having a face in closing relation with such cylinder end and containing a precombustion chamber with a sidewall having an inner periphery constructed about an axis extending upwardly from the cylinder and the periphery having an open lower end in two-way communication through the face with the variable volume space, the lower open end being smaller in diameter than the diameter of the cylinder, the upper end of the chamber having an air inlet passage closable by a valve, the chamber being operable when the valve is open and attendant to movement of the piston downwardly from the upper cylinder end to receive from the inlet passage a main inlet air stream and conduct the same downwardly therein and discharge the same through the open end downwardly therein and discharge the same through the open end downwardly into the variable volume space.

  18. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricN A 035(92/02) nergFeet)DepartmentWasteWaste

  19. Electronic waste disassembly with industrial waste heat

    E-Print Network [OSTI]

    2013-01-01

    and for e?ective use of industrial exhaust heat is describedto scale up the process to industrial production levels.Waste Disassembly with Industrial Waste Heat Mengjun

  20. Predicting combustion properties of hydrocarbon fuel mixtures

    E-Print Network [OSTI]

    Goldsmith, Claude Franklin, III

    2010-01-01

    In this thesis, I applied computational quantum chemistry to improve the accuracy of kinetic mechanisms that are used to model combustion chemistry. I performed transition state theory calculations for several reactions ...

  1. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T. (Denver, IA)

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  2. Oil shale retorting and combustion system

    DOE Patents [OSTI]

    Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  3. Advanced Computational Methods for Turbulence and Combustion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of premixed lean fuels for clean, efficient combustion devices such as low-swirl burners. Over 80% of energy consumed in the U.S. occurs via the burning of fossil fuels in...

  4. Preheated Combustion Air; Industrial Technologies Program (ITP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to improve efficiency and productivity is to preheat the combustion air going to the burners. The source of this heat energy is the exhaust gas stream, which leaves the process...

  5. State of Industrial Fluidized Bed Combustion 

    E-Print Network [OSTI]

    Mesko, J. E.

    1982-01-01

    A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly...

  6. State of Fluidized Bed Combustion Technology 

    E-Print Network [OSTI]

    Pope, M.

    1979-01-01

    A new combustion technology has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal EPA limits. Low quality fuels can be burned...

  7. Combustion characteristics of alternative liquid fuels

    E-Print Network [OSTI]

    Chong, Cheng Tung

    2011-11-08

    atomizer are investigated using a phase Doppler anemometry (PDA) under non-reacting conditions. The droplet size and velocity distribution of biodiesels are compared to conventional fuels. For spray combustion investigations, a generic gas turbine...

  8. Active combustion control : modeling, design and implementation

    E-Print Network [OSTI]

    Park, Sungbae, 1973-

    2004-01-01

    Continuous combustion systems common in propulsion and power generation applications are susceptible to thermoacoustic instability, which occurs under lean burn conditions close to the flammability where most emissions and ...

  9. Vortex driven flame dynamics and combustion instability

    E-Print Network [OSTI]

    Altay, Hurrem Murat

    2005-01-01

    Combustion instability in premixed combustors mostly arises due to the coupling between heat release rate dynamics and system acoustics. It is crucial to understand the instability mechanisms to design reliable, high ...

  10. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  11. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios (Chicago, IL); Zelepouga, Serguei (Hoffman Estates, IL); Rue, David M. (Chicago, IL); Abbasi, Hamid A. (Naperville, IL)

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  12. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    advanced control concepts and enabling system to manage multi-modemulti-fuel combustion events and achieve an up to 30 percent fuel economy improvement deer11yilmaz.pdf...

  13. Smouldering Combustion Phenomena in Science and Technology 

    E-Print Network [OSTI]

    Rein, Guillermo

    Smouldering is the slow, low-temperature, flameless form of combustion of a condensed fuel. It poses safety and environmental hazards and allows novel technological application but its fundamentals remain mostly unknown ...

  14. Combustion systems for power-MEMS applications

    E-Print Network [OSTI]

    Spadaccini, Christopher M. (Christopher Michael), 1974-

    2004-01-01

    As part of an effort to develop a micro-scale gas turbine engine for power generation and micro-propulsion applications, this thesis presents the design, fabrication, experimental testing, and modeling of the combustion ...

