Sample records for waste black liquor

  1. Gasification of black liquor

    SciTech Connect (OSTI)

    Kohl, A.L.

    1987-07-28T23:59:59.000Z

    A process is described for treating a concentrated aqueous black liquor carbonaceous material and alkali metal sulfur compounds to form a combustible gas and a sulfide-rich melt comprising: (a) providing a gasifier vessel maintained at a pressure of from about 1 to 50 atmospheres and containing a relatively shallow molten salt pool at its bottom within a sump equipped with an overflow discharge; (b) introducing into the top of the drying zone the concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds; (c) evaporating water from the concentrated aqueous black liquor in the drying zone by direct contact of the aqueous black liquor with the hot gas rising from the gasification zone to produce dried black liquor solids; (d) introducing a first portion of an oxygen-containing gas into the gas space in the gasification zone located below the drying zone immediately above the molten salt pool to partially oxidize and gasify a fraction of the carbonaceous material in the dried black liquor solids falling through the zone to form a hot combustible gas; (e) introducing a second portion of the oxygen-containing gas beneath the surface of the molten salt pool in an amount sufficient to cause gasification of essentially all carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool; (f) withdrawing the cooled combustible gas having a higher heating value of at least about 90 Btu/scf (dry basis) from an upper portion of the drying zone; and (g) withdrawing from the overflow discharge in the molten salt reduction zone a melt in which the sulfur content is predominantly in the form of alkali metal sulfide.

  2. Combustion of black liquor

    SciTech Connect (OSTI)

    Mullen, W.T.

    1989-08-15T23:59:59.000Z

    This patent describes an improvement in the combustion of black liquor in an existing Tomlison recovery boiler unit in which black liquor is sprayed into a furnace in which it is successively dried, pyrolyzed and converted to a bed of solid carbonaceous residue, using a primary air stream and a secondary air stream and the residue is subsequently converted to a smelt. The improvement comprises: the addition of between an effective amount up to 5% oxygen by volume to the primary air stream directed at the bed of solid carbonaceous residue, the amount of oxygen added being sufficient to increase the adiabatic flame temperature, the combustion rate of the solid carbonaceous material, the rate of pyrolysis, the temperature in the lower portion of the furnace, the the drying rate of black liquor droplets, and to decrease the temperature of the gases entering the heat transfer surfaces in the upper portion of the furnace and the rate of deposit formation on the surfaces and wherein the amount of black liquor combusted is increased as compared with the amount combusted in the same furnace operated without the addition of oxygen to the primary air.

  3. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, Arthur L. (Woodland Hills, CA)

    1987-07-28T23:59:59.000Z

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  4. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, A.L.

    1987-07-28T23:59:59.000Z

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  5. Kraft black liquor delivery systems

    SciTech Connect (OSTI)

    Adams, T.N.; Empie, H.L.; Obuskovic, N.; Spielbauer, T.M.

    1990-02-01T23:59:59.000Z

    Improvement of spray nozzles for black liquor injection into kraft recovery furnaces is expected to result from obtaining a controlled, well-defined droplet size distribution. Work this year has centered on defining the capabilities of commercial black liquor nozzles currently in use. Considerations of the observed mechanism of droplet formation suggest a major revision is needed in the theory of how droplets form from these nozzles. High resolution, high sensitivity video has been shown to be superior to flash x-ray as a technique for measuring the droplet size distribution as well as the formation history. An environmentally sound spray facility capable of spraying black liquor at temperatures up to normal firing conditions is being constructed before data acquisition continues. Preliminary correlations have been developed between liquor properties, nozzle design, and droplet size. Three aspects of nozzle design have been investigated: droplet size distribution, fluid sheet thickness, and flow and pressure drop characteristics. The standard deviation about the median droplet size for black liquor is nearly the same as the for a wide variety of other fluids and nozzle types. Preliminary correlation for fluid sheet thickness on the plate of a splashplate nozzle show the strong similarities of black liquor to other fluids. The flow and pressure drop characteristic of black liquor nozzle, follow a simple two-term relationship similar to other flow devices. This means that in routine mill operation of black liquor nozzles only the fluid acceleration in the nozzle is important, viscous losses are quiet small. 21 refs., 53 figs., 10 tabs.

  6. Combustion properties of Kraft Black Liquors

    SciTech Connect (OSTI)

    Frederick, W.J. Jr.; Hupa, M. (Aabo Akademi, Turku (Finland))

    1993-04-01T23:59:59.000Z

    In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysis of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.

  7. Black Liquor Research Program symposium: proceedings

    SciTech Connect (OSTI)

    Emerson, D.B.; Whitworth, B.A.

    1985-03-01T23:59:59.000Z

    In the paper pulp industry's recovery boilers, black liquor is sprayed in through nozzle guns near the top of the furnace. This report includes eight papers. (DLC)

  8. Causticizing for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07T23:59:59.000Z

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  9. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. This report covers Task 1.3, Simulative corrosion of candidate materials developed by refractory producers and in the laboratory based on the results of Task 1.1 and Task 1.2. Refractories provided by in-kind sponsors were tested by cup testing, density/porosity determinations, chemical analysis and microscopy. The best performing materials in the cup testing were fused cast materials. However, 2 castables appear to outperforming any of the previously tested materials and may perform better than the fused cast materials in operation. The basis of the high performance of these materials is the low open porosity and permeability to black liquor smelt.

  10. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  11. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  12. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  13. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick; Musa Karakus; Alireza Rezaie

    2004-03-30T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  14. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-07-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  15. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01T23:59:59.000Z

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and were functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development were divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  16. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr.; Alireza Rezaie

    2004-04-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  17. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  18. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  19. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01T23:59:59.000Z

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and were functionally-graded to give the best combination of thermal, mechanical and physical properties and chemical stability; and are relatively inexpensive, reliable repair materials. Material development was divided into 2 tasks: Task 1 was development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2 was finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  20. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  1. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  2. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  3. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01T23:59:59.000Z

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. This report covers Task 1.4, Industrial Trial of candidate materials developed by refractory producers and in the laboratory based on the results of Task 1.1, 1.2 and 1.3. Refractories provided by in-kind sponsors to industrial installations tested by cup testing, density/porosity determinations, chemical analysis and microscopy. None of the materials produced in this program have been tried in high temperature gasifiers, but the mortar developed Morcocoat SP-P is outperforming other mortars tested at ORNL. MORCO PhosGun M-90-O has shown in laboratory testing to be an acceptable candidate for hot and cold repairs of existing high temperature gasifiers. It may prove to be an acceptable lining material.

  4. Black liquor gasifier/gas turbine cogeneration

    SciTech Connect (OSTI)

    Consonni, S. [Politecnico di Milano (Italy). Dept. di Energetica; Larson, E.D.; Keutz, T.G. [Princeton Univ., NJ (United States); Berglin, N. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Heat and Power Technology

    1998-07-01T23:59:59.000Z

    The kraft process dominates pulp and paper production worldwide. Black liquor, a mixture of lignin and inorganic chemicals, is generated in this process as fiber is extracted from wood. At most kraft mills today, black liquor is burned in Tomlinson boilers to produce steam for on-site heat and power and to recover the inorganic chemicals for reuse in the process. Globally, the black liquor generation rate is about 85,000 MW{sub fuel} (or 0.5 million tonnes of dry solids per day), with nearly 50% of this in North America. The majority of presently installed Tomlinson boilers will reach the end of their useful lives during the next 5 to 20 years. As a replacement for Tomlinson-based cogeneration, black liquor-gasifier/gas turbine cogeneration promises higher electrical efficiency, with prospective environmental, safety, and capital cost benefits for kraft mills. Several companies are pursuing commercialization of black liquor gasification for gas turbine applications. This paper presents results of detailed performance modeling of gasifier/gas turbine cogeneration systems using different black liquor gasifiers modeled on proposed commercial designs.

  5. Lowering kraft black liquor viscosity of ultrafiltration

    SciTech Connect (OSTI)

    Hill, M.K.; Violette, D.A.; Woerner, D.L.

    1988-10-01T23:59:59.000Z

    High viscosity is a major factor limiting the percentage total dissolved solids (%TDS) to which kraft black liquor (KBL), a spent pulping liquor, can be concentrated before it is burned to recover its fuel value and its inorganic chemicals. The effect on black liquor viscosity of removing high molecular weight lignin by ultrafiltration of 16% and 24% TDS liquors was studied. Viscosities of ultrafiltration permeates were reduced relative to feed black liquors. When a permeate was concentrated to higher %TDS levels, its viscosity decreased yet further relative to feed samples evaporated to similar solids levels. Retentate viscosity was very high relative to both feed and permeate. Ultrafiltration was carried out at 75/degrees/C using polysulfone membranes in a plate-and-frame or hollow fiber system. Flux rates varied greatly depending upon the specific liquor used. Flux was enhanced by increased temperature and increased linear velocity. The membrane molecular weight cutoff (MWCO) typically used was 50,000; increasing 100,000 or 200,000 did not enhance flux.

  6. alkaline black liquor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan 1998-01-01 3 PERFORMANCE OF BLACK LIQUOR GASIFIERGAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP Renewable Energy Websites Summary: PERFORMANCE OF BLACK LIQUOR...

  7. Improved recovery of tall oil from black liquors

    SciTech Connect (OSTI)

    Zucker, J.

    1980-12-09T23:59:59.000Z

    Applying a d.c. of less than 15 V to acidified black liquor separates a significant amount of tall oil remaining in the black liquor sludge. An apparatus with graphite electrodes for this process is described.

  8. Pulsed combustion process for black liquor gasification

    SciTech Connect (OSTI)

    Durai-Swamy, K.; Mansour, M.N.; Warren, D.W.

    1991-02-01T23:59:59.000Z

    The objective of this project is to test an energy efficient, innovative black liquor recovery system on an industrial scale. In the MTCI recovery process, black liquor is sprayed directly onto a bed of sodium carbonate solids which is fluidized by steam. Direct contact of the black liquor with hot bed solids promotes high rates of heating and pyrolysis. Residual carbon, which forms as a deposit on the particle surface, is then gasified by reaction with steam. Heat is supplied from pulse combustor resonance tubes which are immersed within the fluid bed. A portion of the gasifier product gas is returned to the pulse combustors to provide the energy requirements of the reactor. Oxidized sulfur species are partially reduced by reaction with the gasifier products, principally carbon monoxide and hydrogen. The reduced sulfur decomposed to solid sodium carbonate and gaseous hydrogen sulfide (H{sub 2}S). Sodium values are recovered by discharging a dry sodium carbonate product from the gasifier. MTCI's indirectly heated gasification technology for black liquor recovery also relies on the scrubbing of H{sub 2}S for product gases to regenerate green liquor for reuse in the mill circuit. Due to concerns relative to the efficiency of sulfur recovery in the MTCI integrated process, an experimental investigation was undertaken to establish performance and design data for this portion of the system.

  9. In Situ Causticizing for Black Liquor Gasification

    SciTech Connect (OSTI)

    Scott Alan Sinquefield

    2005-10-01T23:59:59.000Z

    Black liquor gasification offers a number of attractive incentives to replace Tomlinson boilers but it also leads to an increase in the causticizing load. Reasons for this have been described in previous reports (FY04 ERC, et.al.). The chemistries have also been covered but will be reviewed here briefly. Experimental results of the causticizing reactions with black liquor are presented here. Results of the modeling work were presented in detail in the Phase 1 report. They are included in Table 2 for comparison but will not be discussed in detail. The causticizing agents were added to black liquor in the ratios shown in Table 1, mixed, and then spray-dried. The mixture ratios (doping levels) reflect amount calculated from the stoichiometry above to achieve specified conversions shown in the table. The solids were sieved to 63-90 microns for use in the entrained flow reactors. The firing conditions are shown in Table 2. Pictures and descriptions of the reactors can be found in the Phase 1 annual report. Following gasification, the solids (char) was collected and analyzed by coulometric titration (for carbonate and total carbon), and by inductively coupled plasma emission spectroscopy (ICP) for a wide array of metals.

  10. Thermal processing of black liquor from alkaline straw pulping

    SciTech Connect (OSTI)

    Sanchez, J.L.; Garcia, L.; Gea, G.; Bilbao, R.; Arauzo, J. [Univ. of Zaragoza (Spain)

    1996-12-31T23:59:59.000Z

    Black liquor is the wastewater from the cooking of wood or straw in the production of pulp and paper. Nowadays new processes are being investigated as alternatives to the traditional recovery boiler used for black liquor treatment. One of the processes which appears to be more promising is gasification, for which further research is needed for its full industrial implementation. There is not much data about the behavior of soda black liquors from straw cooking in the literature. Therefore the thermal decomposition of one of these liquors has been studied in a thermobalance, in inert (N{sub 2}) atmosphere. The kinetic constants from isothermal experiments have been obtained.

  11. Electrochemical treatment of black liquor from straw pulping

    SciTech Connect (OSTI)

    Blanco, M.A.; Negro, C.; Tijero, J. [Complutense Univ., Madrid (Spain)] [and others

    1996-11-01T23:59:59.000Z

    The conventional black liquor regeneration process is not always suitable for pulping plants of nonwood fibers due to the unfavorable ratio of organic to inorganic solids. This paper presents an alternative treatment based on an electrolysis process of the soda black liquor from straw pulping. This alternative method minimizes the environmental impact by recovering the caustic at the same time that the liquor is acidified, which favors the later separation of the lignin.

  12. Fundamental studies of black liquor combustion

    SciTech Connect (OSTI)

    Clay, D.T.; Lien, S.J.; Grace, T.M.; Brown, C.A.; Empie, H.L.; Macek, A.; Amin, N.; Charangundla, S.R.

    1990-03-01T23:59:59.000Z

    The fundamentals of black liquor combustion are being studied in a project being carried out for the US Department of Energy by the Institute of Paper Science Technology (IPST, formerly the Institute of Paper Chemistry) and the National Institute of Science Technology (NIST, formerly the National Bureau of Standards). The project was divided into four phases. This report covers the completion of Phase 1 (in-flight processes), the results of all of the work on Phase 2 (char bed processes), Phase 3 (fume processes), and Phase 4 (furnace simulation). 41 refs., 62 figs., 30 tabs.

  13. Definition:Black Liquor | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeafDeer LodgeDeering,Black Liquor Jump

  14. Physical properties of Kraft Black Liquor. Interim report, Phase II

    SciTech Connect (OSTI)

    Fricke, A.L.

    1985-03-01T23:59:59.000Z

    Objectives are to determine the rheological, thermal, and surface properties of Kraft Black Liquors, and to relate these properties to the chemical composition and to pulping conditions. A four-variable, multi-level pulping experiment is being conducted. Pulping results are reported. Complete analyses of the liquors have been done. Thermal analyses have been done. DSC was employed to determine heat capacities of black liquors and lignins. Rheological (viscosity) studies are being conducted. Density and thermal expansion have been studied for seven liquors. Energy savings through more efficient recovery systems are appreciable.

  15. Effect of pulping conditions and black liquor composition on Newtonian viscosity of high solids kraft black liquors

    SciTech Connect (OSTI)

    Zaman, A.A.; Fricke, A.L. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering] [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering

    1996-02-01T23:59:59.000Z

    The influence of black liquor composition and solids concentrations on the Newtonian viscosity of slash pine black liquors over wide ranges of temperature (up to 140 C) and solids concentrations (between 50% and 83% solids) has been studied. It was found that the zero shear rate viscosity of high solids black liquors depends strongly on the cooking conditions and/or black liquor composition. Not only is high solids viscosity affected by lignin molecular weight and lignin concentration in the liquor but other organic and inorganic constituents of black liquor also make a significant contribution to viscosity. The dependency of zero shear rate viscosity on solids concentrations, and temperature is defined. The Newtonian viscosities vary over a wide range depending on temperature, solids concentrations and solids composition. The results indicate that, at fixed levels of effective alkali and sulfidity, the zero shear rate viscosities can be described as a function of both lignin concentration and lignin molecular weight. The viscosity of black liquor is an increasing function of the organics-to-inorganics ratio and is a decreasing function of the concentration of sodium and chloride ions and pH of the liquor.

  16. Char reactions during kraft black liquor pyrolysis

    SciTech Connect (OSTI)

    Frederick, W.J.; Sricharoenchaikul, V.; Reis, V.V. [Oregon State Univ., Corvallis, OR (United States)

    1995-12-01T23:59:59.000Z

    The pyrolysis characteristics of dried black liquor particles were investigated at high heating rates in a laminar entrained-flow reactor at temperatures of 600-1100{degrees}C. Primary pyrolysis of the organic fraction occurred very rapidly, in less 0.5 seconds. Char yields at the end or volatiles evolution were 58-72%. The decreased with increasing reactor temperature to 900{degrees}C but remained constant at higher temperatures. 35-65% of the fuel nitrogen was volatilized, nearly all in less than 0.5 s. Relatively little fuel nitrogen was evolved from the char. Significant alkali metal chloride volatization from the char occurred at all temperatures, while additional sodium volatilization became important above 900{degrees}C. Reduction of sulfur species in the char increased rapidly with increasing temperature. A temperature-dependent delay time in the onset of Na{sub 2}S formation was observed.

  17. Proceedings of the black liquor research program review fourth meeting held July 28--30, 1987

    SciTech Connect (OSTI)

    Emerson, D. B.; Whitworth, B. A.

    1987-10-01T23:59:59.000Z

    Research programs, presented at the black liquor review meeting are described. Research topics include the following: Cooperative Program in Kraft Recovery; Black Liquor Physical Properties; Viscosity of Strong Black Liquor; Ultrafiltration of Kraft Black Liquor; Molecular Weight Distribution of Kraft Lignin; Black Liquor Droplet Formation Project; Fundamental Studies of Black Liquor Combustion; Black Liquor Combustion Sensors; Flash X-ray Imagining of Black Liquor Sprays; Laser Induced Fluorescence For Process Control In The Pulp and Paper Industry; Recovery Boiler Optimization; Black Liquor Gasification and Use of the Products in Combined-Cycle Cogeneration; Black Liquor Steam Plasma Automization; The B and W Pyrosonic 2000R System; Monsteras Boiler Control System; and Cooperative Program Project Reviews. Individual projects are processed separately for the data bases.

  18. Black Liquor Gasification Process Review and Status Update

    E-Print Network [OSTI]

    Brown, C.

    1993-01-01T23:59:59.000Z

    After more than two decades of research and development, black liquor gasification is poised to become a commercial reality in the 90's. Several promising developments are underway in North America and Europe. In fact, all major recovery boiler...

  19. Demonstration of Black Liquor Gasification at Big Island

    SciTech Connect (OSTI)

    Robert DeCarrera

    2007-04-14T23:59:59.000Z

    This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

  20. Drum drying of black liquor using superheated steam impinging jets

    SciTech Connect (OSTI)

    Shiravi, A.H.; Mujumdar, A.S.; Kubes, G.J. [McGill Univ., Montreal, Quebec (Canada)

    1997-05-01T23:59:59.000Z

    A novel drum dryer for black liquor utilizing multiple impinging jets of superheated steam was designed and built to evaluate the performance characteristics and effects of various operating parameters thereon. Appropriate ranges of parameters such as steam jet temperature and velocity were examined experimentally to quantify the optimal operating conditions for the formation of black liquor film on the drum surface as well as the drying kinetics.

  1. Proceedings of the black liquor research program review fifth meeting

    SciTech Connect (OSTI)

    Not Available

    1988-09-01T23:59:59.000Z

    On June 14--17, 1988 the participants and invited guests of the Cooperative Program in Kraft Recovery gathered in Charleston, South Carolina, to review progress on four major black liquor research programs being executed at the Institute of Paper Chemistry, the University of Maine, the National Bureau of Standards, and the University of Florida. These programs include: (1) Black Liquor Properties; (2) Black Liquor Droplet Formation; (3) Black Liquor Nozzle Evaluation; and (4) Black Liquor Combustion. In addition to the objectives of previous meetings, this meeting made a direct attempt to gather ideas on how to improve our ability to move from new technology concepts to commercial implementation. Also attached is the agenda for the Charleston meeting. The first two days were involved with updates and reviews of the four major black liquor programs. A half day was spent discussing pathways to implementation and developing thoughts on what industry, DOE and academia could do to facilitate commercial implementation of the research results. This publication is a summary of the presentations made in Charleston and the industry responses to the research work. Readers are cautioned that the contents are in-progress updates on the status of the research and do not represent referred technical papers. Any questions regarding the content should be referred to the principal investigators of the project.

  2. Kraft black liquor combustion: Advancement in fundamental understanding

    SciTech Connect (OSTI)

    Clay, D.T.

    1987-10-01T23:59:59.000Z

    Self-generated fuel streams plus purchased fossil fuel and power supply the pulp and paper industry with its energy requirements. The total industry energy use for 1986 was approximately 2.3 Quad (2300 trillion Btus). Self-generated and residue fuels accounted for 57% of the energy requirements. Spent pulping liquors provide the single largest self-generated energy source, approximately one Quad (900 trillion Btus). The pulp and paper industry also leads the nation in cogeneration performance. In 1986 eighty-nine percent (89%) of the 46 billion KWHs generated were produced by cogeneration. Spent pulping liquors supply the single largest fuel source (35%) to these cogeneration facilities. Spent pulping liquors consist of solubilized wood organics, spent inorganic chemicals, and water. Since kraft pulp dominates the North American market, 74%, kraft black liquor is the dominant spent pulping liquor. Effective recovery of high level energy and chemicals from black liquor contributes heavily toward dominance of kraft pulping. The kraft chemical recovery cycle centers around the recovery boiler. Kraft recovery boilers have been commercially available for over 50 years. The potential still exists, however, for significant improvements in energy recovery and black liquor throughput. Potential energy benefits from black liquor combustion research amount to 30 trillion Btus. Energy recovery increases often are an additional benefit from modifications made to increase black liquor throughput. Capacity increases of at least 5% are often achievable. Increased energy productivity of the kraft chemical recovery boiler will come by incorporation of improved fundamental knowledge into the technology used for boiler upgrades and new boiler construction. 5 refs., 9 figs.

  3. Controlled black liquor viscosity reduction through salting-in

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)] [North Carolina State Univ., Raleigh, NC (United States)

    1996-08-01T23:59:59.000Z

    Black liquor viscosity increases exponentially with solids content and therefore causes processing problems for the paper industry by being a limiting factor in the Kraft pulp process. This study investigates a new approach for achieving viscosity reduction by salting-in black liquor through the addition of thiocyanate salts. These salts generally increase the solubility of the polymer constituents in black liquor, leading to a decrease in its viscosity. Several thiocyanate salts capable of reducing liquor viscosity by more than two orders of magnitude have been identified, with viscosity reduction greatest at high solids content. Salting-in of black liquor depends on the cation paired with the thiocyanate anion, as well as on solution pH and temperature. Comparative studies reveal the most effective viscosity-reducing agent of the series examined and that lignin plays an important role in the viscosity behavior of both unmodified and salted-in black liquor at high solids concentrations. These experimental findings are interpreted in terms of the underlying principles that describe salting-in and how it affects aqueous solution structure.

  4. Measurement of black liquor surface tension: Technical report No. 3. [Black liquor

    SciTech Connect (OSTI)

    Krishnagopalan, J.

    1987-09-01T23:59:59.000Z

    Surface tension and density of two kraft black liquors were measured at a series of temperatures, from a minimum value when gas bubbles can be blown into the liquor to a maximum value near the elevated boiling point of a particular sample. Available methods for the measurement of surface tension were evaluated critically and, as a result, the maximum bubble pressure method was selected. Varying the flow rate of the gas changes the frequency of bubble formation and thereby the age of the surface. The parameter has been utilized by many researchers to monitor the diffusion of low surface energy components (e.g., surfactants) to the liquid/air interface. The effect of bubble frequency when tested with a few pure liquids, indicated that the dynamics of bubble formation had to be further examined to separate out inertial and viscous effects from purely surface tension related pressure. The pressure versus flow rate data were extrapolated to zero flow rate and surface tension and density were calculated using these extrapolated values. As expected, surface tension decreased with increasing temperature for all the samples. Surface tension decreases with increasing solids content (when compared with the value for water) to a certain level (about 20%) and it starts to increase again. The decrease in surface tension in the dilute black liquor, is probably due to the decrease in the concentration of water, which has a high surface tension value. The occurrence of the minimum is probably due to the effect of inorganic components dominating over the effect of surfactants and other components. Reduction in the solubilities of the inorganics, promotion of micelles of the surfactants and reduction in the diffusion of surfactants to the surface, also could contribute to this phenomenon. 54 refs., 54 figs., 12 tabs.

  5. Recaustization of kraft black liquor via bipolar electrodialysis

    SciTech Connect (OSTI)

    Koumoundouros, J.A.; Oshen, S.; Lynch, J.D.

    1990-05-01T23:59:59.000Z

    The US Department of Energy in conjunction with HPD Inc. supported a research program to perform a laboratory feasibility study with various black liquor samples for the recaustization of these samples via bipolar electrodialysis. The research was conducted at the HPD pilot plant facility in Plainfield, Illinois, beginning in April 1989. This report is a summary of the work completed thru November 1989. The program was designed to operate the electrodialyzer in order to obtain performance and engineering data such as current efficiency, power consumption per gram of NaOH produced, and assess fouling and/or membrane durability. Prior to the electrodialysis laboratory runs, the black liquor samples were pretreated in order to remove as much lignin as possible. The black liquor samples were air oxidized, acidified to pH = 9.0 and pH = 2.0 and later filtered via a Buchner funnel under vacuum. The filtrate was then utilized to become the feed to the electrodialysis stack. Initial test runs were performed with synthetic solutions of either sodium sulfate or sodium bicarbonate in order to determine acceptable operating current, power, current efficiencies, and fouling behavior. A second set of test were conducted with a series of four Southern Kraft black liquor samples. Based on the results of this study, it was determined that the use of bipolar electrodialysis for producing a caustic stream and an acidified black liquor stream is feasible and was demonstrated. 9 refs., 27 figs., 32 tabs.

  6. Coliquefaction of coal and black liquor to environmentally acceptable liquid fuels

    SciTech Connect (OSTI)

    Kim, J. [Korea Inst. of Energy Research, Taejon (Korea, Republic of); Lalvani, S.B.; Muchmore, C.B.; Akash, B.A. [Southern Illinois Univ., Carbondale, IL (United States)

    1999-11-01T23:59:59.000Z

    Previous work in the laboratories has demonstrated that addition to lignin to coal during liquefaction significantly increases the depolymerization of coal and enhances the quality of the liquid products. It is believed that thermolysis of the lignin results in the formation of phenoxyl and other reactive radicals at temperatures too low for significant thermolysis of the coal matrix; such radicals are effective and active intermediates that depolymerize coal by cleaving methylene bridges. It has been reported that alkali is also effective for extraction of liquids from coal. The work presented here combines these two reactive agents by utilizing the black liquor waste stream from the Kraft pulping process for coal depolymerization. That waste stream contains large amounts of lignin and sodium hydroxide, as well as other components. To permit comparative evaluations of the extent of coal depolymerization by coprocessing coal and black liquor, reference runs were performed with tetralin alone, sodium hydroxide in tetralin, and lignin in tetralin. Results indicated that the sodium hydroxide-tetralin system resulted in almost 67% conversion at 375 C, 1 hour. The black liquor system exhibited a lower conversion of 60%, indicating some inhibition of the depolymerization reactions by components in the black liquor.

  7. Ultrafiltration of kraft black liquor: Final report, Phase 3

    SciTech Connect (OSTI)

    Hill, M.K.

    1988-04-01T23:59:59.000Z

    Since 1981, a research program has been in progress to determine the physical properties of kraft black liquors and to develop methods for reduction of data and correlation of properties with pumping conditions. The basic premise that has been used to direct the research program is that kraft black liquor behaves as a polymer solution, particularly at high solids, and that the behavior is dominated by the characteristics of the lignin present. This premise is proving to be correct, and the principles that follow from this premise are proving to be successful for data reduction and correlation. The research has been a complex program involving experimental pulping, chemical analysis, lignin separation and characterization, thermal analysis, rheological measurements, and considerable equipment and methods development. Due to the complexity of the program, the unforeseen need to expend a great deal of effort in development of experimental techniques for analysis, and the fact that our liquors proved to be unstable at high temperatures and solids, all of the original objectives could not be accomplished. However, our program has added substantially to the body of knowledge of physical properties of black liquor. Our results indicate that the goal of developing correlations for physical properties of kraft black liquor is practical and can be realized through extension of the present work. 21 refs., 32 figs.

  8. Black liquor gasification phase 2D final report

    SciTech Connect (OSTI)

    Kohl, A.L.; Stewart, A.E.

