Sample records for waste coal coal

  1. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, George (Ames, IA); Gokhale, Ashok J. (College Station, TX)

    1990-07-10T23:59:59.000Z

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  2. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOE Patents [OSTI]

    Burnet, G.; Gokhale, A.J.

    1990-07-10T23:59:59.000Z

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  3. Simultaneous combustion of waste plastics with coal for pulverized coal injection application

    SciTech Connect (OSTI)

    Sushil Gupta; Veena Sahajwalla; Jacob Wood [University of New South Wales, Sydney, NSW (Australia). Cooperative Research Centre for Coal in Sustainable Development, School of Materials Science and Engineering

    2006-12-15T23:59:59.000Z

    A bench-scale study was conducted to investigate the effect of simultaneous cofiring of waste plastic with coal on the combustion behavior of coals for PCI (pulverized coal injection) application in a blast furnace. Two Australian coals, premixed with low- and high-density polyethylene, were combusted in a drop tube furnace at 1473 K under a range of combustion conditions. In all the tested conditions, most of the coal blends including up to 30% plastic indicated similar or marginally higher combustion efficiency compared to those of the constituent coals even though plastics were not completely combusted. In a size range up to 600 {mu}m, the combustion efficiency of coal and polyethylene blends was found be independent of the particle size of plastic used. Both linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE) are shown to display similar influence on the combustion efficiency of coal blends. The effect of plastic appeared to display greater improvement on the combustion efficiency of low volatile coal compared to that of a high volatile coal blend. The study further suggested that the effect of oxygen levels of the injected air in improving the combustion efficiency of a coal-plastic blend could be more effective under fuel rich conditions. The study demonstrates that waste plastic can be successfully coinjected with PCI without having any adverse effect on the combustion efficiency particularly under the tested conditions. 22 refs., 12 figs., 2 tabs.

  4. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1998-04-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PB-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI`s newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions were tested, including a baseline coal-only condition. During the coprocessing conditions, 343{degrees}C+ pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524{degrees}C- coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved.

  5. Briquette comprising caking coal and municipal solid waste

    SciTech Connect (OSTI)

    Schulz, H.W.

    1980-09-30T23:59:59.000Z

    Briquettes of specified geometry and composition are produced to serve as feed material or ''burden'' in a moving-burden gasifier for the production of a synthesis or fuel gas from organic solid waste materials and coal, including especially, the so-called ''caking'' coals, as in the process of copending application number 675,918. The briquettes are formed from a well-blended mixture of shredded organic solid wastes, including especially, municipal solid waste (Msw) or biomass, and crushed caking coal, including coal fines. A binder material may or may not be required, depending on the coal/msw ratio and the compaction pressure employed. The briquettes may be extruded, stamped, or pressed, employing compaction pressures in excess of 1000 psi, and preferably in the range of 2000 to 10,000 psi. The briquettes may be circular, polygonal, or irregular in cross-section; they may be solid, or concentrically perforated to form a hollow cylinder or polygon; they may be formed into saddles, pillows or doughnuts. The ratio of caking coal to shredded municipal solid waste is controlled so that each part of the predominantly cellulosic organic solid waste will be blended with 0.5 to 3.0 parts of crushed coal. Suitable binder materials include dewatered sewage slude (Dss), ''black liquor'' rich in lignin derivatives, black strap molasses, waste oil, and starch. The binder concentration is preferably in the range of 2 to 6 percent. If coals high in sulfur content are to be processed, at least a stoichiometric equivalent of dolomite may be included in the briquette formulation to eliminate a major fraction of the sulfur with the slag.

  6. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A.

    1998-07-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PM-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI's newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions, 343 C + pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524 C coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved. Distillate yield as high as 69.2 W% was obtained while hydrogen consumption was only 4.4 W%. The distinct advantage of this process is the increase in hydrogen efficiency as both hydrogen consumption and C{sub 1}{minus}C{sub 3} gas yield decrease. Economic evaluation shows that co-processing of plastics with oil, coal, or mixed oil and coal reduces the equivalent crude oil price to a competitive level. This demonstrates that a combined process of coal liquefaction and waste pyrolysis is economically viable.

  7. Plastic wastes as modifiers of the thermoplasticity of coal

    SciTech Connect (OSTI)

    M.A. Diez; C. Barriocanal; R. Alvarez [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2005-12-01T23:59:59.000Z

    Plastic waste recycling represents a major challenge in environmental protection with different routes now available for dealing with mechanical, chemical, and energy recycling. New concepts in plastic waste recycling have emerged so that now such wastes can be used to replace fossil fuels, either as an energy source or as a secondary raw material. Our objective is to explore the modification of the thermoplastic properties of coal in order to assess the possibility of adding plastic waste to coal for the production of metallurgical coke. Two bituminous coals of different rank and thermoplastic properties were used as a base component of blends with plastic wastes such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), poly(ethylene terephthalate) (PET), and acrilonitrile-butadiene-styrene copolymer (ABS). In all cases, the addition of plastic waste led to a reduction in Gieseler maximum fluidity, the extent of the reduction depending on the fluidity of the base coal, and the amount, the molecular structure, and the thermal behavior of the polymer. As a consequence, the amount of volatile matter released by the plastic waste before, during, and after the maximum fluidity of the coal and the hydrogen-donor and hydrogen-acceptor capacities of the polymer were concluded to be key factors in influencing the extent of the reduction in fluidity and the development of anisotropic carbons. The incorporation of the plastic to the carbon matrix was clearly established in semicokes produced from blends of a high-fluid coal and the plastic tested by SEM examination. 42 refs., 10 figs., 7 tabs.

  8. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect (OSTI)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01T23:59:59.000Z

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

  9. Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal Combustion Waste

    E-Print Network [OSTI]

    Hopkins, William A.

    Elevated Trace Element Concentrations in Southern Toads, Bufo terrestris, Exposed to Coal, and behavioral abnormalities in amphibians to coal combustion wastes (coal ash). Few studies, however, have determined trace element concentrations in amphibians exposed to coal ash. In the current study we compare

  10. Balancing act creating the right regulation for coal combustion waste

    SciTech Connect (OSTI)

    Manuel, J.

    2009-11-15T23:59:59.000Z

    The December 2008 collapse of a coal ash pond in Tennessee threw safe management of coal combustion waste (CCW) into the spotlight. Millions of tons of CCW are produced in the United States each year, and a large percentage of that is recycled. The US Environmental Protection Agency is pursuing a host of initiatives that could directly or indirectly affect the disposition of CCW. States, too, are taking a look at how they regulate CCW. Among the options is the possibility of regulating CCW under the Resource Conservation and Recovery Act, a move that could have far-reaching implications for both the recycling and the disposal of this waste.

  11. The Coal-Waste Artificial Reef Program (C-WARP): A New Resource

    E-Print Network [OSTI]

    The Coal-Waste Artificial Reef Program (C-WARP): A New Resource Potential for Fishing Reef ABSTRACT-Thefeasibility ofusing solid blocks of waste materialfrom coal:firedpower plantslor underwater (scrubber) sludge from coal-burning power stations. was constructed in the Atlantic Ocean offLong Island. N

  12. Cooperative Research Program in Coal-Waste Liquefaction

    SciTech Connect (OSTI)

    Gerald Huffman

    2000-03-31T23:59:59.000Z

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  13. Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Coal waste seen as valuable resource Published: March. 29, 2011 at 8:09 PM ANAHEIM, Calif., March 29 (UPI) -- Fly ash, a byproduct of coal-burning electric power plants, could save billions. More than 450 coal-burning electric power plants in the United States produce about 130 million tons

  14. The use of FBC wastes in the reclamation of coal slurry solids

    SciTech Connect (OSTI)

    Dreher, G.B.

    1991-01-01T23:59:59.000Z

    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

  15. Coal pump

    DOE Patents [OSTI]

    Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

    1983-01-01T23:59:59.000Z

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  16. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, December 1, 1991--February 29, 1992

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.

    1992-08-01T23:59:59.000Z

    The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in Illinois are mixed with coal slurry solids (CSS) from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids.

  17. Utilization of solid wastes from the gasification of coal-water slurries

    SciTech Connect (OSTI)

    M.Y. Shpirt; N.P. Goryunova [Institute for Fossil Fuels, Moscow (Russian Federation)

    2009-07-01T23:59:59.000Z

    It was found that only fly and bottom ashes are the solid wastes of water-coal slurry gasification in a direct-flow gasifier. The yields and chemical compositions of fly and bottom ashes obtained after the gasification of water-coal slurries prepared using brown (B) and long-flame (D) coals from the Berezovskii and Mokhovskii strip mines (Kansk-Achinsk and Kuznetsk Basins, respectively) were characterized. Based on an analysis of currently available information, the areas of utilization of fly and bottom ashes after water-coal slurry gasification with dry ash removal were summarized. The use of these wastes in the construction of high-ways and earthwork structures (for the parent coals of B and D grades) and in the manufacture of ash concrete (for the parent coal of D grade) is most promising.

  18. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Major Demonstrations Major Demonstrations Since 1985, we have helped fund commercial-scale clean coal technology demonstration projects. ICCS | CCPI | PPII | CCTDP | FutureGen...

  19. NEW SOLID FUELS FROM COAL AND BIOMASS WASTE

    SciTech Connect (OSTI)

    Hamid Farzan

    2001-09-24T23:59:59.000Z

    Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

  20. Cofiring of coal and waste - an international perspective

    SciTech Connect (OSTI)

    Morrison, G.F. [IEA Coal Research, London (United Kingdom)

    1996-12-31T23:59:59.000Z

    In recent years, cofiring of waste and coal was thought to offer an environmentally sound, economic approach to both waste remediation and energy production. As the quantity of waste being produced around the world increases so does the severity of the regulations controlling its disposal particularly in landfill sites. Space for landfilling is diminishing especially in the densely populated smaller countries. This together with landfill CO{sub 2} and methane emissions and potential groundwater pollution is leading to policy statements and legislation to increase the reuse and recycling of wastes. In many countries landfilling will soon not be considered as an option. In the USA the number of active landfills decreased from more than 6000 in 1986 to just below 4500 in 1993. The number of operating landfills will soon drop to below 4000. In Europe the pressure on landfill space is even greater. Tyre disposal in landfill is widely recognised as an environmental problem; the tyres are a fire hazard and serve as a breeding ground for insects. In the USA, most states have legislation governing tyre handling and disposal and 15 have banned them from landfills. By 1998 all scrap tyres must be recycled or otherwise disposed of by non-landfill methods.

  1. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B. (ed.)

    2007-01-30T23:59:59.000Z

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  2. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  3. DWPF COAL CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION

    SciTech Connect (OSTI)

    Lambert, D.; Choi, A.

    2010-06-21T23:59:59.000Z

    A paper study was completed to assess the impact on the Defense Waste Processing Facility (DWPF)'s Chemical Processing Cell (CPC) acid addition and melter off-gas flammability control strategy in processing Sludge Batch 10 (SB10) to SB13 with an added Fluidized Bed Steam Reformer (FBSR) stream and two Salt Waste Processing Facility (SWPF) products (Strip Effluent and Actinide Removal Stream). In all of the cases that were modeled, an acid mix using formic acid and nitric acid could be achieved that would produce a predicted Reducing/Oxidizing (REDOX) Ratio of 0.20 Fe{sup +2}/{Sigma}Fe. There was sufficient formic acid in these combinations to reduce both the manganese and mercury present. Reduction of manganese and mercury are both necessary during Sludge Receipt and Adjustment Tank (SRAT) processing, however, other reducing agents such as coal and oxalate are not effective in this reduction. The next phase in this study will be experimental testing with SB10, FBSR, and both SWPF simulants to validate the assumptions in this paper study and determine whether there are any issues in processing these streams simultaneously. The paper study also evaluated a series of abnormal processing conditions to determine whether potential abnormal conditions in FBSR, SWPF or DWPF would produce melter feed that was too oxidizing or too reducing. In most of the cases that were modeled with one parameter at its extreme, an acid mix using formic acid and nitric acid could be achieved that would produce a predicted REDOX of 0.09-0.30 (target 0.20). However, when a run was completed with both high coal and oxalate, with minimum formic acid to reduce mercury and manganese, the final REDOX was predicted to be 0.49 with sludge and FBSR product and 0.47 with sludge, FBSR product and both SWPF products which exceeds the upper REDOX limit.

  4. Recovery and utilization of waste liquids in ultra-clean coal preparation by chemical leaching

    SciTech Connect (OSTI)

    Xu Zesheng; Shi Zhimin; Yang Qiaowen; Wang Xinguo [China Univ. of Mining and Technology, Beijing (China). Beijing Graduate School

    1997-12-31T23:59:59.000Z

    Coal with ash lower than 1%, being called an ultra-clean coal, has many potential applications, such as a substitute for diesel fuel, production of carbon electrodes, superior activated carbon and other chemical materials. It is difficult to reduce coal ash to such a level by conventional coal preparation technology. By means of chemical leaching with the proper concentration of alkali and acid solutions, any coal can be deeply deashed to 1% ash level. However, the cost of chemical methods is higher than that of physical ones, additionally, the waste liquids would give rise to environmental pollution if used on a large scale. If the waste liquids from chemical preparation of ultra-clean coal can be recovered and utilized, so as to produce salable by-products, the cost of chemical leaching will be reduced. This processing will also solve the pollution problem of these waste liquids. This paper describes recovery and utilization methods for these liquids used in chemical leaching, including the recoveries of alkali, silica, sodium-salt and aluminium-salt. A preliminary estimate was made regarding its economic benefits. It shows that this research solves the two problems in the chemical preparation of ultra-clean coal. One is the high-cost and the other is environmental pollution. This research demonstrates good potential for the production of ultra-clean coal on an industrial scale.

  5. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  6. Study of the properties of mine waste in the midwestern coal fields. Phase I report

    SciTech Connect (OSTI)

    None

    1980-07-04T23:59:59.000Z

    In an effort to assist the coal industry in complying with the applicable regulations, to design safe and environmentally acceptable disposal systems, and to encourage secondary use of coal mine waste, the US Department of Energy has initiated research programs to develop coal mine waste disposal and use technology. This study of the properties of mine wastes in the Midwestern coal fields has been limited to the waste materials obtained from underground coal mines and preparation plants attached to both underground and surface mines. The program has been divided into two phases. In Phase I, the 20 most important properties relevant to safe disposal, reclamation, underground disposal, and secondary uses have been identified. An inventory of the significant waste disposal sites in the Midwestern coal fields has been prepared. The site locations have been plotted on USGS maps. Estimates of coal production and coal mine waste production during the next 2 decades have been prepared and are presented in this report. Also, all available information obtained from a search of existing literature on physical and chemical properties, including analysis results of the general runoff from the refuse disposal areas, has been collected and is presented. In order to fill the gaps in information, 20 sites have been identified for drilling and sampling to determine the various physical and chemical properties. They have been selected on the basis of the distribution and quantity of waste at the existing locations (both abandoned and active), the future trends in production and likely locations of waste disposal areas, their geographical and geological distribution, and ease of accessibility for drilling and sampling.

  7. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01T23:59:59.000Z

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

  8. Coal industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  9. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, March 1, 1992--May 31, 1992

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-10-01T23:59:59.000Z

    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to S0{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4} {center_dot} 2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in Illinois are mixed with coal slurry solids (CSS) from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The final goal of this and future research is to determine whether mixed FBC waste and coal slurry solids can be used as a satisfactory growing medium in slurry pond reclamation. The chemical analyses of the 8 starting solids (5 FBC wastes, 2 Css samples, and 1 agricultural limestone sample) were completed.

  10. Development of catalyst free carbon nanotubes from coal and waste plastics

    SciTech Connect (OSTI)

    Dosodia, A.; Lal, C.; Singh, B.P.; Mathur, R.B.; Sharma, D.K. [Indian Institute of Technology, New Delhi (India). Centre of Energy Studies

    2009-07-01T23:59:59.000Z

    DC-Arc technique has been used to synthesize carbon nanotubes from super clean coal, chemically cleaned coal, original coal and waste plastics instead of using high purity graphite in the presence of metal catalysts. The results obtained are compared in terms of yield, purity and type of carbon nanotubes produced from different types of raw material used. In the present study different types of raw materials have been prepared i.e. chemically cleaned coal and super clean coal, and the carbon nanotubes have been synthesized by DC Arc discharge method. Taking in account the present need of utilizing coal as a cheaper raw material for bulk production of carbon nanotubes and utilization of waste plastics (which itself is a potential environmental threat) for production of such an advance material the present work was undertaken. Since the process does not involve presence of any kind of metal catalyst, it avoids the cost intensive process of removal of these metal particles. The residual coal obtained after refining has major fuel potential and can be utilized for various purposes.

  11. The use of FBC wastes in the reclamation of coal slurry solids. Technical report, September 1--November 30, 1991

    SciTech Connect (OSTI)

    Dreher, G.B.

    1991-12-31T23:59:59.000Z

    Fluidized bed combustion (FBC) is a relatively new technology that is used commercially for the combustion of coal. In Illinois, this technology is valuable because it allows the combustion of Illinois high sulfur coal without pollution of the atmosphere with vast quantities of sulfur oxides. In FBC, coal is mixed with limestone or dolomite either before injection into the combustion chamber or in the combustion chamber. As the coal burns, sulfur in the coal is oxidized to SO{sub 2} and this is trapped by reaction with the limestone or dolomite to form gypsum (CaSO{sub 4}{center_dot}2H{sub 2}O). Solid by-products from FBC are generally a mixture of calcium oxide, gypsum, coal ash, and unburned coal. The present research project is designed to provide initial data on one possible use of FBC waste. FBC wastes from five different locations in the Illinois are mixed with coal slurry solids from two different coal preparation plants at Illinois coal mines. In mixtures of FBC waste and coal slurry solids, the alkaline components of the FBC waste are expected to react with acid produced by the oxidation of pyrite in the coal slurry solid. An objective of this research is to determine the chemical composition of aqueous leachates from mixtures of FBC wastes, generated under various operating conditions, and the coal slurry solids. These data will be used in future research into the ability of such mixtures to support seed germination and plant growth. The ultimate of this and future research is to determine whether mixed FBC waste and coal slurry solids can be slurry pond reclamation.