  15. Fuel injector nozzle for internal combustion engine

    SciTech Connect (OSTI)

    Klomp, E.D.; Peters, B.D.

    1990-06-12

    This patent describes a fuel injection nozzle for a combustion chamber of an internal combustion engine. It comprises: a nozzle body with at least one fuel flow opening therethrough for feed fuel to the chamber, a resilient diaphragm normally sealing the opening and having orifice means therein for further atomizing and directing the pulses into the chamber, fastening means for fixing the diaphragm to the body so that diaphragm can deflect by a predetermined amount under low engine load operating conditions so that a wide angle cone of atomized fuel is injected into and generally at one end of the combustion chamber for the stratified charge thereof and deflect by an amount greater than the first amount of deflection under high engine load operating conditions. A narrow spray cone of atomized fuel is injected in a deeper pattern into and throughout the combustion chamber for optimizing the charge thereof and fuel burns under the low and high load engine operating conditions.

  16. Control of NOx by combustion process modifications

    E-Print Network [OSTI]

    Ber?, J. M.

    1981-01-01

    A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

  17. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7-11, 2010 -- Washington D.C. ace020reitz2010o.pdf More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel...

  18. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  19. Combustion, Explosion, and Shock Waves, Vol. 46, No. 3, pp. , 2010 Combustion of Heterogeneous Nanostructural Systems (Review)

    E-Print Network [OSTI]

    Mukasyan, Alexander

    Combustion, Explosion, and Shock Waves, Vol. 46, No. 3, pp. ­, 2010 Combustion of Heterogeneous submitted November 26, 2009. The current status of research in the field of combustion of heterogeneous mechanisms of combustion in such systems and prospects of their further applications are discussed. Key words

  20. Progress in Energy and Combustion Science 34 (2008) 377416 Discrete reaction waves: Gasless combustion of solid powder mixtures

    E-Print Network [OSTI]

    Mukasyan, Alexander

    2008-01-01

    Progress in Energy and Combustion Science 34 (2008) 377­416 Discrete reaction waves: Gasless combustion of solid powder mixtures A.S. Mukasyana,Ã, A.S. Rogachevb a Department of Chemical Abstract This review considers a specific domain in combustion science, so-called discrete combustion waves

  1. Coal Combustion Products Extension Program

    SciTech Connect (OSTI)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

  2. Oxygen Enriched Combustion System Performance Study 

    E-Print Network [OSTI]

    Chen, S. L.; Kwan, Y.; Abele, A. R.; Silver, L. S.; Kobayashi, H.

    1987-01-01

    i ndustri al furnaces, such as gl ass melting furnaces, appear to be the most promising appli cations for oxygen enriched combustion. In these applications, the principal energy savings results from minimizing the fuel energy required to heat... with non-water cooled refractory burner til es. The Oxytherm Burner was developed jointly by Maxon and Corning Glass for application of oxygen/fuel combustion in glass furnaces. This burner is also a non-water cooled refractory design with a specially...

  3. Coal-Fired Fluidized Bed Combustion Cogeneration 

    E-Print Network [OSTI]

    Thunem, C.; Smith, N.

    1985-01-01

    BED COMBUSTION COGENERATION Cabot Thunem, P.E Norm Smith, P.E. Stanley Consultants, Inc. Muscatine, Iowa ABSTRACT The availability of an environmentally accep table multifuel technology, such as fluidized bed combustion, has encouraged many... steam producers/ users to investigate switching from oil or gas to coal. Changes in federal regulations encouraging cogeneration have further enhanced the economic incentives for primary fuel switching. However, this addition of cogeneration...

  4. Internal combustion engine and method for control

    DOE Patents [OSTI]

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  5. Digital image processing of coal stream combustion 

    E-Print Network [OSTI]

    Gopalakrishnan, Chengappalli Periyasamy

    1994-01-01

    DIGITAL IMAGE PROCESSING OF COAL STREAM COMBUSTION A Thesis by CHENGAPPALLI PERIYASAMY GOPALAKRISHNAN Submitted to Texas A k M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style... and content by: a yan Annama at (Chair of Committee) en (Member) Norman C. Gris old (Member) George Peterson (Head of Department) May 1994 Major Subject: Mechanical Engineering ABSTRACT Digital Image Processing of Coal Stream Combustion. (May 1994...

