Powered by Deep Web Technologies
Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel alcohol opportunities for Indiana  

SciTech Connect (OSTI)

Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.

None

1980-08-01T23:59:59.000Z

2

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect (OSTI)

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

3

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

Development of catalysts and reactor systems for producing alcohol-based fuels from coal-derived synthesis gases is outlined. Also, utilization of alcohol-based fuels either as gasoline blending stocks at 10-20% addition rates or as straight-run fuels is discussed. (Refs. 4).

Greene, M.I.

1982-08-01T23:59:59.000Z

4

Fuel Cell Power Plants Renewable and Waste Fuels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Plants Renewable and Waste Fuels Fuel Cell Power Plants Renewable and Waste Fuels Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop...

5

Third international symposium on alcohol fuels technology  

SciTech Connect (OSTI)

At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

none,

1980-04-01T23:59:59.000Z

6

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

Broader source: Energy.gov [DOE]

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

7

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine...

8

Alcohol fuels. 1978-June, 1980 (citations from the NTIS Data Base). Report for 1978-Jun 80  

SciTech Connect (OSTI)

The bibliography covers Federally-funded research on alcohol based fuels, including gasohol, that may be used in the future as a fuel source. The citations cover bioconversion of solid wastes, synthesis, chemical analysis, performance testing, processing, pollution, economics, environmental effects, and feasibility. (This updated bibliography contains 245 citations, none of which are new entries to the previous edition.)

Not Available

1981-11-01T23:59:59.000Z

9

Alcohol-based fuels from syngases  

SciTech Connect (OSTI)

This paper summarizes results of a research program which was undertaken to find the most advantageous method of using methanol in gasoline blends. It is demonstrated that a mixture called methanol and C/sub 2/C/sub 6/ saturated alcohols, called Alkanol fuel, has the potential for providing a gasoline-blending stock superior to that of straight-run methanol or ethanol. Extensive property data and test results are tabulated, plotted, and discussed. Economic considerations are included. 4 refs.

Greene, M.I.

1982-08-01T23:59:59.000Z

10

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Methods Andrew Ickes & Thomas Wallner Argonne National Laboratory 17 th Directions in...

11

Alcohol-based fuels from syngases. [Alkanol fuels  

SciTech Connect (OSTI)

Explains how a mixture of methanol and C/sub 2/-C/sub 6/ saturated alcohols (Alkanol fuel) has the potential for providing a gasoline-blending stock superior to that of straight-run methanol or ethanol. Summarizes the technical and economic advantages of producing and utilizing Alkanol fuels. Although methanol is cheaper, Alkanols represent a higher-quality fuel product with lower-oxygen content and higher hydrogen content. Increasing the methanol content of the Alkanol mixture has the potential to reduce the Alkanols cost of production to the equivalent of that of methanol on a constant heating value basis. The optimal composition will depend on production costs as well as on the properties of Alkanol mixtures necessary to generate a premium, synthetic transportation fuel. The Mobil M-Gasoline Process is an alternative route to converting methanol to synthetic transportation fuels. Concludes that development of the Alkanols Process is in its early stages and further work needs to be done in identifying and solving potential technical bottlenecks related to catalyst stability/selectivity and recovery of water-free Alkanol fuel mixtures. Current work is involved in the study of the performance and stability of several catalyst candidates utilizing a slurry reaction system and in the identification of optimal compositions of Alkanols for use as gasoline blending stocks.

Greene, M.I.

1982-08-01T23:59:59.000Z

12

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

13

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect (OSTI)

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

14

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network [OSTI]

in their boiler systems. And, the trend toward using Process Gases, Flammable Liquids, and Volatile Organic Compounds (\\iDe's), to supplement fossil fuels, will be considered a key element of the management strategy for industrial power plants. The increase...ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

Coerper, P.

15

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

16

Fuel Cell Power Plants Renewable and Waste Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

17

Alcohol-free alkoxide process for containing nuclear waste  

DOE Patents [OSTI]

Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.

Pope, James M. (Monroeville, PA); Lahoda, Edward J. (Edgewood, PA)

1984-01-01T23:59:59.000Z

18

Electrocatalyst for alcohol oxidation at fuel cell anodes  

DOE Patents [OSTI]

In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

2011-11-02T23:59:59.000Z

19

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Conversion to Electricity Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity Working to expand the usage of thermoelectric...

20

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Office of Environmental Management (EM)

1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2008 DOE Spent Nuclear Fuel and High Level Waste Inventory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Management >> National Spent Nuclear Fuel INL Logo Search 2008 DOE Spent Nuclear Fuel and High Level Waste Inventory Content Goes Here Skip Navigation Links Home Newsroom About INL...

22

Industrial Wastes as a Fuel  

E-Print Network [OSTI]

point where a conveyor can conveniently handle it. for further transport. Apron feeders transport waste material by means of chain mounted overlapping steel pans that carry, rather than drag or scrape, the material. Normally, the maximum angle... Portable conveyors Lift trucks Feeders 4 TRANSFER Bucket elevator Belt conveyors Flight convPy'Ors Mass-Flow conveyors Stacking conveyors Crushers Sizers Dryers 3 PREP ARATION 6 COVERED STORAGE Bins 5 OUTDOOR STORAGE...

Richardson, G.; Hendrix, W.