  12. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect (OSTI)

    E. James Davis

    1998-05-01T23:59:59.000Z

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. The authors are also addressing the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  13. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

  14. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01T23:59:59.000Z

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  15. Coal industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  16. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  17. Coal industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  18. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21T23:59:59.000Z

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  19. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

    2006-07-15T23:59:59.000Z

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  20. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    flow sheet of a K-T coal gasification complex for producingslag or bottom ash, coal gasification, or coal liquefactionCoal (Ref. 46). COAL PREPARATION GASIFICATION 3 K·T GASI FI

  1. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

    1985-01-01T23:59:59.000Z

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  2. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06T23:59:59.000Z

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  3. Coal combustion science

    SciTech Connect (OSTI)

    Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01T23:59:59.000Z

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  4. Coal Mining (Iowa)

    Broader source: Energy.gov [DOE]

    These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

  5. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETLCareersCoal

  6. Digital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel

    E-Print Network [OSTI]

    Columbia University

    Energy's patented technology produces a clean-burning by-product from the widest variety of processed-efficient technology represented by the coal-substitute technology. The same technology will be deployed by DIGGDigital Gas Joins Asian Waste-to-Energy Consortium: To Eliminate Coal as a Power Plant Fuel Digital

  7. UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS

    SciTech Connect (OSTI)

    Y.P. Chugh; D. Biswas; D. Deb

    2002-06-01T23:59:59.000Z

    This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce mining costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is adequate to minimize surface deformations. Freeman United Coal Company performed engineering economic evaluation studies for commercialization. They found that the costs for underground management at the Crown III mine would be slightly higher than surface management at this time. The developed technologies have commercial potential but each site must be analyzed on its merit. The Company maintains significant interest in commercializing the technology.

  8. Evaluation of AFBC co-firing of coal and hospital wastes

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  9. Coal systems analysis

    SciTech Connect (OSTI)

    Warwick, P.D. (ed.)

    2005-07-01T23:59:59.000Z

    This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

  10. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    is produced via coal gasification, then, depending on thenot be amenable to coal gasification and, thus, Eastern coalto represent a coal-to- hydrogen gasification process that

  11. Dover Textiles - A Case History on Retrofitting Factories with a Boiler System Fueled on Coal, Wood and Waste

    E-Print Network [OSTI]

    Pincelli, R. D.

    1981-01-01T23:59:59.000Z

    a coal, wood, and waste fired boiler system to serve two plants. This case history will document payback periods of less than three years; return on investments of 20% plus; benefits of North Carolina and federal investment tax credits; EPA...

  12. Coal slurries: An environmental bonus

    SciTech Connect (OSTI)

    Basta, N.; Moore, S.; Ondrey, G.

    1994-05-01T23:59:59.000Z

    Developers and promoters of coal-water slurries and similar CWF (coal-water fuel) technologies have had a hard time winning converts since they unveiled their first commercial processes in the 1970s. The economic appeal of such processes, marginal at best, varies with the price of oil. Nevertheless, the technology is percolating, as geopolitics and environmental pressures drive new processes. Such fuels are becoming increasingly important to coal-rich, oil-poor nations such as China, as they attempt to build an onshore fuel supply. Meanwhile, improvements are changing the way coal-fired processes are viewed. Where air pollution regulations once discouraged the use of coal fuels, new coal processes have been developed that cut nitrous oxides (NOx) emissions and provide a use for coal fines, previously viewed as waste. The latest developments in the field were all on display at the 19th International Technical Conference on Coal Utilization and Fuel Systems, held in Clearwater, Fla., on March 21--24. At this annual meeting, sponsored by the Coal and Slurry Technology Association, (Washington, D.C.) and the Pittsburgh Energy Technology Center of the US Dept. of Energy (PETC), some 200 visitors from around the work gathered to discuss the latest developments in coal slurry utilization--new and improved processes, and onstream plants. This paper presents highlights from the conference.

  13. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  14. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

  15. coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Technologies for Coal Storage and Feed Preparation AlternativesSupplements to Coal - Feedstock Flexibility DOE Supported R&D for CoalBiomass Feed and Gasification...

  16. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect (OSTI)

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  17. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

  18. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  19. Atmospheric fluidized-bed combustion (AFBC) co-firing of coal and hospital waste. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The proposed project involves co-firing of coal and medical waste (including infectious medical waste) in an atmospheric fluidized-bed combustor (AFBC) to safely dispose of medical waste and produce steam for hospital needs. Combustion at the design temperature and residence time (duration) in the AFBC has been proven to render infectious medical waste free of disease producing organisms. The project would be located at the Veterans Affairs (VA) Medical Center in Lebanon, Pennsylvania. The estimated cost of the proposed AFBC facility is nearly $4 million. It would be jointly funded by DOE, Veterans Affairs, and Donlee Technologies, Inc., of York, Pennsylvania, under a cooperative agreement between DOE and Donlee. Under the terms of this agreement, $3.708 million in cost-shared financial assistance would be jointly provided by DOE and the Veterans Affairs (50/50), with $278,000 provided by Donlee. The purposes of the proposed project are to: (1) provide the VA Medical Center and the Good Samaritan Hospital (GSH), also of Lebanon, Pennsylvania, with a solution for disposal of their medical waste; and (2) demonstrate that a new coal-burning technology can safely incinerate infectious medical waste, produce steam to meet hospital needs, and comply with environmental regulations.

  20. Coal Severance Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

  1. Utilization ROLE OF COAL COMBUSTION

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    , materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

  2. International perspectives on coal preparation

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  3. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    SciTech Connect (OSTI)

    Henghu Sun; Yuan Yao

    2012-06-29T23:59:59.000Z

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  4. Indonesian coal mining

    SciTech Connect (OSTI)

    NONE

    2008-11-15T23:59:59.000Z

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  5. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

    1990-01-01T23:59:59.000Z

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  6. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29T23:59:59.000Z

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  7. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K. (Monaca, PA)

    1982-01-01T23:59:59.000Z

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  8. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

  9. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29T23:59:59.000Z

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  10. 1 INTRODUCTION Appalachian coal recovered during mining fre-

    E-Print Network [OSTI]

    of Appalachian underground coal mining (Newman 2003). Storage of coal processing waste is limited to above ground- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal. Such an analysis requires the ability to predict potential surface ground movements, both vertical (i

  11. Use of resin-bearing wastes from coke and coal chemicals production at the Novokuznetsk Metallurgical Combine

    SciTech Connect (OSTI)

    Kul'kova, T.N.; Yablochkin, N.V.; Gal'chenko, A.I.; Karyakina, E.A.; Litvinova, V.A.; Gorbach, D.A.

    2007-03-15T23:59:59.000Z

    The coke and coal chemicals plant at the Novokuznetsk Metallurgical Combine is making trial use of a technology that recycles waste products in 'tar ponds.' Specialists from the Ekomash company have installed a recycling unit in one area of the plant's dump, the unit including an inclined conveyor with a steam heater and a receiving hopper The coal preparation shop receives the wastes in a heated bin, where a screw mixes the wastes with pail of the charge for the coking ovens. The mixture subsequently travels along a moving conveyor belt together with the rest of the charge materials. The addition of up to 2% resin-bearing waste materials to the coal charge has not had any significant effect on the strength properties of the coke.

  12. Coal conversion siting on coal mined lands: water quality issues

    SciTech Connect (OSTI)

    Triegel, E.K.

    1980-01-01T23:59:59.000Z

    The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

  13. Coal: Energy for the future

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  14. Water recovery using waste heat from coal fired power plants.

    SciTech Connect (OSTI)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01T23:59:59.000Z

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  15. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

    1992-01-01T23:59:59.000Z

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  16. Zero emission coal

    SciTech Connect (OSTI)

    Ziock, H.; Lackner, K.

    2000-08-01T23:59:59.000Z

    We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

  17. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    anthracite, lignite and brown coal. While bituminous coal isproduction of lignite and brown coal, which also increasedtonnes. Whereas lignite and brown coal accounted for 4% of

  18. Coal: the new black

    SciTech Connect (OSTI)

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15T23:59:59.000Z

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10T23:59:59.000Z

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  20. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    SciTech Connect (OSTI)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08T23:59:59.000Z

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

  1. Detoxification and generation of useful products from coal combustion wastes

    SciTech Connect (OSTI)

    Not Available

    1990-11-21T23:59:59.000Z

    Electric utilities are on the brink of a new era in waste disposal problems. This research project addresses the issue of how to effectively dispose of flyash, bottom ash, desulfurization sludge through the generation of chemically-hardened material that could potentially be used as a cement or as a synthetic aggregate. The specific goals of this study were: (1) to study the hardness of mixtures of flyash, bottom ash, and DSG treated with lime and other hardening agents; (2) to determine the optimum solids content, setting time, moisture content, and post setting treatments that will yield the greatest strength and hardness out of these mixtures; and (3) to determine the leachability of the synthetic material as a measure of its ability to retain absorbed and/or entrained toxic metals. 50 refs., 15 figs., 8 tabs.

  2. Abdel-Aziz, A. and H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management Association, Pittsburgh, PA, June 2003

    E-Print Network [OSTI]

    Frey, H. Christopher

    Emissions for Baseload Coal- Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste Management for Baseload Coal Fired Power Plants Paper No. 69572 Amr Abdel-Aziz and H. Christopher Frey Department of Civil emission factors from coal-fired power plants vary over time due to variation in coal composition fed

  3. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05T23:59:59.000Z

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  4. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    ~ - - - - - ' Gri~ing Feed Coal Slurry Feed Pump Filterused to heat a coal-solvent slurry up to the tempera- turePULVERIZED COAL DISSOLVER PRODUCT SLURRY L-. 5 TJ'OON , ~ (

  5. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

  6. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal-to-hydrogen plant capital costs .Capital cost of pulverized coal plant ($/kW) Capital cost ofIGCC coal plant ($/kW) Capital cost of repowering PC plant

  7. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    Clean Coal Produced, * T/D (Dry Basis) Installed Plant Cost,Plant Cost, MM$ Net Operating Cost, $/T (Clean Coal Basis)Cost increments fora 25246 ton coal per day SRC plant are

  8. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    5 Figure 1: Map of U.S. coal plants and generating1: Map of U.S. coal plants and generating units (GED, 2006a)of an electric generating coal power plant that would be

  9. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeAssessments to Inform Energy Policy, “Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

  10. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    OF RAIL TRANSPORTATION OF COAL The Federal Energy RegulatoryPlants Due to Coal Shortages”, Federal Energy RegulatoryCouncil (NCC), 2006, “Coal: America’s Energy Future”, Volume

  11. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    of total electricity generation is because coal plants haveplants come to play an important role in the electricity generationplants will be built in the years around 2020, thereby increasing coal’s share of electricity generation

  12. AFBC co-firing of coal and hospital waste. Quarterly report, February - April, 1996

    SciTech Connect (OSTI)

    Stuart, J.M.

    1996-12-31T23:59:59.000Z

    The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated is as follows: steam = 20,000 lb/hr; temperature = 353 F (saturated); pressure = 125 psig; and steam quality = {approximately}98.5%. During this reporting period: structural corrections have been made to make the facility meet the required building costs; and refractory bakeout was successfully completed during April 23-25, 1996 over a 54 -hour period. Operating permits will be obtained after construction has been completed.

  13. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

    1992-01-01T23:59:59.000Z

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  14. Coal Mining Regulations (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

  15. Coal Development (Nebraska)

    Broader source: Energy.gov [DOE]

    This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

  16. Coal Market Module This

    Gasoline and Diesel Fuel Update (EIA)

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  17. Coal Market Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    on fossil energy technologies. This includes 800 million to fund projects under the Clean Coal Power Initiative (CCPI) program, focusing on projects that capture and sequester...

  18. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M. (Macungie, PA); Yeh, Chung-Liang (Bethlehem, PA); Donath, Ernest E. (St. Croix, VI)

    1983-01-01T23:59:59.000Z

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  19. Clean Coal Projects (Virginia)

    Broader source: Energy.gov [DOE]

    This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

  20. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

  1. Coal Mining Tax Credit (Arkansas)

    Broader source: Energy.gov [DOE]

    The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

  2. COAL DESULFURIZATION PRIOR TO COMBUSTION

    E-Print Network [OSTI]

    Wrathall, J.

    2013-01-01T23:59:59.000Z

    Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

  3. Illinois Coal Revival Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

  4. Sandia National Laboratories: Clean Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementClean Coal Clean Coal The term clean coal refers to a number of initiatives that seek to reduce or eliminate the hazardous emission or byproducts that result from using...

  5. PressurePressure Indiana Coal Characteristics

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · CoalTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL · Indiana Coal Forecasting · Under-Ground Coal Gasification · Benefits of Oxyfuel Combustion · Economic

  6. Fuel blending with PRB coal

    SciTech Connect (OSTI)

    McCartney, R.H.; Williams, R.L. Jr. [Roberts and Schaefer, Chicago, IL (United States)

    2009-03-15T23:59:59.000Z

    Many methods exist to accomplish coal blending at a new or existing power plant. These range from a basic use of the secondary (emergency) stockout/reclaim system to totally automated coal handling facilities with segregated areas for two or more coals. Suitable choices for different sized coal plant are discussed, along with the major components of the coal handling facility affected by Powder River Basin coal. 2 figs.

  7. Dover Textiles - A Case History on Retrofitting Factories with a Boiler System Fueled on Coal, Wood and Waste 

    E-Print Network [OSTI]

    Pincelli, R. D.

    1981-01-01T23:59:59.000Z

    The shortage of affordable gas and oil boiler fuels and the recent Iran/Iraq war underscores the urgent need for the American industrial system to convert to domestically controlled fuels and particularly coal, wood, and waste. More talk than action...

  8. Geochemistry of FBC waste-coal slurry solid mixtures. [Quarterly] technical report, March 1--May 31, 1993

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-09-01T23:59:59.000Z

    Three tasks are being conducted in this research project, all related to understanding the chemistry and mineralogy of the co-disposal of fluidized bed combustion (FBC) wastes with coal slurry solid (CSS) from a coal preparation plant. During coal cleaning, pyrite, other heavy minerals, and rock materials are rejected from the coal and discharged in an aqueous slurry to a slurry pond. After dewatering and abandonment of the pond, the pyrite may oxidize and produce acid that may migrate into the underlying groundwater system. If an alkaline product, such as FBC waste, is mixed with the CSS, then the acid will be effectively neutralized as it is produced. In Task 1, soluble components and acid-base reaction products from mixtures of FBC waste and CSS are being extracted for up to 180 days in a series of aqueous batch experiments. The final two sets of extractions, 90- and 180-days, were completed. The extracts and solids from these experiments were submitted for analysis of cations, anions, and mineralogy. In Task 2, 10 L of extracts from three mixtures of FBC waste and CSS were prepared for use in experiments to determine the adsorption/desorption reactions that occur between components of the extracts and three commonly occurring Illinois soils.

  9. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    SciTech Connect (OSTI)

    James T. Cobb, Jr.

    2003-09-12T23:59:59.000Z

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  10. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A. [Geological Survey, Denver, CO (United States); Harrison, C.D. [CQ Inc., Homer City, PA (United States); Huber, D.W.

    1995-12-31T23:59:59.000Z

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  11. Search for: "coal" | DOE PAGES

    Office of Scientific and Technical Information (OSTI)

    coal" Find + Advanced Search Advanced Search All Fields: "coal" Title: Full Text: Bibliographic Data: Creator Author: Name Name ORCID Search Authors Type: All Accepted...

  12. Illinois Coal Development Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

  13. A techno-economic assessment of integrating a waste/coal coprocessing facility with an existing refinery

    SciTech Connect (OSTI)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31T23:59:59.000Z

    About 97 million tons of waste plastics, paper, oils, and tires are generated annually in the United States. The vast majority of this waste is paper, accounting for more than 73 million tons, and the second most abundant waste is plastic, accounting for more than 16 million tons. The number of waste passenger tire equivalents generated in the United States is about 300 million; considerably more than the population. On a rubber basis, this is approximately equal to 1.6 million tons. For waste oils, the average rate of annual generation is about 4.8 million tons, equivalent to about 32 million barrels. This rate of waste generation constitutes a major waste management problem with respect to land availability for landfills and public health and pollution concerns. Mandatory recycling of waste paper and plastics is in effect in several states, but the rate of generation of these wastes exceeds existing demand. This paper describes the coprocessing of coal with wastes.

  14. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

    1994-01-01T23:59:59.000Z

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  15. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L. (Allison Park, PA); Moon, William G. (Cheswick, PA); Prudich, Michael E. (Pittsburgh, PA)

    1983-01-01T23:59:59.000Z

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  16. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization: Final report, July 1, 1985-February 28, 1986

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1986-05-01T23:59:59.000Z

    This study program, funded by the US Department of Energy through the Southern Illinois University Coal Research Center's Coal Technology Laboratory, was conducted during the period from July 1984 through February 1986. Two lines of testing were carried out simultaneously. One consisted of using a laboratory-scale atmospheric fluidized bed combustor (AFBC) to acquire thermodynamic data and operating characteristics for Illinois coal combustion. The other included acquisition, installation, shakedown, and operation of a large one million Btu/h pilot-scale AFBC (plus boiler and associated instrumentation). Both programs were to study Illinois reference and gob (waste) type coals.

  17. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

    2005-07-01T23:59:59.000Z

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  18. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02T23:59:59.000Z

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  19. Stabilization of coal cleaning wastes. Fossil Energy Program. Technical progress report, 1 April 1985-30 June 1985

    SciTech Connect (OSTI)

    Burnet, G.; Gokhale, A.