  6. Building America Expert Meeting. Combustion Safety

    SciTech Connect (OSTI)

    Brand, Larry

    2013-03-01

    This is an overview of "The Best Approach to Combustion Safety in a Direct Vent World," held June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  7. Building America Expert Meeting: Combustion Safety

    SciTech Connect (OSTI)

    Brand, L.

    2013-03-01

    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  8. Producing usable fuel from municipal solid waste

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  9. Dust Combustion Safety Issues for Fusion Applications

    SciTech Connect (OSTI)

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  10. Combustion kinetics and reaction pathways

    SciTech Connect (OSTI)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  11. Rotary valve internal combustion engine

    SciTech Connect (OSTI)

    Bunk, P.H.

    1989-03-28

    A rotary valve internal combustion engine is described, comprising: an engine block; at least one cylinder in the engine block; at least one cylinder having a top end; cylinder head means located adjacent the top end of at least one cylinder, the cylinder head means having a cylindrically shaped cavity therein, the cylindrically shaped cavity being oriented in perpendicular relation to at least one cylinder; a piston sealingly mounted in at least one cylinder for reciprocable movement therein, the reciprocable movement including an intake stroke and an exhaust stroke; engine shaft means rotatably mounted to the engine block; means within the engine block for converting the reciprocable movement of the piston into rotary motion of the engine shaft means; a cylinder port located at the top end of at least one cylinder; a rotary valve rotatably mounted in the cylindrically shaped cavity; means connected with the engine shaft means for rotating the rotary valve in a predetermined synchronization with the reciprocable movement of the piston; aspiration means in the rotary valve for selectively aspirating at least one cylinder during the intake an exhaust strokes; and a spark plug removably mounted within the rotary valve and rotatable therewith.

  12. Internal combustion engine utilizing stratified charge combustion process

    SciTech Connect (OSTI)

    Artman, N.G.

    1988-11-15

    This patent describes an internal combustion engine having a main air inlet passage communicating at an end thereof through the face of an cylinder head with an alternately expandable and contractable variable volume space in an end of a cylinder closed by such head, there being within the cylinder head a precombustion chamber forming a section of such passage and interposed between the space and an upstream portion of the passage, the chamber having a principal axis extending between opposite ends thereof and of which ends one is an air inlet and having a valve seat through which the chamber is communicative with the upstream passage portion and of which ends the other is an open end through which the passage has two-way communication with the space and is disposed to discharge air from the chamber into the space axially of the cylinder, the combination of air deflecting means in the chamber and operable during expansion of the space to modulate the flow of intake air passing through the chamber into the space into the form of a stream composed of a core portion flowing axially of the cylinder into the space and of a tubular portion encircling the core portion and flowing helically thereabout, fuel delivery means operable during a fuel injection period commencing during expansion of the space and subsequent to entry of a leading portion of the air stream into the space to inject evaporative fuel into the passage and into a trailing portion of the air stream therein at a rate to mix and form therewith an air-fuel mixture lean in fuel richness than flows within and at least partially through the chamber en route to the space during the expansion thereof. The fuel delivery means being operable to increase the volume of the trailing air stream portion mixed with fuel by advancing the starting time of the fuel injection period to increase the length of such period measured in units of space expansion.

  13. Sources and management of hazardous waste in Papua New Guinea

    SciTech Connect (OSTI)

    Singh, K.