1980-01-01T23:59:59.000Z

23

E-Print Network 3.0 - alcohol transportation fuels Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

resources demands new... and better production paths. One of these is using biogas to create alcohol as a fuel. Higher... Characterization of Catalysts for Synthesis of...

24

E-Print Network 3.0 - alcohol fuel production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

using Electron Microscopy Summary: and better production paths. One of these is using biogas to create alcohol as a fuel. Higher... Characterization of Catalysts for Synthesis of...

25

E-Print Network 3.0 - alcohol fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

using Electron Microscopy Summary: and better production paths. One of these is using biogas to create alcohol as a fuel. Higher... Characterization of Catalysts for Synthesis of...

26

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop  

Broader source: Energy.gov [DOE]

Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011.

27

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers [EERE]

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

28

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: Energy.gov [DOE]

Presentation by Robert Remick, NREL, at the DOE-DOD Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011

29

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Broader source: Energy.gov [DOE]

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

30

Waste-to-Energy using Fuel Cells Webinar  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a webinar on July 13, 2011, in Washington, DC, to discuss waste-to-energy for fuel...

31

Fuel from Waste Helps Power Two Tribes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel from Waste Helps Power Two Tribes Fuel from Waste Helps Power Two Tribes Fuel from Waste Helps Power Two Tribes September 6, 2013 - 2:01pm Addthis The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use. The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use. Fuel from Waste Helps Power Two Tribes The Eastern Band of Cherokee Indians and the Mississippi Band of Choctaw Indians are converting waste vegetable oil and grease to biofuel in an effort to reduce the environmental impact of their energy use.

32

Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables.

Not Available

1984-09-01T23:59:59.000Z

33

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation...

34

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

A. Alsaed

2005-07-28T23:59:59.000Z

35

Commercial Spent Nuclear Fuel Waste Package Misload Analysis  

SciTech Connect (OSTI)

The purpose of this calculation is to estimate the probability of misloading a commercial spent nuclear fuel waste package with a fuel assembly(s) that has a reactivity (i.e., enrichment and/or burnup) outside the waste package design. The waste package designs are based on the expected commercial spent nuclear fuel assemblies and previous analyses (Macheret, P. 2001, Section 4.1 and Table 1). For this calculation, a misloaded waste package is defined as a waste package that has a fuel assembly(s) loaded into it with an enrichment and/or burnup outside the waste package design. An example of this type of misload is a fuel assembly designated for the 21-PWR Control Rod waste package being incorrectly loaded into a 21-PWR Absorber Plate waste package. This constitutes a misloaded 21-PWR Absorber Plate waste package, because the reactivity (i.e., enrichment and/or burnup) of a 21-PWR Control Rod waste package fuel assembly is outside the design of a 21-PWR Absorber Plate waste package. These types of misloads (i.e., fuel assembly with enrichment and/or burnup outside waste package design) are the only types that are evaluated in this calculation. This calculation utilizes information from ''Frequency of SNF Misload for Uncanistered Fuel Waste Package'' (CRWMS M&O 1998) as the starting point. The scope of this calculation is limited to the information available. The information is based on the whole population of fuel assemblies and the whole population of waste packages, because there is no information about the arrival of the waste stream at this time. The scope of this calculation deviates from that specified in ''Technical Work Plan for: Risk and Criticality Department'' (BSC 2002a, Section 2.1.30) in that only waste package misload is evaluated. The remaining issues identified (i.e., flooding and geometry reconfiguration) will be addressed elsewhere. The intended use of the calculation is to provide information and inputs to the Preclosure Safety Analysis Department. Before using the results of this calculation, the reader is cautioned to verify that the assumptions made in this calculation regarding the waste stream, the loading process, and the staging of the spent nuclear fuel assemblies are applicable.

J.K. Knudson

2003-10-02T23:59:59.000Z

36

Production of metal waste forms from spent fuel treatment  

SciTech Connect (OSTI)

Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities.

Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

1995-02-01T23:59:59.000Z

37

PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS  

SciTech Connect (OSTI)

CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

2001-04-20T23:59:59.000Z

38

Alcohol fuels. 1978-June, 1980 (citations from the NTIS Data Base). Report for 1978-Jun 80  

SciTech Connect (OSTI)

The bibliography covers Federally-funded research on alcohol based fuels that may be used in the future as a fuel source. The citations cover synthesis, chemical analysis, performance testing, processing, pollution, economics, environmental effects, and feasibility. (This updated bibliography contains 245 citations, 110 of which are new entries to the previous edition.)

Cavagnaro, D.M.

1980-07-01T23:59:59.000Z

39

Nuclear Fuel Cycle and Waste Management Technologies - Nuclear Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Fuel Cycle and Nuclear Fuel Cycle and Waste Management Technologies Nuclear Fuel Cycle and Waste Management Technologies Overview Modeling and analysis Unit Process Modeling Mass Tracking System Software Waste Form Performance Modeling Safety Analysis, Hazard and Risk Evaluations Development, Design, Operation Overview Systems and Components Development Expertise System Engineering Design Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nuclear Fuel Cycle and Waste Management Technologies Overview Bookmark and Share Much of the NE Division's research is directed toward developing software and performing analyses, system engineering design, and experiments to support the demonstration and optimization of the electrometallurgical

40

Fact #581: July 27, 2009 Fuel Wasted in Traffic Congestion  

Broader source: Energy.gov [DOE]

The researchers at the Texas Transportation Institute have recently published new estimates of the effects of traffic congestion. Nearly 3 billion gallons of fuel is wasted each year due to traffic...