    1988-06-01T23:59:59.000Z

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  9. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31T23:59:59.000Z

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  10. In situ analysis of ash deposits from black liquor combustion

    SciTech Connect (OSTI)

    Bernath, P. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Univ. of Toronto, Ontario (Canada); Sinquefield, S.A. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Oregon State Univ., Eugene, OR (United States); Baxter, L.L.; Sclippa, G.; Rohlfing, C. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Barfield, M. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Univ. of Arizona, Tucson, AZ (United States)

    1996-05-01T23:59:59.000Z

    Aerosols formed during combustion of black liquor cause a significant fire-side fouling problem in pulp mill recovery boilers. The ash deposits reduce heat transfer effectiveness, plug gas passages, and contribute to corrosion. Both vapors and condensation aerosols lead to the formation of such deposits. The high ash content of the fuel and the low dew point of the condensate salts lead to a high aerosol and vapor concentration in most boilers. In situ measurements of the chemical composition of these deposits is an important step in gaining a fundamental understanding of the deposition process. Infrared emission spectroscopy is used to characterize the composition of thin film deposits resulting from the combustion of black liquor and the deposition of submicron aerosols and vapors. New reference spectra of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} pure component films were recorded and compared with the spectra of the black liquor deposit. All of the black liquor emission bands were identified using a combination of literature data and ab initio calculations. Ab initio calculations also predict the locations and intensities of bands for the alkali vapors of interest. 39 refs., 9 figs.

  11. Sodium and sulfur release and recapture during black liquor burning

    SciTech Connect (OSTI)

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01T23:59:59.000Z

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  12. Report on the WORKSHOP ON COMMERCIALIZATION OF BLACK LIQUOR

    E-Print Network [OSTI]

    Report on the WORKSHOP ON COMMERCIALIZATION OF BLACK LIQUOR AND BIOMASS GASIFICATION FOR GAS or industry cycle (BGCC) technologies for pulp and paper co~mitm~nt to the develo~ment of gasification systems (existing) technology with an greenhouse gas emissions mitigation measures. emerging (gasification

  13. Effect of pulsation on black liquor gasification. Final report

    SciTech Connect (OSTI)

    Zinn, B.T.; Jagoda, J.; Jeong, H.; Kushari, A.; Rosen, L.J.

    1998-12-01T23:59:59.000Z

    Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be used to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

  14. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect (OSTI)

    Kelleher, E. G.

    1987-08-01T23:59:59.000Z

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  15. Recovery of solvent and by-products from organosolv black liquor

    SciTech Connect (OSTI)

    Botello, J.I.; Gilarranz, M.A.; Rodriguez, F.; Oliet, M. [Univ. Complutense de Madrid (Spain). Dept. de Ingenieria Quimica] [Univ. Complutense de Madrid (Spain). Dept. de Ingenieria Quimica

    1999-09-01T23:59:59.000Z

    The recovery of alcohol and by-products from ethanol-water and methanol-water pulping liquors was studied. The recovery system proposed consists of three stages: black liquor flashing, lignin precipitation, and precipitation distillation of mother liquor. At the flash stage, 47 and 51% of the alcohol in the black liquor are recovered for ethanol and methanol processes, respectively. The lignin recovery yield at the precipitation stage is 67% for ethanol black liquor and 73% for methanol black liquor. The distillation of precipitation mother liquors enables recovery of 98% ethanol and 96% methanol from this stream as distillate, whereas the distillation residue contains significant amounts of sugars, furfural, and acetic acid that can be recovered. The study concludes with the overall mass balance for the recovery system proposed.

  16. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01T23:59:59.000Z

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  17. Freeze crystallization technology for Kraft black liquor concentration. Third report

    SciTech Connect (OSTI)

    Johnson, W.E.; Rhodes, C.R.

    1985-04-01T23:59:59.000Z

    About 25% of the purchased energy in the pulp and paper industry is used to concentrate black liquor. The technical feasibility of using freeze concentration to supplement evaporation has been successfully demonstrated, and results indicate that energy consumption can be reduced 45%. After compiling a considerable data base on the characteristics of black liquor at low temperature and after developing a computer program to aid analysis, the process chosen was vacuum freezing-vapor absorption (VFVA). A pilot plant was built and operated; however, due to problems with crystallization of the absorbent and contamination, it was found that maintaining the conditions necessary for a continuous process was not practical at the present state of development. Therefore, indirect freezing was used for all subsequent work. This required the design and fabrication of a simple shuttle crystallizer to replace scraped surface units conventionally used. CSI also developed an integrated ice separation column that combined crystal growth, a concentration gradient, and washing all in one unit. Finally, extensive heat transfer coefficient data were collected so that a preliminary design could be completed for a 350 TPD industrial freeze concentration unit. An economic analysis was calculated in order to compare using evaporation and freeze concentration to process the increased liquor flow from a pulp mill expansion. A 200,000 lb/hr freezing unit used to preconcentrate the mill's entire stream up to 18.7% solids would save $10 to $16 per ton of pulp.

  18. DEMONSTRATION OF BLACK LIQUOR GASIFICATION AT BIG ISLAND

    SciTech Connect (OSTI)

    Robert DeCarrera

    2003-10-20T23:59:59.000Z

    This Technical Progress Report provides an account of the status of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific Corporation's Big Island, VA facility. The report also includes budget information and a milestone schedule. The project to be conducted by G-P is a comprehensive, complete commercial-scale demonstration that is divided into two phases. Phase I is the validation of the project scope and cost estimate. Phase II is project execution, data acquisition and reporting, and consists of procurement of major equipment, construction and start-up of the new system. Phase II also includes operation of the system for a period of time to demonstrate the safe operation and full integration of the energy and chemical recovery systems in a commercial environment. The objective of Phase I is to validate the process design and to engineer viable solutions to any technology gaps. This phase includes engineering and planning for the integration of the full-scale MTCI/StoneChem PulseEnhanced{trademark} black liquor steam-reformer chemical recovery system into G-P's operating pulp and paper mill at Big Island, Virginia. During this phase, the scope and cost estimate will be finalized to confirm the cost of the project and its integration into the existing system at the mill. The objective of Phase II of the project is the successful and safe completion of the engineering, construction and functional operation of the fully integrated full-scale steam reformer process system. This phase includes installation of all associated support systems and equipment required for the enhanced recovery of both energy and chemicals from all of the black liquor generated from the pulping process at the Big Island Mill. The objective also includes operation of the steam reformer system to demonstrate the ability of the system to operate reliably and achieve designed levels of energy and chemical recovery while maintaining environmental emissions at or below the limits set by the environmental permits.

  19. Ultrafiltration of Kraft Black Liquor. Final report, Phase I

    SciTech Connect (OSTI)

    Hill, M.K.

    1985-10-01T23:59:59.000Z

    Kraft Black Liquor (KBL) is ultrafiltered to favorably affect the properties of the KBL permeate. The major property to be changed is viscosity. If the high molecular weight lignin is removed by ultrafiltration, the KBL permeate should show a significant drop in viscosity. An objective of the work reported was to examine how much KBL viscosity is lowered relative to membrane and membrane pore size used in the ultrafiltration. Another objective was an initial evaluation of ultrafiltration equipment and membranes. Operating characteristics were determined for selected equipment and membranes. Decreases in KBL permeate viscosity were indeed seen. (LEW)

  20. Freeze crystallization technology for black liquor concentration. Second interim report

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    The pulp and paper industry is one of the largest consumers of energy. Concentration of black liquor (the stream resulting from the chemical separation of wood fibers in the pulping operation) uses 25% of the purchased energy to produce pulp, an equivalent of 33 million barrels of oil in 1982. Here it is shown that freeze concentration, an emerging concentration technology, has the potential of reducing the energy consumption by at least 45%. This amounts to a cost savings of $5 to $15 per ton of pulp depending on the cost of energy, geographical location, and method of application.

  1. Conversion of a black liquor recovery boiler to wood firing: A case history

    SciTech Connect (OSTI)

    Eleniewski, M.A. [Detroit Stoker Company, Monroe, MI (United States)

    1994-12-31T23:59:59.000Z

    In 1983 a large integrated pulp and paper mill in southeastern United States retired an older chemical recovery boiler when it was replaced by a newer and larger unit as part of a mill expansion. At that time the mill was generating steam and power using wood waste, natural gas and black liquor, a common fuel mix for pulp mills. The retirement of the recovery boiler presented an opportunity for the mill and corporate engineering to evaluate various mixes of fuels for the mill.

  2. A comprehensive program to develop correlations for the physical properties of kraft black liquors

    SciTech Connect (OSTI)

    Fricke, A.L.

    1990-12-01T23:59:59.000Z

    Experimental work includes pulping, liquor analysis, lignin purification and characterization, vapor-liquid equilibria, heat capacity, heats of solution and combustion, and viscosity measurements. It is now possible to operate the digester as a closed, rotating reactor or as a batch reactor with liquor circulation. When operated with liquor circulation, temperatures within the chip bed can be monitored during cooking. Cooking is reproducible, and cooks are being performed to produce liquors for experimental studies. The digester could be further modified to permit them to conduct rapid exchange batch pulping or to permit them to simulate continuous pulping. Liquors are now routinely analyzed to determine all components, except higher molecular weight organic acids and extractives. Lignin determination by UV-visible means has been improved. Lignin purification from black liquor has been improved and lignin molecular weights are determined routinely. The paper describes the digestor, the large scale evaporation, liquor analysis, thermal studies, and viscosity results. 31 figs., 5 tabs.

  3. Vapor pressure and boiling point elevation of slash pine black liquors: Predictive models with statistical approach

    SciTech Connect (OSTI)

    Zaman, A.A.; McNally, T.W.; Fricke, A.L. [Univ. of Florida, Gainesville, FL (United States)] [Univ. of Florida, Gainesville, FL (United States)

    1998-01-01T23:59:59.000Z

    Vapor-liquid equilibria and boiling point elevation of slash pine kraft black liquors over a wide range of solid concentrations (up to 85% solids) has been studied. The liquors are from a statistically designed pulping experiment for pulping slash pine in a pilot scale digester with four cooking variables of effective alkali, sulfidity, cooking time, and cooking temperature. It was found that boiling point elevation of black liquors is pressure dependent, and this dependency is more significant at higher solids concentrations. The boiling point elevation data at different solids contents (at a fixed pressure) were correlated to the dissolved solids (S/(1 {minus} S)) in black liquor. Due to the solubility limit of some of the salts in black liquor, a change in the slope of the boiling point elevation as a function of the dissolved solids was observed at a concentration of around 65% solids. An empirical method was developed to describe the boiling point elevation of each liquor as a function of pressure and solids mass fraction. The boiling point elevation of slash pine black liquors was correlated quantitatively to the pulping variables, using different statistical procedures. These predictive models can be applied to determine the boiling point rise (and boiling point) of slash pine black liquors at processing conditions from the knowledge of pulping variables. The results are presented, and their utility is discussed.

  4. Ultrafiltration of Kraft Black Liquor: Phase II, Final report

    SciTech Connect (OSTI)

    Hill, M.K.

    1987-09-01T23:59:59.000Z

    The major justification for examining ultrafiltration was to lower the viscosity of the Kraft Black Liquor by recovering it as an ultrafiltration permeate from which the highest MW lignin had been removed. The liquor could then be concentrated to a higher percentage solids before firing into the recovery boiler. Consequent energy savings for the 1000 ton/day pulp mill would be 2.05 x 10 Btu/y for each percentage increase in TDS (total dissolved solids) to the recovery boiler. This Phase II report gives data on viscosity with percentage solids of KBL permeates. Another favorable effect of ultrafiltration on the permeate properties is disproportionate removal of multivalent ions including the major scaling ion CaS . If this high-viscosity high-Ca retentate could be treated to lower its viscosity and to release the Ca in a non-scaling form, this would enhance the possibility that ultrafiltration might be useful in a mill situation. Included in this report are data on the results of treating the retentate fraction. Other justifications for this program included further information in KBL properties: lignin MW in the KBL at high pH; elemental and sugar analyses; and differential properties of lignins in the retentate and the permeate fractions. A preliminary economic analysis of ultrafiltration is contained in this report. These analyses indicate that with flux rates now attainable, ultrafiltration would not be economically justified at this time if the only justification is to lower KBL viscosity. For certain situations where high Ca liquors present a scaling problem, especially in an evaporator-limited mill, the economics are more favorable. There are also unsolved problems relating to the use of the high viscosity retentate.

  5. INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER

    SciTech Connect (OSTI)

    Kevin Whitty

    2003-12-01T23:59:59.000Z

    The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

  6. Kinetics of gasification of black liquor char by steam

    SciTech Connect (OSTI)

    Li, J.; van Heiningen, A.R.P. (Dept. of Chemical Engineering, McGill Univ., Pulp and Paper Research Inst. of Canada, Montreal, Quebec (CA))

    1991-07-01T23:59:59.000Z

    This paper reports on the steam gasification kinetics of kraft black liquor char that were studied in a thermogravimetric analysis reactor. The effect of steam and hydrogen concentration on gasification rate can be described by Langmuir-Hinshelwood type kinetics. An activation energy of 210 kJ/mol was obtained. Methane formation was negligible, and H{sub 2}S was the major gaseous sulfur-containing product obtained over the temperature range studied, 873-973 K. The CO{sub 2} concentration was higher than calculated for the water-shift reaction at equilibrium. A gasification mechanism is proposed whereby CO{sub 2} is one of the primary gasification products.

  7. Effect of sulfidity on the corrosivity of white, green, and black liquors

    SciTech Connect (OSTI)

    Wensley, A.; Champagne, P.

    1999-07-01T23:59:59.000Z

    Corrosion testing was performed in white, green, and black liquors from a kraft mill. The liquors were modified in composition to simulate conditions of high (40%) sulfidity and low (30%) sulfidity, and then heated in laboratory autoclaves to the temperatures of the respective tanks from which the samples were taken. Specimens of carbon and stainless steels were exposed under free corrosion potential conditions, and their corrosion rates determined from weight loss measurements. In white, green, 45% solids black, and flash tank liquors, active corrosion rates for the carbon steels were typically 20 to 75% higher in the higher sulfidity liquors. In 15% solids weak black liquor there was no appreciable difference in corrosion rates, with carbon steels remaining passive in both low and high sulfidity. In 26% solids intermediate black liquor there were large increases in the corrosion rates of carbon steel between low and high sulfidity liquors, resulting from a change from passive to active conditions. Stainless steels UNS S30403, S32304, and S31803 had very low corrosion rates in all the liquors tested, regardless of sulfidity.

  8. Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer

    SciTech Connect (OSTI)

    Kevin Whitty

    2007-06-30T23:59:59.000Z

    University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

  9. Low temperature pyrolysis of black liquor and polymerization of products in alkali aqueous medium

    SciTech Connect (OSTI)

    Demirbas, A. (Dept. of Chemical Education, Karadeniz Teknik Univ., Trabzon (TR)); Ucan, H. (Dept. of Chemistry, Selcuk Univ., Konya (TR))

    1991-01-01T23:59:59.000Z

    Atmospheric pressure pyrolysis for the production of liquids and gases from black liquor and its calcium salts and acidic precipitate have been carried out in a little stainless steel tube. Yields, sum of liquid and gas products, from black liquor and its calcium salts and acidic precipitate were 44.7%, 52.0% and 59.1% of dry basis respectively. The precipitates obtained from black liquor by acidifying with hydrochloric acid and passing carbon dioxide have been polymerized in aqueous acetone containing formaldehyde and ammonia, and converted a polymeric resin.

  10. Energy considerations for steam plasma gasification of black liquor and chemical recovery

    SciTech Connect (OSTI)

    Grandy, J.D.; Kong, P.C.

    1995-10-01T23:59:59.000Z

    This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which bums the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

  11. Energy considerations for steam plasma gasification of black liquor and chemical recovery

    SciTech Connect (OSTI)

    Grandy, J.D.; Kong, P.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-07-01T23:59:59.000Z

    This paper investigates the energy economics of using a hybrid steam plasma process to gasify black liquor. In the pulp and paper industry, gasification is gaining credibility as an incremental method to supplement the standard Kraft process, which burns the black liquor in large furnaces to recover energy and inorganic chemicals (sodium and sulfur) that are recycled back into the wood pulping process. This paper shows that despite the energy intensive nature of steam plasma processing, several fortuitous conditions arise that make it a viable technology for the gasification of black liquor.

  12. Biomass gasification project gets funding to solve black liquor safety and landfill problems

    SciTech Connect (OSTI)

    Black, N.P.

    1991-02-01T23:59:59.000Z

    This paper reports on biomass gasifications. The main by-product in pulp making is black liquor from virgin fiber; the main by-product in paper recycling is fiber residue. Although the black liquor is recycled for chemical and energy recovery, safety problems plague the boilers currently used to do this. The fiber residue is usually transported to a landfill. The system being developed by MTCI will convert black liquor and fiber residue into a combustible gas, which can then be used for a wide variety of thermal or power generation applications.

  13. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.; Stoy, M.O.; Schmidl, G.W.; Dong, D.J.; Speck, B.

    1998-04-01T23:59:59.000Z

    A wide variety of experimental techniques have been used in this work, and many of these have been developed completely or improved significantly in the course of the research done during this program. Therefore, it is appropriate to describe these techniques in detail as a reference for future workers so that the techniques can be used in future work with little additional effort or so that the results reported from this program can be compared better with future results from other work. In many cases, the techniques described are for specific analytical instruments. It is recognized that these may be superseded by future developments and improvements in instrumentation if a complete description of techniques used successfully in the past on other instrumentation is available. The total pulping and liquor preparation research work performed included chip and white liquor preparation, digestion, pulp washing, liquor and wash recovery, liquor sampling, weak liquor concentration in two steps to about 45--50% solids with an intermediate soap skimming at about 140F and 27--30% solids, determination of pulp yield and Kappa number, determination of total liquor solids, and a check on the total material balance for pulping. All other research was performed either on a sample of the weak black liquor (the combined black liquor and washes from the digester) or on the skimmed liquor that had been concentrated.

  14. Swelling of kraft black liquor: an understanding of the associated phenomena during pyrolysis

    SciTech Connect (OSTI)

    Miller, P.T.

    1986-01-01T23:59:59.000Z

    The objectives of this thesis were to quantify the swelling of black liquor during pyrolysis in a nitrogen atmosphere and to determine what factors were responsible for swelling. The first part of the investigation studied the process variables: pyrolysis temperature, solid content, heating rate and particle size. A temperature of 500/sup 0/C resulted in maximum swelling for the investigated temperature range of 300-900/sup 0/C. The swelling of black liquor occurred during the evolution of pyrolysis gases; however, there was no correlation found between the amount of pyrolysis gases evolved and the change in char volume. The initial solid content of black liquor had a small influence on the swelling of black liquor. The heating rate was found to effect the rate of swelling but not the final volume. Particle size had no effect on the swollen volume per unit particle weight. The effect of black liquor composition was studied. An interaction between sugar acids and kraft lignin was responsible for swelling. The extractives interfered with the swelling mechanism of black liquor, while inorganic salts acted as a diluent. The swelling behavior of black liquor appeared to be dictated by the surface active and viscous forces present in black liquor during pyrolysis. Surface active forces were evidenced by the formation of small bubbles (50-150 microns in diameter) which appeared necessary for highly swollen chars. Low swelling chars did not exhibit this phenomenon. Bubble formation began at 250/sup 0/C, which closely corresponded to the thermal decomposition temperature of sugar acids. The sugar acids formed bubbles when pyrolyzed but did not swell significantly during pyrolysis. Kraft lignin appeared to enhance the swelling of the sugar acids by increasing the viscosity and stabilizing the bubbles during pyrolysis.

  15. A comprehensive program to develop correlations for the physical properties of kraft black liquors. Interim report No.3

    SciTech Connect (OSTI)

    Fricke, A.L.; Dong, D.J.; Schmidl, G.W.; Stoy, M.A.; Zaman, A.A.

    1993-09-01T23:59:59.000Z

    The black liquor properties program has conducted a systematic collection data of properties, liquor composition, and lignin characteristics. Complete data, except for some density data, has been collected for Slash Pine black liquors made by experimental pulping at a total of 25 different pulping conditions that cover the entire range used for commercial pulping. In addition, complete data has been collected for some mill liquors and partial properties or composition data has been collected on Slash Pine black liquors made at 16 different pulping conditions and some mill liquors. Data reduction methods have been developed or extended for correlation of viscosity, heat capacity, heat of dilution, and density. Correlation of properties to pulping conditions and of composition to pulping conditions has begun. In most cases, data reduction methods have been developed that are fundamentally based and that have been shown to be generally applicable to all black liquors. While it has not proven to be possible to include research for comprehensive correlations for properties for liquors from other species, we have shown that the behavior of liquors made from other species is similar to that which has been explored extensively for Slash Pine liquors. This report reviews the methods used, describes examples of data reduction methods that have been developed, and presents some preliminary results for correlation of liquor composition and properties to pulping conditions for Slash Pine black liquors.

  16. Research on droplet formation for application to kraft black liquors: Final report: Tasks I and III, report No. 4

    SciTech Connect (OSTI)

    Stockel, I.H.

    1988-10-01T23:59:59.000Z

    The overall objective of this project is to generate technical data with which to design nozzles for kraft black liquor recovery boilers which can reduce under and over size droplets and adjust for changing black liquor properties and production requirements. The research is organized into five tasks: Droplet formation from a single jet, theoretical and experimental--ambient gas medium; Surface tensions of black liquor; Aerodynamic/hydrodynamic stability/instability of droplets once formed; Black liquor droplet formation from a single jet--furnace gas medium; Prototype of a new nozzle design. 88 figs.

  17. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    SciTech Connect (OSTI)

    Adriaan van Heiningen

    2007-06-30T23:59:59.000Z

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of the conversion of Na{sub 2}CO{sub 3} to (high sodium) titanates during gasification of black liquor in the presence of (low sodium) titanates or TiO{sub 2} (Task 2). MTCI/ThermoChem tested the performance and operability of the combined technology of steam reforming and direct causticization in their Process Development Unit (PDU) (Task 3). The specific objectives were: (1) to investigate how split sulfidity and polysulfide (+ AQ) pulping can be used to increase pulp fiber yield and properties compared to conventional kraft pulping; (2) to determine the economics of black liquor gasification combined with these pulping technologies in comparison with conventional kraft pulping and black liquor recovery; (3) to determine the effect of operating conditions on the kinetics of the titanate-based direct causticization reaction during black liquor gasification at relatively low temperatures ({le} 750 C); (4) to determine the mechanism of particle agglomeration during gasification of black liquor in the presence of titanates at relatively low temperatures ({le} 750 C); and (5) to verify performance and operability of the combined technology of steam reforming and direct causticization of black liquor in a pilot scale fluidized bed test facility.

  18. A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 3

    SciTech Connect (OSTI)

    Fricke, A.L.; Dong, D.J.; Schmidl, G.W.; Stoy, M.A.; Zaman, A.A.

    1993-09-01T23:59:59.000Z

    The black liquor properties program has been conducted over this last period so as to systematically collect data on properties, liquor composition, and lignin characteristics very carefully by methods that have developed during this program. Complete data has been collected for Slash Pine black liquors made by experimental pulping at different pulping conditions. In addition, data has been collected for mill liquors and partial properties or composition data has been collected on Slash Pine black liquors. Data reduction methods have been developed or extended for correlation of viscosity, heat capacity, heat of dilution, and density. Correlation of properties to pulping conditions and of composition to. pulping conditions has begun. In most cases, data reduction methods have been developed that are fundamentally based and that have been shown to be generally applicable to all black liquors. In the near future, we fully expect to accomplish our goal of developing generalized correlations relating physical properties of Slash Pine kraft black liquors to liquor composition. This interim report reviews the methods used, describes examples of data reduction methods that have been developed, and presents some preliminary results for correlation of liquor composition and properties to pulping conditions for Slash Pine black liquors.

  19. Physical properties of kraft black liquor: Summary report, Phases 1 and 2

    SciTech Connect (OSTI)

    Fricke, A.L.

    1987-09-01T23:59:59.000Z

    Since 1981, a research program has been in progress to determine the physical properties of kraft black liquors and to develop methods for reduction of data and correlation of properties with pumping conditions. The basic premise that has been used to direct the research program is that kraft black liquor behaves as a polymer solution, particularly at high solids, and that the behavior is dominated by the characteristics of the lignin present. This premise is proving to be correct, and the principles that follow from this premise are proving to be successful for data reduction and correlation. The research has been a complex program involving experimental pulping, chemical analysis, lignin separation and characterization, thermal analysis, rheological measurements, and considerable equipment and methods development. Due to the complexity of the program, the unforeseen need to expend a great deal of effort in development of experimental techniques for analysis, and the fact that our liquors proved to be unstable at high temperatures and solids, all of the original objectives could not be accomplished. However, our program has added substantially to the body of knowledge of physical properties of black liquor. Our results indicate that the goal of developing correlations for physical properties of kraft black liquor is practical and can be realized through extension of the present work.

  20. Improved Materials for High-Temperature Black Liquor Gasification

    SciTech Connect (OSTI)

    Keiser, J.R.; Hemrick, J.G.; Gorog, J.P.; Leary, R.

    2006-06-29T23:59:59.000Z

    The laboratory immersion test system built and operated at ORNL was found to successfully screen samples from numerous refractory suppliers, including both commercially available and experimental materials. This system was found to provide an accurate prediction of how these materials would perform in the actual gasifier environment. Test materials included mullites, alumino-silicate bricks, fusion-cast aluminas, alumina-based and chrome-containing mortars, phosphate-bonded mortars, coated samples provided under an MPLUS-funded project, bonded spinels, different fusion-cast magnesia-alumina spinels with magnesia content ranging from 2.5% to about 60%, high-MgO castable and brick materials, spinel castables, and alkali-aluminate materials. This testing identified several candidate material systems that perform well in the New Bern gasifier. Fusion-cast aluminas were found to survive for nearly one year, and magnesia-alumina spinels have operated successfully for 18 months and are expected to survive for two years. Alkali-aluminates and high-MgO-content materials have also been identified for backup lining applications. No other material with a similar structure and chemical composition to that of the fusion-cast magnesium-aluminum spinel brick currently being used for the hot-face lining is commercially available. Other materials used for this application have been found to have inferior service lives, as previously discussed. Further, over 100 laboratory immersion tests have been performed on other materials (both commercial and experimental), but none to date has performed as well as the material currently being used for the hot-face lining. Operating experience accumulated with the high-temperature gasifier at New Bern, North Carolina, has confirmed that the molten alkali salts degrade many types of refractories. Fusion-cast alumina materials were shown to provide a great improvement in lifetime over materials used previously. Further improvement was realized with fusion-cast magnesia-alumina spinel refractory, which appears to be the most resistant to degradation found to date, exhibiting over a year of service life and expected to be capable of over two years of service life. Regarding the use of refractory mortar, it was found that expansion of the current chrome-alumina mortar when subjected to black liquor smelt is likely contributing to the strains seen on the vessel shell. Additionally, the candidate high-alumina mortar that was originally proposed as a replacement for the current chrome-alumina mortar also showed a large amount of expansion when subjected to molten smelt. A UMR experimental mortar, composed of a phosphate bonded system specifically designed for use with fusion-cast magnesium-aluminum spinel, was found to perform well in the molten smelt environment. Strain gauges installed on the gasifier vessel shell provided valuable information about the expansion of the refractory, and a new set of strain gauges and thermocouples has been installed in order to monitor the loading caused by the currently installed spinel refractory. These results provide information for a direct comparison of the expansion of the two refractories. Measurements to date suggest that the fusion-cast magnesia-alumina spinel is expanding less than the fusion-cast {alpha}/{beta}-alumina used previously. A modified liquor nozzle was designed and constructed to test a number of materials that should be more resistant to erosion and corrosion than the material currently used. Inserts made of three erosion-resistant metallic materials were fabricated, along with inserts made of three ceramic materials. The assembled system was sent to the New Bern mill for installation in the gasifer in 2005. Following operation of the gasifier using the modified nozzle, inserts should be removed and analyzed for wear by erosion/corrosion. Although no materials have been directly identified for sensor/thermocouple protection tubes, several of the refractory material systems identified for lining material applications may be applicable for use in this

  1. Research on droplet formation for application to kraft black liquors---Final project report

    SciTech Connect (OSTI)

    Bousfield, D.W.