    1996-12-31

    Papua New Guinea (PNG) has considerable mineral wealth, especially in gold and copper. Large-scale mining takes place, and these activities are the source of most of PNG`s hazardous waste. Most people live in small farming communities throughout the region. Those living adjacent to mining areas have experienced some negative impacts from river ecosystem damage and erosion of their lands. Industry is centered mainly in urban areas and Generates waste composed of various products. Agricultural products, pesticide residues, and chemicals used for preserving timber and other forestry products also produce hazardous waste. Most municipal waste comes from domestic and commercial premises; it consists mainly of combustibles, noncombustibles, and other wastes. Hospitals generate pathogenic organisms, radioactive materials, and chemical and pharmaceutical laboratory waste. Little is known about the actual treatment of waste before disposal in PNG. Traditional low-cost waste disposal methods are usually practiced, such as use of landfills; storage in surface impoundments; and disposal in public sewers, rivers, and the sea. Indiscriminate burning of domestic waste in backyards is also commonly practiced in urban and rural areas. 10 refs., 4 tabs.

  14. WASTE DISPOSAL WORKSHOPS: ANTHRAX CONTAMINATED WASTE

    E-Print Network [OSTI]

    large amounts of waste that must be managed as part of both immediate recovery and long-term recovery management plans that can address contaminated waste through the entire life cycle of the waste. Through Demonstration LLNL Lawrence Livermore National Laboratory MSW Municipal Solid Waste OSHA Occupational Safety

  15. ME 6990 -Combustion Catalog Data: ME 6990: Combustion. Sem. 2. Class 3, Credit 3 (el.).

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    2. Fluid Mechanics (ME 3720) or equivalent 3. Heat Transfer (ME 3710) or equivalent Topics: 1 and evaluation of practical combustion devices. Prerequisites by Topic: 1. Thermodynamics (ME 3220) or equivalent. Combustion models. (1 week) 5. Detonations. (1 week) 6. Deflagrations. (2 weeks) 7. Non premixed flames. (2

  16. Multi-phase Combustion and Transport Processes Under the Influence of Acoustic Excitation

    E-Print Network [OSTI]

    Wegener, Jeffrey Lewis

    2014-01-01

    and Aeronautics: Combustion Instabilities in Gas Turbinefor combustion instability in lean premixed gas turbineBlust. Combustion instabilities in industrial gas turbines:

  17. Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines

    Broader source: Energy.gov [DOE]

    Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design

  18. Experimental and Computational Studies of the Combustion of Classical and Alternative Fuels

    E-Print Network [OSTI]

    Niemann, Ulrich

    the combustion of hydrogen and carbon monoxide. Combustionthe combustion of hydrogen and carbon monoxide. Combustionpects of combustion of hydrogen [29], carbon monoxide [29],

  19. An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies

    Broader source: Energy.gov [DOE]

    High speed imaging of in-cylinder spray and combustion luminosity of low temperature combustion strategies are contrasted to conventional gasoline and diesel engine combustion

  20. An Explicit Runge-Kutta Iteration for Diffusion in the Low Mach Number Combustion Code

    E-Print Network [OSTI]

    Grcar, Joseph F.

    2007-01-01

    usion in the Low Mach Number Combustion Code Joseph F. Grcarthe low Mach number combustion code. Contents 1 Introductionthe low Mach number combustion code, LMC. The multicomponent

  1. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Bremer, Peer-Timo

    2010-01-01

    comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

  2. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion &...

  3. THE FURNACE COMBUSTION AND RADIATION CHARACTERISTICS OF METHANOL AND A METHANOL/COAL SLURRY

    E-Print Network [OSTI]

    Grosshandler, W.L.

    2010-01-01

    1973) Enthalpies of Combustion and Maximum Temperatures ofBurner Assembly Combustion Chamber Exhaust System. . CHAPTERIlMeasurement of NO and N02 in Combustion Systems," Western

  4. CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER I. EXPERIMENTAL MEASUREMENTS AND COMPARISON WITH NUMERICAL CALCULATIONS

    E-Print Network [OSTI]

    Robben, R.

    2010-01-01

    l~ Roberts, "Catathermal Combustion: A New Process for Lm'l-significant gas phase combustion is induced by the presenceInternational) on Combustion (to be published), The

  5. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    E-Print Network [OSTI]

    2015-01-01

    CO 2 Emissions from Fuel Combustion (IEA, 2013). Olivier, J.emissions from fossil-fuel combustion. Biogeosciences 9,Associated Rocks And Coal Combustion Products Collected For

  6. Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion

    E-Print Network [OSTI]

    Rein, Guillermo; Lautenberger, Chris; Fernandez-Pello, Carlos; Torero, Jose; Urban, David

    2006-01-01

    dimensional smoldering combustion. Figure 10. Results forModeling of Smoldering Combustion Propagation, Progressin Energy and Combustion Science 11, pp. 277-310. 2. T.J.