    1985-07-01T23:59:59.000Z

    This report describes research work in progress on the stabilization of waste from the mining and cleaning of coal. A survey of the literature in the area of coal refuse processing has been conducted using computerized searches of the Energy Data Base and Chemical Abstracts as well as manual scanning of the Chemical Abstracts, NTIS and Energy Research Abstracts. Relevant data from these sources are being assimilated to augment the present research efforts. The coal refuse material to be studied has been analyzed for major elements, Si, Al, Fe and Ca, using atomic absorption. Qualitative information on the mineralogy of the refuse has been obtained using x-ray diffraction. Small scale pelletization and sintering tests have been conducted on the coal refuse which had been ground to different levels of fineness. Water was used as a binding agent and, in the case of coarse refuse, fly ash was added in order to form pellets. The coal refuse had to be ground to about minus 30 mesh particle size to obtain intact pellets after sintering. A laboratory fixed bed reactor system has been designed and built for processing green pellets to simulate the treatment occurring in a traveling grate furnace. The reactor is heated electrically and sequentially exposes samples to drying, ignition, combustion, tempering and cooling. 12 refs., 4 figs., 6 tabs.

  20. DWPF COAL-CARBON WASTE ACCEPTANCE CRITERIA LIMIT EVALUATION BASED ON EXPERIMENTAL WORK (TANK 48 IMPACT STUDY)

    SciTech Connect (OSTI)

    Lambert, D.; Choi, A.

    2010-10-15T23:59:59.000Z

    This report summarizes the results of both experimental and modeling studies performed using Sludge Batch 10 (SB10) simulants and FBSR product from Tank 48 simulant testing in order to develop higher levels of coal-carbon that can be managed by DWPF. Once the Fluidized Bed Steam Reforming (FBSR) process starts up for treatment of Tank 48 legacy waste, the FBSR product stream will contribute higher levels of coal-carbon in the sludge batch for processing at DWPF. Coal-carbon is added into the FBSR process as a reductant and some of it will be present in the FBSR product as unreacted coal. The FBSR product will be slurried in water, transferred to Tank Farm and will be combined with sludge and washed to produce the sludge batch that DWPF will process. The FBSR product is high in both water soluble sodium carbonate and unreacted coal-carbon. Most of the sodium carbonate is removed during washing but all of the coal-carbon will remain and become part of the DWPF sludge batch. A paper study was performed earlier to assess the impact of FBSR coal-carbon on the DWPF Chemical Processing Cell (CPC) operation and melter off-gas flammability by combining it with SB10-SB13. The results of the paper study are documented in Ref. 7 and the key findings included that SB10 would be the most difficult batch to process with the FBSR coal present and up to 5,000 mg/kg of coal-carbon could be fed to the melter without exceeding the off-gas flammability safety basis limits. In the present study, a bench-scale demonstration of the DWPF CPC processing was performed using SB10 simulants spiked with varying amounts of coal, and the resulting seven CPC products were fed to the DWPF melter cold cap and off-gas dynamics models to determine the maximum coal that can be processed through the melter without exceeding the off-gas flammability safety basis limits. Based on the results of these experimental and modeling studies, the presence of coal-carbon in the sludge feed to DWPF is found to have both positive (+) and negative (-) impact as summarized below: (-) Coal-carbon is a melter reductant. If excess coal-carbon is present, the resulting melter feed may be too reducing, potentially shortening the melter life. During this study, the Reduction/Oxidation Potential (REDOX) of the melter could be controlled by varying the ratio of nitric and formic acid. (-) The addition of coal-carbon increases the amount of nitric acid added and decreases the amount of formic acid added to control melter REDOX. This means that the CPC with the FBSR product is much more oxidizing than current CPC processing. In this study, adequate formic acid was present in all experiments to reduce mercury and manganese, two of the main goals of CPC processing. (-) Coal-carbon will be oxidized to carbon dioxide or carbon monoxide in the melter. The addition of coal-carbon to the FBSR product will lead to approximately 55% higher offgas production from formate, nitrate and carbon due to the decomposition of the carbon at the maximum levels in this testing. Higher offgas production could lead to higher cold cap coverage or melter foaming which could decrease melt rate. No testing was performed to evaluate the impact of the higher melter offgas flow. (+) The hydrogen production is greatly reduced in testing with coal as less formic acid is added in CPC processing. In the high acid run without coal, the peak hydrogen generation was 15 times higher than in the high acid run with added coal-carbon. (+) Coal-carbon is a less problematic reducing agent than formic acid, since the content of both carbon and hydrogen are important in evaluating the flammability of the melter offgas. Processing with coal-carbon decreases the amount of formic acid added in the CPC, leading to a lower flammability risk in processing with coal-carbon compared to the current DWPF flowsheet. (+) The seven SB10 formulations which were tested during the bench-scale CPC demonstration were all determined to be within the off-gas flammability safety basis limits during the 9X/5X off-gas surge for normal bubbled melter

  1. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  2. Evaluation of AFBC co-firing of coal and hospital wastes. Technical report, January 1989--August 1990

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    The purpose of this program is to expand the use of coal by utilizing CFB (circulating fluidized bed) technology to provide an environmentally safe method for disposing of waste materials. Hospitals are currently experiencing a waste management crisis. In many instances, they are no longer permitted to burn pathological and infectious wastes in incinerators. Older hospital incinerators are not capable of maintaining the stable temperatures and residence times necessary in order to completely destroy toxic substances before release into the atmosphere. In addition, the number of available landfills which can safely handle these substances is decreasing each year. The purpose of this project is to conduct necessary research investigating whether the combustion of the hospital wastes in a coal-fired circulating fluidized bed boiler will effectively destroy dioxins and other hazardous substances before release into the atmosphere. If this is proven feasible, in light of the quantity of hospital wastes generated each year, it would create a new market for coal -- possibly 50 million tons/year.

  3. Clean coal technology: The new coal era

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  4. Recent advances in coal geochemistry

    SciTech Connect (OSTI)

    Chyi, L.L. (Dept. of Geology, Univ. of Akron, Akron, OH (US)); Chou, C.-L. (Illinois State Geological Survey, 615 E. Peabody Drive, Champaign, IL (US))

    1990-01-01T23:59:59.000Z

    Chapters in this collection reflect the recent emphasis both on basic research in coal geochemistry and on applied aspects related to coal utilization. Geochemical research on peat and coal generates compositional data that are required for the following reasons. First, many studies in coal geology require chemical data to aid in interpretation for better understanding of the origin and evolution of peat and coal. Second, coal quality assessment is based largely on composition data, and these data generate useful insights into the geologic factors that control the quality of coal. Third, compositional data are needed for effective utilization of coal resources and to reflect the recent emphasis on both basic research in coal geochemistry and environmental aspects related to coal utilization.

  5. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11T23:59:59.000Z

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  6. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H. (Overland Park, KS)

    1986-01-01T23:59:59.000Z

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  7. Clean coal today

    SciTech Connect (OSTI)

    none,

    1990-01-01T23:59:59.000Z

    This is the first issue of the Clean Coal Today publication. Each issue will provide project status reports, feature articles about certain projects and highlight key events concerning the US Clean Coal Technology Demonstration Program. Projects described in this publication include: Colorado-Ute Electric Association Circulating Fluidized Bed Combustor Project at Nucla, Colorado; Babcock and Wilcox coolside and limestone injection multistage burner process (dry sorbent injection); Coal Tech's Advanced Cyclone Combustor Project; and the TIDD pressurized fluidized bed combustor combined cycle facility in Brilliant, Ohio. The status of other projects is included.

  8. Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoal Combustion Products Coal Combustion ProductsCoal to

  9. Coal | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPower 2010 1AAcquisitionDevelopmentChooseCoal Coal Coal

  10. Coal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCityFundCo-benefits EvaluationCoalCoalCoal

  11. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15T23:59:59.000Z

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  12. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  13. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    E-Print Network [OSTI]

    Fridley, David

    2014-01-01T23:59:59.000Z

    waste water to create coal water slurry as an input to theis equipped with two coal water slurry gasifiers capable of

  14. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  15. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    SciTech Connect (OSTI)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30T23:59:59.000Z

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

  19. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    services. Power generation Coal increasingly dominates28 Thermal coal electricity generation efficiency alsostudy examines four coal-thermal generation technology types

  20. Coal-Biomass Feed and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-Biomass Feed and Gasification The Coal-Biomass Feed and Gasification Key Technology is advancing scientific knowledge of the production of liquid hydrocarbon fuels from coal...

  1. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

  3. Clean Coal Power Initiative | Department of Energy

    Office of Environmental Management (EM)

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

  4. AFBC co-firing of coal and hospital waste. Quarterly report, August--October 1995

    SciTech Connect (OSTI)

    Stuart, J.M.

    1996-03-01T23:59:59.000Z

    The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation. This would permit full capacity operation of the FBC year round in spite of the VA laundry that was shut down as well as efficient destruction of both general and infectious hospital waste and steam generation. The State permitting process required for construction will be completed in early November to allow installation and construction to be completed. Operating permits will be obtained after construction has been completed. A request for proposal for stack sampling and biospore tests was released to four (4) vendors in mid-October. The proposals shall be reviewed during November and the stack sampler will be selected. Funding was approved as of August 1, 1995. Construction and installation resumed on August 21, 1995 at the LVAMC. Construction and installation continues and will be completed by late December 1995.

  5. AFBC co-firing of coal and hospital waste. Quarterly report, November 1995--January 1996

    SciTech Connect (OSTI)

    Stuart, J.M.

    1996-03-01T23:59:59.000Z

    The project objective is to design, construct, install provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. Operating permits will be obtained after construction has been completed. The stack sampler has been selected. This vendor is currently developing the testing protocol. Severe weather in December and January caused work delays to the project, especially to outside work The fabrication and installation of the stack are complete. Only the insulation of the stack remains to be done. Budget problems began to occur in late January. Correction of this situation should occur shortly in February or March. A current schedule for the project is included with this report.

  6. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  7. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01T23:59:59.000Z

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  8. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  9. Clean Coal Research

    Broader source: Energy.gov [DOE]

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  10. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  11. Coal slurry pipeline based midwest fuel hub

    SciTech Connect (OSTI)

    Huettenhain, H. [Bechtel Technology & Consulting San Francisco, CA (United States)

    1998-12-31T23:59:59.000Z

    Low sulfur Powder River Basin (PRB) coal is a sought after fuel to comply with the year 2000 emission regulation for utility boilers. PRB coal is presently not competitive East of the Mississippi mainly because of railroad switching requirements and boiler designs not compatible with the PRB fuel characteristics. The use of the Lakes for transportation is an exception. The Lakes shipping lanes however, are only open part of the year. It is proposed to construct a coal slurry pipeline from the center of Wyoming coalfields to a hub near Detroit with access to low cost waste energy from power generation stations. The coal slurry pipeline will transport up to 25 million tons per year of fine PRB coal which has been removed from the conventionally transported coal, namely coal transported by rail. The rail delivered coal will have less dust. The system fits the DOE Vision 21 concept to mine and utilize coal in highly efficient systems and with the least environmental impact. The PRB coal is of subbituminous rank and not directly compatible with the boilers in Michigan/Indiana/Ohio area, which are designed to burn bituminous coal. Upgrading of the PRB coal using the hydrothermal slurry upgrading process can transform the PRB coal into a higher Btu content fuel by removing a large portion of the inherent moisture. Such upgraded PRB coal has proven an excellent reactive fuel when burned conventionally as PC fuel, or even when burned in slurry form as Coal Water Fuel (CWF). The cost of the process can be recovered when the process is combined with a coal slurry pipeline transport system. The result is an upgraded competitive fuel or fuels, which can be used for co-firing or re-burning applications to reduce SO{sub 2} and NOx emissions of utility boilers. The fuels can be powdered for direct fuel injection into boilers or blast furnaces as well as CWF. Depending on the stability of the upgraded PRB coal, the pipeline product could also be dewatered and prepared for export. This paper describes the concept and preliminary cost information. It also reports on reactions of the industries, which could be involved in the complex system, namely, coal mining companies, railroads, pipeline operators, fuel suppliers, and utilities.

  12. Evaluation of coal minerals and metal residues as coal-liquefaction catalysts. Final report

    SciTech Connect (OSTI)

    Garg, D.; Givens, E. N.; Schweighardt, F. K.; Tarrer, A. R.; Guin, J. A.; Curtis, C. W.; Huang, W. J.; Shridharani, K.; Clinton, J. H.

    1982-02-01T23:59:59.000Z

    The catalytic activity of various minerals, metallic wastes, and transition metals was investigated in the liquefaction of various coals. The effects of coal type, process variables, coal cleaning, catalyst addition mode, solvent quality, and solvent modification on coal conversion and oil production were also studied. Coal conversion and oil production improved significantly by the addition of pyrite, reduced pyrite, speculite, red mud, flue dust, zinc sulfide, and various transition metal compounds. Impregnation and molecular dispersion of iron gave higher oil production than particulate incorporation of iron. However, the mode of molybdenum addition was inconsequential. Oil production increased considerably both by adding a stoichiometric mixture of iron oxide and pyrite and by simultaneous impregnation of coal with iron and molybdenum. Hydrogenation activity of disposable catalysts decreased sharply in the presence of nitrogen compounds. The removal of heteroatoms from process solvent improved thermal as well as catalytic coal liquefaction. The improvement in oil production was very dramatic with a catalyst.

  13. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect (OSTI)

    Edward Levy; Nenad Sarunac; Harun Bilirgen; Wei Zhang

    2005-04-01T23:59:59.000Z

    This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also given for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.

  14. Coal Liquefaction desulfurization process

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA)

    1983-01-01T23:59:59.000Z

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  15. Coal liquefaction process

    DOE Patents [OSTI]

    Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01T23:59:59.000Z

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  16. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03T23:59:59.000Z

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  17. Use of fluidized bed coal combustion techniques to study efficiency, emission reduction, boiler effects, and waste utilization. Annual report, January 1-June 30, 1985

    SciTech Connect (OSTI)

    Hesketh, H.E.; Rajan, S.

    1985-09-01T23:59:59.000Z

    The acquisition of thermodynamic and operating data on a wide variety of waste coals in a laboratory-scale atmospheric fluidized bed combustor (AFBC) unit is reported. The coals tested include: (1) low and medium heating value gob pile wastes, with ash content as high as 60%; (2) pelletized gob waste fines; (3) various cuts taken from beneficiation plant rejects with low heating values and high ash content; and (4) a partially devolatilized char produced from a caking Illinois coal. These waste coals could be successfully burned in the bench-scale unit with the exception of the high ash content beneficiation plant reject with a low heating value of 1700 Btu/lb. Some of the waste coals exhibited better combustion characteristics than others. The results obtained and the recommendations for improving the combustion and emission characteristics of the waste coals are discussed. Shakedown tests have been completed with the 1-ft diameter, 1 MBtu/h pilot-scale AFBC unit, and the results are reported. 1 ref., 15 figs., 8 tabs.

  18. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  19. Coal seam natural gas producing areas (Louisiana)

    Broader source: Energy.gov [DOE]

    In order to prevent waste and to avoid the drilling of unnecessary wells and to encourage the development of coal seam natural gas producing areas in Louisiana, the commissioner of conservation is...

  20. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29T23:59:59.000Z

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  1. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    located in Wyoming using PRB coal. These costs take intolocated in Wyoming using PRB coal and take into account the2007 forecast for coal prices for PRB coal. Transmission We

  2. Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal?

    E-Print Network [OSTI]

    Bowen, James D.

    Coal Problems 1. Name two examples of clean coal technology and in what manner do they clean the coal? a. Coal Washing- Crushing coal then mixing it with a liquid to allow the impurities to settle. b burning coal altogether. With integrated gasification combined cycle (IGCC) systems, steam and hot

  3. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M. (Monongahela, PA)

    1991-01-01T23:59:59.000Z

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  4. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

  6. Composition and properties of coals from the Yurty coal occurrence

    SciTech Connect (OSTI)

    N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

    2008-10-15T23:59:59.000Z

    Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

  7. AFBC co-firing of coal and hospital waste: Quarterly report, 1 May 1996-31 July, 1996

    SciTech Connect (OSTI)

    Stuart, J.M.

    1996-12-31T23:59:59.000Z

    The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. This quarterly report describes activities completed in the design, procure, install and start-up phase.

  8. AFBC co-firing of coal and hospital waste. Quarterly progress report, August 1--October 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation while providing efficient destruction of both general and infectious hospital waste. The steam generated as follows: (1) Steam = 20,000 lb/hr, (2) Temperature = 353 F (saturated), (3) Pressure = 125 psig, and (4) Steam quality = {approximately}98.5%.

  9. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

    1988-01-01T23:59:59.000Z

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  10. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect (OSTI)

    Darmody, R.G.; Dunker, R.E. [Illinois Univ., Urbana, IL (United States); Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Urbana, IL (United States)

    1994-03-01T23:59:59.000Z

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the first quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected and dried the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample appears to have a higher pyrite content than the other.

  11. IN HARM'S WAY: Lack Of Federal Coal Ash

    E-Print Network [OSTI]

    Short, Daniel

    IN HARM'S WAY: Lack Of Federal Coal Ash Regulations Endangers Americans And Their Environment 2010 Thirty-nine New Damage Cases of Contamination from Improperly Disposed Coal Combustion Waste, Editor and Contributing Author #12;IN HARM'S WAY: Lack of Federal Coal Ash Regulations Endangers

  12. (Basic properties of coals and other solids)

    SciTech Connect (OSTI)

    Not Available

    1991-11-25T23:59:59.000Z

    This report discusses basic properties of bituminous, subbituminous, and lignite coals. Properties of coal liquids are also investigated. Heats of immersion in strong acids are found for Pittsburgh {number sign}8, Illinois {number sign}6, and Wyodak coals. Production of coal liquids by distillation is discussed. Heats of titration of coal liquids and coal slurries are reported. (VC)

  13. The Caterpillar Coal Gasification Facility 

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

  14. Surface Coal Mining Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

  15. The world price of coal

    E-Print Network [OSTI]

    Ellerman, A. Denny

    1994-01-01T23:59:59.000Z

    A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

  16. Hydrogen from Coal Edward Schmetz

    E-Print Network [OSTI]

    Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

  17. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  18. 2009 Coal Age Buyers Guide

    SciTech Connect (OSTI)

    NONE

    2009-07-15T23:59:59.000Z

    The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

  19. Coal-fired diesel generator

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  20. Performance and economics of co-firing a coal/waste slurry in advanced fluidized-bed combustion

    SciTech Connect (OSTI)

    DeLallo, M.R.; Zaharchuk, R. [Parsons Power Group, Inc., Reading, PA (United States); Reuther, R.B.; Bonk, D.L. [USDOE Morgantown Energy Technology Center, WV (United States)

    1996-09-01T23:59:59.000Z

    This study`s objective was to investigate co-firing a pressurized fluidized-bed combustor with coal and refuse-derived fuel for the production of electricity and the efficient disposal of waste. Performance evaluation of the pressurized fluidized-bed combustor (PFBC) power plant co-fired with refuse-derived fuel showed only slightly lower overall thermal efficiency than similar sized plants without waste co-firing. Capital costs and costs of electricity are within 4.2 percent and 3.2 percent, respectively, of waste-free operation. The results also indicate that there are no technology barriers to the co-firing of waste materials with coal in a PFBC power plant. The potential to produce cost-competitive electrical power and support environmentally acceptable waste disposal exists with this approach. However, as part of technology development, there remain several design and operational areas requiring data and verification before this concept can realize commercial acceptance. 3 refs., 3 figs., 4 tabs.