    1990-01-01T23:59:59.000Z

    The objective of this project was to generate technical data to guide the design of new nozzles for kraft black liquor recovery boilers. The goal of new nozzle designs would be to narrow the droplet size distribution compared to current nozzles and to adjust for changing black liquor properties and production requirements. Uniform droplets in a recovery boiler should reduce fouling of superheater tubes and caused a more efficient burning of the black liquor, both of which result in improved energy efficiency. The research was organized into five tasks which are described in the next chapter. This fifth and final project report contains the details of Task 4 and 5 and further analysis of Task 1 results. The details of the other tasks are reported in previous technical reports. The major results from the entire project are highlighted in this section in order of significance.

  2. Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions

    SciTech Connect (OSTI)

    Aho, K.; Vakkilainen, E. (A. Ahistrom Corp., Varkaus (Finland)); Hupa, M. (Abo Akademi Univ., Turku (Finland). Chemical Engineering Dept.)

    1994-05-01T23:59:59.000Z

    Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

  3. High-solids black liquor firing in pulp and paper industry kraft recovery boilers. Quarterly report, Phase 1a: Black liquor gasifier evaluation

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This project phase addresses the following workscope: Conduct bench-scale tests of a low temperature, partial combustion gasifier; Prepare a gasifier pilot-plant preliminary design and cost estimate and prepare a budgetary cost estimate of the balance of the program; Outline a test program to evaluate gasification; Prepare an economic/market analysis of gasification and solicit pulp and paper industry support for subsequent phases; and Prepare a final report and conduct a project review prior to commencement of work leading to construction of any pilot scale components or facilities. The primary accomplishments included completion of installation of the bench-scale black liquor gasifier and supporting systems, preparing test plans and related safety procedures and detailed operating procedures, defining the functional design requirements and outlining the test plans for the pilot-scale gasifier, and preparing a preliminary economic assessment of the black liquor gasifier. This work accomplished under Phase 1a during this period is further described by task.

  4. Formation of fuel NO[sub x] during black-liquor combustion

    SciTech Connect (OSTI)

    Nichols, K.M. (Weyerhaeuser Paper Co., Tacoma, WA (United States)); Lien, S.J. (Inst. of Paper Science and Technology, Atlanta, GA (United States))

    1993-03-01T23:59:59.000Z

    Fuel NOx and thermal NOx were measured in combustion gases from black liquors in two laboratory furnaces. Combustion at 950 C in air (8% O[sub 2]) produced NOx concentrations of 40-80ppm. Combustion at 950 C in synthetic air containing no nitrogen (21% 0[sub 2] in Ar) produced the same result, demonstrating that all of the NOx produced during combustion at 950 C was fuel NOx. Formation of fuel NOx increased moderately with increasing temperature in the range of 800-1,000 C, but temperature sensitivity of fuel NOx was much less than that of thermal NOx. The results imply that the major source of NOx in recovery furnace emissions is the fuel NOx in recovery furnace formed by conversion of liquor-bound nitrogen during combustion. This is consistent with thermal NOx theory, which postulates that black-liquor combustion temperatures are too low to generate significant amounts of thermal NOx.

  5. Separation of kraft lignin from kraft black liquor: Final report, July 1984-April 1987

    SciTech Connect (OSTI)

    Kurple, K.R.

    1988-04-15T23:59:59.000Z

    All the objectives were accomplished: a high-quality kraft lignin containing less than 50 ppM sodium was separated into a solvent phase (freon) from as much as 1000 lb kraft black liquor. Supporting data (infrared spectra, chemical analyses, etc.) are included. (DLC)

  6. BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS

    E-Print Network [OSTI]

    BIOMASS AND BLACK LIQUOR GASIFIER/GAS TURBINE COGENERATION AT PULP AND PAPER MILLS ERIC D. LARSON modeling of gasifier/gas turbine pulp-mill cogeneration systemsusing gasifier designs under commercial gasification. The use of biomass fuels with gas turbines could transform a typical pulp mill from a net

  7. Energy conservation in black-liquor evaporator of pulp and paper industry

    SciTech Connect (OSTI)

    Agarwal, V.K.; Gupta, S.C. [Univ. of Roorkee (India). Dept. of Chemical Engineering

    1995-12-31T23:59:59.000Z

    This paper is an attempt on energy conservation in a quintuple effect evaporator used to concentrate dilute black liquor solution by raising their steam economy through the changes in the operating variables. It also describes the steam economy of the evaporator for the various feed arrangements so as to determine the ranges of the variables for which evaporation occurs profitable.

  8. Assessment of the release of atomic Na from a burning black liquor droplet using quantitative PLIF

    SciTech Connect (OSTI)

    Saw, Woei L.; Nathan, Graham J. [Centre for Energy Technology, The Environment Institute, School of Mechanical Engineering, The University of Adelaide, SA 5005 (Australia); Ashman, Peter J.; Alwahabi, Zeyad T. [Centre for Energy Technology, The Environment Institute, School of Chemical Engineering, The University of Adelaide, SA 5005 (Australia)

    2009-07-15T23:59:59.000Z

    The quantitative measurement of atomic sodium (Na) release, at high concentration, from a burning black liquor droplet has been demonstrated using a planar laser-induced fluorescence (PLIF) technique, corrected for fluorescence trapping. The local temperature of the particle was measured to be approximately 1700 C, at a height of 10 mm above a flat flame burner. The PLIF technique was used to assess the temporal release of atomic Na from the combustion of black liquor and compare it with the Na concentration in the remaining smelt. A first-order model was made to provide insight using a simple Plug Flow Reactor model based on the independently measured concentration of residual Na in the smelt as a function of time. This model also required the dilution ratio of the combustion products in the flat flame entrained into the plume gas from the black liquor particle to be estimated. The key findings of these studies are: (i) the peak concentration of atomic Na from the combustion of the black liquor droplets is around 1.4 ppm; (ii) very little atomic Na is present during the drying, devolatilisation or char combustion stages; and (iii) the presence of atomic Na during smelt phase dominates over that from the other combustion stages. (author)

  9. Black liquor viscosity reduction through salt additives: A novel environmentally benign processing alternative

    SciTech Connect (OSTI)

    Roberts, J.E.; Khan, S.A.; Spontak, R.J. [North Carolina State Univ., Raleigh, NC (United States)

    1996-10-01T23:59:59.000Z

    Processing black liquor at high solids would reduce SO{sub x} emissions, facilitate the use of non-chlorine bleaching techniques and enhance the energy efficiency of the pulping process. However, black liquor exhibits and exponential increase in viscosity as its solids content rises, thus hindering its processability in the composition range of interest (>70% solids). In this study, we present a new approach for controlling viscosity at high solids content by {open_quotes}salting in{close_quotes} black liquor through addition of thiocyanate salts. These salts increases the solubility of the polymer constituents in black liquor leading to a decrease in its viscosity. Several salts capable of viscosity reduction by as much as two orders of magnitude have been identified. The effects of cation size, solution pH and temperature on viscosity reduction is presented and interpreted in terms of the underlying principles of {open_quotes}salting in{close_quotes} and how it affects aqueous solution structure.

  10. Physical properties of kraft black liquor. Final report. Phase I

    SciTech Connect (OSTI)

    Fricke, A.L.

    1983-12-01T23:59:59.000Z

    Methods were selected, equipment installed, and procedures developed for determining rheological properties; for determining thermal properties (stability, density, thermal expansion, and heat capacity); for purification and characterization of lignin (glass transition, stability, weight average molecular weight, and number average molecular weight); and for performing chemical analyses (negative inorganic ions, positive inorganic ions, acid organic salts, lignin, and total solids). A strategy for pulping to supply test liquors was developed, and a statistically designed pulping experiment was specified for a Southern softwood species. Arrangements were made for performing initial pulping work in an industrial pilot plant, and a preliminary set of pulping experiments were conducted. Liquors from the preliminary pulping experiments were used to test procedures and to determine reproducibility of the experiment. Literature was also surveyed and preliminary selection of designs for a pilot digester, and for equipment to determine surface tension were made.

  11. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    SciTech Connect (OSTI)

    Kevin Whitty

    2008-06-30T23:59:59.000Z

    The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that droplets on the order 200-300 microns can be expected, and that higher liquor flow will result in be

  12. Black liquor combustion validated recovery boiler modeling, five-year report

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1996-08-01T23:59:59.000Z

    The objective of this project was to develop a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The project originated in October 1990 and was scheduled to run for four years. At that time, there was considerable emphasis on developing accurate predictions of the physical carryover of macroscopic particles of partially burnt black liquor and smelt droplets out of the furnace, since this was seen as the main cause of boiler plugging. This placed a major emphasis on gas flow patterns within the furnace and on the mass loss rates and swelling and shrinking rates of burning black liquor drops. As work proceeded on developing the recovery boiler furnace model, it became apparent that some recovery boilers encounter serious plugging problems even when physical carryover was minimal. After the original four-year period was completed, the project was extended to address this issue. The objective of the extended project was to improve the utility of the models by including the black liquor chemistry relevant to air emissions predictions and aerosol formation, and by developing the knowledge base and computational tools to relate furnace model outputs to fouling and plugging of the convective sections of the boilers. The work done to date includes CFD model development and validation, acquisition of information on black liquor combustion fundamentals and development of improved burning models, char bed model development, and model application and simplification.

  13. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    SciTech Connect (OSTI)

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31T23:59:59.000Z

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  14. Combustion processes in black liquor recovery: Analysis and interpretation of combustion rate data and an engineering design model

    SciTech Connect (OSTI)

    Fredrick, W.J.

    1990-03-01T23:59:59.000Z

    The overall objective of this project is to develop computational models for predicting the combustion times for black liquor droplets in a recovery furnace environment. These models are needed as an important component of large-scale, global recovery boiler models. The work is divided into two tasks: interpretation of experimental black liquor single droplet combustion data from two laboratories; and formulation and evaluation of computational models for the stages of combustion of black liquor droplets. This report contains the results of the project. 109 refs., 64 figs., 12 tabs.

  15. National Dioxin Study Tier 4 - combustion sources: final test report - Site 8, Black-liquor boiler BLB-C

    SciTech Connect (OSTI)

    Jamgochian, C.L.; Keller, L.E.

    1987-04-01T23:59:59.000Z

    This report summarizes the results of a dioxin/furan emissions test of a black-liquor recovery boiler equipped with a drybottom electrostatic precipitator for particulate emissions control. Black-liquor recovery boilers are used at kraft pulp mills to produce process steam and to reclaim inorganic chemicals from spent wood pulping liquors. The dioxin/furan emissions test was conducted under Tier 4 of the National Dioxin Study. The primary objective of Tier 4 is to determine if various combustion sources are sources of dioxin and/or furan emissions. If any of the combustion sources are found to emit dioxin or furan, the secondary objective of Tier 4 is to quantify these emissions. Black-liquor recovery boilers are one of 8 combustion-source categories that have been tested in the Tier 4 program. The tested black-liquor boiler, BLB-C, was selected for the test after an initial information screening and a one-day pretest survey visit. Boiler BLB-C is considered representative of black-liquor recovery boilers with dry-bottom electrostatic precipitators. The amount of chloride present in the black-liquor circuit at this site is considered intermediate to high relative to that found at other kraft pulp mills. Data presented in the report include dioxin (tetra through octa homologue +2378 TCDD) and furan (tetra through octa homologue +2378 TCDF) results for both stack samples and ash samples. In addition, process data collected during sampling are also presented.

  16. Fundamental Study of Black Liquor Gasification Kinetics. Quarterly progress report for the period October 1999 to December 1999

    SciTech Connect (OSTI)

    NONE

    2000-01-31T23:59:59.000Z

    The overall objective of this research is to evaluate the kinetics of gasification of kraft black liquor under laboratory conditions simulating pressurized, oxygen-blown gasification. The significant independent variables are gasifier temperature, black liquor composition particle size, and particle residence time. The authors will quantify their impact on the concentration of major and trace gas phase species, as well as the composition of condensed phase inorganic products, including specification of the Na- and S-containing compounds and overall carbon conversion.

  17. Development of viscometers for kraft black liquor. Summary report, Phase 2 and 2A

    SciTech Connect (OSTI)

    Fricke, A.L.; Crisalle, O.D.

    1996-11-01T23:59:59.000Z

    This report documents the results of the evaluation of the on-line prototype viscometers for kraft black liquors carried out at the Pilot Plant facilities of the University of Florida. The original plan called for the evaluation of five prototype on-line viscometers along with laboratory bench versions. At a later stage in the project an additional experimental prototype under development at Southwest Research Institute was added. The viscometers are evaluated for accuracy and repeatability under varying process conditions, such as black liquor species, solids content, temperature, flow rate, and contaminants, as well as for maintenance and reliability. This document reports extensive results of the evaluations and recommendations for design modifications and for the installation of the instruments in industrial pulping mills for further field evaluations in Phase 3 of the project. The report also documents relevant details of the final design of the pilot flow loop used to support the experiments.

  18. Comparison of Refractory Performance in Black Liquor Gasifiers and a Smelt Test System

    SciTech Connect (OSTI)

    Peascoe, RA

    2001-09-25T23:59:59.000Z

    Prior laboratory corrosion studies along with experience at the black liquor gasifier in New Bern, North Carolina, clearly demonstrate that serious material problems exist with the gasifier's refractory lining. Mullite-based and alumina-based refractories used at the New Bern facility suffered significant degradation even though they reportedly performed adequately in smaller scale systems. Oak Ridge National Laboratory's involvement in the failure analysis, and the initial exploration of suitable replacement materials, led to the realization that a simple and reliable, complementary method for refractory screening was needed. The development of a laboratory test system and its suitability for simulating the environment of black liquor gasifiers was undertaken. Identification and characterization of corrosion products were used to evaluate the test system as a rapid screening tool for refractory performance and as a predictor of refractory lifetime. Results from the test systems and pl ants were qualitatively similar.

  19. Pulsed combustion process for black liquor gasification. Second annual report, [November 1990--February 1992

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    This second annual report summarizes the work accomplished during the period November 1990 through February 1992 for DOE Cooperative Agreement No. DE-FC05-90CE40893. The overall project objective is to field test an energy-efficient, innovative black liquor recovery system at a significant industrial scale. This is intended to demonstrate the maturity of the technology in an industrial environment and serve as an example to the industry of the safer and more energy-efficient processing technique. The project structure is comprised of three primary activities: process characterization testing, scale-up hardware development, and field testing. The objective of the process characterization testing was to resolve key technical issues regarding the black liquor recovery process that were identified during earlier laboratory verification tests. This was intended to provide a sound engineering data base for the design, construction and testing of a nominal 1.0 TPH integrated black liquor recovery gasifier. The objective of the scale-up hardware development effort was to ensure that key hardware components, in particular the pulse heater module, would perform reliably and safely in the field. Finally, the objective of the field test is to develop an industrial data base sufficient to demonstrate the capabilities and performance of the operating system with respect to thermal efficiency, product quality, fuel handling, system control, reliability and cost. These tests are to provide long-term and continuous operating data at a capacity unattainable in the bench-scale apparatus.

  20. Feasibility of black liquor gasification in combined cycle cogeneration. Final report, Phase I

    SciTech Connect (OSTI)

    Kelleher, E.G.

    1983-06-30T23:59:59.000Z

    A small-scale test program of 65% solids black liquor gasification was conducted in the bench-scale molten salt gasifier. Nine tests were performed using both air and oxygen as the oxidant. The black liquor gasified readily and the product gas had a dry-basis heating value of 70 Btu/scf with air and about 250 Btu/scf with oxygen. These values were almost identical to values predicted on the basis of thermodynamic equilibrium in the gas phase, indicating that the system had achieved near-equilibrium. However, the reduction of the melt to sodium sulfide was generally low. An independent research program aimed at improving the performance of air-blown black liquor gasification was conducted. That work resulted in a modified gasifier system design which increased the off-gas heating value to 120 Btu/scf and the reduction of the melt to over 95%. This was an improvement that would potentially allow use of the scrubbed product gas as a feed to a combustion gas turbine without prior enrichment.

  1. Combined biomass and black liquor gasifier/gas turbine cogeneration at pulp and paper mills

    SciTech Connect (OSTI)

    Larson, E.D.; Kreutz, T.G. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies; Consonni, S. [Politecnico di Milano, Milan (Italy). Dipt. di Energetica

    1999-07-01T23:59:59.000Z

    Kraft pulp and paper mills generate large quantities of black liquor and byproduct biomass suitable for gasification. These fuels are used today for onsite cogeneration of heat and power in boiler/steam turbine systems. Gasification technologies under development would enable these fuels to be used in gas turbines. This paper reports results of detailed full-load performance modeling of pulp-mill cogeneration systems based on gasifier/gas turbine technologies. Pressurized, oxygen-blown black liquor gasification, the most advanced of proposed commercial black liquor gasifier designs, is considered, together with three alternative biomass gasifier designs under commercial development (high-pressure air-blown, low-pressure air-blown, and low-pressure indirectly-heated). Heavy-duty industrial gas turbines of the 70-MW{sub e} and 25-MW {sub e} class are included in the analysis. Results indicate that gasification-based cogeneration with biomass-derived fuels would transform a typical pulp mill into significant power exporter and would also offer possibilities for net reductions in emissions of carbon dioxide relative to present practice.

  2. A comprehensive program to develop correlations for the physical properties of Kraft black liquor. Interim report No. 2

    SciTech Connect (OSTI)

    Fricke, A.L.

    1990-12-01T23:59:59.000Z

    Experimental effort for the program to evaluate physical properties of kraft black liquors is now proceeding well. Experimental work includes pulping, liquor analysis, lignin purification and characterization, vapor-liquid equilibria, heat capacity, heats of solution and combustion, and viscosity measurements. Measurement of thermal conductivity has not yet begun. Collection of the data necessary for development of generalized correlations is proceeding, but will require about two more years. The digester is operating very well. It is now possible to operate the digester as a closed, rotating reactor or as a batch reactor with liquor circulation. When operated with liquor circulation, temperatures within the chip bed can be monitored during cooking. Cooking is reproducible, and cooks are being performed to produce liquors for experimental studies. The digester could be further modified to permit us to conduct rapid exchange batch pulping or to permit us to simulate continuous pulping. Liquors to be used in experimental studies are concentrated in our large scale evaporator or in our small scale evaporator. The large scale evaporator is used to concentrate liquors to about 50% solids for storage and for use in studies requiring high solids liquors. The small scale evaporator is used for preparing final samples to as high as 85% solids and for measuring vapor-liquid equilibria. Liquors are now routinely analyzed to determine all components, except higher molecular weight organic acids and extractives. Lignin determination by uv-visible means has been improved. Lignin purification from black liquor has been improved and lignin molecular weights are determined routinely. Work on lignin molecular weight distribution is still not satisfactory, but recent developments holds promise.

  3. Kraft Liquor Corrosion Margaret Gorog

    E-Print Network [OSTI]

    Das, Suman

    1 Kraft Liquor Corrosion Margaret Gorog Federal Way, WA Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute November 2014 · Brown Stock Corrosion · Alkaline Liquor Corrosion · Black Liquor Corrosion ­ Evaporators ­ Research · High Solids Black Liquor Corrosion of Stainless Steel

  4. Fundamental studies of black liquor combustion: Report No. 2, Phase 1 (October 1984-November 1986)

    SciTech Connect (OSTI)

    Clay, D. T.; Lien, S. J.; Grace, T. M.; Macek, A.; Semerjian, H. G.; Amin, N.; Charagundla, S. R.

    1987-01-01T23:59:59.000Z

    The fundamentals of kraft black liquor combustion are being studied in a five year project. This report covers the second and third years of work by The Institute of Paper Chemistry (IPC) and the National Bureau of Standards (NBS) for the US Department of Energy. The burning processes are being studied in two continuous flow reactor systems designed to both study overall process and single particle phenomena. Black liquor burning is divided into four distinct phases: drying, volatiles burning, char burning, and smelt coalescence. Phase 1, In-flight Processes, is the main focus of this report. In-flight processes include mainly the stages of drying and volatiles burning. Testing results in both flow reactors and in two specially designed single particle reactors are presented. Dynamic droplet velocity and swelling have been measured for the first time. A direct link between initial liquor viscosity and burning behavior in the early stages has also been identified. During the fourth year Phase 1 will be completed and Phases 2 (Char Burning) and 3 (Fume Processes) will begin.

  5. Alkali salt ash formation during black liquor combustion at kraft recovery boilers

    SciTech Connect (OSTI)

    Mikkanen, P. Kauppinen, E.I.; Pyykoenen, J.; Jokiniemi, J.K. [VTT (Finland); Maekinen, M. [Finnish Meterological Inst., Helsinki (Finland)

    1996-12-31T23:59:59.000Z

    Recovery boiler is an essential part of paper pulping process, where waste sludge called black liquor is burned for chemical recovery and energy production. This study was carried out at an operating industrial recovery boiler in Finland. Measurement of aerosol particles was carried out at bullnose level of furnace, at boiler exit, and at outlet of electrostatic precipitator (ESP). Aerosol mass size distributions in size range 0.02--50 {micro}m were measured with Berner type low pressure impactor (BLPI) operated with precyclone. BLPI samples were further analyzed with ion chromatography for water soluble Na, K, SO{sub 4}, and Cl. Particle morphology was studied with scanning electron microscopy (SEM). Phase composition of crystalline salts was measured with X-ray diffraction (XRD). Particles larger than 1 {micro}m were analyzed with computer controlled scanning electron microscopy (CCSEM) to derive particle composition classes. At ESP inlet mass size distribution was bimodal with a major mode at about 1.2 {micro}m and a minor mode at about 5 {micro}m (aerodynamic diameter). At ESP outlet the mass size distribution showed only one peak at about 1.2 {micro}m. Both submicron and supermicron particles were agglomerates formed from 0.3 to 0.5 {micro}m spherical primary particles. XRD analyses indicated that particles were crystalline with two phases of Na{sub 2}SO{sub 4} (thenardite and sodium sulphate) and K{sub 3}Na(SO{sub 4}){sub 2}. CCSEM results of individual particles larger than 1 {micro}m showed that 79 to 88 volume percent of particles contained mainly Na and S, 7 to 10 volume percent Na, K, and S with minor amount of particles containing Na, S, and Ca.

  6. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, J.R.

    2001-10-22T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining.

  7. Effect of pulsations on black liquor gasification. Progress report, July--September 1995

    SciTech Connect (OSTI)

    Kushari, A.; Jeong, H.; Jagoda, J.I.; Zinn, B.T.

    1995-12-31T23:59:59.000Z

    The objective of this study is to investigate the use of pulse combustion to provide the energy required for the endothermic gasification of black liquor in a fluidized bed. In this process it is critical that the temperature remain in the small window above the gasification temperature but below the smelting temperature of the inorganic salts in the black liquor. Pulse combustors have been shown to have high heat transfer rates between the hot combustion products and the combustor tailpipe. Similarly, fluidized beds have high heat transfer rates within the bed itself, promoting temperature uniformity throughout. Typical analysis of the gasified black liquor shows there is a large percentage of combustible gases in the products of the gasification process (approximately 70%). The potential exists, therefore, for using this fuel mixture to fire the pulse combustor. This makes the entire process more efficient and may be necessary to make it economically feasible. The overall goals of this study are to determine (1) which is the limiting heat transfer rate in the process of transferring the heat from the hot combustion products to the pipe, through the pipe, from the tailpipe to the bed and then throughout the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the temperature distribution in the bed can be maintained within the narrow temperature range required by the process without generating hot spots in the bed even if the heat transfer from the pulse combustor is significantly increased; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.

  8. Improved Materials for Use as Components in Kraft Black Liquor Recovery Boilers

    SciTech Connect (OSTI)

    Keiser, J.R.

    2000-04-18T23:59:59.000Z

    This Cooperative Research and Development Agreement (CRADA) was undertaken to evaluate current and improved materials and materials processing conditions for use as components in kraft black liquor recovery boilers and other unit processes. The main areas addressed were: (1) Improved Black Liquor Nozzles, (2) Weld Overlay of Composite Floor Tubes, and (3) Materials for Lime Kilns. Iron aluminide was evaluated as an alternate material for the nozzles used to inject an aqueous solution known as black liquor into recovery boilers as well for the uncooled lining in the ports used for the nozzles. Although iron aluminide is known to have much better sulfidation resistance in gases than low alloy and stainless steels, it did not perform adequately in the environment where it came into contact with molten carbonate, sulfide and sulfate salts. Weld overlaying carbon steel tubes with a layer of stainless weld metal was a proposed method of extending the life of recovery boiler floor tubes that have experienced considerable fireside corrosion. After exposure under service conditions, sections of weld overlaid floor tubes were removed from a boiler floor and examined metallographically. Examination results indicated satisfactory performance of the tubes. Refractory-lined lime kilns are a critical component of the recovery process in kraft pulp mills, and the integrity of the lining is essential to the successful operation of the kiln. A modeling study was performed to determine the cause of, and possible solutions for, the repeated loss of the refractory lining from the cooled end of a particular kiln. The evaluation showed that the temperature, the brick shape and the coefficient of friction between the bricks were the most important parameters influencing the behavior of the refractory lining.

  9. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  10. Eucalyptus kraft black liquor enhances growth and productivity of Spirulina in outdoor cultures

    SciTech Connect (OSTI)

    Chauhan, V.S.; Singh, G.; Ramamurthy, V. [Thapar Institute of Engineering and Technology, Patiala (India)

    1995-07-01T23:59:59.000Z

    Mass cultivation of microalgae for commercial applications suffers from poor productivities when measured against laboratory results or theoretical projections. In an effort to reduce this gap it was discovered that addition of eucalyptus kraft black liquor (BL) enhanced biomass productivity in outdoor cultures of Spirulina by increasing growth rate by 38% and biomass yield by 43%. BL treatment resulted in elevation of nitrogen assimilating enzyme activities and efficiency of phosphate utilization. Analyses of forenoon and afternoon oxygen production rates (OPRs) indicated higher photosynthetic and respiratory activity in BL-treated cultures compared to untreated cultures. 20 refs., 1 fig., 2 tabs.

  11. Separation and characterization of lignins from the black liquor of oil palm trunk fiber pulping

    SciTech Connect (OSTI)

    Sun, R.; Tomkinson, J.; Bolton, J.

    1999-11-01T23:59:59.000Z

    Six lignin preparations, isolated by a novel two-step precipitation method instead of the traditional one-step precipitation method from the oil palm trunk fiber pulping (OPTFP) black liquor, were found to be relatively free of nonlignin materials such as polysaccharide degradation products, ash, and salts. A lignin fraction with a purity of 99.5% was obtained at an optimum precipitation pH 1.5 after isolation of the nonlignin materials in ethanol. About 94% of the total lignin was recovered by this novel method at this condition, and the value of COD in the treated black liquor reduced significantly to lower 250. The isolated lignin fractions contained syringyl, guaiacyl, and p-hydroxyphenyl units in an approximate molar ratio of 16--20:5:1 on the basis of chemical and spectroscopic analysis. Small amounts of p-hydroxybenzoic acids were found to be esterified to lignin, while ferulic acids were associated to lignin by ether linkage. {sup 13}C-NMR indicated the presence of {beta}-O-4 ether bonds, and {beta}-5 and 5-5{prime} carbon-carbon linkages between the lignin molecules.

  12. Material Characterization and Analysis for Selection of Refractories Used In Black Liquor Gasification

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Keiser, James R [ORNL; Meisner, Roberta Ann [ORNL; Gorog, John Peter [ORNL

    2008-01-01T23:59:59.000Z

    Black liquor gasification provides the pulp and paper industry with a technology which could potentially replace recovery boilers with equipment that could reduce emissions and, if used in a combined cycle system, increase the power production of the mill allowing it to be a net exporter of electrical power. In addition, rather than burning the syngas produced in a gasifier, this syngas could be used to produce higher value chemicals or fuels. However, problems with structural materials, and particularly the refractory lining of the reactor vessel, have caused unplanned shutdowns and resulted in component replacement much sooner than originally planned. Through examination of exposed materials, laboratory corrosion tests and cooperative efforts with refractory manufacturers, many refractory materials issues in high-temperature black liquor gasification have been addressed and optimized materials have been selected for this application. In this paper, the characterization and analysis techniques used for refractory screening and selection will be discussed along with characteristic results from these methods which have led to the selection of optimized materials for this application.

  13. Material Characterization and Analysis for Selection of Refractories Used in Black Liquor Gasification

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Keiser, James R [ORNL; Meisner, Roberta A [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2010-01-01T23:59:59.000Z

    Black liquor gasification provides the pulp and paper industry with a technology which could potentially replace recovery boilers with equipment that could reduce emissions and, if used in a combined cycle system, increase the power production of the mill allowing it to be a net exporter of electrical power. In addition, rather than burning the syngas produced in a gasifier, this syngas could be used to produce higher value chemicals or fuels. However, problems with structural materials such as the refractory lining of the reactor vessel have caused unplanned shutdowns and resulted in component replacement much sooner than originally planned. Through examination of exposed materials, laboratory corrosion tests and cooperative efforts with refractory manufacturers, many refractory materials issues in high-temperature black liquor gasification have been addressed and optimized materials have been selected for this application. In this paper, an updated summary of the characterization and analysis techniques used for refractory screening and selection will be discussed along with characteristic results from these methods which have led to the selection of optimized materials for both the hot-face and back-up linings used in this application.