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

Forsberg, Charles W. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

42

Depleted uranium as a backfill for nuclear fuel waste package  

DOE Patents [OSTI]

A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

Forsberg, C.W.

1998-11-03T23:59:59.000Z

43

FUEL CELLS – DIRECT ALCOHOL FUEL CELLS | Direct Ethylene Glycol Fuel Cells  

Science Journals Connector (OSTI)

Direct ethylene glycol fuel cells, in which the oxidation of ethylene glycol and the reduction of oxygen take place at the anode and the cathode, respectively, are promising candidates as electric power sources of portable devices such as the cellular phone and the laptop computer. The advantages of ethylene glycol are high activity, high energy density, low volatility, and high boiling point compared with other organic fuels such as methanol and ethanol. In this article, the construction of direct ethylene glycol fuel cells, the electrooxidation of ethylene glycol in acid and alkaline solutions, cathode catalysts, and operating conditions such as temperature, pH of the electrolytes, and the concentration of ethylene glycol are described.

Z. Ogumi; K. Miyazaki

2009-01-01T23:59:59.000Z

44

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect (OSTI)

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

45

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... Validated material flow models of waste treatment systems form a sound basis to evaluate system performance in view of environmental pollution as well as with respect to resource recovery. ... characteristics of refuse-derived fuels (RDF) that are processed from residual household waste by mech. ...

David Laner; Oliver Cencic

2013-12-05T23:59:59.000Z

46

Waste-to-Energy and Fuel Cell Technologies Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy and Fuel Cell Waste-to-Energy and Fuel Cell T h l i O i Innovation for Our Energy Future Technologies Overview Presented to: DOD-DOE Waste-to- Energy Workshop Energy Workshop Dr. Robert J. Remick J 13 2011 January 13, 2011 Capital Hilton Hotel Washington, DC NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Global Approach for Using Biogas Innovation for Our Energy Future Anaerobic Digestion of Organic Wastes is a Good Source of Methane. Organic waste + methanogenic bacteria → methane (CH 4 ) Issues: High levels of contamination Time varying output of gas quantity and quality Innovation for Our Energy Future Photo courtesy of Dos Rios Water Recycling Center, San Antonio, TX

47

Vehicle-emission characteristics using mechanically emulsified alcohol/diesel fuels  

SciTech Connect (OSTI)

A light-duty diesel vehicle fueled with an emulsified alcohol/diesel fuel was operated under cyclic mode. Emission and fuel economy measurements were taken during vehicle operation. The test results showed the volumetric fuel economy decreased slightly. Carbon monoxide emissions increased slightly, and oxides of nitrogen showed no significant change. Particulate emissions were reduced slightly, and the particulate extractables increased slightly. The environmental effect of these data cancel each other resulting in no significant changes in the total release of biological activity into the environment.

Allsup, J.R.; Seizinger, D.E.; Cox, F.W.; Brook, A.L.; McClellan, R.O.

1983-07-01T23:59:59.000Z

48

The feasibility of producing alcohol fuels from biomass in Australia  

Science Journals Connector (OSTI)

Apart from cost, the net production of energy is the most important factor in evaluating the feasibility of producing renewable fuels from woody biomass. Unlike sugar, the effort required to make woody materials fermentable is considerable, and has been a major barrier to the use of such materials to produce renewable fuels. The Energy Profit Ratio (EPR) of fossil fuels is declining rapidly as conventional oil resources decline, but the EPR of biomass fuels is often not as high as commonly thought. I conclude that producing methanol from wood not only has a much higher yield, but is also cheaper than the more popular ethanol.

Chris Mardon

2007-01-01T23:59:59.000Z

49

Waste-to-Energy using Fuel Cells Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste-to-Energy using Fuel Cells Workshop Capital Hilton Hotel, Washington DC January 13th, 2011 8:30 am to 5:00 pm Agenda 8:30 am Welcome, introductions and meeting logistics Pete Devlin, Department of Energy (DOE) Fuel Cell Technologies Program Overall Purpose * To identify DOD-DOE waste-to-energy and fuel cells opportunities * To identify challenges and determine actions to address them * To determine specific ways fuel cell and related technologies can help meet Executive Order 13514 requirements * To identify the next steps for collaboration Background Materials Provided * DOD-DOE MOU - http://www.energy.gov/news/documents/Enhance-Energy-Security-MOU.pdf * Executive Order 13514 - http://edocket.access.gpo.gov/2009/pdf/E9-24518.pdf

50

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information &127;Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Rank Urban Area Fuel Wasted due to Congestion (Million Gallons) 1 New York-Newark NY-NJ-CT...

51

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste...  

Broader source: Energy.gov (indexed) [DOE]

Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Locations of Spent Nuclear Fuel and High-Level Radioactive Waste Map of the United States of America showing the...

52

International trade and waste and fuel managment issue, 2006  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: HLW management in France, by Michel Debes, EDF, France; Breakthroughs from future reactors, by Jacques Bouchard, CEA, France; 'MOX for peace' a reality, by Jean-Pierre Bariteau, AREVA Group, France; Swedish spent fuel and radwaste, by Per H. Grahn and Marie Skogsberg, SKB, Sweden; ENC2005 concluding remarks, by Larry Foulke, 'Nuclear Technology Matters'; Fuel crud formation and behavior, by Charles Turk, Entergy; and, Plant profile: major vote of confidence for NP, by Martti Katka, TVO, Finland.