  7. THE COMBUSTION OF SOLVENT REPINED COAL IN AN OPPOSED FLOW DIFFUSION FLAME

    E-Print Network [OSTI]

    Chin, W.K.

    2011-01-01

    pyrolysis of various polymers under combustion conditions.Fourteenth Symposium (International) on Combustion,The Combustion Institute Pittsburgh, 1177. Chin, W.K. and

  8. CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS

    E-Print Network [OSTI]

    Schefer, R.

    2010-01-01

    D.G. , Fourteenth Sympo- sium (International) on Combustion,The Combustion Institute, Pittsburgh, 107 (1973). Wilson,Program for Calculation of Combustion Reaction Equilibrium

  9. Gasdynamic enhancement of nonpremixed combustion

    SciTech Connect (OSTI)

    Marble, F.E.

    1994-12-31

    To promote efficient performance of very high speed air-breathing propulsion systems, the combustor Mach number must be of the order of six for a flight Mach number of 18. Because of this high gas speed through the combustor, mixing rates of hydrogen fuel with air must be very rapid in order to allow a combustor of reasonable length. It is proposed to enhance the rate of mixing and combustion of hydrogen and air, and thereby reduce combustor length, through the introduction of streamwise vorticity generated by the interaction of a weak oblique shock wave with the density gradient between air and a cylindrical jet of hydrogen. Because of the high Mach number flow in the combustor, the oblique shock traverses the jet at a small angle with respect to the free stream direction, and the principle of slender body theory allows one conceptually to replace the three-dimensional steady flow with a two-dimensional unsteady flow. As a consequence, two-dimensional time-dependent computational studies and an extensive experimental shock tube investigation were employed to assess mixing rates for the steady flow in the combustor. The results indicated that under realistic conditions, adequate mixing could be accomplished within 1 ms, a rate that was technologically interesting. Encouraged by these experiments, a ``practical`` injector, utilizing shock-enhanced mixing, was designed for a combustor having a free stream Mach number of 6.0. A detailed aerodynamic and mixing investigation was carried out in the Mach 6 High Reynolds Number Tunnel at the NASA-Langley Research Center. The results confirmed both the details and the overall effectiveness of the shock-enhanced mixing concept.

  10. Combustion Synthesis of Magnesium Aluminate

    SciTech Connect (OSTI)

    Kale, M. A. [Physics Department, S.V.S.S. College of Engineering and Research, Nagpur 4411 10 (India); Joshi, C. P. [Physics Department, Ramdeobaba Engineering College, Katol Road, Nagpur 440 013 (India); Moharil, S. V. [Physics Department, RTM Nagpur University, Nagpur, 440033 (India)

    2011-10-20

    In the system MgO-Al{sub 2}O{sub 3}, three compounds MgAl{sub 2}O{sub 4}, MgAl{sub 6}O{sub 10}(also expressed as-Mg{sub 0.4}Al{sub 2.4}O{sub 4}) and MgAl{sub 26}O{sub 40} are well known. Importance of the first two is well established. Magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel is a technologically important material due to its interesting thermal properties. The MgAl{sub 2}O{sub 4} ceramics also find application as humidity sensors. Apart from the luminescence studies, the interest in MgAl{sub 2}O{sub 4} is due to various applications such as humidity-sensing and PEM fuel cells, TL/OSL dosimetry of the ionizing radiations, white light source. Interest in the MgAl{sub 6}O{sub 10} has aroused due to possible use as a substrate for GaN growth. Attempt was made to synthesize these compounds by the combustion synthesis using metal nitrates as oxidizer and urea as a fuel. Compounds MgAl{sub 2}O{sub 4} and MgAl{sub 6}O{sub 10} were formed in a single step, while MgAl{sub 26}O{sub 40} was not formed by this procedure. Activation of MgAl{sub 6}O{sub 10} by rare earth ions like Ce{sup 3+}, Eu{sup 3+} and Tb{sup 3+} and ns{sup 2} ion Pb{sup 2+} could be achieved. Excitation bands for MgAl{sub 6}O{sub 10} are at slightly shorter wavelengths compared to those reported for MgAl{sub 2}O{sub 4}.