  14. PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP

    E-Print Network [OSTI]

    PERFORMANCE OF BLACK LIQUOR GASIFIER/GAS TURBINE COMBINED CYCLE COGENERATION IN mE KRAFT PULP high-temperature gasifiers for gas turbine applications. ABB and MTCr/Stonechem are developing low-load performance of gasifier/gas turbine systemsincorporating the four above-noted gasifier designs are reported

  15. MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University of Tennessee Georgia Tech SURF 2010 Fellow

    E-Print Network [OSTI]

    Li, Mo

    MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University If the temperature is above the first melting point of the scale, severe corrosion of the tubes can result temperatures, reducing efficiency. The corrosive nature of the superheater environment arises primarily from

  16. Stability and Regeneration of Catalysts for the Destruction of Tars from Bio-mass Black Liquor Gasification

    SciTech Connect (OSTI)

    Pradeep Agrawal

    2004-09-07T23:59:59.000Z

    The goal of this project was to develop catalytic materials and processes that would be effective in the destruction of tars formed during the gasification of black liquor and biomass. We report here the significant results obtained at the conclusion of this two year project.

  17. Refractory Testing and Evaluation at Oak Ridge National Laboratory for Black Liquor Gasifier Applications.

    SciTech Connect (OSTI)

    Hemrick, James Gordon [ORNL; Keiser, James R [ORNL; Meisner, Roberta Ann [ORNL; Hubbard, Camden R [ORNL; Lara-Curzio, Edgar [ORNL

    2006-01-01T23:59:59.000Z

    Work is on-going at Oak Ridge National Laboratory to evaluate refractory containment and smelt contact materials for black liquor gasification applications. Materials have been evaluated and selected for low temperature gasification processes, with a number of materials being installed in commercial units currently under construction. For high temperature low pressure gasification processes, efforts have focused on screening candidate lining materials through immersion testing, improving existing refractory performance through the application of surface treatments, and the installation and evaluation of samples in an operating gasifier in New Bern, NC. Efforts concerning high temperature high pressure gasification have involved the identification and testing of suitable refractory materials for the coating of a helical carbon steel cooling coil arrangment.

  18. Separation of kraft lignin from kraft black liquor: Final report, July 1984-April 1987

    SciTech Connect (OSTI)

    Kurple, K.R.

    1988-04-15T23:59:59.000Z

    The importance of this work is related to the fact that with over 16 million tons of kraft lignin available annually, practically all of it is burned just for its heat value. In essence, kraft lignin has no real value except its heat value. The major accomplishments of this research has shown that it is possible to produce high purity kraft lignin from kraft black liquor. This patented technology represents a way of producing a material that can be utilized in a wide variety of markets. Kraft lignin that was produced using this technology was sent to major corporations who used this kraft lignin as a starting material in their chemical processes. 3 figs.

  19. Cracking and Corrosion of Composite Tubes in Black Liquor Recovery Boiler Primary Air Ports

    SciTech Connect (OSTI)

    Keiser, James R.; Singbeil, Douglas L.; Sarma, Gorti B.; Kish, Joseph R.; Yuan, Jerry; Frederick, Laurie A.; Choudhury, Kimberly A.; Gorog, J. Peter; Jett, Francois R.; Hubbard, Camden R.; Swindeman, Robert W.; Singh, Prett M.; Maziasz, Phillip J.

    2006-10-01T23:59:59.000Z

    Black liquor recovery boilers are an essential part of kraft mills. Their design and operating procedures have changed over time with the goal of providing improved boiler performance. These performance improvements are frequently associated with an increase in heat flux and/or operating temperature with a subsequent increase in the demand on structural materials associated with operation at higher temperatures and/or in more corrosive environments. Improvements in structural materials have therefore been required. In most cases the alternate materials have provided acceptable solutions. However, in some cases the alternate materials have solved the original problem but introduced new issues. This report addresses the performance of materials in the tubes forming primary air port openings and, particularly, the problems associated with use of stainless steel clad carbon steel tubes and the solutions that have been identified.

  20. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 5: Appendix V

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  1. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 4: Appendix IV

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  2. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 5 (Appendix V)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 5 contains model validation simulations and comparison with data.

  3. Gasification of kraft black liquor and use of the products in combined cycle cogeneration. Final report, Phase II

    SciTech Connect (OSTI)

    Kelleher, E.G.

    1985-07-01T23:59:59.000Z

    This Phase II study of kraft black liquor gasification and use of the product gases in combined cycle cogeneration based on combustion gas turbines was motivated by the very promising results of the Phase I feasibility study. The Phase I study indicated that the alternative technology to the Tomlinson recovery furnace had the potential of improving the energy efficiency and safety of combusting black liquor, reducing the capital and operating costs, increasing the electric power output, and providing an economical system for incremental kraft capacity additions. During Phase II, additional bench-scale experiments were run, pilot-scale experiments were conducted, equipment systems were investigated, and performance and economics were reanalyzed. All of the objectives of the Phase II project were met. Recommendations are summarized.

  4. Simultaneous measurement of the surface temperature and the release of atomic sodium from a burning black liquor droplet

    SciTech Connect (OSTI)

    Saw, Woei L.; Nathan, Graham J. [Centre for Energy Technology, The University of Adelaide, SA 5006 (Australia); School of Mechanical Engineering, The University of Adelaide (Australia); Ashman, Peter J.; Alwahabi, Zeyad T. [Centre for Energy Technology, The University of Adelaide, SA 5006 (Australia); School of Chemical Engineering, The University of Adelaide (Australia); Hupa, Mikko [Process Chemistry Centre, Aabo Akademi, Biskopsgatan 8 FI-20500 Aabo (Finland)

    2010-04-15T23:59:59.000Z

    Simultaneous measurement of the concentration of released atomic sodium, swelling, surface and internal temperature of a burning black liquor droplet under a fuel lean and rich condition has been demonstrated. Two-dimensional two-colour optical pyrometry was employed to determine the distribution of surface temperature and swelling of a burning black liquor droplet while planar laser-induced fluorescence (PLIF) was used to assess the temporal release of atomic sodium. The key findings of these studies are: (i) the concentration of atomic sodium released during the drying and devolatilisation stages was found to be correlated with the external surface area; and (ii) the insignificant presence of atomic sodium during the char consumption stage shows that sodium release is suppressed by the lower temperature and by the high CO{sub 2} content in and around the particle. (author)

  5. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    SciTech Connect (OSTI)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02T23:59:59.000Z

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requires additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. syngas) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950C), but was limited to pressures below about 5 bar. It is desirable however to operate BLG at 20-30 bar for efficiency reasons related to either firing the syngas in a turbine, or catalytically forming liquid fuels. This work focused on achieving high direct causticizing yields at 20 bars pressure. The titanate direct causticizing reactions are inhibited by CO2. Previous work has shown that the partial pressure of CO2 should be kept below about 0.5 bar in order for the process to work. This translates to a total reactor pressure limit of about 5 bar for airblown BLG, and only 2 bar for O2-blown BLG. In this work a process was developed in which the CO2 partial pressure could be manipulated to a level under 0.5 bar with the total system pressure at 10 bar during O2-blown BLG. This fell short of our 20 bar goal but still represents a substantial increase in the pressure limit. A material and energy balance was performed, as well as first-pass economics based on capital and utilities costs. Compared to a reference case of using BLG with a conventional lime cycle [Larson, 2003], the IRR and NVP were estimated for further replacing the lime kiln with direct causticizing. The economics are strongly dependent on the price of lime kiln fuel. At $6/mmBTU the lime cycle is the clear choice. At $8/mmBTU the NPV is $10M with IRR of 17%. At $12/mmBTU the NPV is $45M with IRR of 36%. To further increase the total allowable pressure, the CO2 could be further decreased by further decreasing the temperature. Testing should be done at 750C. Also a small pilot should be built.

  6. Mechanical Design of Steel Tubing for Use in Black Liquor Recovery Boilers

    SciTech Connect (OSTI)

    Taljat, B.; Zacharaia, T.; Wang, X.; Kesier, J.; Swindeman, R.; Hubbard, C.

    1999-05-26T23:59:59.000Z

    Finite element models were developed for thermal-mechanical analysis of black liquor recovery boiler floor tubes. Residual stresses in boiler floors due to various manufacturing processes were analyzed. The modeling results were verified by X-ray and neutron diffraction measurements at room temperature on as-manufactured tubes as well as tubes after service. The established finite element models were then used to evaluate stress conditions during boiler operation. Using these finite element models, a parametric response surface study was performed to investigate the influence of material properties of the clad layer on stresses in the floor tubes during various boiler operating conditions, which yielded a generalized solution of stresses in the composite tube floors. The results of the study are useful for identifying the mechanisms of cracking experienced by recovery boilers. Based on the results of the response surface study, a recommendation was made for more suitable materials in terms of the analyzed mechanical properties. Alternative materials and manufacturing processes are being considered to improve the resistance to cracking and the in-service life of composite tubes. To avoid numerous FE stress-strain analyses of composite tubes made of different material combinations, a response surface study was performed that considered two essential mechanical properties of the clad material - coefficient of thermal expansion and yield stress - as independent variables. The response surface study provided a generalized solution of stresses in the floor in terms of the two selected parameters.

  7. Dynamic air deposited coatings for power and black liquor recovery boilers

    SciTech Connect (OSTI)

    Verstak, A.A.; Baranovski, V.E. [Advanced Surface Technologies Inc., Richmond, VA (United States)

    1999-11-01T23:59:59.000Z

    Dynamic Air Deposition (DyAir) is a novel coating method designed to protect the tubing of power and black liquor recovery boilers against corrosion attack at elevated temperatures. The method utilizes the energy of combustion of gaseous fuel and air to heat the powder material to a temperature just below its melting point and accelerate it over 600 m/s to form a coating. The Ni-Cr and Ni-Cr-Mo DyAir coatings revealed no gas permeability and extremely low oxygen content. Compared to the electric arc and HVOF-sprayed coatings, the DyAir coatings exhibited higher hardness and better crack resistance. During aging at 400 and 700 C the bond strength and crack resistance of the DyAir coatings increased dramatically due to intensive diffusion processes in absence of internal corrosion attack. The DyAir coatings revealed outstanding resistance to corrosion, such as sulfidation attack in presence of hydrochloric acid gas at 400 C, oxidation attack at 700 C and oxidation attack in presence of chlorine at 400 C.

  8. Gasification behavior of carbon residue in bed solids of black liquor gasifier

    SciTech Connect (OSTI)

    Preto, Fernando; Zhang, Xiaojie (Frank); Wang, Jinsheng [CANMET Energy Technology Centre, Natural Resources (Canada)

    2008-07-15T23:59:59.000Z

    Steam gasification of carbon residue in bed solids of a low-temperature black liquor gasifier was studied using a thermogravimetric system at 3 bar. Complete gasification of the carbon residue, which remained unreactive at 600 C, was achieved in about 10 min as the temperature increased to 800 C. The rate of gasification and its temperature dependence were evaluated from the non-isothermal experiment results. Effects of particle size and adding H{sub 2} and CO to the gasification agent were also studied. The rate of steam gasification could be taken as zero order in carbon until 80% of carbon was gasified, and for the rest of the gasification process the rate appeared to be first order in carbon. The maximum rate of carbon conversion was around 0.003/s and the activation energy was estimated to be in the range of 230-300 kJ/mol. The particle size did not show significant effect on the rate of gasification. Hydrogen and carbon monoxide appeared to retard the onset of the gasification process. (author)

  9. Pyrometric temperature measurement method and apparatus for measuring particle temperatures in hot furnaces: Application to reacting black liquor

    SciTech Connect (OSTI)

    Stenberg, J. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Frederick, W.J. [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States)] [Oregon State University, Gleeson 103, Corvallis, Oregon 97331 (United States); Bostroem, S. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland); Hernberg, R. [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland)] [Tampere University of Technology, P.O. Box 692, Tampere SF-33101 (Finland); Hupa, M. [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)] [Abo Akademi University, Lemminkaeisenkatu 14-18 B, Turku SF-20520 (Finland)

    1996-05-01T23:59:59.000Z

    A specialized two-color pyrometric method has been developed for the measurement of particle surface temperatures in hot, radiating environments. In this work, the method has been applied to the measurement of surface temperatures of single reacting black liquor char particles in an electrically heated muffle furnace. Black liquor was introduced into the hot furnace as wet droplets. After drying, the resulted particles were processed in different atmospheres corresponding to combustion, pyrolysis, and gasification at furnace temperatures of 700{endash}900{degree}C. The pyrometric measurement is performed using two silicon photodiode detectors and 10 nm bandpass filters centered at 650 and 1050 nm. Thermal radiation is transferred using an uncooled fiberoptic probe brought into the vicinity of the char particle. The key features of the pyrometric apparatus and analysis method are: (1) Single particle temperature is resolved temporally at high speed. (2) The thermal radiation originating from the furnace and reflected by the particle is accounted for in the measurement of the surface temperature. (3) Particle temperatures above or below the furnace temperature can be measured without the need of a cooled background assisting the measurement in the hot furnace. To accomplish this, a minimum particle size is needed that is a function of the temperature difference between the particle and furnace. Particles cooler than the furnace can be measured if their diameter is more than 0.7 mm. Surface temperatures of 300{endash}400{degree}C above the furnace temperature were measured during combustion of black liquor char particles in air. In atmospheres corresponding to gasification, endothermic reactions occurred, and char temperature remained typically 40{degree} below the furnace temperature. {copyright} {ital 1996 American Institute of Physics.}

  10. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  11. Causes and solutions for cracking of coextruded and weld overlay floor tubes in black liquor recovery boilers

    SciTech Connect (OSTI)

    Keiser, J.R.; Taljat, B.; Wang, X.L. [and others

    1998-09-01T23:59:59.000Z

    Cracking of coextruded, black liquor recovery boiler floor tubes is both a safety and an economic issue to mill operators. In an effort to determine the cause of the cracking and to identify a solution, extensive studies, described in this and three accompanying papers, are being conducted. In this paper, results of studies to characterize both the cracking and the chemical and thermal environment are reported. Based on the results described in this series of papers, a possible mechanism is presented and means to lessen the likelihood of cracking or to totally avoid cracking of floor tubes are offered.

  12. Electrolysis of weak black liquor: Part II. Effect of process parameters on the energy efficiency of the electrolytic cell

    SciTech Connect (OSTI)

    Cloutier, J.N.; Azarniouch, M.K.; Callender, D.

    1994-12-31T23:59:59.000Z

    A laboratory study of the effect of eight process parameters on the performance of the electrolytic cell when electrolyzing weak black liquor (WBL) showed that current density and temperature are critical to the operation. These two variables showed an interaction effect upon the operation of the cell. The addition of sodium sulfate to the WBL was beneficial to the energy efficiency. No chlorine gas was produced when electrolyzing WBL containing sodium chloride within the pH range of 5.4 to 13.

  13. Study of soluble scale fouling control in high solids black liquor concentrators. Progress report, quarter 5 (October 1, 1999 - December 31, 1999)

    SciTech Connect (OSTI)

    W.J. Frederick; F. Chen; G. Hsieh; S. Lien; R.W. Murphy; R.W. Rousseau; W. Schmidl

    2000-01-01T23:59:59.000Z

    During this quarter, work has finally resumed on the black liquor solubility experiments, but no new data have been generated. The crystallization experiments with inorganic model solutions have been completed, and crystallization experiments with kraft black liquor have been started. The Annular Test Cell apparatus is now fully operational, while construction of the falling film evaporator pilot plant is nearly complete. Startup of this unit is planned for late in Quarter 6. In the CFD model development work, the relaxation of simplifying assumptions in the falling film model have been completed, and expressions were developed to estimate film velocity/film Reynolds number relations. Also, thin film data taken for a range of conventional fluids were compared to predictions using selected methods, and attempts were initiated to extrapolate to approximate black liquor evaporator conditions.

  14. Controlling emissions from a black liquor fluidized bed evaporator (Copeland reactor) using a regenerative thermal oxidizer and a prefilter

    SciTech Connect (OSTI)

    Grzanka, R.

    1997-12-31T23:59:59.000Z

    This paper reports on an intriguing pilot project developed to control air emissions from a pulp mill. Testing is complete, and the results show favorable emissions reductions. Stone Container Corporation, REECO, NCASI, the Ohio DEP, and the US EPA, have all worked together and approved the installation of control equipment, for VOC and HAP emissions under Presumptive MACT, setting the standard for the Copeland Reactor process in a semi chem pulp mill. The equipment, once operational, will reduce VOC and CO emissions by greater than 90%. This installation will be done at one seventh the cost of the significant process modifications required to accomplish the same emission reduction. In addition, increased process operating efficiency will be achieved with the use of an energy recovery system. The process is a black liquor fluidized bed boiler, which is used to generate sodium carbonate from the black liquor. The vapor emissions were high in VOCs, CO and particulate. After much study and testing, a wet electrostatic precipitator was chosen as the filter system for particulate control, followed by a regenerative thermal oxidizer for VOC and HAP control, finally an air-to-air heat exchanger is being used to preheat the combustion air entering the process.

  15. High-solids black liquor firing in pulp and paper industry Kraft recovery boilers. Final report, Phase 1, Volume 1: Executive summary

    SciTech Connect (OSTI)

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01T23:59:59.000Z

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The objectives are to develop a preliminary design of a recovery furnace simulator; evaluate the economics of high-solids; and delineate a project concept for evaluating candidate technologies to improve chemical recovery.

  16. Fundamental study of black liquor gasification kinetics using a pressurized entrained-flow reactor (PEFR). Quarterly progress report for the period July 1999 to September 1999

    SciTech Connect (OSTI)

    NONE

    1999-10-29T23:59:59.000Z

    The goal of the program is to identify the optimal operating window for black liquor gasification. The goals during this year are to prepare the PEFR for operation, conduct a series of preliminary screening tests to bracket BLG operating conditions, and develop a process model that can guide identification of the optimal operating window.

  17. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 3: Appendix II, Sections 2 & 3 and Appendix III

    SciTech Connect (OSTI)

    T.M. Grace, W.J. Frederick, M. Salcudean, R.A. Wessel

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  18. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  19. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

  20. Production of ammonium sulfate fertilizer from FGD waste liquors. Quarterly technical report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Randolph, A.D.; Mukhopadhyay, S.; Unrau, E.

    1994-12-31T23:59:59.000Z

    During this quarterly period, an experimental investigation was performed to study the precipitation kinetics and hydrolysis characteristics of calcium imido disulfonate crystals (CaADS). The CaADS crystals were precipitated by a metathetical reaction of lime, supplied by Dravo Lime Co., with flue gas desulfurization (FGD) scrubber waste liquor. Before approaching for the continuous Double Draw-Off (DDO) crystallization studies, the influence of a Dravo lime slurry on the precipitation characteristics of N-S compounds will be established. A series of N-S compound batch crystallization studies were completed in a wide range of pH (7.0--9.0), and the influence of pH on the amount of lime required, as well as the amount of precipitate obtained, was investigated. Although the amount of precipitate increased with increase in solution pH, the safe or optimum pH for the precipitation of CaADS lies in the vicinity of 8.2 to 8.3. For studying the crystallization characteristics of CaADS crystals, a bench scale 7.0 liter DDO crystallizer was built. DDO crystallizer is found to be superior compared to Mixed Suspension Mixed Product Removal (MSMPR) crystallizer. The precipitated crystals were analyzed for elemental composition by chemical analysis. The crystals were also examined under optical microscope for their morphological features. The present studies confirmed our prediction that N-S compounds in the waste liquor can be precipitated by a reaction with lime slurry. The precipitated crystals were mostly calcium imido disulfonate.

  1. Detection of estrogen- and dioxin-like activity in pulp and paper mill black liquor and effluent using in vitro bioassays

    SciTech Connect (OSTI)

    Zacharewski, T.; Berhane, K.; Gillesby, B.; Burnison, K. [Univ. of Western Ontario, London, Ontario (Canada). Dept. of Pharmacology and Toxicology; [National Water Research Inst., Burlington, Ontario (Canada). Aquatic Ecosystem Conservation Branch

    1995-12-31T23:59:59.000Z

    Pulp and paper mill effluent contains a complex mixture of compounds which adversely affect fish physiologically and at the population level. These effects include compromised reproductive fitness and the induction of mixed-function oxidase activities; two classic responses mediated by the estrogen and/or Ah receptor. In vitro recombinant receptor/reporter gene assays were used to examine pulp and paper mill black liquor and effluent for estrogenic, dioxin-like and antiestrogenic activities. Using MCF7 cells transiently transfected with a Gal4-estrogen receptor chimeric construct (Gal4-HEGO) and a Gal4-regulated luciferase reporter gene (17m5-G-Luc), it was estimated that black liquor contains 4 {+-} 2 ppb ``estrogen equivalents``, while negligible estrogenic activity was observed in a methanol-extracted pulp and paper mill effluent fraction (MF). A dioxin response element (DRE)-regulated luciferase reporter gene (pGudLucl.1) transiently transfected into Hepalclc7 wild type cells exhibited a dose-dependent increase in luciferase activity following treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDO), black liquor and MF. Based on the dose response curves, black liquor and MF contain 10 {+-} 4 ppb and 20 {+-} 6 ppt ``TCDD equivalents``, respectively. Moreover, MF exhibited significant AhR-mediated antiestrogenic activity. These results demonstrate the utility of these bioassays and suggest that the effects observed in fish exposed to pulp and paper mill effluent may be due to unidentified ER and AhR ligands not detected by conventional chemical analysis due to the lack of appropriate chemical standards.

  2. Development of an alternative kraft black liquor recovery process based on low-temperature processing in fluidized beds. Final technical report on Annex 9, Task 1

    SciTech Connect (OSTI)

    Kubes, G.J.

    1994-03-24T23:59:59.000Z

    The overall objective of this research program was to provide the fundamental knowledge and experimental data from pilot scale operation for an alternative black liquor recovery technology which would have a higher overall energy efficiency, would not suffer from the smelt-water explosion hazard and would be lower in capital cost. In addition, the alternative process would be more flexible and well suited for incremental recovery capacity or for new pulping processes, such as the new sulfide-sulfide-AQ process. The research program consists of number of specific research objectives with the aim to achieve the ultimate objective of developing an alternative recovery process which is shown in Figure 1. The specific objectives are linked to individual unit operations and they represent the following research topics: (1) superheated steam drying of kraft black liquors; (2) fast pyrolysis of black liquor; (3) hydrogen sulfide absorption from flue gas; (4) reduction of sodium sulfate in solid phase with gaseous hydrogen; and (5) verification of the fundamental results in fluidized bed pilot plant. The accomplishments in each of these objectives are described.

  3. Materials for the pulp and paper industry. Section 1: Development of materials for black liquor recovery boilers

    SciTech Connect (OSTI)

    Keiser, J.R.; Hubbard, C.R.; Payzant, E.A. [Oak Ridge National Lab., TN (United States)] [and others

    1997-04-01T23:59:59.000Z

    Black liquor recovery boilers are essential components of kraft pulp and paper mills because they are a critical element of the system used to recover the pulping chemicals required in the kraft pulping process. In addition, the steam produced in these boilers is used to generate a significant portion of the electrical power used in the mill. Recovery boilers require the largest capital investment of any individual component of a paper mill, and these boilers are a major source of material problems in a mill. The walls and floors of these boilers are constructed of tube panels that circulate high pressure water. Molten salts (smelt) accumulate on the floor of recovery boilers, and leakage of water into the boiler can result in a violent explosion when the leaked water instantly vaporizes upon contacting the molten smelt. Because corrosion of the conventionally-used carbon steel tubing was found to be excessive in the lower section of recovery boilers, use of stainless steel/carbon steel co-extruded tubing was adopted for boiler walls to lessen corrosion and reduce the likelihood of smelt/water explosions. Eventually, this co-extruded or composite (as it is known in the industry) tubing was selected for use as a portion or all of the floor of recovery boilers, particularly those operating at pressures > 6.2 MPa (900 psi), because of the corrosion problems encountered in carbon steel floor tubes. Since neither the cause of the cracking nor an effective solution has been identified, this program was established to develop a thorough understanding of the degradation that occurs in the composite tubing used for walls and floors. This is being accomplished through a program that includes collection and review of technical reports, examination of unexposed and cracked tubes from boiler floors, computer modeling to predict residual stresses under operating conditions, and operation of laboratory tests to study corrosion, stress corrosion cracking, and thermal fatigue.

  4. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia

    SciTech Connect (OSTI)

    Robert De Carrera; Mike Ohl

    2002-03-19T23:59:59.000Z

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

  5. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase 1 -- Final report. Volume 2: Project technical results

    SciTech Connect (OSTI)

    Southards, W.T.; Clement, J.L.; McIlroy, R.A.; Tharp, M.R.; Verrill, C.L.; Wessell, R.A.

    1995-11-01T23:59:59.000Z

    This project is a multiple-phase effort to develop technologies to improve high-solids black liquor firing in pulp mill recovery boilers. The principal means to this end is to construct and operate a pilot-scale recovery furnace simulator (RFS) in which these technologies can be tested. The Phase 1 objectives are to prepare a preliminary design for the RFS, delineate a project concept for evaluating candidate technologies, establish industrial partners, and report the results. Phase 1 addressed the objectives with seven tasks: Develop a preliminary design of the RFS; estimate the detailed design and construction costs of the RFS and the balance of the project; identify interested parties in the paper industry and key suppliers; plan the Phase 2 and Phase 3 tests to characterize the RFS; evaluate the economic justification for high-solids firing deployment in the industry; evaluate high-solids black liquor property data to support the RFS design; manage the project and reporting results, which included planning the future program direction.

  6. Repackaging SRS Black Box TRU Waste

    SciTech Connect (OSTI)

    Swale, D. J.; Stone, K.A.; Milner, T. N.

    2006-01-09T23:59:59.000Z

    Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project.

  7. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    SciTech Connect (OSTI)

    Nexant Inc.

    2006-05-01T23:59:59.000Z

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  8. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 2: Appendix I, Section 5, and Appendix II, Section 1

    SciTech Connect (OSTI)

    T.M. Grace, W.J. Frederick, M. Salcudean, R.A. Wessel

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler; and (4) Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  9. Black Liquor Combustion Validated Recovery Boiler Modeling, Final Year Report, Volume 1: Main Text and Appendix I, Sections 1-4

    SciTech Connect (OSTI)

    T.M. Grace, W.J. Frederick, M. Salcudean, R.A. Wessel

    1998-08-01T23:59:59.000Z

    This project was initiated in October 1990 with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. Many of these objectives were accomplished at the end of the first five years and documented in a comprehensive report on that work (DOE/CE/40936-T3, 1996). A critical review of recovery boiler modeling, carried out in 1995, concluded that further enhancements of the model were needed to make reliable predictions of key output variables. In addition, there was a need for sufficient understanding of fouling and plugging processes to allow model outputs to be interpreted in terms of the effect on plugging and fouling. As a result, the project was restructured and reinitiated at the end of October 1995, and was completed in June 1997. The entire project is now complete and this report summarizes all of the work done on the project since it was restructured. The key tasks to be accomplished under the restructured project were to (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes; (2) Validate the enhanced furnace models, so that users can have confidence in the results; (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. Facilitate the transfer of codes, black liquor submodels, and fundamental knowledge to the U.S. kraft pulp industry.