Agnihotri, Newal (ed.)

2006-01-15T23:59:59.000Z

53

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive waste and a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. Fuel Cycle Potential Waste Inventory for Disposition R5a.docx More Documents & Publications Repository Reference Disposal Concepts and Thermal Load Management Analysis

54

Energy recovery from solid waste fuels using advanced gasification technology  

SciTech Connect (OSTI)

Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

1998-12-31T23:59:59.000Z

55

Business Plan Turning waste into fuel  

E-Print Network [OSTI]

D- Biogas Digester Specifications 20 E- Regulations and Subsidies 21 F - Risks and Mitigations 22 G to both the market and the slum residents. Our plan is to introduce a local, community scale biogas for the nearby struggling families. The biogas fuel will be offered at a lower rate than the current subsidized

Mlllet, Dylan B.

56

Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)  

Broader source: Energy.gov [DOE]

GC-52 provides legal advice to DOE regarding the long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF). SNF is nuclear fuel that has been used as fuel in a reactor...

57

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents [OSTI]

A process is described for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols. 35 figs.

Diebold, J.P.; Scahill, J.W.; Chum, H.L.; Evans, R.J.; Rejai, B.; Bain, R.L.; Overend, R.P.

1996-04-02T23:59:59.000Z

58

Process to convert biomass and refuse derived fuel to ethers and/or alcohols  

DOE Patents [OSTI]

A process for conversion of a feedstock selected from the group consisting of biomass and refuse derived fuel (RDF) to provide reformulated gasoline components comprising a substantial amount of materials selected from the group consisting of ethers, alcohols, or mixtures thereof, comprising: drying said feedstock; subjecting said dried feedstock to fast pyrolysis using a vortex reactor or other means; catalytically cracking vapors resulting from said pyrolysis using a zeolite catalyst; condensing any aromatic byproduct fraction; catalytically alkylating any benzene present in said vapors after condensation; catalytically oligomerizing any remaining ethylene and propylene to higher olefins; isomerizing said olefins to reactive iso-olefins; and catalytically reacting said iso-olefins with an alcohol to form ethers or with water to form alcohols.

Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO); Chum, Helena L. (Arvada, CO); Evans, Robert J. (Lakewood, CO); Rejai, Bahman (Lakewood, CO); Bain, Richard L. (Golden, CO); Overend, Ralph P. (Lakewood, CO)

1996-01-01T23:59:59.000Z

59

Update of waste fuel firing experience in Foster Wheeler circulating fluidized bed boilers  

SciTech Connect (OSTI)

As the costs and availability of more conventional fuels continue to escalate, more and more customers are investigating and choosing operation with lower cost waste or alternative fuels. Details of units firing waste or alternative fuels which have been in active service for many years are summarized, and the fuel analyses are given. This chapter gives a general overview of the projects that are or will be firing waste or alternative fuels, namely, the Mt. Carmel Manitowoc, NISCO and HUNOSA units. The experience of the four operating units has demonstrated that waste and alternative fuels can be successfully and economically burned in an atmosphere circulating fluidized bed unit while meeting permitted emission requirements.

Abdulally, I.F.; Reed, K.A.

1993-12-31T23:59:59.000Z

60

Process for recovery of palladium from nuclear fuel reprocessing wastes  

DOE Patents [OSTI]

Palladium is selectively removed from spent nuclear fuel reprocessing waste by adding sugar to a strong nitric acid solution of the waste to partially denitrate the solution and cause formation of an insoluble palladium compound. The process includes the steps of: (a) adjusting the nitric acid content of the starting solution to about 10 M; (b) adding 50% sucrose solution in an amount sufficient to effect the precipitation of the palladium compound; (c) heating the solution at reflux temperature until precipitation is complete; and (d) centrifuging the solution to separate the precipitated palladium compound from the supernatant liquid.

Campbell, D.O.; Buxton, S.R.

1980-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology  

Broader source: Energy.gov [DOE]

Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous waste, and industrial solid waste. It includes food waste, residential rubbish, commercial and industrial wastes, and construction and demolition debris. It has an average higher heating value (HHV) of approximately 5100 btu/lb (as arrived basis).

62

Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography  

E-Print Network [OSTI]

This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

Jonkmans, G; Jewett, C; Thompson, M

2012-01-01T23:59:59.000Z

63

Energy Supply- Production of Fuel from Agricultural and Animal Waste  

SciTech Connect (OSTI)

The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

Gabriel Miller

2009-03-25T23:59:59.000Z

64

Using waste wood as fuel saves $2000 per day  

SciTech Connect (OSTI)

Sawdust and wood residue replaced natural gas or number 2 fuel oil to fire 2 kilns at the Cherokee Brick Co. in Raleigh, NC, resulting in savings of $2000/day. Exhaust air from the kilns was sent directly back to a rotating dryer to dry the waste wood. The dried wood containing 8 to 12% moisture was supplied, around the clock, at a rate of 140 ton/day of dry material. (BLM)

Ragland, W. (Cherokee Brick Co., Raleigh, NC); Byrnes, D.