  1. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  2. Hydroliquefaction of coal

    DOE Patents [OSTI]

    Sze, Morgan C. (Upper Montclair, NJ); Schindler, Harvey D. (Fairlawn, NJ)

    1982-01-01T23:59:59.000Z

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  3. Healy Clean Coal Project

    SciTech Connect (OSTI)

    None

    1997-12-31T23:59:59.000Z

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  4. Pyrolysis of coal

    DOE Patents [OSTI]

    Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

    1992-01-01T23:59:59.000Z

    A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

  5. Sustainable development with clean coal

    SciTech Connect (OSTI)

    NONE

    1997-08-01T23:59:59.000Z

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  6. Ashing properties of coal blends

    SciTech Connect (OSTI)

    Biggs, D.L.

    1982-03-01T23:59:59.000Z

    The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

  7. CONSORTIUM FOR CLEAN COAL UTILIZATION

    E-Print Network [OSTI]

    Subramanian, Venkat

    CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

  8. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31T23:59:59.000Z

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  9. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28T23:59:59.000Z

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  10. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  11. EIA - Coal Distribution

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What'sAnnual Coal

  12. Coal-Producing Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate, OceanPublicationandCoal Coal.

  13. Fluorine in coal and coal by-products

    SciTech Connect (OSTI)

    Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31T23:59:59.000Z

    Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

  14. air coal franklin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H.C. Frey, "Quantification of Hourly Variability in Hourly Activity and NOx Emissions for Baseload Coal-Fired Power Plants," Proceedings, Annual Meeting of the Air & Waste...

  15. Influence of coal ash and slag dumping on dump waste waters of the Kostolac power plants (Serbia)

    SciTech Connect (OSTI)

    Popovic, A.; Djinovic, J. [University of Belgrade, Belgrade (Serbia)

    2006-10-01T23:59:59.000Z

    The content of selected trace and major elements in the river water used for transport, as well as in the subcategories of the waste waters (overflow and drainage) were analyzed in order to establish the influence of transport and dumping of coal ash and slag from the 'Kostolac A' and 'Kostolac B' power plants located 100 km from Belgrade (Serbia). It was found that during transport of coal ash and slag to the dump, the water used for transport becomes enriched with manganese, nickel, zinc, chromium, vanadium, titanium, cobalt, arsenic, aluminum, and silicon, while more calcium, iron, cadmium, and lead are adsorbed by the ash and slag than is released from them. There is also an equilibrium between the release and adsorption processes of copper and magnesium during transport. The vertical penetration of the water used for transport results in a release of calcium, magnesium, manganese, and cadmium to the environment, while iron, nickel, zinc, chromium, copper, lead, vanadium, titanium, cobalt, and arsenic are adsorbed by the fractions of coal ash and slag in the dump.

  16. Biochemical transformation of coals

    DOE Patents [OSTI]

    Lin, M.S.; Premuzic, E.T.

    1999-03-23T23:59:59.000Z

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  17. Catalytic coal liquefaction process

    DOE Patents [OSTI]

    Garg, D.; Sunder, S.

    1986-12-02T23:59:59.000Z

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  18. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?˘ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?˘ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?˘ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?˘ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  19. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30T23:59:59.000Z

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  20. assessing coal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  1. advanced coal combustion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  2. apec coal flow: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  3. alkaline coal ash: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  4. advanced slagging coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  5. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01T23:59:59.000Z

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  6. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Curtis Jawdy

    2000-10-09T23:59:59.000Z

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  7. USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Ursla Levy; John Sale; Nenad Sarunac

    2006-01-01T23:59:59.000Z

    This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energy extracted from boiler flue gas.

  8. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  9. Moist caustic leaching of coal

    DOE Patents [OSTI]

    Nowak, Michael A. (Elizabeth, PA)

    1994-01-01T23:59:59.000Z

    A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  12. New coal dewatering technology turns sludge to powder

    SciTech Connect (OSTI)

    NONE

    2009-03-15T23:59:59.000Z

    Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

  13. Process for changing caking coals to noncaking coals

    DOE Patents [OSTI]

    Beeson, Justin L. (Woodridge, IL)

    1980-01-01T23:59:59.000Z

    Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.

  14. High-sulfur coals in the eastern Kentucky coal field

    SciTech Connect (OSTI)

    Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

    1993-08-01T23:59:59.000Z

    The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

  15. Western Coal/Great Lakes Alternative export-coal conference

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

  16. Autothermal coal gasification

    SciTech Connect (OSTI)

    Konkol, W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

    1982-03-01T23:59:59.000Z

    This paper presents test results of a pilot plant study of coal gasification system based on the process developed by Texaco. This process has been improved by the project partners Ruhrchenie A.G. and Ruhrkohle A.C. in West Germany and tested in a demonstration plant that operated for more than 10,000 hours, converting over 50,000 tons of coal into gas. The aim was to develop a process that would be sufficiently flexible when used at the commercial level to incorporate all of the advantages inherent in the diverse processes of the 'first generation' - fixed bed, fluidized bed and entrained bed processes - but would be free of the disadvantages of these processes. Extensive test results are tabulated and evaluated. Forecast for future development is included. 5 refs.

  17. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect (OSTI)

    Somasundaran, P.

    1990-01-01T23:59:59.000Z

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  18. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    21 Figure 6: Map of PRB coal mines serviced by the BNSF-UPPRB.of the Powder River Basin (PRB) in Wyoming. Although traffic

  19. Coal Bed Methane Primer

    SciTech Connect (OSTI)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25T23:59:59.000Z

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

  20. Exploration for deep coal

    SciTech Connect (OSTI)

    NONE

    2008-12-15T23:59:59.000Z

    The most important factor in safe mining is the quality of the roof. The article explains how the Rosebud Mining Co. conducts drilling and exploration in 11 deep coal mine throughout Pennsylvania and Ohio. Rosebud uses two Atlas Copco CS10 core drilling rigs mounted on 4-wheel drive trucks. The article first appeared in Atlas Copco's in-house magazine, Deep Hole Driller. 3 photos.

  1. Assessment of underground coal gasification in bituminous coals: catalog of bituminous coals and site selection. Appendix A. National coal resource data system: Ecoal, Wcoal, and Bmalyt. Final report, Phase I. [Bituminous coal; by state; coal seam depth and thickness; identification

    SciTech Connect (OSTI)

    None

    1982-01-31T23:59:59.000Z

    Appendix A is a catalog of the bituminous coal in 29 states of the contiguous United States which contain identified bituminous coal resources.

  2. Iron catalyzed coal liquefaction process

    DOE Patents [OSTI]

    Garg, Diwakar (Macungie, PA); Givens, Edwin N. (Bethlehem, PA)

    1983-01-01T23:59:59.000Z

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  3. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    MEIYU SHEN; ROYCE ABBOTT; T.D. WHEELOCK

    1998-09-30T23:59:59.000Z

    The agglomeration of ultrafine-size coal particles in an aqueous suspension by means of microscopic gas bubbles was demonstrated in numerous experiments with a scale model mixing system. Coal samples from both the Pittsburgh No. 8 Seam and the Upper Freeport Seam were used for these experiments. A small amount of i-octane was added to facilitate the process. Microscopic gas bubbles were generated by saturating the water used for suspending coal particles with gas under pressure and then reducing the pressure. Microagglomerates were produced which appeared to consist of gas bubbles encapsulated in coal particles. Since dilute particle suspensions were employed, it was possible to monitor the progress of agglomeration by observing changes in turbidity. By such means it became apparent that the rate of agglomeration depends on the concentration of microscopic gas bubbles and to a lesser extent on the concentration of i-octane. Similar results were obtained with both Pittsburgh No. 8 coal and Upper Freeport coal.

  4. Geochemistry of FBC waste-coal slurry solid mixtures. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D.; Heidari, M. [Illinois State Geological Survey, Champaign, IL (United States)

    1993-12-31T23:59:59.000Z

    The three tasks conducted in this research project were related to understanding the geochemistry and mineralogy of the co-disposal of fluidized bed combustion (FBC) wastes with coal slurry solid (CSS) from a coal preparation plant. During coal cleaning, pyrite, other heavy minerals and rock fragments are separated from the coal and discharged in an aqueous slurry to an impoundment. After dewatering and closure of the impoundment, the pyrite can oxidize and produce acid that can migrate into the underlying groundwater system. The addition of FBC residue to the CSS will buffer the pore water pH to approximately 7.8. In Task 1, soluble components and acid-base react ion products from mixtures of FBC waste and CSS were extracted for 3 to 180 days in aqueous batch experiments. The results of these extractions showed that, eventually, the extracts would attain a pH between 7 and 8. That pH range is characteristic of an aqueous system in equilibrium with calcite, gypsum, and atmospheric carbon dioxide. After 180 days, the mean calcium concentration in all of the extracts was 566{+-}18 mg/L and sulfate concentrations averaged 2420{+-}70 mg/L. In Task 2, three extracts from CSS/FBC residue mixtures were prepared for use in experiments to determine the adsorption/desorption reactions that occur between solutes in the extracts and two common Illinois soils. Time constraints allowed the use of only two of the extracts for adsorption studies. The concentrations of most solutes were not significantly lowered by adsorption at the pH of the extract-soil suspension, nor over a wide range of pH. The results suggest that the type of solutes that were released by the CSS/FBC residue mixture would not be attenuated by adsorption. In a modified Task 3, the literature on the kinetics of pyrite oxidation in near-neutral to alkaline pH was reviewed in preparation for future development of a computer model of pyrite oxidation in CSS/FBC residue codisposal.

  5. Transporting export coal from Appalachia

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    This publication is part of a series titled Market Guide for Steam Coal Exports from Appalachia. It focuses on the transportation link in the steam-coal supply chain, enabling producers to further assess their transportation options and their ability to compete in the export-coal marketplace. Transportation alternatives and handling procedures are discussed, and information is provided on the costs associated with each element in the transportation network.

  6. Science Highlight June 2011 Chromium forms in coal and wood and their converted forms in

    E-Print Network [OSTI]

    Wechsler, Risa H.

    as a component in fly-ash, the major waste product from coal combustion. Disposal practices for coal-derived fly-ash Science Highlight ­ June 2011 Chromium forms in coal and wood and their converted forms in fly-ash(VI) in Coal-Derived Fly-Ash The two common chromium oxidation states, Cr(III) and Cr(VI), differ greatly

  7. Liquid chromatographic analysis of coal surface properties

    SciTech Connect (OSTI)

    Kwon, K.C.

    1991-01-01T23:59:59.000Z

    The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

  8. Fine coal flotation plant waste comparison--column vs. sub-a cells

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III.

    1991-01-01T23:59:59.000Z

    The objective of this project was to compare results from a small commercially sized Deister Flotaire column flotation cell with the subaeration cells at Kerr-McGee's Galatia plant during side by side testing of feed splits from the same sources. Typical cell criteria for both cells are included in the appendix. The project involved the activities of three organizations: the Kerr-McGee Coal Corporation, the Deister Concentrator Company, and the Illinois State Geological Survey. Their roles were as follows: Kerr-McGee installed the Deister column with sample splitter and tailings volume measuring cell in the Galatia Coal Preparation Plant to treat a representative split of their flotation feed; Deister provided a 30 inch diameter {times} 35{prime} high Deister Flotaire Column Flotation Cell capable of treating nominally one ton per hour or slightly over 1% of the plant feed. Deister additionally provided the sample splitter and the tailings volume measuring cell. ISGS personnel worked with both companies on the installation, conducted laboratory tests to direct the early plant test reagent practice, attended all of the plant runs cutting representative samples of feed, measuring slurry and reagent flows, preparing samples and writing reports.

  9. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  10. ENCOAL Mild Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-02-01T23:59:59.000Z

    ENCOAL Corporation, a wholly-owned subsidiary of Shell Mining Company, is constructing a mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming. The process, using Liquids From Coal (LFC) technology developed by Shell and SGI International, utilizes low-sulfur Powder River Basin Coal to produce two new fuels, Process Derived Fuel (PDF) and Coal Derived Liquids (CDL). The products, as alternative fuels sources, are expected to significantly reduce current sulfur emissions at industrial and utility boiler sites throughout the nation, thereby reducing pollutants causing acid rain.

  11. Process for electrochemically gasifying coal

    DOE Patents [OSTI]

    Botts, T.E.; Powell, J.R.

    1985-10-25T23:59:59.000Z

    A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

  12. Carbon Dioxide Emission Factors for Coal

    Reports and Publications (EIA)

    1994-01-01T23:59:59.000Z

    The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

  13. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

    1991-01-01T23:59:59.000Z

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  14. Coal Bed Methane Protection Act (Montana)

    Broader source: Energy.gov [DOE]

    The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Alone IGCC+CCS Coal Plant The levelized cost of electricitythan advanced coal plants and hence their cost estimates areestimates of the costs of an advanced coal plant, since they

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    coal electricity generation efficiency also varies by plantplants. The unit water requirement of coal-fired electricity generationelectricity generation is comparatively low in China due to the prevalence of small, outdated coal-fired power plants.

  17. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    ACWH consists of a 3,000 MW coal gasification combined cycleconsists of a 3,000 MW coal gasification, combined cycleless expensive in a coal gasification, combined cycle power

  18. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman

    2002-10-15T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect (OSTI)

    R. Viswanathan; K. Coleman

    2003-01-20T23:59:59.000Z

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  20. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994

    SciTech Connect (OSTI)

    Darmody, R.G. [Illinois Univ., Urbana, IL (United States); Dunker, R.E. [Illinois Univ., Urbana, IL (United States). Dept. of Agronomy; Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-06-01T23:59:59.000Z

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

  1. Arkansas Surface Coal Mining Reclamation Act (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

  2. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  3. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  4. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Coal Wind Hybrid: Economic Analysis additional cost of fuelWind Hybrid: Economic Analysis Levelized Generation CostCoal Wind Hybrid: Economic Analysis Notes: All Cost are in

  5. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  6. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  7. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol.1, Issue 3 (Apr 2015) Archived Editions: Coal...

  8. University Coal Research | Department of Energy

    Energy Savers [EERE]

    Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful...

  9. Great Lakes ports coal handling capacity and export coal potential

    SciTech Connect (OSTI)

    Ames, A.H. Jr.

    1981-02-01T23:59:59.000Z

    This study was developed to determine the competitive position of the Great Lakes Region coal-loading ports in relation to other US coastal ranges. Due to the congestion at some US Atlantic coastal ports US coal producers have indicated a need for alternative export routes, including the Great Lakes-St. Lawrence Seaway System. The study assesses the regions coal handling capacity and price competitiveness along with the opportunity for increased US flag vessel service. A number of appendices are included showing major coal producers, railroad marketing representatives, US vessel operators, and port handling capacities and throughput. A rate analysis is provided including coal price at the mine, rail rate to port, port handling charges, water transportation rates to western Europe, Great Lakes route versus the US Atlantic Coast ports.

  10. Gasifier feed - Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III (Illinois State Geological Survey, Champaign, IL (United States)); Lytle, J.; Frost, R.R.; Lizzio, A.; Kohlenberger, L.; Brewer, K. (Illinois State Geological Survey, Champaign, IL (United States) DESTEC Energy (United States) Williams Technology (United States) Illinois Coal Association (United States))

    1992-01-01T23:59:59.000Z

    The main purpose of this project is to produce a feedstock from preparation plant fines from an Illinois coal that is ideal for a slurry fed, slagging, entrained-flow coal gasifier. The high sulfur content and high Btu value of Illinois coals are particularly advantageous in such a gasifier; preliminary calculations indicate that the increased cost of removing sulfur from the gas from a high sulfur coal is more than offset by the increased revenue from the sale of the elemental sulfur; additionally the high Btu Illinois coal concentrates more energy into the slurry of a given coal to water ratio. This project will bring the expertise of four organizations together to perform the various tasks. The Illinois Coal Association will help direct the project to be the most beneficial to the Illinois coal industry. DESTEC Energy, a wholly-owned subsidiary of Dow Chemical Company, will provide guidelines and test compatibility of the slurries developed for gasification feedstock. Williams Technology will provide their expertise in long distance slurry pumping, and test selected products for viscosity, pumpability, and handlability. The Illinois State Geological Survey will study methods for producing clean coal/water slurries from preparation plant wastes including the concentration of pyritic sulfur into the coal slurry to increase the revenue from elemental sulfur produced during gasification operations, and decrease the pyritic sulfur content of the waste streams. ISGS will also test the gasification reactivity of the coals. As reported earlier, a variety of possible samples of coal have been analyzed and the gasification performance evaluation reported. Additionally, commercial sized samples of -28 mesh {times} 100 mesh coal -100 {times} 0 coal were subjected to pumpability testing. Neither the coarse product nor the fine product by themselves proved to be good candidates for trouble free pumping, but the mix of the two proved to be a very acceptable product

  11. Rail Coal Transportation Rates

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara 436 EnergyAssemblyOrderCoal

  12. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S. Energy

  13. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S. Energy0

  14. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S. Energy00

  15. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.

  16. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.

  17. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.1

  18. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.11

  19. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1 U.S.111

  20. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1

  1. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10 U.S.

  2. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10 U.S.0

  3. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10 U.S.00

  4. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.10

  5. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.101 U.S.