  11. Reaction and diffusion in turbulent combustion

    SciTech Connect (OSTI)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  12. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Parks, II, James E [ORNL

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  13. Treatment technologies for hazardous ashes generated from possible incineration of navy waste. Technical note

    SciTech Connect (OSTI)

    Torres, T.

    1990-10-01

    The Navy recognizes that thermal treatment of Navy hazardous wastes (HW) should, under the terms of the Resource Conservation and Recovery Act of 1976, be avoided. Combustion waste disposal may nonetheless become unavoidable in certain cases, even after all possible process enhancements that avoid HW production are implemented. Even then, some toxic constituents that may be present in the waste will not be destroyed by incineration and will persist in the ash residue produced by incineration. Such incinerator ashes will have to be disposed of in HW landfills. The Navy is thus evaluating methods of treatment of such ash to remove or immobilize the toxic constituents that persist following incineration in order to render the waste treatment residue nonhazardous. Appropriate technology identified in this work can be applied to ash produced by HW combuster operated by the Navy, if any, or be required for ash produced by commercial generators handling Navy HWs.

  14. Characterization of ashes from co-combustion of refuse-derived fuel with coal, wood and bark in a fluidized bed

    SciTech Connect (OSTI)

    Zevenhoven, R.; Skrifvars, B.J.; Hupa, M.

    1998-12-31

    The technical and environmental feasibility of co-combustion of a recovered fuel (RF) prepared from combustible waste fractions (separated at the source), together with coal, peat, wood or wood-waste in thermal power/electricity generation has been studied in several R and D projects within Finland. The current work focuses on eventual changes in ash characteristics during co-combustion of RF with coal, wood or bark, which could lead to bed agglomeration, slagging, fouling and even corrosion in the boiler. Ashes were produced in a 15 kW bubbling fluidized bed (BFB) combustion reactor, the fly ash captured by the cyclone was further analyzed by XRF. The sintering tendency behavior of these ashes was investigated using a test procedure developed at Aabo Akademi University. Earlier, a screening program involved ashes from RF (from a waste separation scheme in Finland) co-combustion with peat, wood and bark, in which ash pellets were thermally treated in air. This showed significant sintering below 600 C as well as above 800 C for RF/wood and RF/bark, but not for RF/peat. This seemed to correlate with alkali chloride and sulfate concentrations in the ashes. The current work addresses a Danish refuse-derived fuel (RDF), co-combusted with bark, coal, bark+coal, wood, and wood+coal (eight tests). Ash pellets were thermally treated in nitrogen in order to avoid residual carbon combustion. The results obtained show no sintering tendencies below 600 C, significant changes in sintering are seen with pellets treated at 1,000 C. Ash from 100% RDF combustion does not sinter, 25% RDF co-combustion with wood and peat, respectively, gives an insignificant effect. The most severe sintering occurs during co-combustion of RDF with bark. Furthermore, it appears that the presence of a 25% coal fraction (on energy basis) seems to have a negative effect on all fuel blends. Analysis of the sintering results versus ash chemical composition shows that, in general, an increased level of alkali chlorides and sulfates gives increased sintering. At the same time, increased amounts calcium salts in the ash appear to reduce sintering tendency. Thus, the results suggest that a calcium based sorbent for SO{sub 2} and HCl capture might reduce problems related to ash sintering. An extensive literature exists, however, that states otherwise.

  15. Overview of advanced technologies for stabilization of {sup 238}Pu-contaminated waste

    SciTech Connect (OSTI)

    Ramsey, K.B.; Foltyn, E.M.; Heslop, J.M.