1981-11-01T23:59:59.000Z

65

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect (OSTI)

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

66

Alcohol Consumption  

Science Journals Connector (OSTI)

Different forms of alcohol have different functions: as part of cleaners, fuel, medicine, etc. Worldwide the substance is well known as a component of different alcoholic beverages. These beverages differ no...

Gundula Barsch

2008-01-01T23:59:59.000Z

67

International trade and waste and fuel managment issue, 2008  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: A global solution for clients, by Yves Linz, AREVA NP; A safer, secure and economical plant, by Andy White, GE Hitachi Nuclear; Robust global prospects, by Ken Petrunik, Atomic Energy of Canada Limited; Development of NPPs in China, by Chen Changbing and Li Huiqiang, Huazhong University of Science and Technology; Yucca Mountain update; and, A class of its own, by Tyler Lamberts, Entergy Nuclear. The Industry Innovation articles in this issue are: Fuel assembly inspection program, by Jim Lemons, Tennessee Valley Authority; and, Improved in-core fuel shuffle for reduced refueling duration, by James Tusar, Exelon Nuclear.

Agnihotri, Newal (ed.)

2008-01-15T23:59:59.000Z

68

Stainless steel-zirconium waste forms from the treatment of spent nuclear fuel  

Science Journals Connector (OSTI)

Stainless steel-zirconium waste-form alloys have been developed for the disposal of metallic wastes recovered from spent nuclear fuel using the electrometallurgical process developed by Argonne National Laborator...

S. M. McDeavitt; D. P. Abraham; J. Y. Park; D. D. Keiser

1997-07-01T23:59:59.000Z

69

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network [OSTI]

of stationary fuel Premier developer of stationary fuel cell technology -- founded in 1969 · Over 50 efficiency 60% DFC-ERGDFC ERG DFC/Turbine 58 ­ 70% Direct FuelCell (DFC)* 47% Natural Gas Engines Small Gas 30 ­ 42% Turbines * Combined Heat & Power 25 ­35% Micro- (CHP)) fuel cell applications( pp

70

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

71

Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality  

Science Journals Connector (OSTI)

Solid recovered fuel (SRF) produced by mechanical–biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO2-neutral, affordable, and alternative energy source. ... (4) The concentration of chlorine in SRF is key to fuel quality due to concern that elevated concentrations could exacerbate ash deposition in the convective part of boilers;(8) cause high-temperature corrosion (>500 °C) of boiler steel due to alkali chlorides and lower temperature melt deposits (300–400 °C) in the presence of zinc and lead;(9) generate high acid gases emissions (hydrogen chloride (HCl));(10) and contribute to the formation of polychlorinated dibenzodioxins (PCDDs) (for [Cl] above 0.3% w/wd)(11) during thermal recovery. ... The overall moisture content MT, reported as % w/wd (d: dry solids), was measured in two steps. ...

Costas Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2011-12-21T23:59:59.000Z

72

Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean  

Broader source: Energy.gov (indexed) [DOE]

Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis gas, which consists of hydrogen and carbon monoxide. The gas is cooled, cleaned, and fed to naturally occurring bacteria. The bacteria convert the gas into cellulosic ethanol, which is then purified to be used as a transportation fuel. Blueprints of the INEOS Biorefinery | Courtesy of INEOS Today marks the groundbreaking of INEOS Bio's Indian River Bioenergy

73

ULTRASONIC ARRAY TECHNIQUE FOR THE INSPECTION OF COPPER LINED CANISTERS FOR NUCLEAR WASTE FUEL  

E-Print Network [OSTI]

ULTRASONIC ARRAY TECHNIQUE FOR THE INSPECTION OF COPPER LINED CANISTERS FOR NUCLEAR WASTE FUEL and Waste Management Co.) for encapsulation of nuclear waste. Due to the radiation emitted by the nuclear, and characterization. The applicability of linear array technique for inspection of copper lined canisters for nuclear

74

Spent fuel and radioactive waste inventories, projections, and characteristics. Revision 1  

SciTech Connect (OSTI)

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1984, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions.

Not Available

1985-12-01T23:59:59.000Z

75

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2012-01-01T23:59:59.000Z

76

Waste-to-Energy using Refuse-Derived Fuel  

Science Journals Connector (OSTI)

At a mass-burn incinerator, Municipal Solid Waste (MSW) is ... vehicles or waste collection vehicles into a deep pit. There is no processing of the waste. Waste is removed from the pit by overhead crane and fed i...

Floyd Hasselriis MME; Dr. Patrick F. Mahoney

2013-01-01T23:59:59.000Z

77

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

SciTech Connect (OSTI)

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

78

Complex SrRuO3?Pt and LaRuO3?Pt Catalysts for Direct Alcohol Fuel Cells  

Science Journals Connector (OSTI)

Complex SrRuO3?Pt and LaRuO3?Pt Catalysts for Direct Alcohol Fuel Cells ... While currently LaRuO3/Pt composition possesses the highest activity, optimization of perovskite structure (by doping from A and B sites) may lead even to more advanced catalysts. ...