  10. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    SciTech Connect (OSTI)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27T23:59:59.000Z

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industrys energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also produced a comparable tensile and burst index pulps. Product gas composition determined using computer simulations The results demonstrate that RVS-1 can effectively remove > 99.8% of the H2S present in simulated synthesis gas generated from the gasification of black liquor. This level of sulfur removal was consistent over simulated synthesis gas mixtures that contained from 6 to 9.5 vol % H2S.A significant amount of the sulfur in the simulated syngas was recovered as SO2 during regeneration. The average recovery of sulfur as SO2 was about 75%. Because these are first cycle results, this sulfur recovery is expected to improve. Developed WINGems model of the process.The total decrease in variable operating costs for the BLG process compared to the HERB was in excess of $6,200,000 per year for a mill producing 350,000 tons of pulp per year. This represents a decrease in operating cost of about $17.7/ton of oven dry pulp produced. There will be additional savings in labor and maintenance cost that has not been taken into account. The capital cost for the MSSAQ based gasifier system was estimated at $164,000,000, which is comparable to a High Efficiency Recovery Boiler. The return on investment was estimated at 4%. A gasifier replacement cannot be justified on its own, however if the recovery boiler needs to be replaced the MSSAQ gasifier system shows significantly higher savings. Before black liquor based gasifer technology can be commercialized more work is necessary. The recovery of the absorbed sulfur in the absorbent as sulfur dioxide is only 75%. This needs to be greater than 90% for economical operation. It has been suggested that as the number of cycles is increased the sulfur dioxide recovery might improve. Further research is necessary. Even though a significant amount of work has been done on a pilot scale gasifiers using liquors containing sulfur, both at low and high temperatures the lack of a commercial unit is an impediment to the implementation of the MSSAQ technology. The implementation of a commercial unit needs to be facilated before the benefits of

  11. Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy

    E-Print Network [OSTI]

    Mengozzi, Alessandro

    2010-01-01T23:59:59.000Z

    capita); hydro (20%), black liquor, 6 peat, coal, wood fuel,to-door systems, but Black liquor is a byproduct of pulp,

  12. Analysis of Energy-Efficiency Opportunities for the Pulp and Paper Industry in China

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01T23:59:59.000Z

    efficiently utilize black liquor and other waste biomass forbiomass is used and black liquor is converted intoRecovery Falling film black liquor evaporation Black liquor

  13. High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996

    SciTech Connect (OSTI)

    Southards, W.T.; Blude, J.D.; Dickinson, J.A. [and others

    1997-06-01T23:59:59.000Z

    This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

  14. Viscosity of black liquor project

    SciTech Connect (OSTI)

    Barrall, G.A.

    1998-06-01T23:59:59.000Z

    The discussion of magnetic resonance in this report is confined to nuclides with a spin quantum number of 1/2. Included is a basic discussion of magnetic resonance; magnetic resonance relaxation and viscosity; and rhometers and viscometers. Many other effects are ignored for the sake of clarity.

  15. Constraining uncertainties about the sources and magnitude of ambient air exposures to polycyclic aromatic hydrocarbons (PAHs): The state of Minnesota as a case study

    E-Print Network [OSTI]

    Lobscheid, Agnes B.; McKone, Thomas E.

    2004-01-01T23:59:59.000Z

    wood, wood waste, and black liquor are reported by thee other= wood waste, black liquor, used oil, petroleum coke,

  16. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  17. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  18. Liquor Activity Reduction (LAR) Programme - 12397

    SciTech Connect (OSTI)

    Pether, Colin; Carrol, Phil; Birkett, Eddie; Kibble, Matthew [Sellafield Ltd, Cumbria (United Kingdom)

    2012-07-01T23:59:59.000Z

    Waste material from the reprocessing of irradiated fuel has been stored under water for several decades leading to the water becoming highly radioactive. As a critical enabler to the decommissioning strategy for the Sellafield site, the Liquor Activity Reduction (LAR) programme has been established to provide a processing route for this highly radioactive liquor. This paper reviews the progress that has been made since the start of routine LAR transfer cycles (July 2010) and follows on from the earlier paper presented at WM2011. The paper focuses on the learning from the first full year of routine LAR transfer cycles and the application of this learning to the wider strategies for the treatment of further radioactive liquid effluents on the Sellafield site. During this period over 100,000 Curies of radioactivity has been safely removed and treated. The past year has witnessed the very successful introduction of the LAR programme. This has lead to hazard reduction at MSSS and demonstration that the SIXEP facility can meet the significantly increased challenge that the LAR programme represents. Part of the success has been the ability to predict and deliver a realistic production schedule with the availability of the MSSS, EDT and SIXEP facilities being central to this. Most importantly, the LAR programme has been successful in bringing together key stakeholders to deliver this work while integrating with the existing, day to day, demands of the Sellafield site. (authors)

  19. Big Island Demonstration Project Black Liquor

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  20. Highly Energy Efficient Directed Green Liquor Utilization (D...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping This factsheet describes a...

  1. New method of regenerating spent vacuum-carbonate sulfur removal liquor

    SciTech Connect (OSTI)

    Popov, A.A.; Dovgopol, A.P.; Goncharova, Z.S.; Belitskii, A.N,.; Gorokhov, N.N.; Grigorash, A.S.; Yaroshenko, A.K.

    1980-01-01T23:59:59.000Z

    A three-stage method is proposed for processing the ballast salts in the wash liquor from vacuum-carbonate removal of sulfur from coke-oven gas. The method is based on successive treatment of the liquor with sulfur dioxide, hydrogen sulfide and 95% sulfuric acid in the presence of hydrogen sulfide. The products of the process are thiosulfate, sulfate and elemental sulfur, at yields of 99.8%, 99.5% and 99.7% respectively. These investigations of a waste-free vacuum-carbonate method of removing hydrogen sulfide from coke-oven gas convincingly show that it is possible in principle to efficiently utilize the spent liquors both as a feedstock and as an absorbent and to obtain commercial products as a result.

  2. The preparation and analysis of ammonia base sulfite pulping liquor

    E-Print Network [OSTI]

    Honstead, John Frederick

    1950-01-01T23:59:59.000Z

    much better check between results obtained by two different operators testing the same sample, and using the Palm- rose method. In a mill the liquor is test d b? shift men as the liquor is being prepared, and also by technicians in the laboratory...

  3. BAR PACKAGES Standard Bar Package Price Liquor Beer/Wine

    E-Print Network [OSTI]

    Westneat, Mark W.

    BAR PACKAGES Standard Bar Package Price Liquor Beer/Wine 1-2 hours $21/ person Sobieski Vodka MGD 3 Select Wine Cutty Sark Scotch Cruzan Rum Premium Bar Package Price Liquor Beer/Wine 1-2 hours $24/person Beer/Wine 1-2 hours $28/person Grey Goose Vodka MGD/Miller Light 3 hours $33/person Bombay Sapphire Two

  4. Metals recovery from wastes. (Latest citations from Metadex). Published Search

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The bibliography contains citations concerning the recovery and recycling or reuse of ferrous and nonferrous metals from various industrial wastes. Types of waste considered include waste water, sludge, scrap, battery waste, and waste liquors. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Black Liquor Gasification Process Review and Status Update

    E-Print Network [OSTI]

    Brown, C.

    facilities (0.2 tph) focused on developing pressurized gasifiers. Their work is complemented by research at VIT (The Technical Research Centre of Finland) who have a 0.2 tph pressurized fluid bed test facility. The purpose of this paper is to describe...

  6. Metals recovery from wastes. (Latest citations from Metadex). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The bibliography contains citations concerning the recovery and recycling or reuse of ferrous and nonferrous metals from various industrial wastes. Types of waste considered include waste water, sludge, scrap, battery waste, and waste liquors. (Contains 250 citations and includes a subject term index and title list.)

  7. Steam Production from Waste Stack Gases in a Carbon Black Plant

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01T23:59:59.000Z

    gases to produce steam has two very important rewards - energy conservation and pollution abatement. Energy conservation is achieved by using waste gases in place of fuel oil to produce the steam required by the various plants. Pollution abatement is due...

  8. attached biomass growth: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  9. aboveground biomass distributions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  10. algal biomass biosorbents: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  11. advanced biomass reburning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    animal manure, black liquor,etc. Waste: household waste, sewage sludge, animal manure, slaughterhouse waste. 12;Biomass characteristics Biomass is a storable...

  12. The Historically Black Colleges and Universities/Minority Institutions Environmental Technology and Waste Management Consortium annual report, 1990--1991

    SciTech Connect (OSTI)

    NONE

    1991-12-31T23:59:59.000Z

    The HBCU/MI Environmental Technology and Waste Management Consortium was established in January 1990, through a Memorandum of Understanding (MOU) among the member institutions. This group of research-oriented Historically Black Colleges and Universities and Minority Institutions (HBCU/MI) agreed to work together to initiate research, technology development and education programs to address the nation`s critical environmental problems. As a group the HBCU/MI Consortium is uniquely positioned to reach women and the minority populations of African Americans, Hispanics and American Indians. As part of their initial work, they developed the Research, Education, and Technology Transfer (RETT) Plan to actualize the Consortium`s guiding principles. In addition to developing a comprehensive research agenda, four major programs were begun to meet these goals. This report summarizes the 1990--1991 progress.

  13. Briquette comprising caking coal and municipal solid waste

    SciTech Connect (OSTI)

    Schulz, H.W.

    1980-09-30T23:59:59.000Z

    Briquettes of specified geometry and composition are produced to serve as feed material or ''burden'' in a moving-burden gasifier for the production of a synthesis or fuel gas from organic solid waste materials and coal, including especially, the so-called ''caking'' coals, as in the process of copending application number 675,918. The briquettes are formed from a well-blended mixture of shredded organic solid wastes, including especially, municipal solid waste (Msw) or biomass, and crushed caking coal, including coal fines. A binder material may or may not be required, depending on the coal/msw ratio and the compaction pressure employed. The briquettes may be extruded, stamped, or pressed, employing compaction pressures in excess of 1000 psi, and preferably in the range of 2000 to 10,000 psi. The briquettes may be circular, polygonal, or irregular in cross-section; they may be solid, or concentrically perforated to form a hollow cylinder or polygon; they may be formed into saddles, pillows or doughnuts. The ratio of caking coal to shredded municipal solid waste is controlled so that each part of the predominantly cellulosic organic solid waste will be blended with 0.5 to 3.0 parts of crushed coal. Suitable binder materials include dewatered sewage slude (Dss), ''black liquor'' rich in lignin derivatives, black strap molasses, waste oil, and starch. The binder concentration is preferably in the range of 2 to 6 percent. If coals high in sulfur content are to be processed, at least a stoichiometric equivalent of dolomite may be included in the briquette formulation to eliminate a major fraction of the sulfur with the slag.

  14. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    recycled glass cullet Black liquor gasification Condebeltwastewater Microturbines Black liquor gasification Efficienttechnologies are black liquor gasification (a potentially

  15. Emerging energy-efficient technologies for industry

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    recycled glass cullet Black liquor gasification Condebeltwastewater Microturbines Black liquor gasification Efficienttechnologies are black liquor gasification (a potentially

  16. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  17. World Best Practice Energy Intensity Values for Selected Industrial Sectors

    E-Print Network [OSTI]

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky, Christina; Zhou, Nan

    2007-01-01T23:59:59.000Z

    recovered from the black liquor recovery process (combustingand development in black liquor gasification has not yetgreen liquor, similar to the black liquor recovery process,

  18. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOE Patents [OSTI]

    Griffith, William Louis; Compere, Alicia Lucille; Leitten Jr., Carl Frederick

    2010-04-20T23:59:59.000Z

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  19. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    DOE Patents [OSTI]

    Li, Jian (Marietta, GA); Chai, Xin Sheng (Atlanta, GA); Zhu, Junyoung (Marietta, GA)

    2008-06-24T23:59:59.000Z

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  20. Blood, rumen liquor, and fecal components as affected by dietary crude protein

    E-Print Network [OSTI]

    Hinnant, R. T

    1979-01-01T23:59:59.000Z

    BLOOD, RUMEN LIQUOR, AND FECAL COMPONENTS AS AFFECTED BY DIETARY CRUDE PROTEIN A Thesis by RAY THOMAS HINNANT Submitted to the Graduate College ot Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December' 1979 Major Subject: Range Science BLOOD, RUMEN LIQUOR, AND FECAL COMPONENTS AS APFECTED BY DIETARY CRUDE PROTEIN A Thesis by RAY THOMAS HINNANT Approved as to style and content by: (Chairman of Cosssittee) (Member) ( ?) (Head...

  1. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  2. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    E-Print Network [OSTI]

    Reddy, A. P.

    2012-01-01T23:59:59.000Z

    strain isolated from black liquor. Bioresource Technologyhave been enriched in black liquor samples from paper

  3. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 PARTICULATES #1PARTICULATES #1

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Leather waste ~5 Estonian oil shale ~40 OrimulsionTM ~1.5 Black liquor solids 30 - 40 #12;HELSINKI 2 - 8 Oil oil oil

  4. Oil palm vegetation liquor: a new source of phenolic bioactives

    E-Print Network [OSTI]

    Sambandan, T. G.

    Waste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products ...

  5. Test plan for non-radioactive testing of vertical calciner for development of direct denitration conversion of Pu-bearing liquors to stable, storage solids

    SciTech Connect (OSTI)

    Fisher, F.D.

    1995-03-30T23:59:59.000Z

    Plutonium-bearing liquors, including ANL scrap liquors, will be used for development and demonstration of a vertical calciner direct denitration process for conversion of those liquors to stable, storable PuO{sub 2}-rich solids. This test plan is to test with non-radioactive stand-in materials to demonstrate adequate performance of the vertical calciner and ancillary equipment.

  6. Study of soluble scale fouling control in high solids black liquor concentrators

    SciTech Connect (OSTI)

    Frederick, W. J.; Chen, F.; Hsieh, G.; Lien, S.; Murphy, R.W.; Rousseau, R.W.

    1999-09-30T23:59:59.000Z

    The quarterly project review meeting was held at IPST on August 2, 1999 and was attended by IPST, Georgia Tech, and ORNL principal investigators, members of the Industrial Advisory Group, and a U.S. DOE representative. Although steady progress is being made, this project is currently behind schedule. The specific tasks that are behind schedule, the reasons for the delays, and the expected completion dates are discussed. The remaining tasks are either on schedule, or have not been started.

  7. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-11-05T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  8. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15T23:59:59.000Z

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  9. Determination of taurine concentration during cheddar cheese manufacture and examination of antioxidant properties of whey, permeate, mother liquor, and taurine

    E-Print Network [OSTI]

    Li, Xin

    1999-01-01T23:59:59.000Z

    Comparison of the maximum chemiluminescence value(MCV) of control, whey, permeate and mother liquor in the hemoglobin system. . 39 Comparison of the maximum chemiluminescence time(MCT) of control, whey, permeate and mother liquor in the hemoglobin system.... . 40 Effect of concentration of taurine on the MCT and MCV in the hemoglobin system. 45 LIST OF FIGURES FIGURE Page Anion exchange chromatograph of taurine and lactose in permeate . . . . . . 30 Comparative antioxidant activity of whey fractions...

  10. Subsidizing Solar: The Case for an Environmental Goods and Services Carve-out from the Global Subsidies Regime

    E-Print Network [OSTI]

    Simmons, Zachary Scott

    2014-01-01T23:59:59.000Z

    IRS concluded that black liquor, a carbon-based byproductits application to black liquor almost certainly did. Thisthe application to black liquor) to create a perverse

  11. Emerging energy-efficient industrial technologies

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    and P. Parthsarathy. 1999. Black Liquor Gasification: AKreutz, N. Berglin. 1998. Black Liquor Gasifier/Gas TurbineSystem Options with Black Liquor Gasification. In Pulp and

  12. Emerging Energy-Efficient Technologies for Industry

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    recycled glass cullet Black liquor gasification CondebeltBeam Sterilization Black liquor gasification Efficient cellSensors and controls Black liquor gasification Near net

  13. The use of a permanent magnet for water content measurements of wood chips

    E-Print Network [OSTI]

    2001-01-01T23:59:59.000Z

    making machine. The black liquor left over from the pulpingchips, brownstock, and black liquor. This report describes acellulose and water) and black liquor using the bench scale

  14. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01T23:59:59.000Z

    54 3.5.1. Black Liquor2006. "Ultrafiltration of black liquor using rotating diskultrafiltration of Kraft black liquor using rotating disk

  15. The Costs and Benefits of Compliance with Renewable Portfolio Standards: Reviewing Experience to Date

    E-Print Network [OSTI]

    Heeter, Jenny

    2014-01-01T23:59:59.000Z

    the inception of this RPS, black liquor gasification hasprimary source of RECs; black liquor typically costs lesspart of the main tier, black liquor represented 33% of the

  16. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    E-Print Network [OSTI]

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-01-01T23:59:59.000Z

    Atlas, 1996b (? ). Black Liquor gasification IntroductionBerglin, N. July, 1998. Black Liquor Gasifier/Gas TurbinePreliminary Economics of Black Liquor Gasification Combined

  17. Magnet options for sensors for the pulp and paper industry

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    constituents of the black liquor leaving the paper digester,a papermaking machine. The black liquor left over from themoisture content of the black liquor leaving the digester,

  18. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    uses heat and yields black liquor that can potentially be2007). However, the black liquor recovery in agro-residueHigh concentration of black liquor Continuous digester

  19. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    E-Print Network [OSTI]

    Kramer, Klaas Jan

    2010-01-01T23:59:59.000Z

    chemicals (i.e. , black liquor) [5, 9]. Electricity is usedand other operations. Black liquor is the dominant fuel forconcentration Thick black liquor Refiner Steam Electricity

  20. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01T23:59:59.000Z

    21 13. Black LiquorChlorine-Alkaline Industry Black Liquor Gasification ResidueDC (LBNL-46990). 13. Black Liquor Gasification In standard

  1. Opportunities to improve energy efficiency in the U.S. pulp and paper industry

    E-Print Network [OSTI]

    Worrell, Ernst; Martin, Nathan; Anglani, Norma; Einstein, Dan; Khrushch, Marta; Price, Lynn

    2001-01-01T23:59:59.000Z

    Benefit Assessment of Black Liquor Gasifier/Combined CycleRecovery Falling film black liquor evaporation Tampellafiring Falling film black liquor evaporation Enzyme-assisted

  2. Biofuel Boundaries: Estimating the Medium-Term Supply Potential of Domestic Biofuels

    E-Print Network [OSTI]

    Jones, Andrew; O'Hare, Michael; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    industrial residues - such as black liquor and sawdust, andindustry residues such as black liquor are mostly (93%) (18)industry residues, such as black liquor from their current

  3. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01T23:59:59.000Z

    that extracts lignin from black liquor with the potential todissolving in the black liquor along with lignin (Hamzeh etextracts lignin from pulp mill black liquor: LignoBoost.

  4. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge...

    Office of Environmental Management (EM)

    power plants. Geothermal plants waste a portion of well steam due to steam compressors that remove harmful gases. The Black Pine Engineering system replaces current plant...

  5. Electronic nose with a new feature reduction method and a multi-linear classifier for Chinese liquor classification

    SciTech Connect (OSTI)

    Jing, Yaqi; Meng, Qinghao, E-mail: qh-meng@tju.edu.cn; Qi, Peifeng; Zeng, Ming; Li, Wei; Ma, Shugen [Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)] [Tianjin Key Laboratory of Process Measurement and Control, Institute of Robotics and Autonomous Systems, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-05-15T23:59:59.000Z

    An electronic nose (e-nose) was designed to classify Chinese liquors of the same aroma style. A new method of feature reduction which combined feature selection with feature extraction was proposed. Feature selection method used 8 feature-selection algorithms based on information theory and reduced the dimension of the feature space to 41. Kernel entropy component analysis was introduced into the e-nose system as a feature extraction method and the dimension of feature space was reduced to 12. Classification of Chinese liquors was performed by using back propagation artificial neural network (BP-ANN), linear discrimination analysis (LDA), and a multi-linear classifier. The classification rate of the multi-linear classifier was 97.22%, which was higher than LDA and BP-ANN. Finally the classification of Chinese liquors according to their raw materials and geographical origins was performed using the proposed multi-linear classifier and classification rate was 98.75% and 100%, respectively.

  6. Potentials and policy implications of energy and material efficiency improvement

    E-Print Network [OSTI]

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01T23:59:59.000Z

    mechanical pulping Black liquor gasification/gasturbinefuels such as bark and black liquor, provide over 50% of the

  7. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form Separate liquid from solid Radionuclide Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste Program is designed to

  8. Influence of assumptions about household waste composition in waste management LCAs

    SciTech Connect (OSTI)

    Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Uncertainty in waste composition of household waste. Black-Right-Pointing-Pointer Systematically changed waste composition in a constructed waste management system. Black-Right-Pointing-Pointer Waste composition important for the results of accounting LCA. Black-Right-Pointing-Pointer Robust results for comparative LCA. - Abstract: This article takes a detailed look at an uncertainty factor in waste management LCA that has not been widely discussed previously, namely the uncertainty in waste composition. Waste composition is influenced by many factors; it can vary from year to year, seasonally, and with location, for example. The data publicly available at a municipal level can be highly aggregated and sometimes incomplete, and performing composition analysis is technically challenging. Uncertainty is therefore always present in waste composition. This article performs uncertainty analysis on a systematically modified waste composition using a constructed waste management system. In addition the environmental impacts of several waste management strategies are compared when applied to five different cities. We thus discuss the effect of uncertainty in both accounting LCA and comparative LCA. We found the waste composition to be important for the total environmental impact of the system, especially for the global warming, nutrient enrichment and human toxicity via water impact categories.

  9. Black Holes

    E-Print Network [OSTI]

    P. K. Townsend

    1997-07-04T23:59:59.000Z

    Lecture notes for a 'Part III' course 'Black Holes' given in DAMTP, Cambridge. The course covers some of the developments in Black Hole physics of the 1960s and 1970s.

  10. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    SciTech Connect (OSTI)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31T23:59:59.000Z

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  11. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    SciTech Connect (OSTI)

    Lucia, Lucian A

    2013-04-19T23:59:59.000Z

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  12. Freeze Crystallization: Improving the Energy Efficiency of a Low-Energy Separation Process

    E-Print Network [OSTI]

    Heist, J. A.

    1981-01-01T23:59:59.000Z

    load reductions. Pulp and Paper Mills - This industry has both large quantities of waste heat and large flows of process fluids. The most concentrated of the streams, black liquor from digestion of the lignin in the wood, is concentrated...

  13. Ethanol production from spent sulfite liquor fortified by hydrolysis of pulp mill primary clarifier sludge

    SciTech Connect (OSTI)

    Moritz, J.W.; Duff, S.J.B. [Univ. of British Columbia, Vancouver (Canada)

    1996-12-31T23:59:59.000Z

    Some low-yield sulfite pulping operations ferment spent sulfite liquor (SSL) to remove biochemical oxygen demand associated with dissolved sugars while at the same time generating ethanol as a salable product. Simultaneous saccharification and fermentation (SSF) of primary clarifier sludge in a medium of SSL was proposed as a means of reducing the amount of sludge to be disposed of while at the same time increasing ethanol productivity. In this article, the option of fortifying existing SSL fermenting processes with the sugars produced via in situ enzymatic hydrolysis of sulfite primary clarifier sludge (PCS) has been explored. In 100% SSL PCS hydrolysis rates as high as 3.4 g/(L{center_dot}h) were observed at an initial enzyme loading of 10 filter paper units (FPU)/g PCS. To reduce the deleterious effects of glucose inhibition, single-stage SSF was carried out using cellulose enzymes and Saccharomyces cerevisiae. The production rate of ethanol in SSL was increased by as much as 25% through the SSF process. 12 refs., 4 figs., 2 tabs.

  14. Model development for household waste prevention behaviour

    SciTech Connect (OSTI)

    Bortoleto, Ana Paula, E-mail: a.bortoleto@sheffield.ac.uk [Department of Urban Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Kurisu, Kiyo H.; Hanaki, Keisuke [Department of Urban Engineering, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We model waste prevention behaviour using structure equation modelling. Black-Right-Pointing-Pointer We merge attitude-behaviour theories with wider models from environmental psychology. Black-Right-Pointing-Pointer Personal norms and perceived behaviour control are the main behaviour predictors. Black-Right-Pointing-Pointer Environmental concern, moral obligation and inconvenience are the main influence on the behaviour. Black-Right-Pointing-Pointer Waste prevention and recycling are different dimensions of waste management behaviour. - Abstract: Understanding waste prevention behaviour (WPB) could enable local governments and decision makers to design more-effective policies for reducing the amount of waste that is generated. By merging well-known attitude-behaviour theories with elements from wider models from environmental psychology, an extensive cognitive framework that provides new and valuable insights is developed for understanding the involvement of individuals in waste prevention. The results confirm the usefulness of the theory of planned behaviour and of Schwartz's altruistic behaviour model as bases for modelling participation in waste prevention. A more elaborate integrated model of prevention was shown to be necessary for the complete analysis of attitudinal aspects associated with waste prevention. A postal survey of 158 respondents provided empirical support for eight of 12 hypotheses. The proposed structural equation indicates that personal norms and perceived behaviour control are the main predictors and that, unlike the case of recycling, subjective norms have a weak influence on WPB. It also suggests that, since social norms have not presented a direct influence, WPB is likely to be influenced by a concern for the environment and the community as well by perceptions of moral obligation and inconvenience. Results also proved that recycling and waste prevention represent different dimensions of waste management behaviour requiring particular approaches to increase individuals' engagement in future policies.

  15. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    SciTech Connect (OSTI)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31T23:59:59.000Z

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling efforts.

  16. Savannah River Site Waste Removal Program - Past, Present and Future

    SciTech Connect (OSTI)

    Saldivar, E.

    2002-02-25T23:59:59.000Z

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  17. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    Air bottoming cycle Black liquor gasification combined cycleCEPI, 2001), and that use continues to grow. Black liquorgasification: Black liquor is the residue from chemical

  18. Magnet options for sensors for the pulp and paper industry

    E-Print Network [OSTI]

    Green, M.A.

    2011-01-01T23:59:59.000Z

    the lignin and moisture content of the black liquor leavingof lignin and other constituents was measured black liquorlignin and cellulose that are dissolved in the black liquor.

  19. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@polito.it [DISPEA - Department of Production Systems and Business Economics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DITAG - Department of Land, Environment and Geo-Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fino, Debora, E-mail: debora.fino@polito.it [DISMIC - Department of Materials Science and Chemical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  20. Oil palm vegetation liquor: a new source of phenolic bioactives Ravigadevi Sambanthamurthi1

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    teratological studies on rats up to the third generation and did not find any congenital anomalies. Thus for harvesting water-soluble antioxidants from oil palm has become available(12,14­17) . During the palm oil milling process, water-soluble pheno- lics are discarded in the waste stream, amounting to 85 million tons

  1. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  2. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  3. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  4. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  5. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22T23:59:59.000Z

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  6. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  7. RHIC | Black Holes?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Holes at RHIC? Further discussion by Physicist Dmitri Kharzeev on why RHIC cannot produce a real gravitational black hole Black holes are among the most mysterious objects in...

  8. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  9. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  10. black-bean-salad

    E-Print Network [OSTI]

    Date: Mon, 22 Nov 93 13:06:59 PST From: Jane Colman BLACK BEAN SALAD 3 cups dried black beans, soaked and cooked 3-4 ears...

  11. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  12. Dispose of it Properly! Use the following guide to determine what must be considered medical waste. Sharps must go into designated

    E-Print Network [OSTI]

    Oliver, Douglas L.

    in designated sharps containers (needle boxes, rigid plastic lab containers) Dispose of as trash Ampoules. Sharps must go into designated sharps containers. Chemotherapy wastes can only go into designated black chemotherapy waste containers. Regulated Medical Waste Not Medical Waste Place in red bags in designated

  13. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  14. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 NITROGEN #1NITROGEN #1

    E-Print Network [OSTI]

    Zevenhoven, Ron

    fuels Biomasses & waste - derived fuels Coal 0.5 ­ 3 Wood 0.1 ­ 0.5 Bark ~ 0.5 Oil Petroleum coke ~ 3 Auto shredder residue (ASR) ~ 0.5 Leather waste ~ 12 OrimulsionTM ~ 4 Black liquor solids

  15. Part II - The effect of data on waste behaviour: The South African waste information system

    SciTech Connect (OSTI)

    Godfrey, Linda [CSIR, Natural Resources and the Environment, PO Box 395, Pretoria 0001 (South Africa); University of KwaZulu-Natal, CRECHE - Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Durban 4041 (South Africa); Scott, Dianne [University of KwaZulu-Natal, School of Development Studies, Durban 4041 (South Africa); Difford, Mark [Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Trois, Cristina, E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE - Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, Durban 4041 (South Africa)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This empirical study explores the relationship between data and resultant waste knowledge. Black-Right-Pointing-Pointer The study shows that 'Experience, Data and Theory' account for 54.1% of the variance in knowledge. Black-Right-Pointing-Pointer A strategic framework for Municipalities emerged from this study. - Abstract: Combining the process of learning and the theory of planned behaviour into a new theoretical framework provides an opportunity to explore the impact of data on waste behaviour, and consequently on waste management, in South Africa. Fitting the data to the theoretical framework shows that there are only three constructs which have a significant effect on behaviour, viz experience, knowledge, and perceived behavioural control (PBC). Knowledge has a significant influence on all three of the antecedents to behavioural intention (attitude, subjective norm and PBC). However, it is PBC, and not intention, that has the greatest influence on waste behaviour. While respondents may have an intention to act, this intention does not always manifest as actual waste behaviour, suggesting limited volitional control. The theoretical framework accounts for 53.7% of the variance in behaviour, suggesting significant external influences on behaviour not accounted for in the framework. While the theoretical model remains the same, respondents in public and private organisations represent two statistically significant sub-groups in the data set. The theoretical framework accounts for 47.8% of the variance in behaviour of respondents in public waste organisations and 57.6% of the variance in behaviour of respondents in private organisations. The results suggest that respondents in public and private waste organisations are subject to different structural forces that shape knowledge, intention, and resultant waste behaviour.