  6. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.101 U.S.1

  7. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.101

  8. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1011 U.S.

  9. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.060 U.S.1011

  10. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 2009

  11. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 20093Q

  12. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q 20093Q4Q

  13. Coal Distribution Database, 2008

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0 Year-1EIA3Q

  14. Coal Supply Region

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c. Real average12

  15. Annual Coal Distribution Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry4,645

  16. Annual Coal Distribution Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469 39,194Dry4,645Domestic

  17. Annual Coal Distribution Tables

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14 Dec-14 Jan-1538,469

  18. By Coal Destination State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million OverviewAnnual

  19. By Coal Origin State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million

  20. Coal Distribution Database, 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar Apr

  1. Coal Distribution Database, 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar Apr

  2. Coal Distribution Database, 2006

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar

  3. Annual Coal Distribution Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2Cubic

  4. Annual Coal Report 2013

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. OffshoreOilAnnual Coal Report

  5. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r k CCLEAN9AugustCNSS PapersCOAL &

  6. WCI Case for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1 -VisualizingVote For the# *Coal The role of as

  7. Comparison of coal tars generated by pyrolysis of Hanna coal and UCG (underground coal gasification) Hanna IVB coal tars

    SciTech Connect (OSTI)

    Barbour, F.A.; Cummings, R.E.

    1986-04-01T23:59:59.000Z

    The compositions of coal tars produced by laboratory and pilot scale apparatus have been compared to those produced during underground coal gasification (UCG) experiments at Hanna, Wyoming. Four coal tars were generated by pyrolysis using the block reactor and the laboratory reference retort, and a fifth coal tar was composited from products produced by UCG. Coal tars were separated into chemically defined fractions and were characterized by gas chromatography. Specific compounds were not identified, but rather fingerprinting or compound-type profiling was used for identifying similarities and differences in the product tars. This permitted the evaluation of the different methods of tar production with respect to one another. The UCG coal tars appeared to have undergone more secondary cracking than the pyrolytic products. The coal tar products from the laboratory reference retort appear to be more indicative of the coal's chemical structure. Products from the block reactor contained lesser amounts of the lighter boiling material. In addition there is organic sulfur contamination as indicated by the large amount of sulfur present in the product tar from the block reactor. 11 refs., 16 figs., 11 tabs.

  8. Centrifuge treatment of coal tar

    SciTech Connect (OSTI)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  9. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  10. Coal pile leachate treatment

    SciTech Connect (OSTI)

    Davis, E C; Kimmitt, R R

    1982-09-01T23:59:59.000Z

    The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

  11. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  12. Coals and coal requirements for the COREX process

    SciTech Connect (OSTI)

    Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

    1996-12-31T23:59:59.000Z

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  13. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15T23:59:59.000Z

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01T23:59:59.000Z

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  15. Coal surface control for advanced fine coal flotation

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

    1992-03-01T23:59:59.000Z

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  16. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

  17. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01T23:59:59.000Z

    74. Any coal application (coal gasification, coal combustionFixed-Bed Low-Btu Coal Gasification Systems for RetrofittingPower Plants Employing Coal Gasification," Bergman, P. D. ,

  18. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    Carbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologies environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  19. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18T23:59:59.000Z

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  20. Formation and retention of methane in coal

    SciTech Connect (OSTI)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15T23:59:59.000Z

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  1. Synthetic fuel production by indirect coal liquefaction

    E-Print Network [OSTI]

    and dimethyl ether) by indirect coal liquefaction (ICL). Gasification of coal pro- duces a synthesis gas by coal gasification. The principal con- stituents of ``syngas'' are carbon monoxide and hydrogen, which modern coal gasification facilities in operation to make hydrogen for ammonia production. Also

  2. Improving pulverized coal plant performance

    SciTech Connect (OSTI)

    Regan, J.W.; Borio, R.W.; Palkes, M.; Mirolli, M. [ABB Combustion Engineering, Inc., Windsor, CT (United States); Wesnor, J.D. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J. [Raytheon Engineers and Constructors, Inc., New York, NY (United States)

    1995-12-31T23:59:59.000Z

    A major deliverable of the U.S. Department of Energy (DOE) project ``Engineering Development of Advanced Coal-Fired Low-Emissions Boiler Systems`` (LEBS) is the design of a large, in this case 400 MWe, commercial generating unit (CGU) which will meet the Project objectives. The overall objective of the LEBS Project is to dramatically improve environmental performance of future pulverized coal fired power plants without adversely impacting efficiency or the cost of electricity. The DOE specified the use of near-term technologies, i.e., advanced technologies that partially developed, to reduce NO{sub x}, SO{sub 2} and particulate emissions to be substantially less than current NSPS limits. In addition, air toxics must be in compliance and waste must be reduced and made more disposable. The design being developed by the ABB Team is projected to meet all the contract objectives and to reduce emission of NO{sub x}, SO{sub 2} and particulates to one-fifth to one-tenth NSPS limits while increasing net station efficiency significantly and reducing the cost of electricity. This design and future work are described in the paper.

  3. Coal ash utilization in India

    SciTech Connect (OSTI)

    Michalski, S.R.; Brendel, G.F.; Gray, R.E. [GAI Consultants, Inc., Pittsburgh, PA (United States)

    1998-12-31T23:59:59.000Z

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  4. Clean coal technologies: A business report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

  5. Coal Mining on Pitching Seams

    E-Print Network [OSTI]

    Brown, George MacMillan

    1915-01-01T23:59:59.000Z

    . 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

  6. PROSPECTS FOR CO-FIRING OF CLEAN COAL AND CREOSOTE-TREATED WASTE WOOD AT SMALL-SCALE POWER STATIONS

    E-Print Network [OSTI]

    Janis Zandersons; Aivars Zhurinsh; Edward Someus

    If a small-scale clean coal fu eled power plant is co-fu eled with 5 % of cre o-sote-treated used-up sleeper wood, the de con tam i na tion by carbonisation at 500 °C in an in di rectly heated ro tary kiln with the di am e ter 1.7 m and ef fec-tive length 10 m can be real ised. It should be in cluded in the “3R Clean Coal Carbonisation Plant ” sys tem, which pro cesses coal. It will im prove the heat bal ance of the sys tem, since the carbonisation of wood will de liver a lot of high caloricity pyroligneous vapour to the joint fur nace of the “3R Clean Coal Carbonisation Plant”. Pine wood sleeper sap wood con tains 0.25 % of sul phur, but the av er age pine sleeper wood (sap wood and heart wood) 0.05% of sul phur. Most of the sul phur is lost with the pyroligneous vapour and burned in the fur nace. Since the “3R Clean Coal Carbonisation Plant ” is equipped with a flue gases clean ing sys tem, the SO2 emis sion level will not ex-ceed 5 mg/m 3. The char coal of the sap wood por tion of sleep ers and that of the av er age sleeper wood will con tain 0.22 % and 0.035 % of sul phur, re spec-tively. The in crease of the carbonisation tem per a ture does not sub stan tially de crease the sul phur con tent in char coal, al though it is suf fi ciently low, and the char coal can be co-fired with clean coal. The con sid ered pro cess is suit-able for small power plants, if the bio mass in put in the com mon en ergy bal-ance is 5 to 10%. If the mean dis tance of sleep ers trans por ta tion for Cen tral and East ern Eu-rope is es ti mated not to ex ceed 200 km, the co-com bus tion of clean coal and carbonised sleep ers would be an ac cept able op tion from the en vi ron men tal and eco nomic points of view.

  7. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    EIA), 2007, Coal Transportation Rate Database, http://The EIA then organizes this information into a databaseEIA ratios to go into the BASE CASE Waybill forecast database

  8. Future Impacts of Coal Distribution Constraints on Coal Cost

    E-Print Network [OSTI]

    McCollum, David L

    2007-01-01T23:59:59.000Z

    Data from Forms FERC 423 and EIA 423, “Cost and Quality ofInformation Administration (EIA) projects that the U.S. willyear. In addition, while EIA’s estimates do not take coal-

  9. Clean coal technology. Coal utilisation by-products

    SciTech Connect (OSTI)

    NONE

    2006-08-15T23:59:59.000Z

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  10. Healy clean coal project

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    The objective of the Healy Clean Coal Project is to demonstrate the integration of an advanced combustor and a heat recovery system with both high and low temperature emission control processes. Resulting emission levels of SO[sub 2], NO[sub x], and particulates are expected to be significantly better than the federal New source Performance standards. During this past quarter, engineering and design continued on the boiler, combustion flue gas desulfurization (FGD), and turbine/generator systems. Balance of plant equipment procurement specifications continue to be prepared. Construction activities commenced as the access road construction got under way. Temporary ash pond construction and drilling of the supply well will be completed during the next quarter.

  11. Coal gasification vessel

    DOE Patents [OSTI]

    Loo, Billy W. (Oakland, CA)

    1982-01-01T23:59:59.000Z

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  12. Coal competition: prospects for the 1980s

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

  13. Plant response to FBC waste-coal slurry solid mixtures. Technical report, 1 March--31 May 1994

    SciTech Connect (OSTI)

    Darmody, R.G.; Dunker, R.E. [Univ. of Illinois, Urbana, IL (United States); Dreher, G.B.; Roy, W.R.; Steel, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1994-09-01T23:59:59.000Z

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. The approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. In the first two quarters the authors designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, analyzed the FBC and CSS samples. The samples represent a typical range of properties. They retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and required no FBC to neutralize the potential acidity. The other CSS sample required from 4.2 to 2.7% FBC material to neutralize its potential acidity. This report covers the third quarter of the project. The authors produced the CSS-FBC mixtures, analyzed the soil fertility parameters of the mixtures,, planted the crops, and monitored their growth. All mixtures support at least some plant growth, although some plants did better than others. It is too early to analyze the results statistically. Next quarter the plants will be harvested, yields calculated, mineral uptake evaluated, and a final report will be written on plant response to CSS-FBC mixtures.

  14. Fine coal flotation of plant waste: An in-plant comparison - columns vs. sub-A cell

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III; Lytle, J.M.; Kohlenberger, L.; Rapp, D.M. (Illinois State Geological Survey, Champaign, IL (United States)); Stephenson, J.; Zipperian, D. (Deister Machine Co., Inc., Fort Wayne, IN (United States)); Sterner, R.M.; Norris, D. (Kerr-McGee Corp., Oklahoma City, OK (United States))

    1991-01-01T23:59:59.000Z

    The objective of this project is to compare the flotation effectiveness of the column flotation and the sub-aeration technology to clean very fine ({minus}100 mesh) coal in the waste streams of coal washing plants. Good concentrate grades along with a high recovery of energy content have been achieved while rejecting a large percentage of the ash forming minerals and pyrite. However, comparative data of columns vs. sub-aeration cells is not available from a single plant. This project was developed to install a small commercial size Deister Column beside the existing sub-aeration flotation cells at Kerr-McGee's Galatia Plant so that a comparison of the flotation results can be made. A representative split of the fines which normally goes to sub-aeration cells can be diverted without reagent, to the column for continuous side by side flotation testing over an extended period. The Deister Column was installed during the quarter along with the sampling system and tailings volume measuring apparatus. Parts of several weeks were spent in assuring that realistic goals could be obtained. During the de-bugging period it was found that water pressure and air pressure within the plant was not constant due to cleanup hoses which were on the same fresh water line to assure constant water and air pressure to the column during testing periods. Most of the shakedown testing was completed in April and May. Preliminary tests have been run in which high grade concentrates have been made but with low Btu recoveries. Additional tests with increased reagent rates are planned to increase Btu recoveries and will be reported at the Contractors Conference and in the final report. 24 figs., 1 tab.

  15. U.S. coal outlook in Asia

    SciTech Connect (OSTI)

    Johnson, C.J.

    1997-02-01T23:59:59.000Z

    Coal exports from the US to Asia are declining over time as a result of (1) increased competition from coal suppliers within the Asia-Pacific region, (2) changing steel making technologies, (3) decreased emphasis on security of coal supplies, and (4) deregulation of the energy industry--particularly electric utilities. There are no major changes on the horizon that are likely to alter the role of the US as a modest coal supplier to the Asia-Pacific region. The downward trend in US coal exports to Asia is expected to continue over the 1997--2010 period. But economic and policy changes underway in Asia are likely to result in periodic coal shortages, lasting a few months to a year, and short term increased export opportunities for US coal. US coal exports to Asia are projected to fluctuate within the following ranges over the 2000--2010 period: 10--17 million tons in total exports, 6--12 million tons in thermal coal exports, and 4--9 million tons in coking coal exports. The most important role for US coal, from the perspective of Asian coal importing countries, is to ensure a major alternative source of coal supplies that can be turned to in the event of unforeseen disruptions in coal supplies from the Asia-Pacific region or South Africa. However, the willingness of consumers to pay a premium to ensure US export capacity is declining, with increased emphasis on obtaining the lowest cost coal supplies.

  16. Combustion of char-coal waste pellets for high efficiency and low NO{sub x}. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    Illinois coals are prime candidates for use in Integrated Gasification Combined Cycle (IGCC) plants because of their high volatility and good char reactivity. In these plants, partial gasification of the coal in the presence of limestone eliminates the major portion of the sulfur species in the product gases, which are used as fuel for the topping cycle. The char produced is high in ash content, the major portion of which is calcium sulfide. It is also low in volatiles and of low density, compared to the parent coal. The economic success of the gasification route depends on the subsequent utilization of the residual char for raising steam for use in a Rankine cycle bottoming plant and/or preheating the air to the gasifier. Fluidized bed combustion of the char appears an attractive way of utilizing the char. Areas of concern in the fluidized bed combustion of the high ash, low volatility char are: attainment of high carbon conversion efficiencies; reduction of oxides of nitrogen emissions; reduction/elimination of corrosive chlorine species; reduction/elimination of sodium and other alkali species; and efficient usage of the calcium present in the ash to reduce sulfur compounds. The aim of the present project is to investigate ways of improving the carbon conversion efficiency, sulfur capture efficiency and NO{sub x} reduction during the fluidized bed combustion by pelletizing the low density char with coal and coal wastes using cornstarch or wood lignin as binder. During this first quarter, the parent coals and the chars to be tested have been analyzed. Particle size distributions have been measured. Sample pellets have been made evaluation of their properties.

  17. PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION

    E-Print Network [OSTI]

    Pennucci, J.

    2014-01-01T23:59:59.000Z

    Chemistry of Coal during Combustion and the Emissions fromParticulates Generated by Combustion of Pulverized Coal,Particles from Coal Combustion, presented at the Eighteenth

  18. National Coal Council Presentation/Prepared Remarks | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Coal Council PresentationPrepared Remarks National Coal Council PresentationPrepared Remarks National Coal Council PresentationPrepared Remarks More Documents &...

  19. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    TABLE 1. Pittsburgh seam coal properties, Grosshandler (content of the Pittsburgh seam coal. As the ash layer beginsfrom Pittsburgh seam pulverized coal, screened through a 35

  20. MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION

    E-Print Network [OSTI]

    Joyce, Peter James

    2011-01-01T23:59:59.000Z

    ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . • ,Results. . . • . ZnC1 2/MeOH Coal liquefaction Process

  1. Southern Coal finds value in the met market

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-11-15T23:59:59.000Z

    The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

  2. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

    1995-01-01T23:59:59.000Z

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  3. Coal beneficiation by gas agglomeration

    DOE Patents [OSTI]

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  4. Surface Coal Mining Law (Missouri)

    Broader source: Energy.gov [DOE]

    This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

  5. Coal Mining Reclamation (North Dakota)

    Broader source: Energy.gov [DOE]

    The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

  6. MS_Coal_Studyguide.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    atmosphere. Many of these technologies belong to a family of energy systems called "clean coal technologies." Since the mid-1980s, the U.S. Government has invested more than 3...

  7. Coal Beneficiation by Gas Agglomeration

    SciTech Connect (OSTI)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15T23:59:59.000Z

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  8. The Caterpillar Coal Gasification Facility

    E-Print Network [OSTI]

    Welsh, J.; Coffeen, W. G., III

    1983-01-01T23:59:59.000Z

    ' in 1981 and won the 'energy conservation award' for 1983. The decision to install and operate a coal gasification plant was based on severe natural gas curtailments at York with continuing supply interruptions. This paper will present a detailed...

  9. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31T23:59:59.000Z

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  10. Process for low mercury coal

    DOE Patents [OSTI]

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04T23:59:59.000Z

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  11. Steam Coal Import Costs - EIA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Steam Coal Import Costs for Selected Countries U.S. Dollars per Metric Ton1 (Average Unit Value, CIF2) Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Belgium 46.96 39.34...

  12. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01T23:59:59.000Z

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  13. Streamline coal slurry letdown valve

    DOE Patents [OSTI]

    Platt, Robert J. (Dover, NJ); Shadbolt, Edward A. (Basking Ridge, NJ)

    1983-01-01T23:59:59.000Z

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces.

  14. Streamline coal slurry letdown valve

    SciTech Connect (OSTI)

    Platt, R.J.; Shadbolt, E.A.

    1983-11-08T23:59:59.000Z

    A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

  15. AFBC co-firing of coal and hospital waste. Quarterly progress report, February 1, 1995--April 30, 1995

    SciTech Connect (OSTI)

    Stuart, J.M.

    1996-01-01T23:59:59.000Z

    The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing inexpensive and efficient destruction of both general and infectious hospital waste and steam generation. The steam generated is as follows: (1) Steam = 20,000 lb/hr, (2) Temperature = 353 F (saturated), (3) Pressure = 125 psig, and (4) Steam quality ={approximately}98.5%. On February 3, 1995 DONLEE notified Lebanon VA and DOE-METC that additional funding would be required to complete the project. This funding, in the amount of $1,140,127, is needed to complete the facility, start-up and shakedown the facility, perform the test program and write the final report. On March 7, 1995 the vendors were notified that the Lebanon VA Steam Plant Project was shut down and that all work outside DONLEE was stopped pending obtaining additional funding.

  16. AFBC co-firing of coal and hospital waste. Quarterly progress report, May 1--July 31, 1995

    SciTech Connect (OSTI)

    Stuart, J.M.