Aidong Lan; Alexander S. Mukasyan

2008-07-02T23:59:59.000Z

79

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect (OSTI)

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

80

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Broader source: Energy.gov (indexed) [DOE]

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

International trade and waste and fuel management issue, 2009  

SciTech Connect (OSTI)

The focus of the January-February issue is on international trade and waste and fuel managment. Major articles/reports in this issue include: Innovative financing and workforce planning, by Donna Jacobs, Entergy Nuclear; Nuclear power - a long-term need, by John C. Devine, Gerald Goldsmith and Michael DeLallo, WorleyParsons; Importance of loan guarantee program, by Donald Hintz; EPC contracts for new plants, by Dave Barry, Shaw Power Group; GNEP and fuel recycling, by Alan Hanson, AREVA NC Inc.; Safe and reliable reactor, by Kiyoshi Yamauchi, Mitsubishi Heavy Industries, Ltd.; Safe, small and simple reactors, by Yoshi Sakashita, Toshiba Corporation; Nuclear power in Thailand, by Tatchai Sumitra, Thailand Institute of Nuclear Technology; and, Nuclear power in Vietnam, by Tran Huu Phat, Vietnam Atomic Energy Commission. The Industry Innovation article this issue is Rectifying axial-offset-anomaly problems, by Don Adams, Tennessee Valley Authority. The Plant Profile article is Star of Stars Excellence, by Tyler Lamberts, Entergy Nuclear Operations, Inc.

Agnihotri, Newal (ed.)

2009-01-15T23:59:59.000Z

82

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect (OSTI)

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

83

Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel  

SciTech Connect (OSTI)

The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technology developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.

Simpson, Michael F.; Benedict, Robert W.

2007-09-01T23:59:59.000Z

84

Fair Oaks Farms and AMP Americas Transform Waste into Fuel | Department of  

Broader source: Energy.gov (indexed) [DOE]

Fair Oaks Farms and AMP Americas Transform Waste into Fuel Fair Oaks Farms and AMP Americas Transform Waste into Fuel Fair Oaks Farms and AMP Americas Transform Waste into Fuel March 7, 2013 - 9:00am Addthis Learn how an Indiana dairy fuels milk delivery trucks with compressed natural gas. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? An anaerobic digester is helping Fair Oaks Farms and AMP Americas turn agriculture waste into renewable natural gas. The natural gas will be used to fuel the fleet of trucks that transports Fair Oaks Farms' products across the country. Trucks and cows may not seem like a natural match, but a dairy farm in Indiana has found an innovative way to combine two of its biggest resources. With the support of the Energy Department and one of the three

85

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect (OSTI)

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

86

Production of hydrogen rich bio-oil derived syngas from co-gasification of bio-oil and waste engine oil as feedstock for lower alcohols synthesis in two-stage bed reactor  

Science Journals Connector (OSTI)

Abstract High efficient production of lower alcohols (C1–C5 mixed alcohols) from hydrogen rich bio-oil derived syngas was achieved in this work. A non-catalytic partial oxidation (NPOX) gasification technology was successfully applied in the production and conditioning of bio-oil derived syngas using bio-oil (BO) and emulsifying waste engine oil (EWEO) as feedstock. The effects of water addition and feedstock composition on the gasification performances were investigated. When the BO20 and EWEO30 was mixed with mass ratio of 1: 0.33, the maximum hydrogen yield of 93.7% with carbon conversion of 96.7% was obtained, and the hydrogen rich bio-oil derived syngas was effectively produced. Furthermore, a two-stage bed reactor was applied in the downstream process of lower alcohols synthesis from hydrogen rich bio-oil derived syngas (H2/CO/CO2/CH4/N2 = 52.2/19.5/3.0/9.4/15.9, v/v). The highest carbon conversion of 42.5% and the maximum alcohol yield of 0.18 kg/kgcat h with selectivity of 53.8 wt% were obtained over the Cu/ZnO/Al2O3(2.5)//Cu25Fe22Co3K3/SiO2(2.5) catalyst combination system. The mechanism and evaluation for lower alcohols synthesis from model bio-oil derived syngas and model mixture gas were also discussed. The integrative process of hydrogen rich bio-oil derived syngas production and downstream lower alcohols synthesis, potentially providing a promising route for the conversion of organic wastes into high performance fuels and high value-added chemicals.

Haijun Guo; Fen Peng; Hairong Zhang; Lian Xiong; Shanggui Li; Can Wang; Bo Wang; Xinde Chen; Yong Chen

2014-01-01T23:59:59.000Z

87

EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. – EM supported DOE in its role as the lead technical agency to produce a report recently for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

88

Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels  

E-Print Network [OSTI]

"Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

Bettinger, J.; Koppel, P.; Margulies, A.

89

Process Knowledge Summary Report for Materials and Fuels Complex Contact-Handled Transuranic Debris Waste  

SciTech Connect (OSTI)

This Process Knowledge Summary Report summarizes the information collected to satisfy the transportation and waste acceptance requirements for the transfer of transuranic (TRU) waste between the Materials and Fuels Complex (MFC) and the Advanced Mixed Waste Treatment Project (AMWTP). The information collected includes documentation that addresses the requirements for AMWTP and the applicable portion of their Resource Conservation and Recovery Act permits for receipt and treatment of TRU debris waste in AMWTP. This report has been prepared for contact-handled TRU debris waste generated by the Idaho National Laboratory at MFC. The TRU debris waste will be shipped to AMWTP for purposes of supercompaction. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU debris waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for waste originating from MFC.

R. P. Grant; P. J. Crane; S. Butler; M. A. Henry

2010-02-01T23:59:59.000Z

90

Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs.

Not Available

1989-11-01T23:59:59.000Z

91

Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs.