    1998-02-01

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated waste. Los Alamos National Laboratory (LANL) has processed {sup 238}PuO{sub 2} fuel into heat sources for space and terrestrial uses for the past several decades. The 88-year half-life of {sup 238}Pu and thermal power of approximately 0.6 watts/gram make this isotope ideal for missions requiring many years of dependable service in inaccessible locations. However, the same characteristic which makes {sup 238}Pu attractive for heat source applications, the high Curie content (17 Ci/gram versus 0.06 Ci/gram for 239{sup Pu}), makes disposal of {sup 238}Pu-contaminated waste difficult. Specifically, the thermal load limit on drums destined for transport to the Waste Isolation Pilot Plant (WIPP), 0.23 gram per drum for combustible waste, is impossible to meet for nearly all {sup 238}Pu-contaminated glovebox waste. Use of advanced waste treatment technologies including Molten Salt Oxidation (MSO) and aqueous chemical separation will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and recover kilogram quantities of {sup 238}PuO{sub 2} from the waste stream. A conceptual design of these advanced waste treatment technologies will be presented.

  16. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  17. Electricity from coal and utilization of coal combustion by-products

    SciTech Connect (OSTI)

    Demirbas, A.

    2008-07-01

    Most electricity in the world is conventionally generated using coal, oil, natural gas, nuclear energy, or hydropower. Due to environmental concerns, there is a growing interest in alternative energy sources for heat and electricity production. The major by-products obtained from coal combustion are fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) materials. The solid wastes produced in coal-fired power plants create problems for both power-generating industries and environmentalists. The coal fly ash and bottom ash samples may be used as cementitious materials.

  18. Automated Sorting of Transuranic Waste

    SciTech Connect (OSTI)

    Shurtliff, Rodney Marvin

    2001-03-01

    The HANDSS-55 Transuranic Waste Sorting Module is designed to sort out items found in 55-gallon drums of waste as determined by an operator. Innovative imaging techniques coupled with fast linear motor-based motion systems and a flexible end-effector system allow the operator to remove items from the waste stream by a touch of the finger. When all desired items are removed from the waste stream, the remaining objects are automatically moved to a repackaging port for removal from the glovebox/cell. The Transuranic Waste Sorting Module consists of 1) a high accuracy XYZ Stereo Measurement and Imaging system, 2) a vibrating/tilting sorting table, 3) an XY Deployment System, 4) a ZR Deployment System, 5) several user-selectable end-effectors, 6) a waste bag opening system, 7) control and instrumentation, 8) a noncompliant waste load-out area, and 9) a Human/Machine Interface (HMI). The system is modular in design to accommodate database management tools, additional load-out ports, and other enhancements. Manually sorting the contents of a 55-gallon drum takes about one day per drum. The HANDSS-55 Waste Sorting Module is designed to significantly increase the throughput of this sorting process by automating those functions that are strenuous and tiresome for an operator to perform. The Waste Sorting Module uses the inherent ability of an operator to identify the items that need to be segregated from the waste stream and then, under computer control, picks that item out of the waste and deposits it in the appropriate location. The operator identifies the object by locating the visual image on a large color display and touches the image on the display with his finger. The computer then determines the location of the object, and performing a highspeed image analysis determines its size and orientation, so that a robotic gripper can be deployed to pick it up. Following operator verification by voice or function key, the object is deposited into a specified location.

  19. Fuel Interchangeability Considerations for Gas Turbine Combustion

    SciTech Connect (OSTI)

    Ferguson, D.H.

    2007-10-01

    In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

  20. Technical Report: Rayleigh Scattering Combustion Diagnostic

    SciTech Connect (OSTI)

    Adams, Wyatt; Hecht, Ethan

    2015-07-29

    A laser Rayleigh scattering (LRS) temperature diagnostic was developed over 8 weeks with the goal of studying oxy-combustion of pulverized coal char in high temperature reaction environments with high concentrations of carbon dioxide. Algorithms were developed to analyze data collected from the optical diagnostic system and convert the information to temperature measurements. When completed, the diagnostic will allow for the kinetic gasification rates of the oxy-combustion reaction to be obtained, which was previously not possible since the high concentrations of high temperature CO2 consumed thermocouples that were used to measure flame temperatures inside the flow reactor where the combustion and gasification reactions occur. These kinetic rates are important for studying oxycombustion processes suitable for application as sustainable energy solutions.