    1995-12-31T23:59:59.000Z

    The project objective is to design, construct, install, provide operator training and start-up a circulating fluidized bed combustion system at the Lebanon, Pennsylvania Veteran`s Affairs Medical Center. This unit will co-fire coal and hospital waste providing lower cost steam for heating and possibly cooling (absorption chiller) and operation of a steam turbine-generator for limited power generation. This would permit full capacity operation of the FBC year round in spite of the VA laundry that was shut down as well as efficient destruction of both general and infectious hospital waste and steam generation. On February 3, 1995 Donlee notified Lebanon VA and DOE-METC that additional funding would be required to complete the project. This funding, in the amount of $1,140,127, is needed to complete the facility, start-up and shakedown the facility, perform the test program and write the final report. After review DOE-METC approved funding in the amount of $1,246,019 to be available August 1, 1995. This report describes each task of the project and its status.

  17. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect (OSTI)

    T.D. Wheelock

    1999-03-01T23:59:59.000Z

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  18. Geology in coal resource utilization

    SciTech Connect (OSTI)

    Peters, D.C. (ed.)

    1991-01-01T23:59:59.000Z

    The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

  19. Healy Clean Coal Project: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-09-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

  20. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

    2012-01-01T23:59:59.000Z

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?˘ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?˘ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?˘ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?˘ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?˘ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?˘ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

  1. Making coal burnable: preparation and use

    SciTech Connect (OSTI)

    Rittenhouse, R.C.

    1985-06-01T23:59:59.000Z

    This paper offers several different views on the tools available to boost the burnability of coal. One view of making coal burnable and for better emissions control lies in the combustion process. One approach is fluidized bed combustion and the two choices within this technology are atmospheric (AFBC) and pressurized (PFBC). Several tests are being conducted to develop the slagging combustor technology for direct conversion from oil to coal. Some advantages listed for this method are a simple retrofit, low particulate, NO/sub x/ and SO/sub 2/ emissions, no modification for burning pulverized coal or coal/water slurry, no ash and no moving parts. Another method discussed is coal blending. The industrial and utility coal burning demand, combined with vacillating regulatory situations, reveals a need for coal users to be ever more alert to fuel price and availability. Technologies in the three areas of application -- coal preparation/cleaning, combustion, and emissions control -- offer an endless array of combinations.

  2. Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants

    SciTech Connect (OSTI)

    Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

    2006-12-22T23:59:59.000Z

    The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The extruder is special because all of its auger surface and the internal barrier surface are covered with the membranes allowing water to drain and solid particles retained. It is believed that there are four mechanisms working together in the dewatering process. They are hydrophilic diffusion flow, pressure flow, agitation and air purging. Hydrophilic diffusion flow is effective with hydrophilic membrane. Pressure flow is due to the difference of hydraulic pressure between the two sides of the membrane. Agitation is provided by the rotation of the auger. Purging is achieved with the air blow from the near bottom of the extruder, which is in vertical direction.

  3. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 December 1994--28 February 1995

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first two quarters of the project, the thrust of the work directed towards characterizing the various coal combustion residues and FGD residue, i.e., scrubber sludge. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADK unit l-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM, unit l-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}.0.5H{sub 2}O) phase. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disk,- from coal combustion residues. This has been achieved. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites. Also, these results along with mechanical behavior of the fabricated disks lead us to believe that the combination of surface altered PCC fly ash and scrubber sludge particles, together ed ash particles are ideal for our composite materials.

  4. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  5. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  6. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  7. Beluga Coal Gasification - ISER

    SciTech Connect (OSTI)

    Steve Colt

    2008-12-31T23:59:59.000Z

    ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

  8. Enhancement of surface properties for coal beneficiation

    SciTech Connect (OSTI)

    Chander, S.; Aplan, F.F.

    1992-01-30T23:59:59.000Z

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  9. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  10. Description of Wyoming coal fields and seam analyses

    SciTech Connect (OSTI)

    Glass, G.B.

    1983-01-01T23:59:59.000Z

    Introductory material describe coal-bearing areas, coal-bearing rocks, and the structural geology of coal-bearing areas, discussing coal rank, proximate analyses, sulfur content, heat value, trace elements, carbonizing properties, coking coal, coking operations, in-situ gasification, coal mining, and production. The paper then gives descriptions of the coal seams with proximate analyses, where available, located in the following areas: Powder River coal basin, Green River region, Hanna field, Hams Fork coal region, and Bighorn coal basin. Very brief descriptions are given of the Wind River coal basin, Jackson Hole coal field, Black Hills coal region, Rock Creek coal field, and Goshen Hole coal field. Finally coal resources, production, and reserves are discussed. 76 references.

  11. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    SciTech Connect (OSTI)

    Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

    2009-07-01T23:59:59.000Z

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

  12. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    SciTech Connect (OSTI)

    Hoffman, G.P. [ed.

    1994-07-01T23:59:59.000Z

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  13. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    of Methanol and a Methanol/Coal Slurry," Lawrence Berkeleyweight polymer of glucose. A coal slurry consisting of 80%

  14. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  15. Repowering with clean coal technologies

    SciTech Connect (OSTI)

    Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

    1996-02-01T23:59:59.000Z

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  16. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31T23:59:59.000Z

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  17. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30T23:59:59.000Z

    such as power plants. CO2 emissions can be offset by sequestration of produced CO2 in natural reservoirs such as coal seams, which may initially contain methane. Production of coalbed methane can be enhanced through CO2 injection, providing an opportunity...

  18. DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PD DECKER COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL RESOURCES Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

  19. Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth

    E-Print Network [OSTI]

    Johnson, Eric E.

    Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

  20. SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES

    E-Print Network [OSTI]

    Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  1. Argonne Premium Coal Sample Bank The Argonne Premium Coal (APC) Sample Bank can supply

    E-Print Network [OSTI]

    Maranas, Costas

    Argonne Premium Coal Sample Bank Background Overview T The Argonne Premium Coal (APC) Sample Bank can supply researchers with highly uniform, well-protected coal samples unexposed to oxygen. Researchers investigating coal structure, properties, and behavior can benefit greatly from these samples

  2. EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal DustMechanical Properties of Coal Dust Grain Size AnalysisGrain Size Analysis AtterbergAtterberg LimitsLimits Specific

  3. ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL

    E-Print Network [OSTI]

    Chapter PA ASHLAND COALFIELD, POWDER RIVER BASIN, MONTANA: GEOLOGY, COAL QUALITY, AND COAL of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

  4. Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants

    E-Print Network [OSTI]

    Hutcheon, James M.

    permits. To improve the aesthetic qualities of the effluent, coal ash (from local power plants_mill_discharge.jpg 2. Coal Power Plant http://www.csmonitor.com/var/ezflow_site/storage/images/media/images/2008Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power

  5. Climate VISION: Events - Advanced Clean Coal Workshop

    Office of Scientific and Technical Information (OSTI)

    Secretary Kyle McSlarrow, DOE, and Jim Rogers, CEO Chairman, Cinergy 10:15 Break 10:30 Case Studies on Clean Coal Projects Case StudiesLessons Learned on Clean Coal Plants (to...

  6. February 21 -22, 2014 Coast Coal Harbour

    E-Print Network [OSTI]

    Handy, Todd C.

    February 21 - 22, 2014 Coast Coal Harbour 1180 W Hastings St Vancouver, BC Healthy Mothers contact by phone: +1 604-822- 7708 or by e-mail: melissa.ipce@ubc.ca. Location The Coast Coal Harbour

  7. Integrated coal cleaning, liquefaction, and gasification process

    DOE Patents [OSTI]

    Chervenak, Michael C. (Pennington, NJ)

    1980-01-01T23:59:59.000Z

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  8. Ohio Coal Research and Development Program (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

  9. Integrated Coal Gasification Power Plant Credit (Kansas)

    Broader source: Energy.gov [DOE]

    Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

  10. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  11. Respiratory disease in Utah coal miners

    SciTech Connect (OSTI)

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01T23:59:59.000Z

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  12. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  13. Clean Coal Incentive Tax Credit (Kentucky)

    Broader source: Energy.gov [DOE]

    Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

  14. coal feeding | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Supported R&D for CoalBiomass Feed and Gasification Gasification Systems Program R&D The Department of Energy is currently developing technology for high pressure dry coal...

  15. Design and fabrication of advanced materials from Illinois coal wastes. Quarterly report, 1 March 1995--31 May 1995

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A.

    1995-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), differential thermal analysis (DTA), and transmission-Fourier transform infrared (FTIR) were conducted on PCC fly ash (Baldwin), FBC fly ash (ADM unit1-6), FBC fly ash (S.I. coal), FBC spent bed ash (ADM unit1-6), bottom ash, and scrubber sludge (CWLP) residues to characterize their geometrical shapes, mineral phases, and thermal stability. Our spectroscopic results indicate that the scrubber sludge is mainly composed of a gypsum-like phase whose lattice structure is different from the lattice structure of conventional gypsum, and sludge does not contain hannebachite (CaSO{sub 3}0.5H{sub 2}O) phase. In the second and third quarters the focus of research has been on developing protocols for the formation of advanced brake composites and structural composites. Our attempts to fabricate brake frictional shoes, in the form of 1.25 inch disks, from PCC fly ash, FBC spent bed ash, scrubber sludge, coal char, iron particles, and coal tar were successful. Based on the experience gained and microscopic analyses, we have now upscaled our procedures to fabricate 2.5 inch diameter disks from coal combustion residues. The SEM and Young`s modulus analyses of brake composites fabricated at 400 psi < Pressure < 2200 psi suggest pressure has a strong influence on the particle packing and the filling of interstices in our composites.

  16. 4th Annual Clean Coal

    E-Print Network [OSTI]

    Ferriter John P

    Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

  17. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  19. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits

    2001-01-18T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.

  20. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14T23:59:59.000Z

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  1. Canada's coal industry: full swing ahead

    SciTech Connect (OSTI)

    Stone, K. [Natural Resources Canada (Canada). Minerals and Metals Sector

    2007-03-15T23:59:59.000Z

    The article presents facts and figures about Canada's coal industry in 2006 including production, exports, imports, mines in operation, the Genesee 3 coal-fired generation unit, the Dodds-Roundhill Gasification Project, and new coal mine development plans. The outlook for 2007 is positive, with coal production expected to increase from 67 Mt in 2006 to 70 Mt in 2007 and exports expected to increase from 28 Mt in 2006 to 30 Mt in 2007.

  2. Cokemaking from coals of Kuzbas and Donbas

    SciTech Connect (OSTI)

    Umansky, R.Z. [Resourcecomplect, Donetsk (Ukraine); Kovalev, E.T.; Drozdnik, I.D. [UKHIN, Kharkov (Ukraine)

    1997-12-31T23:59:59.000Z

    The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

  3. National Coal celebrates its fifth anniversary

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-06-15T23:59:59.000Z

    The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

  4. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

    2010-01-15T23:59:59.000Z

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  5. The use of FBC wastes in the reclamation of coal slurry solids. Final technical report, September 1, 1991--December 31, 1992

    SciTech Connect (OSTI)

    Dreher, G.B.; Roy, W.R.; Steele, J.D. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-12-31T23:59:59.000Z

    Because the hydrogen peroxide oxidation technique underestimated the amount of pyrite in the CSS-2 samples, the amount of FBC waste or sized Ag LS used in each mixture with CSS-2 were less than necessary to satisfy the stoichiometric amount of acid that could be generated by complete oxidation of the pyrite in the CSS samples. However, the leaching experiments demonstrated that FBC waste is as effective as Ag LS in neutralizing the generated acid, and that the leachate pH would be approximately the same as that from Ag LS/CSS mixtures. In fact, the calcium hydroxide from the original hydrated FBC waste was converted to calcium carbonate in a short period of time, as indicated by chemical and mineralogical data. If the laboratory leaching experiments had continued for a long enough term, the alkaline materials present either in the unleached CSS-2, or added to the FBC wastes would have been consumed before all the pyrite had been oxidized, because of the deficiency of FBC waste in the mixtures. There is some concern, because of the concentrations of sodium and chloride in the initial leachates, over the toxicity of the leachates to plants. Although both these solutes were flushed quickly from the laboratory and outdoor weathering solids, this might not be the case in a coal slurry pond. Therefore, salt-tolerant plants might have to be selected for revegetation of the amended coal slurry solids.

  6. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBTU/hour oil fired boiler to pulverized coal

    SciTech Connect (OSTI)

    Zauderer, B.; Fleming, E.S.

    1991-08-30T23:59:59.000Z

    This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)

  7. Outlook and Challenges for Chinese Coal

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20T23:59:59.000Z

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

  8. Steam Plant Conversion Eliminating Campus Coal Use

    E-Print Network [OSTI]

    Dai, Pengcheng

    Steam Plant Conversion Eliminating Campus Coal Use at the Steam Plant #12;· Flagship campus region produce 14% of US coal (TN only 0.2%) Knoxville and the TN Valley #12;· UT is one of about 70 U.S. colleges and universities w/ steam plant that burns coal · Constructed in 1964, provides steam for

  9. Supersonic coal water slurry fuel atomizer

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

    1991-01-01T23:59:59.000Z

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  10. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.

    1991-07-16T23:59:59.000Z

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  11. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  12. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

    1986-01-01T23:59:59.000Z

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  13. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  14. Energy Center Center for Coal Technology Research

    E-Print Network [OSTI]

    Fernández-Juricic, Esteban

    Energy Center Center for Coal Technology Research http://www.purdue.edu/dp/energy/CCTR/ Consumption Production Gasification Power Plants Coking Liquid Fuels Environment Oxyfuels Byproducts Legislation, 500 Central Drive West Lafayette, IN 47907-2022 #12;INDIANA COAL REPORT 2009 Center for Coal

  15. Review of a Proposed Quarterly Coal Publication

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  16. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, Kenneth J. (Floreffe, PA); Wen, Wu-Wey (Murrysville, PA)

    1989-01-01T23:59:59.000Z

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow.

  17. Selective flotation of inorganic sulfides from coal

    DOE Patents [OSTI]

    Miller, K.J.; Wen, Wu-Wey

    1988-05-31T23:59:59.000Z

    Pyritic sulfur is removed from coal or other carbonaceous material through the use of humic acid as a coal flotation depressant. Following the removal of coarse pyrite, the carbonaceous material is blended with humic acid, a pyrite flotation collector and a frothing agent within a flotation cell to selectively float pyritic sulfur leaving clean coal as an underflow. 1 fig., 2 tabs.

  18. Chlorine in coal and boiler corrosion

    SciTech Connect (OSTI)

    Chou, M.I.M.; Lytle, J.M. [Illinois State Geological Survey, Champaign, IL (United States); Pan, W.P.; Liu, L. [Western Kentucky Univ., Bowling Green, KY (United States); Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, KY (United States); Ho, K.K. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    Corrosion of superheaters in the United Kingdom has been attributed to the high level of chlorine (Cl) in British coals. On the other hand, similar high-Cl Illinois coals have not caused boiler corrosion. This suggests that the extent of boiler corrosion due to Cl may not be directly related to the amount of Cl in the coal but to how the Cl occurs in the coal or to other factors. In this study, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine the thermal evolution characteristics and the forms of Cl in four Illinois and four British coals. The TGA-FTIR results indicate that under oxidizing conditions, both British and Illinois coals release hydrogen chloride (HCl) gas. Maximum evolution of HCl gas from Illinois coals occurs near 425 C, whereas, the temperature of maximum HCl release from British coals occurs between 210 and 280 C. The XANES results indicate that Cl in coal exists in ionic forms including a solid salt form. The HCl evolution profiles of the Illinois and British coals suggests that the way in which Cl ions are associated in Illinois coals is of different from the way they are associated in British coals.

  19. 2011 International Pittsburgh Coal Conference Pittsburgh, PA

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    and simultaneous carbon dioxide sequestration in an unmineable coal seam in the Northern Appalachian Basin collaboration. Introduction This paper reports on continued activities at the CONSOL Energy carbon sequestration Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E

  20. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F. (Allentown, PA); Miller, Robert N. (Allentown, PA)

    1986-01-01T23:59:59.000Z

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  1. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    SciTech Connect (OSTI)

    Huffman, G.P. [ed.

    1994-10-01T23:59:59.000Z

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  2. Coal desulfurization in a rotary kiln combustor

    SciTech Connect (OSTI)

    Cobb, J.T. Jr.

    1992-09-11T23:59:59.000Z

    The purpose of this project was to demonstrate the combustion of coal and coal wastes in a rotary kiln reactor with limestone addition for sulfur control. The rationale for the project was the perception that rotary systems could bring several advantages to combustion of these fuels, and may thus offer an alternative to fluid-bed boilers. Towards this end, an existing wood pyrolysis kiln (the Humphrey Charcoal kiln) was to be suitably refurbished and retrofitted with a specially designed version of a patented air distributor provided by Universal Energy, Inc. (UEI). As the project progressed beyond the initial stages, a number of issues were raised regarding the feasibility and the possible advantages of burning coals in a rotary kiln combustor and, in particular, the suitability of the Humphrey Charcoal kiln as a combustor. Instead, an opportunity arose to conduct combustion tests in the PEDCO Rotary Cascading-Bed Boiler (RCBB) commercial demonstration unit at the North American Rayon CO. (NARCO) in Elizabethton, TN. The tests focused on anthracite culm and had two objectives: (a) determine the feasibility of burning anthracite culms in a rotary kiln boiler and (b) obtain input for any further work involving the Humphrey Charcoal kiln combustor. A number of tests were conducted at the PEDCO unit. The last one was conducted on anthracite culm procured directly from the feed bin of a commercial circulating fluid-bed boiler. The results were disappointing; it was difficult to maintain sustained combustion even when large quantities of supplemental fuel were used. Combustion efficiency was poor, around 60 percent. The results suggest that the rotary kiln boiler, as designed, is ill-suited with respect to low-grade, hard to burn solid fuels, such as anthracite culm. Indeed, data from combustion of bituminous coal in the PEDCO unit suggest that with respect to coal in general, the rotary kiln boiler appears inferior to the circulating fluid bed boiler.

  3. HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS

    E-Print Network [OSTI]

    Holten, R.R.