Not Available

1990-10-01T23:59:59.000Z

92

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

93

Shale Rocks as Nuclear Waste Repositories: Hydrothermal Reactions with Glass, Ceramic and Spent Fuel Waste Forms  

Science Journals Connector (OSTI)

The objectives of various contributions from this laboratory have been to simulate “worst case” situations, given a proposed choice of waste form, repository rock, and waste loading/waste age. The “worst case”...

W. Phelps Freeborn; Michael Zolensky…

1980-01-01T23:59:59.000Z

94

A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377  

SciTech Connect (OSTI)

A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

Carelli, M.D.; Franceschini, F.; Lahoda, E.J. [Westinghouse Electric Company LLC., Cranberry Township, PA (United States); Petrovic, B. [Georgia Institute of Technology, Atlanta, GA (United States)

2012-07-01T23:59:59.000Z

95

Spent Fuel and High-Level Waste Requirements (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission All proposed nuclear power generation facilities must be certified by the Public Utilities Commission under this statute prior to construction and

96

Management of salt waste from electrochemical processing of used nuclear fuel  

SciTech Connect (OSTI)

Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

Simpson, M.F.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415 (United States); Lee, J.; Wang, Y. [Sandia National Laboratory, Albuquerque, NM (United States); Versey, J.; Phongikaroon, S. [University of Idaho, Idaho Falls, ID (United States)

2013-07-01T23:59:59.000Z

97

E-Print Network 3.0 - alcohol fuels provisions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CA, USA,3 Alcohol and Drug Research, National Institute for Health and Welfare, Helsinki, Finland Source: Stockholm Observatory Collection: Physics 75 DistributorProducer...

98

Summary of national and international fuel cycle and radioactive waste management programs, 1984  

SciTech Connect (OSTI)

Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

1984-07-01T23:59:59.000Z

99

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

100

Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions.

Not Available

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs.

Not Available

1988-09-01T23:59:59.000Z

102

Integrated data base for 1987: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1986. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 82 refs., 57 figs., 121 tabs.

Not Available

1987-09-01T23:59:59.000Z

103

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

104

Regulatory standards for permanent disposal of spent nuclear fuel and high-level radioactive waste.  

SciTech Connect (OSTI)

This paper provides a summary of observations drawn from twenty years of personal experience in working with regulatory criteria for the permanent disposal of radioactive waste for both the Waste Isolation Pilot Plant repository for transuranic defense waste and the proposed Yucca Mountain repository for spent nuclear fuel and high-level wastes. Rather than providing specific recommendations for regulatory criteria, my goal here is to provide a perspective on topics that are fundamental to how high-level radioactive waste disposal regulations have been implemented in the past. What are the main questions raised relevant to long-term disposal regulations? What has proven effective in the past? Where have regulatory requirements perhaps had unintended consequences? New regulations for radioactive waste disposal may prove necessary, but the drafting of these regulations may be premature until a broad range of policy issues are better addressed. In the interim, the perspective offered here may be helpful for framing policy discussions.

Swift, Peter N.

2010-08-01T23:59:59.000Z

105

E-Print Network 3.0 - alcohol fuel cells Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Solid Oxide Fuel Cells...

106

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

Response to Comment on “Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste” ... treatment-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery. ... Velis, C. A.; Cooper, J.Are solid recovered fuels resource-efficient? ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-12-05T23:59:59.000Z

107

Design Case Summary: Production of Mixed Alcohols from Municipal...  

Office of Environmental Management (EM)

Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via...

108

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

109

An assessment of waste fuel burning in operating circulating fluidized bed boilers  

SciTech Connect (OSTI)

Fluidized bed combustion (FBC), today's fastest growing boiler technology, has the flexibility to burn a wide range of fuels, including many waste fuels, while satisfying all present and anticipated environmental regulations. The first generation of FBC--atmospheric fluidized bed combustion (AFBC)--concentrated on ''bubbling'' fluidized bed designs. These systems have inherent limitations and experienced several problems. In response to these problems, circulating fluidized bed (CFB) technology was developed.

Gendreau, R.J.; Raymond, D.L.

1986-01-01T23:59:59.000Z

110

Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel.  

SciTech Connect (OSTI)

Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to {approx} 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.

Janney, D. E.; Keiser, D. D., Jr.; Engineering Technology

2003-09-01T23:59:59.000Z

111

Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case establishes cost targets for converting MSW to ethanol and other mixed alcohols via gasification.

112

Can Handling E85 Motor Fuel Cause Positive Breath Alcohol Test Results?  

Science Journals Connector (OSTI)

......unclear whether handling E85 fuel can falsely elevate BrAC. The...determine whether handling E85 fuel produces measurable BrAC and...semiconductor sensor powered by two AA batteries with a detection range of 0...8 US gallons (30 L) of E85 fuel under each of four scenarios......

Ran Ran; Michael E. Mullins

2013-09-01T23:59:59.000Z

113

Catalyst Activity Comparison of Alcohols over Zeolites. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Activity Comparison of Alcohols over Zeolites. Catalyst Activity Comparison of Alcohols over Zeolites. Abstract: Alcohol transformation to transportation fuel range hydrocarbon on...