  16. Review of the Hanford Waste Treatment and Immobilization Project Black-Cell and Hard-to-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, anEnergy nepdg_5251_5500.pdfAnalysis of Downwash fromWaste

  17. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  18. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  19. Black Bean Burrito Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    under running water to remove sodium. 2. Heat beans, corn and salsa together. 3. Spread 1/8 salsaBlack Bean Burrito Ingredients: 15 ounces black beans, canned, drained and rinsed 10 ounces corn cheddar cheese, low-fat, shredded 8 whole wheat flour tortillas Directions 1. Drain and rinse black beans

  20. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  1. Sustainable waste management in Africa through CDM projects

    SciTech Connect (OSTI)

    Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.

  2. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    SciTech Connect (OSTI)

    Liang Sai, E-mail: liangsai09@gmail.com [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  3. Nombramientos SECRETARIOS

    E-Print Network [OSTI]

    types of fungal bioreactors with inmmobilized Trametes versicolor for post-treated weak black liquor

  4. CHEMICAL ENGINEERING Program of Study

    E-Print Network [OSTI]

    Thomas, Andrew

    reaction engineering in wood pulping and pulp bleaching, char bed modeling, black liquor gasification

  5. BIOLOGICAL ENGINEERING Program of Study

    E-Print Network [OSTI]

    Thomas, Andrew

    reaction engineering in wood pulping and pulp bleaching, char bed modeling, black liquor gasification

  6. Environmentalism and the Politics of Equity: Emergent Trends in the Black Community

    E-Print Network [OSTI]

    Bullard, Robert; Wright, Beverly Hendrix

    1987-01-01T23:59:59.000Z

    between 1970 and 1978 and were licensed by the Texas Department of Health to dispose of Houston's municipal waste were also located in mostly black neighborhoods. The waste d!sposal facility s}ting practices of city and private waste disposal f irrns ha ve...; their water supply, and their favorite catfish pond which supplied much of this lower-income community's protein. Residents of the mostly black West Dallas (Texas) neighborhoods have for years lived with the constant bombardment of pollutants from nearby lead...

  7. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect (OSTI)

    Mueller, Julia R., E-mail: mueller.143@osu.edu [Ohio State University, William G. Lowrie Department of Chemical and Biomolecular Engineering, OH (United States) and University of Queensland, School of Chemical Engineering (Australia) and Ohio State University, Materials Science and Engineering, OH (United States); Boehm, Michael W. [University of Queensland, School of Chemical Engineering (Australia); Drummond, Charles [Ohio State University, Materials Science and Engineering, OH (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  8. Quantifying uncertainty in LCA-modelling of waste management systems

    SciTech Connect (OSTI)

    Clavreul, Julie, E-mail: julc@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Guyonnet, Dominique [BRGM, ENAG BRGM-School, BP 6009, 3 Avenue C. Guillemin, 45060 Orleans Cedex (France); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Uncertainty in LCA-modelling of waste management is significant. Black-Right-Pointing-Pointer Model, scenario and parameter uncertainties contribute. Black-Right-Pointing-Pointer Sequential procedure for quantifying uncertainty is proposed. Black-Right-Pointing-Pointer Application of procedure is illustrated by a case-study. - Abstract: Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.

  9. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  10. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  11. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2000-01-01T23:59:59.000Z

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  12. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada); Lawryshyn, Yuri, E-mail: yuri.lawryshyn@utoronto.ca [Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5 (Canada)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  13. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  14. BLACK HISTORY MONTH

    Broader source: Energy.gov [DOE]

    Black History Month is an annual celebration of achievements by black Americans and a time for recognizing the central role of African Americans in U.S. history. The event grew out of Negro History Week, created by historian Carter G. Woodson and other prominent African Americans. Other countries around the world, including Canada and the United Kingdom, also devote a month to celebrating black history.

  15. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  16. Dynamics of black holes

    E-Print Network [OSTI]

    Sean A. Hayward

    2009-02-28T23:59:59.000Z

    This is a review of current theory of black-hole dynamics, concentrating on the framework in terms of trapping horizons. Summaries are given of the history, the classical theory of black holes, the defining ideas of dynamical black holes, the basic laws, conservation laws for energy and angular momentum, other physical quantities and the limit of local equilibrium. Some new material concerns how processes such as black-hole evaporation and coalescence might be described by a single trapping horizon which manifests temporally as separate horizons.

  17. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  18. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  19. Impact of Construction Waste Disposal Charging Scheme on work practices at construction sites in Hong Kong

    SciTech Connect (OSTI)

    Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk [Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Poon, C.S.; Wong, Agnes; Yip, Robin; Jaillon, Lara [Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A significant reduction of construction waste was achieved at the first 3 years of CWDCS implementation. Black-Right-Pointing-Pointer However, the reduction cannot be sustained. Black-Right-Pointing-Pointer Implementation of the CWDCS has generated positive effects in waste reduction by all main trades. - Abstract: Waste management in the building industry in Hong Kong has become an important environmental issue. Particularly, an increasing amount of construction and demolition (C and D) waste is being disposed at landfill sites. In order to reduce waste generation and encourage reuse and recycling, the Hong Kong Government has implemented the Construction Waste Disposal Charging Scheme (CWDCS) to levy charges on C and D waste disposal to landfills. In order to provide information on the changes in reducing waste generation practice among construction participants in various work trades, a study was conducted after 3 years of implementation of the CWDCS via a structured questionnaire survey in the building industry in Hong Kong. The study result has revealed changes with work flows of the major trades as well as differentiating the levels of waste reduced. Three building projects in the public and private sectors were selected as case studies to demonstrate the changes in work flows and the reduction of waste achieved. The research findings reveal that a significant reduction of construction waste was achieved at the first 3 years (2006-2008) of CWDCS implementation. However, the reduction cannot be sustained. The major trades have been influenced to a certain extent by the implementation of the CWDCS. Slight improvement in waste management practices was observed, but reduction of construction waste in the wet-finishing and dry-finishing trades has undergone little improvement. Implementation of the CWDCS has not yet motivated subcontractors to change their methods of construction so as to reduce C and D waste.

  20. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  1. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  2. LCA for household waste management when planning a new urban settlement

    SciTech Connect (OSTI)

    Slagstad, Helene, E-mail: helene.slagstad@ntnu.no [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Brattebo, Helge [Department of Hydraulic and Environmental Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway)

    2012-07-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Household waste management of a new carbon neutral settlement. Black-Right-Pointing-Pointer EASEWASTE as a LCA tool to compare different centralised and decentralised solutions. Black-Right-Pointing-Pointer Environmental benefit or close to zero impact in most of the categories. Black-Right-Pointing-Pointer Paper and metal recycling important for the outcome. Black-Right-Pointing-Pointer Discusses the challenges of waste prevention planning. - Abstract: When planning for a new urban settlement, industrial ecology tools like scenario building and life cycle assessment can be used to assess the environmental quality of different infrastructure solutions. In Trondheim, a new greenfield settlement with carbon-neutral ambitions is being planned and five different scenarios for the waste management system of the new settlement have been compared. The results show small differences among the scenarios, however, some benefits from increased source separation of paper and metal could be found. The settlement should connect to the existing waste management system of the city, and not resort to decentralised waste treatment or recovery methods. However, as this is an urban development project with ambitious goals for lifestyle changes, effort should be put into research and initiatives for proactive waste prevention and reuse issues.

  3. Participatory approach, acceptability and transparency of waste management LCAs: Case studies of Torino and Cuneo

    SciTech Connect (OSTI)

    Blengini, Gian Andrea, E-mail: blengini@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); CNR-IGAG - Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Fantoni, Moris, E-mail: moris.fantoni@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Busto, Mirko, E-mail: mirko.busto@jrc.ec.europa.eu [European Commission - Joint Research Centre, Via Enrico Fermi 2749, I-21027 Ispra (Italy); Genon, Giuseppe, E-mail: giuseppe.genon@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy); Zanetti, Maria Chiara, E-mail: mariachiara.zanetti@polito.it [DIATI - Department of Environment, Land and Infrastructures Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin (Italy)

    2012-09-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Life Cycle Assessment is still not fully operational in waste management at local scale. Black-Right-Pointing-Pointer Credibility of WM LCAs is negatively affected by assumptions and lack of transparency. Black-Right-Pointing-Pointer Local technical-social-economic constraints are often not reflected by WM LCAs. Black-Right-Pointing-Pointer A participatory approach can increase acceptability and credibility of WM LCAs. Black-Right-Pointing-Pointer Results of a WM LCA can hardly ever be generalised, thus transparency is essential. - Abstract: The paper summarises the main results obtained from two extensive applications of Life Cycle Assessment (LCA) to the integrated municipal solid waste management systems of Torino and Cuneo Districts in northern Italy. Scenarios with substantial differences in terms of amount of waste, percentage of separate collection and options for the disposal of residual waste are used to discuss the credibility and acceptability of the LCA results, which are adversely affected by the large influence of methodological assumptions and the local socio-economic constraints. The use of site-specific data on full scale waste treatment facilities and the adoption of a participatory approach for the definition of the most sensible LCA assumptions are used to assist local public administrators and stakeholders showing them that LCA can be operational to waste management at local scale.

  4. Rotating Hairy Black Holes

    E-Print Network [OSTI]

    B. Kleihaus; J. Kunz

    2000-12-20T23:59:59.000Z

    We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.

  5. margrets-black-beans

    E-Print Network [OSTI]

    COM (Robert L. Simmons) Black Beans (Margret Simmons) 2 lbs. dry black beans soaked 8 hrs/overnight 1 qt. veggie stock soaking water plus enough ... 10 garlic cloves finely chopped 1/2 cup cooking sherry 1 tsp. allspice (ground) 1 lemon...

  6. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  7. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  8. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  9. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  10. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  11. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  12. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  13. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  14. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  15. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  16. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  17. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect (OSTI)

    Liang Sai [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Xu Yijian [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); China Academy of Urban Planning and Design, Beijing 100037 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  18. On Noncommutative Black Holes Thermodynamics

    E-Print Network [OSTI]

    Faizal, Mir; Ulhoa, S C

    2015-01-01T23:59:59.000Z

    In this paper, we will analyze noncommutative deformation of the Schwarzschild black holes and Kerr black holes. We will perform our analysis by relating the commutative and the noncommutative metrics using an Moyal product. We will also analyze the thermodynamics of these noncommutative black hole solutions. We will explicitly derive expression for the corrected entropy and temperature of these black hole solutions.

  19. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  20. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  1. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  2. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  3. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  5. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  6. Charging Black Saturn?

    E-Print Network [OSTI]

    Brenda Chng; Robert Mann; Eugen Radu; Cristian Stelea

    2008-10-28T23:59:59.000Z

    We construct new charged static solutions of the Einstein-Maxwell field equations in five dimensions via a solution generation technique utilizing the symmetries of the reduced Lagrangian. By applying our method on the multi-Reissner-Nordstrom solution in four dimensions, we generate the multi-Reissner-Nordstrom solution in five dimensions. We focus on the five-dimensional solution describing a pair of charged black objects with general masses and electric charges. This solution includes the double Reissner-Nordstrom solution as well as the charged version of the five-dimensional static black Saturn. However, all the black Saturn configurations that we could find present either a conical singularity or a naked singularity. We also obtain a non-extremal configuration of charged black strings that reduces in the extremal limit to a Majumdar-Papapetrou like solution in five dimensions.

  7. Do Black Holes Exist?

    E-Print Network [OSTI]

    J. W. Moffat

    1993-02-22T23:59:59.000Z

    The problem of information loss in black hole formation and the associated violations of basic laws of physics, such as conservation of energy, causality and unitarity, are avoided in the nonsymmetric gravitational theory, if the NGT charge of a black hole and its mass satisfy an inequality that does not violate any known experimental data and allows the existence of white dwarfs and neutron stars.

  8. Helical superconducting black holes

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2012-05-17T23:59:59.000Z

    We construct novel static, asymptotically $AdS_5$ black hole solutions with Bianchi VII$_0$ symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have vanishing entropy and approach domain wall solutions that reveal homogenous, non-isotropic dual ground states with emergent scaling symmetry.

  9. Cost effective waste management through composting in Africa

    SciTech Connect (OSTI)

    Couth, R. [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Environmental, Coastal and Hydrological Engineering, Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The financial/social/institutional sustainability of waste management in Africa is analysed. Black-Right-Pointing-Pointer This note is a compendium of a study on the potential for GHG control via improved zero waste in Africa. Black-Right-Pointing-Pointer This study provides the framework for Local Authorities for realizing sustained GHG reductions. - Abstract: Greenhouse gas (GHG) emissions per person from urban waste management activities are greater in sub-Saharan African countries than in other developing countries, and are increasing as the population becomes more urbanised. Waste from urban areas across Africa is essentially dumped on the ground and there is little control over the resulting gas emissions. The clean development mechanism (CDM), from the 1997 Kyoto Protocol has been the vehicle to initiate projects to control GHG emissions in Africa. However, very few of these projects have been implemented and properly registered. A much more efficient and cost effective way to control GHG emissions from waste is to stabilise the waste via composting and to use the composted material as a soil improver/organic fertiliser or as a component of growing media. Compost can be produced by open windrow or in-vessel composting plants. This paper shows that passively aerated open windrows constitute an appropriate low-cost option for African countries. However, to provide an usable compost material it is recommended that waste is processed through a materials recovery facility (MRF) before being composted. The paper demonstrates that material and biological treatment (MBT) are viable in Africa where they are funded, e.g. CDM. However, they are unlikely to be instigated unless there is a replacement to the Kyoto Protocol, which ceases for Registration in December 2012.

  10. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    SciTech Connect (OSTI)

    Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

  11. Waste Minimization Improvements Achieved Through Six Sigma Analysis Result In Significant Cost Savings

    SciTech Connect (OSTI)

    Mousseau, Jeffrey, D.; Jansen, John, R.; Janke, David, H.; Plowman, Catherine, M.

    2003-02-26T23:59:59.000Z

    Improved waste minimization practices at the Department of Energy's (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) are leading to a 15% reduction in the generation of hazardous and radioactive waste. Bechtel, BWXT Idaho, LLC (BBWI), the prime management and operations contractor at the INEEL, applied the Six Sigma improvement process to the INEEL Waste Minimization Program to review existing processes and define opportunities for improvement. Our Six Sigma analysis team: composed of an executive champion, process owner, a black belt and yellow belt, and technical and business team members used this statistical based process approach to analyze work processes and produced ten recommendations for improvement. Recommendations ranged from waste generator financial accountability for newly generated waste to enhanced employee recognition programs for waste minimization efforts. These improvements have now been implemented to reduce waste generation rates and are producing positive results.

  12. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may: cause or significantly...

  13. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  14. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  15. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  16. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  17. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  18. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  19. Environmental sustainability comparison of a hypothetical pneumatic waste collection system and a door-to-door system

    SciTech Connect (OSTI)

    Punkkinen, Henna, E-mail: henna.punkkinen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FI-02044 VTT (Finland); Merta, Elina, E-mail: elina.merta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, P.O. Box 1000, FI-02044 VTT (Finland); Teerioja, Nea, E-mail: nea.teerioja@helsinki.fi [University of Helsinki, Department of Economics and Management, Latokartanonkaari 9, P.O. Box 27, FI-00014 HY (Finland); Moliis, Katja, E-mail: katja.moliis@helsinki.fi [University of Helsinki, Department of Economics and Management, Latokartanonkaari 9, P.O. Box 27, FI-00014 HY (Finland); Kuvaja, Eveliina, E-mail: eveliina.kuvaja@helsinki.fi [University of Helsinki, Department of Economics and Management, Latokartanonkaari 9, P.O. Box 27, FI-00014 HY (Finland)

    2012-10-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We compare the environmental sustainability of two MSW collection systems. Black-Right-Pointing-Pointer We evaluate pneumatic and door-to-door collection systems. Black-Right-Pointing-Pointer The greenhouse gas emissions of pneumatic collection are around three times higher. Black-Right-Pointing-Pointer System components are decisive but assumptions on electricity use are also important. Black-Right-Pointing-Pointer Pneumatic collection could provide other benefits over door-to-door system. - Abstract: Waste collection is one of the life cycle phases that influence the environmental sustainability of waste management. Pneumatic waste collection systems represent a new way of arranging waste collection in densely populated urban areas. However, limited information is available on the environmental impacts of this system. In this study, we compare the environmental sustainability of conventional door-to-door waste collection with its hypothetical pneumatic alternative. Furthermore, we analyse whether the size of the hypothetical pneumatic system, or the number of waste fractions included, have an impact on the results. Environmental loads are calculated for a hypothetical pneumatic waste collection system modelled on an existing dense urban area in Helsinki, Finland, and the results are compared to those of the prevailing, container-based, door-to-door waste collection system. The evaluation method used is the life-cycle inventory (LCI). In this study, we report the atmospheric emissions of greenhouse gases (GHG), SO{sub 2} and NO{sub x}. The results indicate that replacing the prevailing system with stationary pneumatic waste collection in an existing urban infrastructure would increase total air emissions. Locally, in the waste collection area, emissions would nonetheless diminish, as collection traffic decreases. While the electricity consumption of the hypothetical pneumatic system and the origin of electricity have a significant bearing on the results, emissions due to manufacturing the system's components prove decisive.

  20. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  1. Black hole accretion discs

    E-Print Network [OSTI]

    Lasota, Jean-Pierre

    2015-01-01T23:59:59.000Z

    This is an introduction to models of accretion discs around black holes. After a presentation of the non-relativistic equations describing the structure and evolution of geometrically thin accretion discs we discuss their steady-state solutions and compare them to observation. Next we describe in detail the thermal-viscous disc instability model and its application to dwarf novae for which it was designed and its X-ray irradiated-disc version which explains the soft X--ray transients, i.e. outbursting black-hole low-mass X-ray binaries. We then turn to the role of advection in accretion flow onto black holes illustrating its action and importance with a toy model describing both ADAFs and slim discs. We conclude with a presentation of the general-relativistic formalism describing accretion discs in the Kerr space-time.

  2. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  3. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  4. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  5. Black Bean Orange Salad Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    beans in a colander under running water to remove sodium. Allow to drain. 2. Cut the ends offBlack Bean Orange Salad Ingredients: 15 ounces black beans, canned, drained and rinsed 1/4 red

  6. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  7. Thermodynamical instability of black holes

    E-Print Network [OSTI]

    V. V. Kiselev

    2012-08-07T23:59:59.000Z

    In contrast to Hawking radiation of black hole with a given spacetime structure, we consider a competitive transition due to a heat transfer from a hotter inner horizon to a colder outer horizon of Kerr black hole, that results in a stable thermodynamical state of extremal black hole. In this process, by supposing an emission of gravitational quanta, we calculate the mass of extremal black hole in the final state of transition.

  8. Towards noncommutative quantum black holes

    SciTech Connect (OSTI)

    Lopez-Dominguez, J. C.; Obregon, O.; Sabido, M.; Ramirez, C. [Instituto de Fisica de la Universidad de Guanajuato, P.O. Box E-143, 37150 Leon Gto. (Mexico); Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, P.O. Box 1364, 72000 Puebla (Mexico)

    2006-10-15T23:59:59.000Z

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate the Hawking's temperature and entropy for the noncommutative Schwarzschild black hole.

  9. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  10. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  11. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  12. Formulating a VET roadmap for the waste and recycling sector: A case study from Queensland, Australia

    SciTech Connect (OSTI)

    Davis, G., E-mail: gudavis@cytanet.com.cy [Dr Georgina Davis, ABN 12 744 598 837, Banksia Beach, Brisbane, QLD 4507 (Australia)

    2012-10-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Existing qualifications do not meet the needs of the sector in Queensland. Black-Right-Pointing-Pointer Businesses may not be best positioned to identify training needs. Black-Right-Pointing-Pointer Companies are developing training internally to meet their own specific needs. Black-Right-Pointing-Pointer Smaller companies lack the resources to develop internal training are disadvantaged. Black-Right-Pointing-Pointer There is industry support for an entry-level, minimum industry qualification. - Abstract: Vocational Education and Training (VET) is an essential tool for providing waste management and recycling workers with the necessary skills and knowledge needed to beneficially influence their own employment and career development; and to also ensure productivity and safe working conditions within the organisations in which they are employed. Current training opportunities within Queensland for the sector are limited and not widely communicated or marketed; with other States, particularly Victoria and New South Wales, realising higher numbers of VET enrollments for waste management courses. This paper presents current VET opportunities and trends for the Queensland waste management sector. Results from a facilitated workshop to identify workforce requirements and future training needs organised by the Waste Contractors and Recyclers Association of Queensland (WCRAQ) are also presented and discussion follows on the future training needs of the industry within Queensland.

  13. Quantum black hole inflation

    E-Print Network [OSTI]

    M. B. Altaie

    2001-05-07T23:59:59.000Z

    In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.

  14. Black Holes at Accelerators

    E-Print Network [OSTI]

    Bryan Webber

    2006-04-06T23:59:59.000Z

    In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions.

  15. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  16. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  17. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  18. Application of pyrolized carbon black from scrap tires in asphalt pavement design and construction

    SciTech Connect (OSTI)

    Park, T.; Coree, B.J. [Indiana Department of Transportation, West Lafayette, IN (United States). Division of Research; Lovell, C.W. [Purdue Univ., West Lafayette, IN (United States). School of Civil Engineering

    1995-12-31T23:59:59.000Z

    According to EPA reports (1991) of the over 242 million waste generated each year in the United State, 5% are exported, 6% recycled, 11% incinerated, and 78% are landfilled, stockpiled, or illegally dumped. A variety of uses for these tires are being studied. Among these is pyrolysis which produces 5 5% of oil, 25% of carbon black, 9% of steel, 5% of fiber and 6% of gas. Pyrolized carbon black contains 9 % of ash, 4% of sulfur, 12% of butadine copolymer and 75% of carbon black. The objective of this research is to investigate the viability of using PCB as an additive in hot mix asphalt. The use of PCB in asphalt pavement is expected not only to improve the performance of conventional asphalt, but also to provide a means for the mass disposal of waste fires.

  19. Thermochemical conversion of waste materials to valuable products

    SciTech Connect (OSTI)

    Saraf, S. [Engineering Technologies, Lombard, IL (United States)

    1997-12-31T23:59:59.000Z

    The potential offered by a large variety of solid and liquid wastes for generating value added products is widely recognized. Extensive research and development has focused on developing technologies to recover energy and valuable products from waste materials. These treatment technologies include use of waste materials for direct combustion, upgrading the waste materials into useful fuel such as fuel gas or fuel oil, and conversion of waste materials into higher value products for the chemical industry. Thermal treatment in aerobic (with oxygen) conditions or direct combustion of waste materials in most cases results in generating air pollution and thereby requiring installation of expensive control devices. Thermochemical conversion in aerobic (without oxygen) conditions, referred to as thermal decomposition (destructive distillation) results in formation of usable liquid, solid, and gaseous products. Thermochemical conversion includes gasification, liquefaction, and thermal decomposition (pyrolysis). Each thermochemical conversion process yields a different range of products and this paper will discuss thermal decomposition in detail. This paper will also present results of a case study for recovering value added products, in the form of a liquid, solid, and gas, from thermal decomposition of waste oil and scrap tires. The product has a high concentration of benzene, xylene, and toluene. The solid product has significant amounts of carbon black and can be used as an asphalt modifier for road construction. The gas product is primarily composed of methane and is used for heating the reactor.

  20. Mixed waste: Proceedings

    SciTech Connect (OSTI)

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health

    1993-12-31T23:59:59.000Z

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  1. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF)...

  2. BLACK HOLE AURORA POWERED BY A ROTATING BLACK HOLE

    SciTech Connect (OSTI)

    Takahashi, Masaaki [Department of Physics and Astronomy, Aichi University of Education, Kariya, Aichi 448-8542 (Japan); Takahashi, Rohta, E-mail: takahasi@phyas.aichi-edu.ac.j [Cosmic Radiation Laboratory, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2010-05-15T23:59:59.000Z

    We present a model for high-energy emission sources generated by a standing magnetohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole magnetosphere would be constructed around a black hole with an accretion disk, where a global magnetic field could be originated by currents in the accretion disk and its corona. Such a black hole magnetosphere may be considered as a model for the central engine of active galactic nuclei, some compact X-ray sources, and gamma-ray bursts. The energy sources of the emission from the magnetosphere are the gravitational and electromagnetic energies of magnetized accreting matters and the rotational energy of a rotating black hole. When the MHD shock generates in MHD accretion flows onto the black hole, the plasma's kinetic energy and the black hole's rotational energy can convert to radiative energy. In this Letter, we demonstrate the huge energy output at the shock front by showing negative energy postshock accreting MHD flows for a rapidly rotating black hole. This means that the extracted energy from the black hole can convert to the radiative energy at the MHD shock front. When an axisymmetric shock front is formed, we expect a ring-shaped region with very hot plasma near the black hole; this would look like an 'aurora'. The high-energy radiation generated from there would carry to us the information for the curved spacetime due to the strong gravity.

  3. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  4. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    EM Waste and Materials Disposition & Transportation EM Waste and Materials Disposition & Transportation DOE's Radioactive Waste Management Priorities: Continue to manage waste...

  5. Transuranic (TRU) Waste | Department of Energy

    Office of Environmental Management (EM)

    Transuranic (TRU) Waste Transuranic (TRU) Waste Transuranic (TRU) Waste Defined by the WIPP Land Withdrawal Act as "waste containing more than 100 nanocuries of alpha-emitting...

  6. Filtration and Leach Testing for PUREX Cladding Sludge and REDOX Cladding Sludge Actual Waste Sample Composites

    SciTech Connect (OSTI)

    Shimskey, Rick W.; Billing, Justin M.; Buck, Edgar C.; Casella, Amanda J.; Crum, Jarrod V.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Hallen, Richard T.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Swoboda, Robert G.

    2009-03-02T23:59:59.000Z

    A testing program evaluating actual tank waste was developed in response to Task 4 from the M-12 External Flowsheet Review Team (EFRT) issue response plan (Barnes and Voke 2006). The test program was subdivided into logical increments. The bulk water-insoluble solid wastes that are anticipated to be delivered to the Hanford Waste Treatment and Immobilization Plant (WTP) were identified according to type such that the actual waste testing could be targeted to the relevant categories. Under test plan TP RPP WTP 467 (Fiskum et al. 2007), eight broad waste groupings were defined. Samples available from the 222S archive were identified and obtained for testing. Under this test plan, a waste testing program was implemented that included: Homogenizing the archive samples by group as defined in the test plan. Characterizing the homogenized sample groups. Performing parametric leaching testing on each group for compounds of interest. Performing bench-top filtration/leaching tests in the hot cell for each group to simulate filtration and leaching activities if they occurred in the UFP2 vessel of the WTP Pretreatment Facility. This report focuses on a filtration/leaching test performed using two of the eight waste composite samples. The sample groups examined in this report were the plutonium-uranium extraction (PUREX) cladding waste sludge (Group 3, or CWP) and reduction-oxidation (REDOX) cladding waste sludge (Group 4, or CWR). Both the Group 3 and 4 waste composites were anticipated to be high in gibbsite, thus requiring caustic leaching. WTP RPT 167 (Snow et al. 2008) describes the homogenization, characterization, and parametric leaching activities before benchtop filtration/leaching testing of these two waste groups. Characterization and initial parametric data in that report were used to plan a single filtration/leaching test using a blend of both wastes. The test focused on filtration testing of the waste and caustic leaching for aluminum, in the form of gibbsite, and its impact on filtration. The initial sample was diluted with a liquid simulant to simulate the receiving concentration of retrieved tank waste into the UFP2 vessel (< 10 wt% undissolved solids). Filtration testing was performed on the dilute waste sample and dewatered to a higher solids concentration. Filtration testing was then performed on the concentrated slurry. Afterwards, the slurry was caustic leached to remove aluminum present in the undissolved solid present in the waste. The leach was planned to simulate leaching conditions in the UFP2 vessel. During the leach, slurry supernate samples were collected to measure the dissolution rate of aluminum in the waste. After the slurry cooled down from the elevated leach temperature, the leach liquor was dewatered from the solids. The remaining slurry was rinsed and dewatered with caustic solutions to remove a majority of the dissolved aluminum from the leached slurry. The concentration of sodium hydroxide in the rinse solutions was high enough to maintain the solubility of the aluminum in the dewatered rinse solutions after dilution of the slurry supernate. Filtration tests were performed on the final slurry to compare to filtration performance before and after caustic leaching.