    2010-01-01T23:59:59.000Z

    or gaseous fuels, coal gasification has advanced furthestrapidly. While coal gasification may reach commercializa-5272 (1976). COal Processing - Gasification, Liguefaction,

  4. Process for selective grinding of coal

    DOE Patents [OSTI]

    Venkatachari, Mukund K. (San Francisco, CA); Benz, August D. (Hillsborough, CA); Huettenhain, Horst (Benicia, CA)

    1991-01-01T23:59:59.000Z

    A process for preparing coal for use as a fuel. Forming a coal-water slurry having solid coal particles with a particle size not exceeding about 80 microns, transferring the coal-water slurry to a solid bowl centrifuge, and operating same to classify the ground coal-water slurry to provide a centrate containing solid particles with a particle size distribution of from about 5 microns to about 20 microns and a centrifuge cake of solids having a particle size distribution of from about 10 microns to about 80 microns. The classifer cake is reground and mixed with fresh feed to the solid bowl centrifuge for additional classification.

  5. Quarterly coal report, January--March 1998

    SciTech Connect (OSTI)

    Young, P.

    1998-08-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  6. Quarterly coal report, October--December 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  7. Potential applications of microscopy for steam coal

    SciTech Connect (OSTI)

    DeVanney, K.F.; Clarkson, R.J.

    1995-08-01T23:59:59.000Z

    Optical microscopy has been an extremely useful tool for many industrial sectors in the past. This paper introduces some of the potential applications of using coal and fly ash carbon microscopy for the combustion process and steam coal industry. Coal and fly ash carbon microscopic classification criteria are described. Plant sample data are presented which demonstrate that these techniques can be useful for coal selection and for problem solving in the coal-fired power plant environment. Practical recommendations for further study are proposed.

  8. Coal taking it on the chin

    SciTech Connect (OSTI)

    Price, J.

    1982-09-01T23:59:59.000Z

    A personal view of the short-term energy market with the emphasis firmly on coal. The demand for coal is considered likely to fall as consumption falls and stockpiles continue to grow. The low price of coal, and increasing transport costs are likely to reduce the number of coal operations. The relative abundance of alternative energy sources is considered unlikely to encourage the growth of industrial coal markets, nuclear power is far too costly as a competitor, however. The current tidewater port facilities are believed to be adequate, and the shelving of many existing plans is thought likely.

  9. Gasifier feed: Tailor-made from Illinois coals

    SciTech Connect (OSTI)

    Ehrlinger, H.P. III.

    1991-01-01T23:59:59.000Z

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  10. The foul side of 'clean coal'

    SciTech Connect (OSTI)

    Johnson, J.

    2009-02-15T23:59:59.000Z

    As power plants face new air pollution control, ash piles and their environmental threats are poised to grow. Recent studies have shown that carcinogens and other contaminants in piles of waste ash from coal-fired power plants can leach into water supplies at concentrations exceeding drinking water standards. Last year an ash dam broke at the 55-year old power plant in Kingston, TN, destroying homes and rising doubts about clean coal. Despite the huge amounts of ash generated in the USA (131 mtons per year) no federal regulations control the fate of ash from coal-fired plants. 56% of this is not used in products such as concrete. The EPA has found proof of water contamination from many operating ash sites which are wet impoundments, ponds or reservoirs of some sort. Several member of Congress have show support for new ash-handling requirements and an inventory of waste sites. Meanwhile, the Kingston disaster may well drive utilities to consider dry handling. 3 photos.

  11. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  12. Coke from coal and petroleum

    DOE Patents [OSTI]

    Wynne, Jr., Francis E. (Allison Park, PA); Lopez, Jaime (Pittsburgh, PA); Zaborowsky, Edward J. (Harwick, PA)

    1981-01-01T23:59:59.000Z

    A carbonaceous coke is manufactured by the delayed coking of a slurry mixture of from about 10 to about 30 weight percent of caking or non-caking coal and the remainder a petroleum resid blended at below 50.degree. C.

  13. Configurational diffusion of coal macromolecules

    SciTech Connect (OSTI)

    Guin, J.A.; Curtis, C.W.; Tarrer, A.R.; Kim, S.; Hwang, D.; Chen, C.C.; Chiou, Z.

    1991-01-01T23:59:59.000Z

    The objective of our research was to obtain fundamental information regarding the functional dependence of the diffusion coefficient of coal molecules on the ratio of molecule to pore diameter. That is, the objective of our study was to examine the effect of molecule size and configuration on hindered diffusion of coal macromolecules through as porous medium. To best accomplish this task, we circumvented the complexities of an actual porous catalyst by using a well defined porous matrix with uniform capillaric pores, i.e., a track-etched membrane. In this way, useful information was obtained regarding the relationship of molecular size and configuration on the diffusion rate of coal derived macromolecules through a pore structure with known geometry. Similar studies were performed using a pellet formed of porous alumina, to provide a link between the idealized membranes and the actual complex pore structure of real catalyst extrudates. The fundamental information from our study will be useful toward the tailoring of catalysts to minimize diffusional influences and thereby increase coal conversion and selectivity for desirable products. (VC)

  14. Catalysts for coal liquefaction processes

    DOE Patents [OSTI]

    Garg, D.

    1986-10-14T23:59:59.000Z

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  15. Cooperative research in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28T23:59:59.000Z

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  16. Coal-ash spills highlight ongoing risk to ecosystems

    SciTech Connect (OSTI)

    Chatterjee, R.

    2009-05-01T23:59:59.000Z

    Two recent large-scale spills of coal combustion waste have highlighted the old problem of handling the enormous quantity of solid waste produced by coal. Both spills happened at power plants run by the Tennessee Valley Authority (TVA). In December 2008 a holding pond for coal ash collapsed at a power plant in Kingstom, Tenn., releasing coal-ash sludge onto farmland and into rivers: in January 2009 a break in a pipe removing water from a holding pond for gypsum caused a spill at Widows Creek Fossil Plant in Stevenson, Ala. The article discusses the toxic outcome of such disasters on ecosystems, quoting work by Willaim Hopkins at Virginia Polytechnic Institute and State University and recommendations and reports of the US EPA. 2 photos.

  17. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H. [Monash University, Clayton, Vic. (Australia). Dept. of Civil Engineering

    2009-07-15T23:59:59.000Z

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  18. Quarterly Coal Report, July--September 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1994 and aggregated quarterly historical data for 1986 through the second quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. Additional historical data can also be found in the following EIA publications : Annual Energy Review 1993 (DOE/EIA-0384(93)), Monthly Energy Review (DOE/EIA-0035), and Coal Data: A Reference (DOE/EIA-0064(90)). The historical data in this report are collected by the EIA in three quarterly coal surveys (coal consumption at manufacturing plants, coal distribution, and coal consumption at coke plants), one annual coal production survey, and two monthly surveys of electric utilities. All data shown for 1993 and previous years are final. Data for 1994 are preliminary.

  19. A study of coal production in Nigeria

    SciTech Connect (OSTI)

    Akarakiri, J.B.; Afonja, A.A.; Okejiri, E.C. (Obafemi Awolowo Univ., Lle-Lfe (Nigeria))

    1991-01-01T23:59:59.000Z

    The Nigerian coal industry was studied. The focus was on the problems which have caused low production output of coal. More specifically, the study examined the present techniques of coal production, the causes of low production of coal, the coal production policy as it affected this study, and proposed policy measures to address the findings. It was discovered that some of the limiting factors to coal production in Nigeria could be attributed to the lack of the following: (i) clear and specific production-demand targets set for coal in Nigeria; (ii) adequate technological capability to mechanize coal mining operations in Nigeria; (iii) venture capital to invest in coal production; (iv) poor infrastructural facilities for coal production such as mining, storage, transportation, etc. It was also discovered that the dissatisfaction of the miners with their conditions of service influenced production capacity negatively. These findings point to the reality that coal is unlikely to play a major role in the country's energy equation in the near future unless serious efforts are made to address the above issues.

  20. Assessment of coal bed gas prospects

    SciTech Connect (OSTI)

    Moore, T.R. [Phillips Petroleum Co., Bartlesville, OK (United States)

    1996-12-31T23:59:59.000Z

    Coal bed gas is an often overlooked source of clean, methane-rich, H{sub 2}S-free natural gas. The economic development of coal bed gas requires a knowledge of coal gas reservoir characteristics and certain necessary departures from conventional evaluation, drilling, completion, and production practices. In many ways coal seam reservoirs are truly unconventional. Most coals sufficient rank have generated large volumes of gas that may be retained depth in varying amounts through adsorption. Coal gas production can take place only when the reservoir pressure is reduced sufficiently to allow the gas to desorb. Gas flow to the well bore takes place through a hierarchy of natural fractures, not the relatively impermeable coal matrix. Economic production is dependent upon critical factors intrinsic to the reservoir, including coal petrology, gas content, internal formation stratigraphy, fracture distribution, hydrogeology, in situ stress conditions, initial reservoir pressure and pressure regime, and the presence or absence of a {open_quote}free{close_quotes} gas saturation. Further, the coal bed reservoir is readily subject to formation damage through improper drilling, completion, or production techniques. This presentation will review the data types critical to the assessment of any coal seam gas prospect, suggest an outline method for screening such prospects, and point out some possible pitfalls to be considered in any coal bed gas development project.

  1. advanced coal-combustion technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  2. advanced coal-combustion technologies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

  3. Environmental control implications of coal use

    SciTech Connect (OSTI)

    Wilzbach, K.E.; Livengood, C.D.; Farber, P.S.

    1980-01-01T23:59:59.000Z

    The Environmental Control Technology for Coal Utilization program at Argonne National Laboratory (ANL) is assisting DOE by providing information required in the planning and guidance of R and D programs for coal utilization technologies and the associated environmental controls. Both available and developing technologies for the entire energy system from the mine mouth through ultimate waste disposal are analyzed. The tools of technology assessment and systems analysis are used to provide balanced evaluations of the engineering, environmental, and economic aspects of the technologies, as well as identification of synergistic effects and secondary or indirect impacts. This paper deals with three topics: First, the assessments performed to date that indicate the nature of our current work are briefly reviewed. Next, the computerized models and data bases utilized in our assessments are described. Lastly, some of the results from a major ongoing study of environmental controls for industrial boilers are presented and their implications discussed.

  4. Directory of coal production ownership, 1979

    SciTech Connect (OSTI)

    Thompson, B.

    1981-10-01T23:59:59.000Z

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  5. Coal Gasification for Power Generation, 3. edition

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

  6. Solidification/stabilization of toxic metal wastes using coke and coal combustion by-products

    SciTech Connect (OSTI)

    Vempati, R.K.; Mollah, M.Y.A.; Chinthala, A.K.; Cocke, D.L. [Lamar Univ., Beaumont, TX (United States)] [Lamar Univ., Beaumont, TX (United States); Beeghly, J.H. [Dravo Lime, Pittsburgh, PA (United States)] [Dravo Lime, Pittsburgh, PA (United States)

    1995-12-31T23:59:59.000Z

    A study has been conducted to evaluate the potential of a special rubber waste, NISCO Cyclone Ash (NCA), which contains substantial calcium oxide and calcium sulfites/sulfates for solidification/stabilization (S/S) of toxic metal wastes. The mineralogical compositions of the NCA and a class ``C`` fly ash have been characterized by X-ray diffraction (XRD). Hydrated mixtures of these wastes have been examined by XRD and found to form ettringite. Low concentrations of As (15 {micro}g ml{sup {minus}1}), Ba (500 {micro}g ml{sup {minus}1}), Pb (15 {micro}g ml{sup {minus}1}), and Zn (1,000 {micro}g ml{sup {minus}1}) were added to these hydrated mixtures and found to be successfully immobilized and solidified, as determined by the Toxicity Characteristic Leaching Procedure (TCLP). In addition, the mineralogy, chemistry and leaching characteristics of these combined waste products and their interactions with toxic metals are discussed.

  7. Proceedings, twenty-five annual international Pittsburgh coal conference

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    The conference theme was 'coal - energy, environment and sustainable development'. The topics covered energy and environmental issues, and technologies related to coal and its byproducts. These included: gasification, hydrogen from coal, combustion technologies, coal production and preparation, synthesis of liquid fuels, gas turbines and fuel cells for synthesis gas and hydrogen applications, coal chemistry and geosciences, global climate change, underground coal gasification, environmental control technologies, and coal utilization byproducts.

  8. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect (OSTI)

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan [Western Kentucky University (WKU), Bowling Green, KY (USA). Institute for Combustion Science and Environmental Technology (ICSET)

    2008-12-15T23:59:59.000Z

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  9. Remaining Sites Verification Package for the 126-B-3, 184-B Coal Pit Dumping Area, Waste Site Reclassification Form 2005-028

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-07T23:59:59.000Z

    The 126-B-3 waste site is the former coal storage pit for the 184-B Powerhouse. During demolition operations in the 1970s, the site was used for disposal of demolition debris from 100-B/C Area facilities. The site has been remediated by removing debris and contaminated soils. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  10. Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

    1995-07-01T23:59:59.000Z

    This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

  11. Coal Gasification Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Recommendations 4.5. Non-Fossil Technologies Non-fossil technologies include nuclear, photovoltaic, solar thermal, biomass IGCC, municipal solid waste, geothermal, wind,...

  12. Quarterly coal report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-26T23:59:59.000Z

    In the second quarter of 1993, the United States produced 235 million short tons of coal. This brought the total for the first half of 1993 to 477 million short tons, a decrease of 4 percent (21 million short tons) from the amount produced during the first half of 1992. The decrease was due to a 26-million-short-ton decline in production east of the Mississippi River, which was partially offset by a 5-million-short-ton increase in coal production west of the Mississippi River. Compared with the first 6 months of 1992, all States east of the Mississippi River had lower coal production levels, led by West Virginia and Illinois, which produced 9 million short tons and 7 million short tons less coal, respectively. The principal reasons for the drop in coal output for the first 6 months of 1993 compared to a year earlier were: a decrease in demand for US coal in foreign markets, particularly the steam coal markets; a draw-down of electric utility coal stocks to meet the increase in demand for coal-fired electricity generation; and a lower producer/distributor stock build-up. Distribution of US coal in the first half of 1993 was 15 million short tons lower than in the first half of 1992, with 13 million short tons less distributed to overseas markets and 2 million short tons less distributed to domestic markets.

  13. Leaching and toxicity behavior of coal-biomass waste cocombustion ashes

    SciTech Connect (OSTI)

    Skodras, G.; Prokopidou, M.; Sakellaropoulos, G.P. [Aristotle University in Thessaloniki, Thessaloniki (Greece). Dept. for Chemical Engineering

    2006-08-15T23:59:59.000Z

    Land disposal of ash residues, obtained from the cocombustion of Greek lignite with biomass wastes, is known to create problems due to the harmful constituents present. In this regard, the leachability of trace elements from lignite, biomass, and blends cocombustion ashes was investigated by using the Toxicity Characteristic Leaching Procedure (TCLP) of the US Environmental Protection Agency (US EPA). In this work, the toxicity of the aqueous leachates and the concentrations of the metals obtained from the leaching procedure were measured using the Microtox test (Vibrio fischen) and inductive coupled plasma-atomic emission spectrometer (ICP-AES), respectively. The toxic effects of most leachates on Vibrio fischeri were found to be significantly low in both 45% and 82% screening test protocols. However, the liquid sample originating from olive kernels fly ash (FA4) caused the highest toxic effect in both protocols, which can be attributed to its relatively high concentrations of As, Cd, Co, Cu, Mn, Ni, and Zn.

  14. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D. [Benham Companies LLC (USA)

    2009-01-15T23:59:59.000Z

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  15. Chemical comminution and deashing of low-rank coals

    DOE Patents [OSTI]

    Quigley, David R.

    1992-12-01T23:59:59.000Z

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  16. Adsorption and Strain: The CO2-Induced Swelling of Coal

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Adsorption and Strain: The CO2-Induced Swelling of Coal M. Vandamme1 , L. Brochard2 , B. Lecampion3.07.014 #12;Abstract Enhanced coal bed methane recovery (ECBM) consists in injecting carbon dioxide in coal gets adsorbed at the surface of the coal pores, which causes the coal to swell. This swelling

  17. Chemical comminution and deashing of low-rank coals

    DOE Patents [OSTI]

    Quigley, David R. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A method of chemically comminuting a low-rank coal while at the same time increasing the heating value of the coal. A strong alkali solution is added to a low-rank coal to solubilize the carbonaceous portion of the coal, leaving behind the noncarbonaceous mineral matter portion. The solubilized coal is precipitated from solution by a multivalent cation, preferably calcium.

  18. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  19. Coal combustion products: trash or treasure?

    SciTech Connect (OSTI)

    Hansen, T.

    2006-07-15T23:59:59.000Z

    Coal combustion by-products can be a valuable resource to various industries. The American Coal Ash Association (ACAA) collects data on production and uses of coal combustion products (CCPs). 122.5 million tons of CCPs were produced in 2004. The article discusses the results of the ACCA's 2004 survey. Fly ash is predominantly used as a substitute for Portland cement; bottom ash for structural fill, embankments and paved road cases. Synthetic gypsum from the FGD process is commonly used in wallboard. Plant owners are only likely to have a buyer for a portion of their CCPs. Although sale of hot water (from Antelope Valley Station) from condensers for use in a fish farm to raise tilapia proved unviable, the Great Plains Synfuels Plant which manufactures natural gas from lignite produces a wide range of products including anhydrous ammonia, phenol, krypton, carbon dioxide (for enhanced oil recovery), tar oils and liquid nitrogen. ACCA's goal is to educate people about CCPs and how to make them into useful products, and market them, in order to reduce waste disposal and enhance revenue. The article lists members of the ACCA. 2 photos., 1 tab.

  20. Catalyst for coal liquefaction process

    DOE Patents [OSTI]

    Huibers, Derk T. A. (Pennington, NJ); Kang, Chia-Chen C. (Princeton, NJ)

    1984-01-01T23:59:59.000Z

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  1. Coal liquefaction co-processing

    SciTech Connect (OSTI)

    Nafis, D.A.; Humbach, M.J. (UOP, Inc., Des Plaines, IL (USA)); Gatsis, J.G. (Allied-Signal, Inc., Des Plaines, IL (USA). Engineered Materials Research Center)

    1988-09-19T23:59:59.000Z

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high quality synthetic oil. A highly active dispersed V{sub 2}O{sub 5} catalyst is used to enhance operations at moderate reaction conditions. A three-year research program has been completed to study the feasibility of this technology. Results are discussed. 7 refs., 14 figs., 21 tabs.

  2. PNNL Coal Gasifier Transportation Logistics

    SciTech Connect (OSTI)

    Reid, Douglas J.; Guzman, Anthony D.

    2011-04-13T23:59:59.000Z

    This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNL’s coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNL’s Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administration’s Cargo Securement Rules.

  3. Impacts of new coal-using technologies on coal markets and electric utilities

    SciTech Connect (OSTI)

    Stauffer, C.H.

    1982-06-01T23:59:59.000Z

    ICF's Coal and Electric Utilities Model (CEUM) was used to make forecasts on the impact of new coal technologies and markets and utilities. The new technologies include the gasifier/ combined cycle (GCC), the atmospheric fluidized bed combustor (AFBC), and the retrofit of synthetic coal-fluids on advanced combined cycle capacity. National production by the year 2000 will increase slightly. Impact of technology will be negligible due to the offsetting effects of GCC (it uses less coal) and synthetic coal fluids. Regional production will increase in synthetic coal fluid regions, decrease in sulphur coal regions. In utilities, coal additions by GCC are favored in the east, by AFBC in the west. SO/sub 2/ emissions will start to decline in 1995, NOx emissions will continue to rise, but not as sharply. Overall costs of utilities are expected to fall slightly by the year 2010.

  4. Method for desulfurization of coal

    DOE Patents [OSTI]

    Kelland, David R. (Lexington, MA)

    1987-01-01T23:59:59.000Z

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  5. Coal bunkers in underground mines

    SciTech Connect (OSTI)

    Polak, J.; Zegzulka, J. [VSB-Technical Univ., Ostrava (Czech Republic)

    1996-12-31T23:59:59.000Z

    In spite of the technical progress in the application of face technological equipment, the fluctuation of its output has been still considerable. A coal clearance system can be on one hand overloaded by production peaks and on the other hand its stoppages unfavorably influence production of faces. It has been proved that the most effective coal conveying system incorporates surge bunkers to eliminate the above mentioned problems. The surge bunkers have been used in the Czech mines since the middle of the sixties. There were 17 bunkers with an average capacity of 200 m{sup 3} in the biggest Czech coal mine basin OKD in 1967. Presently the number of bunkers has increased to 66 with a total capacity of 40,000 m{sup 3}. It represents the possibility of storing 56% of the daily OKD running of mine output. Two thirds of the number are gate bunkers with an average capacity of 540 m{sup 3} and the rest are skip ones with an average capacity of 740 m{sup 3}, situated at the shaft side.

  6. Apparatus for solar coal gasification

    DOE Patents [OSTI]

    Gregg, D.W.

    1980-08-04T23:59:59.000Z

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  7. Method for desulfurization of coal

    DOE Patents [OSTI]

    Kelland, D.R.

    1987-07-07T23:59:59.000Z

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  8. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  9. Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek

    E-Print Network [OSTI]

    Gray, Matthew

    1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

  10. CO2 Sequestration in Unminable Coal with ECBMR -2010 Reprint -Proceedings 2010 International Pittsburgh Coal Conference, Istanbul, Turkey 1

    E-Print Network [OSTI]

    Wilson, Thomas H.

    CO2 Sequestration in Unminable Coal with ECBMR - 2010 Reprint - Proceedings 2010 International Pittsburgh Coal Conference, Istanbul, Turkey 1 CO2 SEQUESTRATION IN UNMINABLE COAL WITH ENHANCED COAL BED conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery

  11. Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali

    SciTech Connect (OSTI)

    D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii [National Academy of Sciences of Ukraine, Kiev (Ukraine). Dumanskii Institute of Colloid and Water Chemistry

    2009-07-01T23:59:59.000Z

    The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

  12. Coal distribution, January--June 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-21T23:59:59.000Z

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data in this report are collected and published by the Energy Information Administration (EIA) to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275, Sections 5 and 13, as amended). This issue presents information for January through June 1991. Coal distribution data are shown (in Tables 1--34) by coal-producing Sate of origin, consumer use, method of transportation, and State of destination. All data in this report were collected by the EIA on Form EIA-6, Coal Distribution Report.'' A copy of the form and the instructions for filing appear in Appendix B. All data in this report for 1991 are preliminary. Data for previous years are final. 6 figs., 34 tabs.

  13. Clean Coal Technology Programs: Program Update 2009

    SciTech Connect (OSTI)

    None

    2009-10-01T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nation’s energy security and reliability, while protecting the environment using the nation’s most abundant energy resource—coal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

  14. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31T23:59:59.000Z

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  15. Clean coal technology programs: program update 2006

    SciTech Connect (OSTI)

    NONE

    2006-09-15T23:59:59.000Z

    The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

  16. Statistical review of coal in Canada, 1997

    SciTech Connect (OSTI)

    Not Available

    1999-01-01T23:59:59.000Z

    The paper presents an annual review of the coal industry, including production, exports and imports, and consumption. An overview is given, followed by more detailed statistical data for the current year and preceding decade (supply and demand, value and volume of supply by province, coal production by class or province, exports by destination, coal consumed in power generation by province, electrical energy production by fuel type, domestic demand for primary energy by type).

  17. Fired heater for coal liquefaction process

    DOE Patents [OSTI]

    Ying, David H. S. (Macungie, PA); McDermott, Wayne T. (Allentown, PA); Givens, Edwin N. (Bethlehem, PA)

    1985-01-01T23:59:59.000Z

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  18. Quarterly coal report, July--September 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  19. Quarterly coal report, July--September 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  20. Railroads and shippers clash over coal dust

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2007-11-15T23:59:59.000Z

    In an effort to reduce coal spillage from railcars, mines in the Powder River Basin (PRB) now load coal with a loaf profile but, reportedly, beginning in 2008, Burlington Northern Santa Fe (BNSF) will announce guidelines requiring all PRB coal loads to be sprayed with a chemical surfactant. If this does not fix the problem, greater measures will be taken. At the time of going to press, the details of how this would be implemented and regulated were unresolved. 1 photo.

  1. Process for treating moisture laden coal fines

    DOE Patents [OSTI]

    Davis, Burl E. (New Kensington, PA); Henry, Raymond M. (Gibsonia, PA); Trivett, Gordon S. (South Surrey, CA); Albaugh, Edgar W. (Birmingham, AL)

    1993-01-01T23:59:59.000Z

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  2. Investigation of coal structure. Final report

    SciTech Connect (OSTI)

    Nishioka, Masaharu

    1994-03-01T23:59:59.000Z

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  3. A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

    SciTech Connect (OSTI)

    Jiang, C.

    1993-12-31T23:59:59.000Z

    Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

  4. Process for electrochemically gasifying coal using electromagnetism

    DOE Patents [OSTI]

    Botts, Thomas E. (Markham, VA); Powell, James R. (Shoreham, NY)

    1987-01-01T23:59:59.000Z

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  5. Apparatus for fixed bed coal gasification

    DOE Patents [OSTI]

    Sadowski, Richard S. (Greenville, SC)

    1992-01-01T23:59:59.000Z

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  6. Integrated two-stage coal liquefaction process

    DOE Patents [OSTI]

    Bronfenbrenner, James C. (Allentown, PA); Skinner, Ronald W. (Allentown, PA); Znaimer, Samuel (Vancouver, CA)

    1985-01-01T23:59:59.000Z

    This invention relates to an improved two-stage process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal.

  7. Today's high coal prices: correction or crisis?

    SciTech Connect (OSTI)

    Platt, J. [EPRI (US)

    2005-06-01T23:59:59.000Z

    Eastern spot prices for coal have risen 25% since the start of 2004, reaching their highest levels in more than 25 years. This spike represents the second time in four years that coal prices have risen to more than double their pre-2000 price levels. Years of famine (from a coal producer's point of view) have been replaced by periods of plenty, with increasing consequences for coal's customers. How long will this spike last? This article, based on studies carried out by EPRI, attempts to answer this question. 3 figs., 1 tab.

  8. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    and Reserves Circular. Beijing: MLR, cited in IEA. 2009.Cleaner Coal in China. Paris: IEA. Ghee Peh, Wei Ouyang. (London: WEC Press. IEA. (2007) World Energy Outlook 2007.

  9. Quarterly coal report, April--June, 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  10. Quarterly coal report, April--June 1997

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  11. Quarterly coal report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-02T23:59:59.000Z

    The Quarterly Coal Report provides comprehensive information about US coal production, exports, imports, receipts, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. This issue presents detailed quarterly data for April 1990 through June 1990, aggregated quarterly historical data for 1982 through the second quarter of 1990, and aggregated annual historical data for 1960 through 1989 and projected data for selected years from 1995 through 2010. To provide a complete picture of coal supply and demand in the United States, historical information and forecasts have been integrated in this report. 7 figs., 37 tabs.

  12. Coal production expansion: a selected bibliography

    SciTech Connect (OSTI)

    Grissom, M.C. (ed.)

    1980-07-01T23:59:59.000Z

    The expeditious and economic transport of coal from producing regions to consuming regions is essential to any policy designed to increase the use of coal as an energy source. Obtaining an optimal coal transportation system, including terminal facilities, is significant in providing US coal to its users in the United States and abroad. Rail, barge, truck, slurry pipeline, and ship are the modes used to move coal from the producer to the user. Transportation costs represent a large percentage of the delivered price. This bibliography includes 138 selected citations on coal export, transport, and production. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. These citations and hundreds of additional citations on this subject are available for on-line searching and retrieval from the Technical Information Center's Energy Data Base using the DOE/RECON interactive system. Approximately 50,000 citations on coal and coal products are a part of this data base. Current additions to data base on this subject are announced monthly in Fossil Energy Update. DOE-sponsored work is also announced in Energy Research Abstracts. The citations in this publication are arranged in broad subject categories as shown in the table of contents. Five indexes are provided: Corporate, Author, Subject, Contract Number, and Report Number. Included as an appendix are some tables and figures from Energy Information Administration reports covering coal production and disposition.

  13. Continuing consolidation in the coal industry

    SciTech Connect (OSTI)

    Gaalaas, T. [Pace Global Energy Services LLC (United States)

    2006-08-15T23:59:59.000Z

    Extensive consolidation has occurred in the coal industry over the past decade. The greatest degree of consolidation has occurred in Northern Appalachia, the Illinois Basin, and the Wyoming portion of the Powder River Basin (PRB), which are the coal supply regions where most observers expect the greatest growth in coal production over the next decade. In addition to reducing the number of alternative suppliers, high level of concentration also tend to result in higher prices, more volatile spot markets, and lower levels of reliability. Therefore, coal-fired generators purchasing in these regions need to respond proactively and strategically to these market trends. 2 figs.

  14. Quarterly coal report, January--March 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report presents detailed quarterly data for March 1996 and historical data for 1988 through 1995 on coal production, distribution, imports and exports, prices, consumption, and stocks.

  15. Production of Hydrogen from Underground Coal Gasification

    DOE Patents [OSTI]

    Upadhye, Ravindra S. (Pleasanton, CA)

    2008-10-07T23:59:59.000Z

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  16. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    delivered heating (district heating) (6%), and chemicalscoal growth. As district heating expands with urbanizationzone, coal use for district heating will depend on the

  17. MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION

    E-Print Network [OSTI]

    Joyce, Peter James

    2011-01-01T23:59:59.000Z

    Hydrogen Requirement for Coal Slurry Reactor, G. Gas-LiquidFlow of Gas-Liquid and Gas-Coal Slurry Mixtures in Verticalper unit volume of melt coal slurry can be expressed in

  18. COAL LIQUEFACTION ALLOY TEST PROGRAM ANNUAL REPORT FY 1978

    E-Print Network [OSTI]

    Levy, A.

    2014-01-01T23:59:59.000Z

    vs. Tempeature of Coal Slurries in Creosote OiL III z u wdilatant behavior of the coal slurries (Figures 2 and 3) atIt can be seen that the coal slurry produced a minor. but

  19. COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER

    E-Print Network [OSTI]

    Chin, W.K.

    2010-01-01T23:59:59.000Z

    November 1976. Wilson, P.J. and Wells, J.H. , Coal, Cokeand Coal Chemicals, 108, (1950). This report was done withliThe F1uidised Combustion of Coal," Sixteenth S m osium {

  20. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  1. advanced coal conversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the coal plant is transmitted over the transmission lines, Phadke, Amol 2008-01-01 7 Clean Coal Technology Program Advanced Coal Conversion Process Demonstration CiteSeer Summary:...

  2. Design and fabrication of advanced materials from Illinois coal wastes. [Quarterly] technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Malhotra, V.M.; Wright, M.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31T23:59:59.000Z

    The main goal of this project is to develop a bench-scale procedure to design and fabricate advanced brake and structural composite materials from Illinois coal combustion residues. During the first quarter of the project, the thrust of the work was directed towards setting up the experimental facilities and undertaking preliminary tests to gauge the ability of coal tar derived binder in fabricating the brake skeletons. In addition systematic scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) were conducted on PCC fly ash (Baldwin), fly ash (ADM), FBC fly ash, FBC spent bed bottom ash, bottom ash (ADM), and scrubber sludge residues to characterize their geometrical shape and thermal stability. The PCC fly ash particles being highly spherical in shape and thermally inert up to 1100{degrees}C will make an excellent raw material for our composites. This is born out by fabricating brake skeletons from PCC fly ash colloids. Unlike the PCC fly ash and FBC fly ash, the scrubber sludge particles are not suitable hosts for our brake lining materials because of a whisker-like particle structure. Six different compositions of various combustion residues were tested in the fabrication of brake skeletons, and our tar derived binder shows great promise in the fabrication of composite materials.

  3. Stimulating Investment in Renewable Resources and Clean Coal Technology through a Carbon Tax:

    E-Print Network [OSTI]

    Nellie Zhao; Servia Rindfleish; Jay Foley; Jelena Pesic

    three tax rates. The substitution of clean coal technology for standard coal, which seems promising for

  4. Coal: world energy security. The Clearwater clean coal conference

    SciTech Connect (OSTI)

    Sakkestad, B. (ed.)

    2009-07-01T23:59:59.000Z

    Topics covered include: oxy-fuel (overview, demonstrations, experimental studies, burner developments, emissions, fundamental and advanced concepts); post-combustion CO{sub 2} capture; coal conversion to chemicals and fuels; advanced materials; hydrogen production from opportunity fuels; mercury abatement options for power plants; and carbon capture and storage in volume 1. Subjects covered in volume 2 include: advanced modelling; advanced concepts for emission control; gasification technology; biomass; low NOx technology; computer simulations; multi emissions control; chemical looping; and options for improving efficiency and reducing emissions.

  5. Coal and Coal-Biomass to Liquids FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOECoach Compliance Form MyCoal

  6. Field study for disposal of solid wastes from Advanced Coal Processes: Ohio LIMB Site Assessment. Final report, April 1986--November 1994

    SciTech Connect (OSTI)

    Weinberg, A.; Coel, B.J.; Butler, R.D.

    1994-10-01T23:59:59.000Z

    New air pollution regulations will require cleaner, more efficient processes for converting coal to electricity, producing solid byproducts or wastes that differ from conventional pulverized-coal combustion ash. Large scale landfill test cells containing byproducts were built at 3 sites and are to be monitored over at least 3 years. This report presents results of a 3-y field test at an ash disposal site in northern Ohio; the field test used ash from a combined lime injection-multistage burner (LIMB) retrofit at the Ohio Edison Edgewater plant. The landfill test cells used LIMB ash wetted only to control dusting in one cell, and LIMB ash wetted to optimize compaction density in the other cell. Both test cells had adequate load-bearing strength for landfill stability but had continuing dimensional instability. Heaving and expansion did not affect the landfill stability but probably contributed to greater permeability to infiltrating water. Leachate migration occurred from the base, but effects on downgradient groundwater were limited to increased chloride concentration in one well. Compressive strength of landfilled ash was adequate to support equipment, although permeability was higher and strength was lower than anticipated. Average moisture content has increased to about 90% (dry weight basis). Significant water infiltration has occurred; the model suggests that as much as 20% of the incident rainfall will pass through and exit as leachate. However, impacts on shallow ground water is minimal. Results of this field study suggest that LIMB ash from combustion of moderate to high sulfur coals will perform acceptably if engineering controls are used to condition and compact the materials, reduce water influx to the landfill, and minimize leachate production. Handling of the ash did not pose serious problems during cell construction; steaming and heat buildup were moderate.

  7. A centurial history of technological change and learning curves or pulverized coal-fired utility boilers

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.

    2007-01-01T23:59:59.000Z

    International Energy Agency’s Clean Coal Centre CoalPower5Press; 2002. [25] IEA Clean Coal Centre. CoalPower5 (CD-from fossil fuels. In: IEA clean coal conference, Sardinia,

  8. Quarterly coal report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-20T23:59:59.000Z

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  9. Interaction of coal-derived synthesis gas impurities with solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal-derived synthesis gas impurities with solid oxide fuel cell metallic components. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic...

  10. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 This...

  11. Optimized Pump Systems Save Coal Preparation Plant Money and...

    Broader source: Energy.gov (indexed) [DOE]

    study describes how Peabody Holding Company was able to improve the performance of a coal slurry pumping system at its Randolph Coal Preparation plant. Using a systematic...

  12. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  13. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

  14. advanced coal liquefaction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  15. advanced coal gasification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  16. advanced pressurized coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  17. advanced direct coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  18. advanced physical coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...

  19. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Industrial Carbon Capture and Storage Clean Coal Power Initiative Power Plant Improvement Initiative Clean Coal Technology Demonstration Program FutureGen Advanced Multi-Product...

  20. advanced fine coal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion and Utilization Websites Summary: Kumfer, ACERF Manager Consortium for Clean Coal Utilization Fly ash utilization Be a resourceADVANCED COAL & ENERGY RESEARCH...