  7. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect (OSTI)

    K. E. Archibald

    1999-08-01T23:59:59.000Z

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  8. Waste IncIneratIon and Waste PreventIon

    E-Print Network [OSTI]

    and heat. In 2005/2006, German waste incineration plants provided some 6 terawatt hours (TWh-/Abfallgesetz) continues to hold: Waste prevention has priority over recovery and disposal. Nevertheless, the use of waste for en- ergy recovery is an indispensable element of sus- tainable waste management. Waste incineration

  9. Energy from Waste UK Joint Statement on Energy from Waste

    E-Print Network [OSTI]

    Energy from Waste UK Joint Statement on Energy from Waste Read more overleaf Introduction Energy from waste provides us with an opportunity for a waste solution and a local source of energy rolled,itcan onlyaddressaportionofthewastestream andisnotsufficientonitsown. Energy obtained from the combustion of residual waste (Energy from

  10. www.d-waste.com info@d-waste.com

    E-Print Network [OSTI]

    marketplace, about 47 grams of waste is produced-- with worldwide municipal solid waste generation totaling, the International Solid Waste Association, GIZ/SWEEP-Net, the Waste to Energy Research Council (WTERT) and the Solid management data available". According to David Newman, president of the International Solid Waste Association

  11. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum American Society of Civil Engineers. CE Database subject headings: Solid wastes; Leaching; Aluminum

  12. Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS

    E-Print Network [OSTI]

    Schaefer, Marcus

    Waste Disposal Guide HOW TO PROPERLY DISPOSE OF WASTE MATERIALS GENERATED AT DEPAUL UNIVERSITY.4 Hazardous Waste Defined p.5 Chemical Waste Procedure for Generating Departments p.6 o A of Containers p.8 o E. Disposal of Empty Containers p.8 o F. Storage of Waste Chemicals p.8,9 o G

  13. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  14. Shape of black holes

    E-Print Network [OSTI]

    Clement, Mara E Gabach

    2015-01-01T23:59:59.000Z

    It is well known that celestial bodies tend to be spherical due to gravity and that rotation produces deviations from this sphericity. We discuss what is known and expected about the shape of black holes' horizons from their formation to their final, stationary state. We present some recent results showing that black hole rotation indeed manifests in the widening of their central regions, limits their global shapes and enforces their whole geometry to be close to the extreme Kerr horizon geometry at almost maximal rotation speed. The results depend only on the horizon area and angular momentum. In particular they are entirely independent of the surrounding geometry of the spacetime and of the presence of matter satisfying the strong energy condition. We also discuss the the relation of this result with the Hoop conjecture.

  15. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15T23:59:59.000Z

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  16. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31T23:59:59.000Z

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  17. Guidelines for mixed waste minimization

    SciTech Connect (OSTI)

    Owens, C.

    1992-02-01T23:59:59.000Z

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  18. Pyrolysis of waste tyres: A review

    SciTech Connect (OSTI)

    Williams, Paul T., E-mail: p.t.williams@leeds.ac.uk

    2013-08-15T23:59:59.000Z

    Graphical abstract: - Highlights: Pyrolysis of waste tyres produces oil, gas and char, and recovered steel. Batch, screw kiln, rotary kiln, vacuum and fluidised-bed are main reactor types. Product yields are influenced by reactor type, temperature and heating rate. Pyrolysis oils are complex and can be used as chemical feedstock or fuel. Research into higher value products from the tyre pyrolysis process is reviewed. - Abstract: Approximately 1.5 billion tyres are produced each year which will eventually enter the waste stream representing a major potential waste and environmental problem. However, there is growing interest in pyrolysis as a technology to treat tyres to produce valuable oil, char and gas products. The most common reactors used are fixed-bed (batch), screw kiln, rotary kiln, vacuum and fluidised-bed. The key influence on the product yield, and gas and oil composition, is the type of reactor used which in turn determines the temperature and heating rate. Tyre pyrolysis oil is chemically very complex containing aliphatic, aromatic, hetero-atom and polar fractions. The fuel characteristics of the tyre oil shows that it is similar to a gas oil or light fuel oil and has been successfully combusted in test furnaces and engines. The main gases produced from the pyrolysis of waste tyres are H{sub 2}, C{sub 1}C{sub 4} hydrocarbons, CO{sub 2}, CO and H{sub 2}S. Upgrading tyre pyrolysis products to high value products has concentrated on char upgrading to higher quality carbon black and to activated carbon. The use of catalysts to upgrade the oil to a aromatic-rich chemical feedstock or the production of hydrogen from waste tyres has also been reported. Examples of commercial and semi-commercial scale tyre pyrolysis systems show that small scale batch reactors and continuous rotary kiln reactors have been developed to commercial scale.

  19. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  20. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    1999-08-24T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2018 are projected based on assumption as of July 1999. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement.

  1. Operational Waste Volume Projection

    SciTech Connect (OSTI)

    STRODE, J.N.

    2000-08-28T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June. 2000.

  2. Operational waste volume projection

    SciTech Connect (OSTI)

    Koreski, G.M.

    1996-09-20T23:59:59.000Z

    Waste receipts to the double-shell tank system are analyzed and wastes through the year 2015 are projected based on generation trends of the past 12 months. A computer simulation of site operations is performed, which results in projections of tank fill schedules, tank transfers, evaporator operations, tank retrieval, and aging waste tank usage. This projection incorporates current budget planning and the clean-up schedule of the Tri-Party Agreement. Assumptions were current as of June 1996.

  3. Cost comparison between private and public collection of residual household waste: Multiple case studies in the Flemish region of Belgium

    SciTech Connect (OSTI)

    Jacobsen, R., E-mail: ray.jacobsen@ugent.be [Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Buysse, J., E-mail: j.buysse@ugent.be [Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Gellynck, X., E-mail: xavier.gellynck@ugent.be [Department of Agricultural Economics, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The goal is to compare collection costs for residual household waste. Black-Right-Pointing-Pointer We have clustered all municipalities in order to find mutual comparable pairs. Black-Right-Pointing-Pointer Each pair consists of one private and one public operating waste collection program. Black-Right-Pointing-Pointer All cases show that private service has lower costs than public service. Black-Right-Pointing-Pointer Municipalities were contacted to identify the deeper causes for the waste management program. - Abstract: The rising pressure in terms of cost efficiency on public services pushes governments to transfer part of those services to the private sector. A trend towards more privatizing can be noticed in the collection of municipal household waste. This paper reports the findings of a research project aiming to compare the cost between the service of private and public collection of residual household waste. Multiple case studies of municipalities about the Flemish region of Belgium were conducted. Data concerning the year 2009 were gathered through in-depth interviews in 2010. In total 12 municipalities were investigated, divided into three mutual comparable pairs with a weekly and three mutual comparable pairs with a fortnightly residual waste collection. The results give a rough indication that in all cases the cost of private service is lower than public service in the collection of household waste. Albeit that there is an interest in establishing whether there are differences in the costs and service levels between public and private waste collection services, there are clear difficulties in establishing comparisons that can be made without having to rely on a large number of assumptions and corrections. However, given the cost difference, it remains the responsibility of the municipalities to decide upon the service they offer their citizens, regardless the cost efficiency: public or private.

  4. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    SciTech Connect (OSTI)

    Merrild, Hanna [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Larsen, Anna W., E-mail: awla@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  5. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, George G. (Aiken, SC)

    1999-01-01T23:59:59.000Z

    A method for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300.degree. C. to 800.degree. C. to incinerate organic materials, then heated further to a temperature in the range of approximately 1100.degree. C. to 1400.degree. C. at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  6. Vitrification of waste

    DOE Patents [OSTI]

    Wicks, G.G.

    1999-04-06T23:59:59.000Z

    A method is described for encapsulating and immobilizing waste for disposal. Waste, preferably, biologically, chemically and radioactively hazardous, and especially electronic wastes, such as circuit boards, are placed in a crucible and heated by microwaves to a temperature in the range of approximately 300 C to 800 C to incinerate organic materials, then heated further to a temperature in the range of approximately 1100 C to 1400 C at which temperature glass formers present in the waste will cause it to vitrify. Glass formers, such as borosilicate glass, quartz or fiberglass can be added at the start of the process to increase the silicate concentration sufficiently for vitrification.

  7. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  8. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  9. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  10. Norcal Waste Systems, Inc.

    SciTech Connect (OSTI)

    Not Available

    2002-12-01T23:59:59.000Z

    Fact sheet describes the LNG long-haul heavy-duty trucks at Norcal Waste Systems Inc.'s Sanitary Fill Company.

  11. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  12. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  13. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  14. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  15. Black holes in massive gravity

    E-Print Network [OSTI]

    Babichev, Eugeny

    2015-01-01T23:59:59.000Z

    We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...

  16. Black Hole's 1/N Hair

    E-Print Network [OSTI]

    Gia Dvali; Cesar Gomez

    2012-03-29T23:59:59.000Z

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  17. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect (OSTI)

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26T23:59:59.000Z

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  18. Waste Isolation Pilot Plant (WIPP) Waste Isolation Pilot Plant...

    National Nuclear Security Administration (NNSA)

    licensed to safely and permanently dispose of transuranic radioactive waste, or TRU waste, left over from the production of nuclear weapons. After more than 20 years of...

  19. Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This act provides for planning for the processing and disposal of municipal waste; requires counties to submit plans for municipal waste management systems within their boundaries; authorizes...

  20. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  1. Virginia Waste Management Act (Virginia)

    Broader source: Energy.gov [DOE]

    Solid waste and hazardous waste are regulated under a number of programs at the Department of Environmental Quality. These programs are designed to encourage the reuse and recycling of solid waste...

  2. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  3. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  4. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  5. Observational Evidence for Black Holes

    E-Print Network [OSTI]

    Ramesh Narayan; Jeffrey E. McClintock

    2014-07-20T23:59:59.000Z

    Astronomers have discovered two populations of black holes: (i) stellar-mass black holes with masses in the range 5 to 30 solar masses, millions of which are present in each galaxy in the universe, and (ii) supermassive black holes with masses in the range 10^6 to 10^{10} solar masses, one each in the nucleus of every galaxy. There is strong circumstantial evidence that all these objects are true black holes with event horizons. The measured masses of supermassive black hole are strongly correlated with properties of their host galaxies, suggesting that these black holes, although extremely small in size, have a strong influence on the formation and evolution of entire galaxies. Spin parameters have recently been measured for a handful of black holes. Based on the data, there is an indication that the kinetic power of at least one class of relativistic jet ejected from accreting black holes may be correlated with black hole spin. If verified, it would suggest that these jets are powered by a generalized Penrose process mediated by magnetic fields.

  6. Dermoscopy of black-spot poison ivy

    E-Print Network [OSTI]

    Rader, Ryan K; Mu, Ruipu; Shi, Honglan; Stoecker, William V; Hinton, Kristen A

    2012-01-01T23:59:59.000Z

    CT, Bean AS. Black-spot poison ivy: A rare phenomenon. J AmJG, Lucky AW. Black spot poison ivy: A report of 5 cases andis unique for black-spot poison ivy. The UFLC-MS/MS urushiol

  7. Why Blue-Collar Blacks Help Less

    E-Print Network [OSTI]

    Smith, Sandra Susan; Young, Kara Alexis

    2013-01-01T23:59:59.000Z

    Exclude Black Men from Blue-Collar Jobs. Berkeley, CA:How Black and Latino Blue Collar Workers Make Decisionsof Sample Respondents Blue-Collar Latinos Blue-Collar Black

  8. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  9. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  10. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  11. RADIOACTIVE WASTE DISPOSAL IN GRANITE

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2010-01-01T23:59:59.000Z

    RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

  12. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  13. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  14. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  15. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  16. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  17. Waste classification sampling plan

    SciTech Connect (OSTI)

    Landsman, S.D.

    1998-05-27T23:59:59.000Z

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  18. Nuclear waste solutions

    DOE Patents [OSTI]

    Walker, Darrel D. (1684 Partridge Dr., Aiken, SC 29801); Ebra, Martha A. (129 Hasty Rd., Aiken, SC 29801)

    1987-01-01T23:59:59.000Z

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  19. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01T23:59:59.000Z

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  20. Heterogeneous waste processing

    DOE Patents [OSTI]

    Vanderberg, Laura A. (Los Alamos, NM); Sauer, Nancy N. (Los Alamos, NM); Brainard, James R. (Los Alamos, NM); Foreman, Trudi M. (Los Alamos, NM); Hanners, John L. (Los Alamos, NM)

    2000-01-01T23:59:59.000Z

    A combination of treatment methods are provided for treatment of heterogeneous waste including: (1) treatment for any organic compounds present; (2) removal of metals from the waste; and, (3) bulk volume reduction, with at least two of the three treatment methods employed and all three treatment methods emplyed where suitable.

  1. Black Stars and Gamma Ray Bursts

    E-Print Network [OSTI]

    Tanmay Vachaspati

    2007-06-08T23:59:59.000Z

    Stars that are collapsing toward forming a black hole but are frozen near the Schwarzschild horizon are termed ``black stars''. Collisions of black stars, in contrast to black hole collisions, may be sources of gamma ray bursts, whose basic parameters are estimated quite simply and are found to be consistent with observed gamma ray bursts. Black star gamma ray bursts should be preceded by gravitational wave emission similar to that from the coalescence of black holes.

  2. Idaho_BlackCanyon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWind Power -Mtn. Black

  3. AVLIS production plant waste management plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15T23:59:59.000Z

    Following the executive summary, this document contains the following: (1) waste management facilities design objectives; (2) AVLIS production plant wastes; (3) waste management design criteria; (4) waste management plan description; and (5) waste management plan implementation. 17 figures, 18 tables.

  4. Energy-Efficiency Improvement Opportunities for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2010-01-01T23:59:59.000Z

    A.B. ; Can, M. , 2009. ?Waste-heat recovery potential inwaste liquor Recovery of waste heat Heat released fromsafety modifications, waste heat from air compressors can be

  5. Evaluation of hydropyrolysis as an energy-saving alternative to the Tomlinson furnace. Task II. Chemistry of hydropyrolysis

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Studies were conducted of reactions involving model compounds of black liquor and reaction products when reacting black liquor at extreme conditions for the purpose of understanding the chemistry occurring in hydropyrolysis. Reaction studies of model compounds included: lignin precipitated from black liquor, the sodium salt of saccharinic acid, sodium lactate, sodium glycolate, sodium oxalate, sodium acetate and sodium formate.

  6. Optical black holes and solitons

    E-Print Network [OSTI]

    Shawn Westmoreland

    2010-12-21T23:59:59.000Z

    We exhibit a static, cylindrically symmetric, exact solution to the Euler-Heisenberg field equations (EHFE) and prove that its effective geometry contains (optical) black holes. It is conjectured that there are also soliton solutions to the EHFE which contain black hole geometries.

  7. Black Holes of Negative Mass

    E-Print Network [OSTI]

    R. B. Mann

    1997-05-06T23:59:59.000Z

    I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.

  8. Black Beans and Rice Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Black Beans and Rice Ingredients: 1 teaspoon vegetable oil 1 medium onion, chopped 2 bay leaves 4 cloves garlic, minced 2 (15 oz.) cans black beans, drained and rinsed 1 tbsp. cilantro 15 ounces low-fat, shredded Directions 1. Rinse beans with water in colander to remove sodium. 2. Saut onions, garlic

  9. Black Bean Stuffed Peppers Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    except cheese. 4. Fill each pepper half with bean mixture and place in pan. 5. Pour 1/4 cup waterBlack Bean Stuffed Peppers Ingredients: Non stick cooking spray 3 green peppers 15 ounces black beans, canned, drained and rinsed to remove sodium 8 ounces corn, canned 1 cup brown rice, cooked 1

  10. Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information

    E-Print Network [OSTI]

    ) and the definition of HLW from the Nuclear Waste Policy Act of 1982, as amended (NWPA). The WIPP Land Withdrawal Act by the disposal regulations; or #12;Hanford Tank Waste Information Enclosure 1 2 (C) waste that the Nuclear 10, Code of Federal Regulations. The Nuclear Waste Policy Act of 1982 (42 U.S.C. 10101

  11. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

    2012-05-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  12. Leaching studies for tin recovery from waste e-scrap

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: maniskrjha@gmail.com [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Choubey, Pankaj Kumar; Jha, Amrita Kumari; Kumari, Archana [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Lee, Jae-chun, E-mail: jclee@kigam.re.kr [Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Kumar, Vinay [Metal Extraction and Forming Division, National Metallurgical Laboratory (NML), Jamshedpur 831 007 (India); Jeong, Jinki [Mineral Resources Research Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)

    2012-10-15T23:59:59.000Z

    Printed circuit boards (PCBs) are the most essential components of all electrical and electronic equipments, which contain noteworthy quantity of metals, some of which are toxic to life and all of which are valuable resources. Therefore, recycling of PCBs is necessary for the safe disposal/utilization of these metals. Present paper is a part of developing Indo-Korean recycling technique consists of organic swelling pre-treatment technique for the liberation of thin layer of metallic sheet and the treatment of epoxy resin to remove/recover toxic soldering material. To optimize the parameters required for recovery of tin from waste PCBs, initially the bench scale studies were carried out using fresh solder (containing 52.6% Sn and 47.3% Pb) varying the acid concentration, temperature, mixing time and pulp density. The experimental data indicate that 95.79% of tin was leached out from solder material using 5.5 M HCl at fixed pulp density 50 g/L and temperature 90 Degree-Sign C in mixing time 165 min. Kinetic studies followed the chemical reaction controlled dense constant size cylindrical particles with activation energy of 117.68 kJ/mol. However, 97.79% of tin was found to be leached out from solder materials of liberated swelled epoxy resin using 4.5 M HCl at 90 Degree-Sign C, mixing time 60 min and pulp density 50 g/L. From the leach liquor of solder materials of epoxy resin, the precipitate of sodium stannate as value added product was obtained at pH 1.9. The Pb from the leach residue was removed by using 0.1 M nitric acid at 90 Degree-Sign C in mixing time 45 min and pulp density 10 g/L. The metal free epoxy resin could be disposed-of safely/used as filling material without affecting the environment.

  13. Waste to Energy Time Activities

    E-Print Network [OSTI]

    SEMINAR Waste to Energy Time Activities 9:30-9:40 Brief introduction of participants 9:40-10:10 Presentation of Dr. Kalogirou, "Waste to Energy: An Integral Part of Worldwide Sustainable Waste Management" 10. Sofia Bethanis, "Production of synthetic aggregates for use in structural concrete from waste to energy

  14. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  15. Contained recovery of oily waste

    DOE Patents [OSTI]

    Johnson, Jr., Lyle A. (Laramie, WY); Sudduth, Bruce C. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method is provided for recovering oily waste from oily waste accumulations underground comprising sweeping the oily waste accumulation with hot water to recover said oily waste, wherein said area treated is isolated from surrounding groundwater hydraulically. The hot water may be reinjected after the hot-water displacement or may be treated to conform to any discharge requirements.

  16. Methane generation from waste materials

    DOE Patents [OSTI]

    Samani, Zohrab A. (Las Cruces, NM); Hanson, Adrian T. (Las Cruces, NM); Macias-Corral, Maritza (Las Cruces, NM)

    2010-03-23T23:59:59.000Z

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  17. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  18. Radioactive waste material disposal

    DOE Patents [OSTI]

    Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

    1995-01-01T23:59:59.000Z

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  19. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  20. Certification Plan, low-level waste Hazardous Waste Handling Facility

    SciTech Connect (OSTI)

    Albert, R.

    1992-06-30T23:59:59.000Z

    The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

  1. Hanford Site Secondary Waste Roadmap

    SciTech Connect (OSTI)

    Westsik, Joseph H.

    2009-01-29T23:59:59.000Z

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and performance requirements, waste composition, preliminary waste form screening, waste form development, process design and support, and validation. The regulatory and performance requirements activity will provide the secondary waste-form performance requirements. The waste-composition activity will provide workable ranges of secondary waste compositions and formulations for simulants and surrogates. Preliminary waste form screening will identify candidate waste forms for immobilizing the secondary wastes. The waste form development activity will mature the waste forms, leading to a selected waste form(s) with a defensible understanding of the long-term release rate and input into the critical decision process for a secondary waste treatment process/facility. The process and design support activity will provide a reliable process flowsheet and input to support a robust facility design. The validation effort will confirm that the selected waste form meets regulatory requirements. The final outcome of the implementation of the secondary waste roadmap is the compliant, effective, timely, and cost-effective disposal of the secondary wastes. The work necessary to address the programmatic, regulatory, and technical risks and uncertainties identified through the Secondary Waste Roadmap Workshop are assembled into several program needs elements. Programmatic/Regulatory needs include: Select and deploy Hanford tank waste supplemental treatment technology Provide treatment capability for secondary waste streams from tank waste treatment Develop consensus on secondary waste form acceptance. Technology needs include: Define secondary waste composition ranges and uncertainties Identify and develop waste forms for secondary waste immobilization and disposal Develop test methods to characterize secondary waste form performance. Details for each of these program elements are provided.

  2. Black optic display

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1997-01-01T23:59:59.000Z

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  3. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  4. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  5. Waste and Recycling

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

  6. WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,

    E-Print Network [OSTI]

    labeled chemicals Waste Minimization/ Volume Reduction 0 Solid Radioactive Waste $2,168 $3,795 $2,168 VialWASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2003 WASTE TYPE DESCRIPTION DETAILS * Radioactive Waste Source Reduction 1,500 Radioactive Waste $6,000 $2,500 $6,000 Waste

  7. Strings, higher curvature corrections, and black holes

    E-Print Network [OSTI]

    Thomas Mohaupt

    2005-12-05T23:59:59.000Z

    We review old and recent results on subleading contributions to black hole entropy in string theory.

  8. Hanford Site annual dangerous waste report. Volume 1, Part 2, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  9. Hanford Site annual dangerous waste report. Volume 1, Part 1, Generator dangerous waste report dangerous waste: Calendar Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, weight, waste description, and waste designation.

  10. Citrus Waste Biomass Program

    SciTech Connect (OSTI)

    Karel Grohman; Scott Stevenson

    2007-01-30T23:59:59.000Z

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  11. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  12. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01T23:59:59.000Z

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  13. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  14. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  15. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    SciTech Connect (OSTI)

    Randklev, E.H.

    1993-06-01T23:59:59.000Z

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

  16. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17T23:59:59.000Z

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  17. Thermodynamics of regular black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2008-09-21T23:59:59.000Z

    We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

  18. Black Hole Interior Mass Formula

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2014-05-06T23:59:59.000Z

    We argue by explicit computations that, although the area product, horizon radii product, entropy product and \\emph {irreducible mass product} of the event horizon and Cauchy horizon are universal, the \\emph{surface gravity product}, \\emph{surface temperature product} and \\emph{Komar energy product} of the said horizons do not seem to be universal for Kerr-Newman (KN) black hole space-time. We show the black hole mass formula on the \\emph{Cauchy horizon} following the seminal work by Smarr\\cite{smarr} for the outer horizon. We also prescribed the \\emph{four} laws of black hole mechanics for the \\emph{inner horizon}. New definition of the extremal limit of a black hole is discussed.

  19. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  20. Waste segregation procedures and benefits

    SciTech Connect (OSTI)

    Fish, J.D.; Massey, C.D.; Ward, S.J.

    1990-01-01T23:59:59.000Z

    Segregation is a critical first step in handling hazardous and radioactive materials to minimize the generation of regulated wastes. In addition, segregation can significantly reduce the complexity and the total cost of managing waste. Procedures at Sandia National Laboratories, Albuquerque require that wastes be segregated, first, by waste type (acids, solvents, low level radioactive, mixed, classified, etc.). Higher level segregation requirements, currently under development, are aimed at enhancing the possibilities for recovery, recycle and reapplication; reducing waste volumes; reducing waste disposal costs, and facilitating packaging storage, shipping and disposal. 2 tabs.

  1. Fate and transport of phenol in a packed bed reactor containing simulated solid waste

    SciTech Connect (OSTI)

    Saquing, Jovita M., E-mail: jmsaquing@gmail.com [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Knappe, Detlef R.U., E-mail: knappe@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2012-02-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictive models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.

  2. Fishing in Black Holes

    E-Print Network [OSTI]

    A. Brotas

    2006-09-01T23:59:59.000Z

    The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).

  3. ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES

    E-Print Network [OSTI]

    Gerdes, J. Christian

    ZERO WASTE STANFORD WASTE REDUCTION, RECYCLING AND COMPOSTING GUIDELINES PLASTICS, METALS & GLASS pleaseemptyandflatten COMPOSTABLES kitchenandyardwasteonly LANDFILL ONLY ifallelsefails All Plastic Containers Metal Material All Food Paper Plates & Napkins *including pizza & donut boxes Compostable & Biodegradable

  4. SOLOX coke-oven gas desulfurization ppm levels -- No toxic waste

    SciTech Connect (OSTI)

    Platts, M. (Thyssen Still Otto Technical Services, Pittsburgh, PA (United States)); Tippmer, K. (Thyssen Still Otto Anlagentechnik GmbH, Bochum (Germany))

    1994-09-01T23:59:59.000Z

    For sulfur removal from coke-oven gas, the reduction/oxidation processes such as Stretford are the most effective, capable of removing the H[sub 2]S down to ppm levels. However, these processes have, in the past, suffered from ecological problems with secondary pollutant formation resulting from side reactions with HCN and O[sub 2]. The SOLOX gas desulfurization system is a development of the Stretford process in which the toxic effluent problems are eliminated by installing a salt decomposition process operating according to the liquid-phase hydrolysis principle. In this process, the gaseous hydrolysis products H[sub 2]S, NH[sub 3] and CO[sub 2] are returned to the untreated gas, and the regenerated solution is recycled to the absorption process. The blowdown from the absorption circuit is fed into a tube reactor where the hydrolysis process takes place. The toxic salts react with water, producing as reaction products the gases H[sub 2]S, NH[sub 3] and CO[sub 2], and the nontoxic salt Na[sub 2]SO[sub 4]. From the hydrolysis reactor the liquid stream flows into a fractionating crystallization plant. This plant produces a recycle stream of regenerated absorption solution and a second stream containing most of the Na[sub 2]SO[sub 4]. This second stream comprises the net plant waste and can be disposed of with the excess ammonia liquor or sprayed onto the coal.

  5. Waste generator services implementation plan

    SciTech Connect (OSTI)

    Mousseau, J.; Magleby, M.; Litus, M.

    1998-04-01T23:59:59.000Z

    Recurring waste management noncompliance problems have spurred a fundamental site-wide process revision to characterize and disposition wastes at the Idaho National Engineering and Environmental Laboratory. The reengineered method, termed Waste Generator Services, will streamline the waste acceptance process and provide waste generators comprehensive waste management services through a single, accountable organization to manage and disposition wastes in a timely, cost-effective, and compliant manner. This report outlines the strategy for implementing Waste Generator Services across the INEEL. It documents the culmination of efforts worked by the LMITCO Environmental Management Compliance Reengineering project team since October 1997. These efforts have included defining problems associated with the INEEL waste management process; identifying commercial best management practices; completing a review of DOE Complex-wide waste management training requirements; and involving others through an Integrated Process Team approach to provide recommendations on process flow, funding/charging mechanisms, and WGS organization. The report defines the work that will be performed by Waste Generator Services, the organization and resources, the waste acceptance process flow, the funding approach, methods for measuring performance, and the implementation schedule and approach. Field deployment will occur first at the Idaho Chemical Processing Plant in June 1998. Beginning in Fiscal Year 1999, Waste Generator Services will be deployed at the other major INEEL facilities in a phased approach, with implementation completed by March 1999.

  6. RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE

    E-Print Network [OSTI]

    Harman, Neal.A.

    RECYCLING AND GENERAL WASTE MANAGEMENT OPERATIONAL PROCEDURE Swansea University Estates Services.6.1/1 Recycling & General Waste Management Department: Estates & Facilities Management Site: Swansea University recycling and waste management facilities in Swansea university To ensure that Waste Management Objectives

  7. Page 1 of 2 UNIVERSAL WASTE

    E-Print Network [OSTI]

    Jia, Songtao

    (laboratories should follow hazardous waste procedures) or thorough central battery recycling receptaclesPage 1 of 2 UNIVERSAL WASTE and OTHER ENVIRONMENTALLY DELETERIOUS PRODUCTS Batteries All Universal Waste Batteries generated in laboratories must be collected through the hazardous waste program

  8. FROM WASTE TO WORTH: THE ROLE OF WASTE DIVERSION IN

    E-Print Network [OSTI]

    Columbia University

    ;Canadian Energy-From-Waste Coalition (CEFWC) 1 There is considerable merit to the ideas outlined commitment to foster a green and sustainable economy. The Canadian Energy-From-Waste Coalition (CEFWC sign that the system is failing. #12;Canadian Energy-From-Waste Coalition (CEFWC) 2 Like you, the CEFWC

  9. L/O/G/OL/O/G/O Waste Waste

    E-Print Network [OSTI]

    Laksanacharoen, Sathaporn

    L/O/G/OL/O/G/O #12; Waste Waste Value () Flow #12;Genchi GenbutsuGenchi Genbutsu of waste) Zero Inventory #12;Just in Time in HealthcareJust in Time in Healthcare Takt time (pitch), one Electronic Call 3. #12;Poka-Yoke ?Poka-Yoke ? Poka-Yoke yokeru = to avoid poka = inadvertent errors 1

  10. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  11. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  12. Waste Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cleanup Waste Management Waste Management July 15, 2014 Energy Expos Students work in groups to create hands-on exhibits about the energy sources that power the nation, ways to...

  13. High-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides the criteria for determining which DOE radioactive wastes are to be managed as high-level waste in accordance with DOE M 435.1-1.

  14. Low-Level Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining which DOE radioactive wastes are to be managed as low-level waste in accordance with DOE M 435.1-1, Chapter IV.

  15. Copenhagen Waste Management and Incineration

    E-Print Network [OSTI]

    ownership of treatment facilities Incineration plants Land fill Disposal of hazardous waste Source waste prevention Focus areas Changes in behaviour among consumers and producers City schemes almost fully developed Collection of hazardous substances, paper, cardboard, gardening and bulky

  16. Waste Management Assistance Act (Iowa)

    Broader source: Energy.gov [DOE]

    This section promotes the proper and safe storage, treatment, and disposal of solid, hazardous, and low-level radioactive wastes in Iowa, and calls on Iowans to assume responsibility for waste...

  17. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  18. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  19. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  20. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  1. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  2. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3AConversion Technologies III: Energy from Our WasteWill we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  3. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  4. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

    1997-01-01T23:59:59.000Z

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  5. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14T23:59:59.000Z

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  6. Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Chemotherapy waste may be a hazardous chemical waste or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type. Hazardous Chemical Chemotherapy Waste: A number of chemotherapy drugs are regulated as a hazardous chemical waste. These include

  7. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  8. Low-level waste forum meeting reports

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This paper provides highlights from the 1995 summer meeting of the Low Level radioactive Waste Forum. Topics included: new developments in state and compacts; federal waste management; DOE plans for Greater-Than-Class C waste management; mixed wastes; commercial mixed waste management; international export of rad wastes for disposal; scintillation cocktails; license termination; pending legislation; federal radiation protection standards.

  9. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    SciTech Connect (OSTI)

    Sun Wei [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Huang, Guo H., E-mail: huang@iseis.org [Institute for Energy, Environment and Sustainability Research, UR-NCEPU, North China Electric Power University, Beijing 102206 (China); Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); Lv Ying; Li Gongchen [Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2012-06-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.

  10. Hazardous medical waste generation rates of different categories of health-care facilities

    SciTech Connect (OSTI)

    Komilis, Dimitrios, E-mail: dkomilis@env.duth.gr [Laboratory of Solid and Hazardous Waste Management, Dept. of Environmental Engineering, Democritus University of Thrace, Xanthi 671 00 (Greece); Fouki, Anastassia [Hellenic Open University, Patras (Greece); Papadopoulos, Dimitrios [APOTEFROTIRAS S.A., Ano Liossia, 192 00 Elefsina (Greece)

    2012-07-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We calculated hazardous medical waste generation rates (HMWGR) from 132 hospitals. Black-Right-Pointing-Pointer Based on a 22-month study period, HMWGR were highly skewed to the right. Black-Right-Pointing-Pointer The HMWGR varied from 0.00124 to 0.718 kg bed{sup -1} d{sup -1}. Black-Right-Pointing-Pointer A positive correlation existed between the HMWGR and the number of hospital beds. Black-Right-Pointing-Pointer We used non-parametric statistics to compare rates among hospital categories. - Abstract: Goal of this work was to calculate the hazardous medical waste unit generation rates (HMWUGR), in kg bed{sup -1} d{sup -1}, using data from 132 health-care facilities in Greece. The calculations were based on the weights of the hazardous medical wastes that were regularly transferred to the sole medical waste incinerator in Athens over a 22-month period during years 2009 and 2010. The 132 health-care facilities were grouped into public and private ones, and, also, into seven sub-categories, namely: birth, cancer treatment, general, military, pediatric, psychiatric and university hospitals. Results showed that there is a large variability in the HMWUGR, even among hospitals of the same category. Average total HMWUGR varied from 0.012 kg bed{sup -1} d{sup -1}, for the public psychiatric hospitals, to up to 0.72 kg bed{sup -1} d{sup -1}, for the public university hospitals. Within the private hospitals, average HMWUGR ranged from 0.0012 kg bed{sup -1} d{sup -1}, for the psychiatric clinics, to up to 0.49 kg bed{sup -1} d{sup -1}, for the birth clinics. Based on non-parametric statistics, HMWUGR were statistically similar for the birth and general hospitals, in both the public and private sector. The private birth and general hospitals generated statistically more wastes compared to the corresponding public hospitals. The infectious/toxic and toxic medical wastes appear to be 10% and 50% of the total hazardous medical wastes generated by the public cancer treatment and university hospitals, respectively.

  11. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  12. International black tea market integration and price discovery

    E-Print Network [OSTI]

    Dharmasena, Kalu Arachchillage Senarath Dhananjaya Bandara

    2004-09-30T23:59:59.000Z

    In this thesis we study three basic issues related to international black tea markets: Are black tea markets integrated? Where is the price of black tea discovered? Are there leaders and followers in black tea markets? We use two statistical...

  13. RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING

    E-Print Network [OSTI]

    Howitt, Ivan

    RETHINKING WASTE, RECYCLING, AND HOUSEKEEPING EFFICIENCY.EFFICIENCY. A l GA leaner Green #12 t R li Management Recycling Staff The Office of Waste Reduction & Recycling started in The Office of Waste Reduction & Recycling started in 1990, we have 14 full time staff positions. We collect over 40

  14. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  15. Applications of life cycle assessment and cost analysis in health care waste management

    SciTech Connect (OSTI)

    Soares, Sebastiao Roberto, E-mail: soares@ens.ufsc.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Finotti, Alexandra Rodrigues, E-mail: finotti@ens.ufsc.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Prudencio da Silva, Vamilson, E-mail: vamilson@epagri.sc.gov.br [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); EPAGRI, Rod. Admar Gonzaga 1347, Itacorubi, Florianopolis, Santa Catarina 88034-901 (Brazil); Alvarenga, Rodrigo A.F., E-mail: alvarenga.raf@gmail.com [Department of Sanitary Engineering, Federal University of Santa Catarina, UFSC, Campus Universitario, Centro Tecnologico, Trindade, PO Box 476, Florianopolis, SC 88040-970 (Brazil); Ghent University, Department of Sustainable Organic Chemistry and Technology, Coupure Links 653/9000 Gent (Belgium)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Three Health Care Waste (HCW) scenarios were assessed through environmental and cost analysis. Black-Right-Pointing-Pointer HCW treatment using microwave oven had the lowest environmental impacts and costs in comparison with autoclave and lime. Black-Right-Pointing-Pointer Lime had the worst environmental and economic results for HCW treatment, in comparison with autoclave and microwave. - Abstract: The establishment of rules to manage Health Care Waste (HCW) is a challenge for the public sector. Regulatory agencies must ensure the safety of waste management alternatives for two very different profiles of generators: (1) hospitals, which concentrate the production of HCW and (2) small establishments, such as clinics, pharmacies and other sources, that generate dispersed quantities of HCW and are scattered throughout the city. To assist in developing sector regulations for the small generators, we evaluated three management scenarios using decision-making tools. They consisted of a disinfection technique (microwave, autoclave and lime) followed by landfilling, where transportation was also included. The microwave, autoclave and lime techniques were tested at the laboratory to establish the operating parameters to ensure their efficiency in disinfection. Using a life cycle assessment (LCA) and cost analysis, the decision-making tools aimed to determine the technique with the best environmental performance. This consisted of evaluating the eco-efficiency of each scenario. Based on the life cycle assessment, microwaving had the lowest environmental impact (12.64 Pt) followed by autoclaving (48.46 Pt). The cost analyses indicated values of US$ 0.12 kg{sup -1} for the waste treated with microwaves, US$ 1.10 kg{sup -1} for the waste treated by the autoclave and US$ 1.53 kg{sup -1} for the waste treated with lime. The microwave disinfection presented the best eco-efficiency performance among those studied and provided a feasible alternative to subsidize the formulation of the policy for small generators of HCW.

  16. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B. [Centro Multidisciplinar de Astrofisica, CENTRA, Departamento de Fisica, Instituto Superior Tecnico-IST, Universidade Tecnica de Lisboa-UTL, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Astronomical Institute of Kharkov, V. N. Karazin National University, 35 Sumskaya Street, Kharkov, 61022 (Ukraine)

    2008-07-15T23:59:59.000Z

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to be less difficult than one could think of it.

  17. Integration of waste pyrolysis with coal/oil coprocessing

    SciTech Connect (OSTI)

    Hu, J.; Zhou, P.; Lee, T.L.K.; Comolli, A. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)

    1998-04-01T23:59:59.000Z

    HTI has developed a novel process, HTI CoPro Plus{trademark}, to produce alternative fuels and chemicals from the combined liquefaction of waste materials, coal, and heavy petroleum residues. Promising results have been obtained from a series of bench tests (PB-01 through PB-06) under the DOE Proof of Concept Program. Recently, HTI acquired a proven technology for the mild co-pyrolysis of used rubber tires and waste refinery or lube oils, developed by the University of Wyoming and Amoco. The feasibility of integration of pyrolysis with coal-oil coprocessing was studied in the eighth bench run (PB-08) of the program. The objective of Run PB-08 was to study the coprocessing of coal with oils derived from mild pyrolysis of scrap tires, waste plastics, and waste lube oils to obtain data required for economic comparisons with the DOE data base. A specific objective was also to study the performance of HTI`s newly improved GelCat{trademark} catalyst in coal-waste coprocessing under low-high (Reactor 1-Reactor 2 temperatures) operating mode. This paper presents the results obtained from Run PB-08, a 17-day continuous operation conducted in August 1997. A total of 5 conditions were tested, including a baseline coal-only condition. During the coprocessing conditions, 343{degrees}C+ pyrolysis oils derived from co-pyrolysis of rubber tires or a mixture of rubber tires and plastics with waste lube oil, were coprocessed with Black Thunder coal using HTI GelCat{trademark} catalyst. In the last condition, rubber tires were pyrolyzed with 524{degrees}C- coal liquid to study the possible elimination of lube oil used as pyrolysis processing oil. Overall coal conversion above 90 W% was achieved.

  18. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste keep areas clear. EPO Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  19. Call for Papers and Panels Unleashing the Black Erotic

    E-Print Network [OSTI]

    Kunkle, Tom

    and the Hypersexuality of Black Women Alternative Modes of Black Love and Family The Politics and Economics of Porn

  20. Heat Engine of black holes

    E-Print Network [OSTI]

    Sadeghi, J

    2015-01-01T23:59:59.000Z

    As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.

  1. Heat Engine of black holes

    E-Print Network [OSTI]

    J. Sadeghi; Kh. Jafarzade

    2015-04-29T23:59:59.000Z

    As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.

  2. Energy on black hole spacetimes

    E-Print Network [OSTI]

    Alejandro Corichi

    2012-07-18T23:59:59.000Z

    We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

  3. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A. Chg 1 dated 8-28-01. Certified 1-9-07.

  4. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public health and safety and the environment. Cancels DOE O 5820.2A

  5. "Separations: Dust to Dust" or " You Can't Escape Em"

    E-Print Network [OSTI]

    Massey, R. G.

    OH) as absorbent. In this case the water, vaporized under vacuum at a low temperature, serves as the refrigerant. The counter-current wash column was selected over centrifugation because of the higher losses normally experienced with the latter. A vacuum... nitrites. Freeze crystallization is being developed for concentrating black liquor in the paper making process. Evaporation has been applied to the plating process to eliminate a waste disposal problem. INTRODUCTI ON In the broadest sense, separation...

  6. Black Literary Suite: Kansas Authors Edition

    E-Print Network [OSTI]

    Wiggins, Meredith Joan

    2015-03-04T23:59:59.000Z

    authors were born or lived in the Sunflower State, and their work often reflects their time in Kansas. This Black Literary Suite exhibit highlights four important black writersLangston Hughes, Gwendolyn Brooks, Frank Marshall Davis, and Kevin Young...

  7. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    SciTech Connect (OSTI)

    Ramsey, William Gene

    2013-08-15T23:59:59.000Z

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

  8. TRU waste characterization chamber gloveboxes.

    SciTech Connect (OSTI)

    Duncan, D. S.

    1998-07-02T23:59:59.000Z

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  9. Introduction to Black Hole Evaporation

    E-Print Network [OSTI]

    Pierre-Henry Lambert

    2014-01-16T23:59:59.000Z

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  10. Hawking Emission and Black Hole Thermodynamics

    E-Print Network [OSTI]

    Don N. Page

    2006-12-18T23:59:59.000Z

    A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

  11. WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop

    E-Print Network [OSTI]

    ; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

  12. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  13. Waste minimization handbook, Volume 1

    SciTech Connect (OSTI)

    Boing, L.E.; Coffey, M.J.

    1995-12-01T23:59:59.000Z

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  14. Signatures of black holes at the LHC

    E-Print Network [OSTI]

    Marco Cavaglia; Romulus Godang; Lucien M. Cremaldi; Donald J. Summers

    2007-07-02T23:59:59.000Z

    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.

  15. Black Shales Adina Paytan, Stanford University, USA

    E-Print Network [OSTI]

    Paytan, Adina

    Tales of Black Shales Adina Paytan, Stanford University, USA Several times during the middle of the Cretaceous period, between 125 and 80 million years ago, organic-carbon-rich black shales were deposited over large areas of the ocean floor. These black shales provide valuable information about past climates

  16. 6, 34193463, 2006 Black carbon or

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    ACPD 6, 34193463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencser Title Page Chemistry and Physics Discussions Black carbon or brown carbon? The nature of light-absorbing carbonaceous;ACPD 6, 34193463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencser Title Page

  17. Absorption cross section in Lifshitz black hole

    E-Print Network [OSTI]

    Taeyoon Moon; Yun Soo Myung

    2012-10-05T23:59:59.000Z

    We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.

  18. Characterization of cellulosic wastes and gasification products from chicken farms

    SciTech Connect (OSTI)

    Joseph, Paul, E-mail: p.joseph@ulster.ac.uk [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom); Tretsiakova-McNally, Svetlana; McKenna, Siobhan [School of the Built Environment and the Built Environment Research Institute, University of Ulster, Newtownabbey BT37 0QB, County Antrim, Northern Ireland (United Kingdom)

    2012-04-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chicken litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.

  19. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18T23:59:59.000Z

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  20. Treatment of halogen-containing waste and other waste materials

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN); Beahm, Edward C. (Oak Ridge, TN); Parker, George W. (Concord, TN)

    1997-01-01T23:59:59.000Z

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  1. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  2. Einstein, Black Holes Gravitational Waves

    E-Print Network [OSTI]

    Cook, Greg

    1 #12;Einstein, Black Holes and Gravitational Waves Gregory B. Cook Wake Forest University 2 #12;Einstein's Miraculous Year: 1905 Einstein, A. "Uber einen die Erzeugung und Verwandlung des Lichtes Concerning the Production and Transformation of Light. Einstein, A. "Uber die von der molekularkinetischen

  3. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-06T23:59:59.000Z

    Pinhole photography has made major contributions to astrophysics through the use of coded apertures. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  4. Nuclear waste management. Semiannual progress report, October 1983-March 1984

    SciTech Connect (OSTI)

    McElroy, J.L.; Powell, J.A.

    1984-06-01T23:59:59.000Z

    Progress in the following studies on radioactive waste management is reported: defense waste technology; Nuclear Waste Materials Characterization Center; waste isolation; and supporting studies. 58 figures, 22 tables.

  5. Medical and Biohazardous Waste Generator's Guide (Revision 2)

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Waste Supplies 8. Solid Medical Waste Disposal ProceduresMedical/Biohazardous Waste Pickup Containers Solid Medical/Security Notice 8. Solid Medical Waste Disposal Procedures

  6. Waste Management in Dsseldorf Combination of separate collection,

    E-Print Network [OSTI]

    Columbia University

    Waste Management in Düsseldorf Combination of separate collection, recycling and waste-to-energy Biowaste Garden waste Light packaging Paper Glass Wood from bulky waste Bulky waste Rest / mixed waste Bio- Garden- Paper Glass Light Metals Wood Bulky Rest waste waste Card- Pack. waste board Saved CO2

  7. One size fits all? An assessment tool for solid waste management at local and national levels

    SciTech Connect (OSTI)

    Broitman, Dani, E-mail: danib@techunix.technion.ac.il [Department of Natural Resources and Environment Management, Graduate school of Management, University of Haifa, Haifa 31905 (Israel); Ayalon, Ofira [Department of Natural Resources and Environment Management, Graduate school of Management, University of Haifa, Haifa 31905 (Israel); Kan, Iddo [Department of Agricultural Economics and Management, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot 76100 (Israel)

    2012-10-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Waste management schemes are generally implemented at national or regional level. Black-Right-Pointing-Pointer Local conditions characteristics and constraints are often neglected. Black-Right-Pointing-Pointer We developed an economic model able to compare multi-level waste management options. Black-Right-Pointing-Pointer A detailed test case with real economic data and a best-fit scenario is described. Black-Right-Pointing-Pointer Most efficient schemes combine clear National directives with local level flexibility. - Abstract: As environmental awareness rises, integrated solid waste management (WM) schemes are increasingly being implemented all over the world. The different WM schemes usually address issues such as landfilling restrictions (mainly due to methane emissions and competing land use), packaging directives and compulsory recycling goals. These schemes are, in general, designed at a national or regional level, whereas local conditions and constraints are sometimes neglected. When national WM top-down policies, in addition to setting goals, also dictate the methods by which they are to be achieved, local authorities lose their freedom to optimize their operational WM schemes according to their specific characteristics. There are a myriad of implementation options at the local level, and by carrying out a bottom-up approach the overall national WM system will be optimal on economic and environmental scales. This paper presents a model for optimizing waste strategies at a local level and evaluates this effect at a national level. This is achieved by using a waste assessment model which enables us to compare both the economic viability of several WM options at the local (single municipal authority) level, and aggregated results for regional or national levels. A test case based on various WM approaches in Israel (several implementations of mixed and separated waste) shows that local characteristics significantly influence WM costs, and therefore the optimal scheme is one under which each local authority is able to implement its best-fitting mechanism, given that national guidelines are kept. The main result is that strict national/regional WM policies may be less efficient, unless some type of local flexibility is implemented. Our model is designed both for top-down and bottom-up assessment, and can be easily adapted for a wide range of WM option comparisons at different levels.

  8. Separate collection of household food waste for anaerobic degradation - Comparison of different techniques from a systems perspective

    SciTech Connect (OSTI)

    Bernstad, A., E-mail: Anna.bernstad@chemeng.lth.se [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden); Cour Jansen, J. la [Water and Environmental Engineering, Department of Chemical Engineering, Lund University (Sweden)

    2012-05-15T23:59:59.000Z

    Highlight: Black-Right-Pointing-Pointer Four modern and innovative systems for household food waste collection are compared. Black-Right-Pointing-Pointer Direct emissions and resource use were based on full-scale data. Black-Right-Pointing-Pointer Conservation of nutrients/energy content over the system was considered. Black-Right-Pointing-Pointer Systems with high energy/nutrient recovery are most environmentally beneficial. - Abstract: Four systems for household food waste collection are compared in relation the environmental impact categories eutrophication potential, acidification potential, global warming potential as well as energy use. Also, a hotspot analysis is performed in order to suggest improvements in each of the compared collection systems. Separate collection of household food waste in paper bags (with and without drying prior to collection) with use of kitchen grinders and with use of vacuum system in kitchen sinks were compared. In all cases, food waste was used for anaerobic digestion with energy and nutrient recovery in all cases. Compared systems all resulted in net avoidance of assessed environmental impact categories; eutrophication potential (-0.1 to -2.4 kg NO{sub 3}{sup -}eq/ton food waste), acidification potential (-0.4 to -1.0 kg SO{sub 2}{sup -}eq/ton food waste), global warming potential (-790 to -960 kg CO{sub 2}{sup -}eq/ton food waste) and primary energy use (-1.7 to -3.6 GJ/ton food waste). Collection with vacuum system results in the largest net avoidance of primary energy use, while disposal of food waste in paper bags for decentralized drying before collection result in a larger net avoidance of global warming, eutrophication and acidification. However, both these systems not have been taken into use in large scale systems yet and further investigations are needed in order to confirm the outcomes from the comparison. Ranking of scenarios differ largely if considering only emissions in the foreground system, indicating the importance of taking also downstream emissions into consideration when comparing different collection systems. The hot spot identification shows that losses of organic matter in mechanical pretreatment as well as tank connected food waste disposal systems and energy in drying and vacuum systems reply to the largest impact on the results in each system respectively.

  9. Pyrolysis behavior of different type of materials contained in the rejects of packaging waste sorting plants

    SciTech Connect (OSTI)

    Adrados, A., E-mail: aitziber.adrados@ehu.es [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain); De Marco, I.; Lopez-Urionabarrenechea, A.; Caballero, B.M.; Laresgoiti, M.F. [Chemical and Environmental Engineering Department, School of Engineering of Bilbao, Alameda. Urquijo s/n, 48013 Bilbao (Spain)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Study of the influence of materials in the pyrolysis of real plastic waste samples. Black-Right-Pointing-Pointer Inorganic compounds remain unaltered. Black-Right-Pointing-Pointer Cellulosic components give rise to an increase in char formation. Black-Right-Pointing-Pointer Cellulosic components promote the production of aqueous phase. Black-Right-Pointing-Pointer Cellulosic components increase CO and CO{sub 2} contents in the gases. - Abstract: In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm{sup 3} reactor, swept with 1 L min{sup -1} N{sub 2}, at 500 Degree-Sign C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg{sup -1}). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO{sub 2}; their HHV is in the range of 18-46 MJ kg{sup -1}. The amount of CO-CO{sub 2} increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char.

  10. Black Hole Radiation and Volume Statistical Entropy

    E-Print Network [OSTI]

    Mario Rabinowitz

    2005-06-29T23:59:59.000Z

    The simplest possible equation for Hawking radiation, and other black hole radiated power is derived in terms of black hole density. Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy. Variations of Sbh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius which is similar to the Compton wavelength relation.

  11. Hydraulic waste energy recovery

    SciTech Connect (OSTI)

    Lederer, C.C.; Thomas, A.H.; McGuire, J.L. (Detroit Buildings and Safety Engineering Dept., MI (USA))

    1990-12-01T23:59:59.000Z

    Water distribution systems are typically a municipality's largest consumer of energy and greatest expense. The water distribution network has varying pressure requirements due to the age of the pipeline and topographical differences. Certain circumstances require installation of pressure reducing devices in the pipeline to lower the water pressure in the system. The consequence of this action is that the hydraulic energy supplied by the high lift or booster pumps is wasted in the process of reducing the pressure. A possible solution to capture the waste hydraulic energy is to install an in-line electricity generating turbine. Energy recovery using in-line turbine systems is an emerging technology. Due to the lack of technical and other relevant information on in-line turbine system installations, questions of constructability and legal issues over the power service contract have yet to be answered. This study seeks to resolve these questions and document the findings so that other communities may utilize this information. 10 figs.

  12. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  13. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

    1995-01-01T23:59:59.000Z

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  14. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28T23:59:59.000Z

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  15. Method for processing aqueous wastes

    DOE Patents [OSTI]

    Pickett, John B. (3922 Wood Valley Dr., Aiken, SC 29803); Martin, Hollis L. (Rt. 1, Box 188KB, McCormick, SC 29835); Langton, Christine A. (455 Sumter St. SE., Aiken, SC 29801); Harley, Willie W. (110 Fairchild St., Batesburg, SC 29006)

    1993-01-01T23:59:59.000Z

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  16. Radioactive waste processing apparatus

    DOE Patents [OSTI]

    Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

    1987-01-01T23:59:59.000Z

    Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

  17. Management of waste electrical and electronic equipment in two EU countries: A comparison

    SciTech Connect (OSTI)

    Torretta, Vincenzo, E-mail: vincenzo.torretta@uninsubria.it [Department of Science and High Technology, Insubria University of Varese, Via G.B. Vico 46, I-21100 Varese (Italy); Ragazzi, Marco [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, I-38123 Trento (Italy); Istrate, Irina Aura [Department of Energy Production and Use, Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest (Romania); Rada, Elena Cristina [Department of Civil and Environmental Engineering, University of Trento, Via Mesiano 77, I-38123 Trento (Italy)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Review on data regarding WEEE management in Italy and in Romania. Black-Right-Pointing-Pointer Problems that countries that will enter in the EU will have to solve facing with the WEEE management. Black-Right-Pointing-Pointer Pilot experiences useful for the awareness campaign of the population. - Abstract: The paper presents some data regarding waste electrical and electronic (WEEE) management in one of the founding countries of the EU, Italy, and in a recent entry into the EU, Romania. The aim of this research was to analyze some problems that countries entering the EU will have to solve with respect to WEEE management. The experiences of Italy and Romania could provide an interesting reference point. The strengths and weaknesses that the two EU countries have encountered can be used in order to give a more rational plan for other countries. In Italy the increase of WEEE collection was achieved in parallel with the increase of the efficiency of selective Municipal Solid Waste collection. In Romania, pilot experiences were useful to increase the awareness of the population. The different interests of the two populations towards recyclable waste led to a different scenario: in Romania all types of WEEE have been collected since its entrance into the EU; in Italy the 'interest' in recycling is typically related to large household appliances, with a secondary role of lighting equipment.

  18. Waste products in highway construction. Final report

    SciTech Connect (OSTI)

    Han, C.

    1993-04-01T23:59:59.000Z

    The report presents waste materials and products for highway construction. The general legislation, local liability, and research projects related to waste materials are outlined. The waste materials and products presented include waste paving materials, industrial ash materials, taconite tailing materials, waste tire rubber materials and products, building rubble materials, incinerator ash products and materials, waste glass materials, waste shingle materials and products, waste plastics products, and slag materials. For each waste category, the legislation and restrictions, material properties, construction and application, field performance, and recycling at the end of service life if available are discussed.

  19. Municipal Waste Planning, Recycling and Waste Reduction Act ...

    Open Energy Info (EERE)

    Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies BiomassBiogas, Coal with CCS,...

  20. Black Hole Evaporation as a Nonequilibrium Process

    E-Print Network [OSTI]

    Hiromi Saida

    2008-11-11T23:59:59.000Z

    When a black hole evaporates, there arises a net energy flow from the black hole into its outside environment due to the Hawking radiation and the energy accretion onto black hole. Exactly speaking, due to the net energy flow, the black hole evaporation is a nonequilibrium process. To study details of evaporation process, nonequilibrium effects of the net energy flow should be taken into account. In this article we simplify the situation so that the Hawking radiation consists of non-self-interacting massless matter fields and also the energy accretion onto the black hole consists of the same fields. Then we find that the nonequilibrium nature of black hole evaporation is described by a nonequilibrium state of that field, and we formulate nonequilibrium thermodynamics of non-self-interacting massless fields. By applying it to black hole evaporation, followings are shown: (1) Nonequilibrium effects of the energy flow tends to accelerate the black hole evaporation, and, consequently, a specific nonequilibrium phenomenon of semi-classical black hole evaporation is suggested. Furthermore a suggestion about the end state of quantum size black hole evaporation is proposed in the context of information loss paradox. (2) Negative heat capacity of black hole is the physical essence of the generalized second law of black hole thermodynamics, and self-entropy production inside the matter around black hole is not necessary to ensure the generalized second law. Furthermore a lower bound for total entropy at the end of black hole evaporation is given. A relation of the lower bound with the so-called covariant entropy bound conjecture is interesting but left as an open issue.