114

Annotated bibliography for the design of waste packages for geologic disposal of spent fuel and high-level waste  

SciTech Connect (OSTI)

This bibliography identifies documents that are pertinent to the design of waste packages for geologic disposal of nuclear waste. The bibliography is divided into fourteen subject categories so that anyone wishing to review the subject of leaching, for example, can turn to the leaching section and review the abstracts of reports which are concerned primarily with leaching. Abstracts are also cross referenced according to secondary subject matter so that one can get a complete list of abstracts for any of the fourteen subject categories. All documents which by their title alone appear to deal with the design of waste packages for the geologic disposal of spent fuel or high-level waste were obtained and reviewed. Only those documents which truly appear to be of interest to a waste package designer were abstracted. The documents not abstracted are listed in a separate section. There was no beginning date for consideration of a document for review. About 1100 documents were reviewed and about 450 documents were abstracted.

Wurm, K.J.; Miller, N.E.

1982-11-01T23:59:59.000Z

115

Comparison of selected foreign plans and practices for spent fuel and high-level waste management  

SciTech Connect (OSTI)

This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

1990-04-01T23:59:59.000Z

116

Effects of a potential drop of a shipping cask, a waste container, and a bare fuel assembly during waste-handling operations; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study investigates the effects of potential drops of a typical shipping cask, waste container, and bare fuel assembly during waste-handling operations at the prospective Yucca Mountain Repository. The waste-handling process (one stage, no consolidation configuration) is examined to estimate the maximum loads imposed on typical casks and containers as they are handled by various pieces of equipment during waste-handling operations. Maximum potential drop heights for casks and containers are also evaluated for different operations. A nonlinear finite-element model is employed to represent a hybrid spent fuel container subject to drop heights of up to 30 ft onto a reinforced concrete floor. The impact stress, strain, and deformation are calculated, and compared to the failure criteria to estimate the limiting (maximum permissible) drop height for the waste container. A typical Westinghouse 17 {times} 17 PWR fuel assembly is analyzed by a simplified model to estimate the energy absorption by various parts of the fuel assembly during a 30 ft drop, and to determine the amount of kinetic energy in a fuel pin at impact. A nonlinear finite-element analysis of an individual fuel pin is also performed to estimate the amount of fuel pellet fracture due to impact. This work was completed on May 1990.

Wu, C.L.; Lee, J.; Lu, D.L.; Jardine, L.J. [Bechtel National, Inc., San Francisco, CA (United States)

1991-12-01T23:59:59.000Z

117

The economical production of alcohol fuels from coal-derived synthesis gas. Sixth quarterly technical progress report, January 1, 1993--March 31, 1993  

SciTech Connect (OSTI)

Preliminary economic investigations have focused on cost reduction measures in the production of syngas from coal. A spread sheet model has been developed which can determine the cost of syngas production based upon the cost of equipment and raw materials and the market value of energy and by-products. In comparison to natural gas derived syngas, coal derived syngas is much more expensive, suggesting a questionable economic status of coal derived alcohol fuels. While it is possible that use of less expensive coal or significant integration of alcohol production and electricity production may reduce the cost of coal derived syngas, it is unlikely to be less costly to produce than syngas from natural gas. Fuels evaluation is being conducted in three parts. First, standard ASTM tests are being used to analyze the blend characteristics of higher alcohols. Second, the performance characteristics of higher alcohols are being evaluated in a single-cylinder research engine. Third, the emissions characteristics of higher alcohols are being investigated. The equipment is still under construction and the measurement techniques are still being developed. Of particular interest is n-butanol, since the MoS{sub 2} catalyst produces only linear higher alcohols. There is almost no information on the combustion and emission characteristics of n-butanol, hence the importance of gathering this information in this research.

Not Available

1993-04-01T23:59:59.000Z

118

Environmental Statements, Availability, Etc., Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov (indexed) [DOE]

8679 8679 Thursday June 1, 1995 Part III Department of Energy Environmental Statements, Availability, Etc.; Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs: Notice 28680 Federal Register / Vol. 60, No. 105 / Thursday, June 1, 1995 / Notices DEPARTMENT OF ENERGY Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs AGENCY: Department of Energy. ACTION: Record of decision. SUMMARY: The Department of Energy has issued a Record of Decision on Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs. The Record of Decision includes a Department-wide decision to

119

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect (OSTI)

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

120

Waste generation process modeling and analysis for fuel reprocessing technologies  

SciTech Connect (OSTI)

Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recycle of Zirconium from Used Nuclear Fuel Cladding: A Major Element of Waste Reduction  

SciTech Connect (OSTI)

Feasibility tests were initiated to determine if the zirconium in commercial used nuclear fuel (UNF) cladding can be recovered in sufficient purity to permit re-use, and if the recovery process can be operated economically. Initial tests are being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Early results indicate that quantitative recovery can be accomplished and product contamination with alloy constituents can be controlled sufficiently to meet purification requirements. Future tests with actual radioactive UNF cladding are planned. The objective of current research is to determine the feasibility of recovery and recycle of zirconium from used fuel cladding wastes. Zircaloy cladding, which contains 98+% of hafnium-free zirconium, is the second largest mass, on average {approx}25 wt %, of the components in used U.S. light-water-reactor fuel assemblies. Therefore, recovery and recycle of the zirconium would enable a large reduction in geologic waste disposal for advanced fuel cycles. Current practice is to compact or grout the cladding waste and store it for subsequent disposal in a geologic repository. This paper describes results of initial tests being performed with unirradiated, non-radioactive samples of various types of Zircaloy materials that are used in UNF cladding to develop the recovery process and determine the degree of purification that can be obtained. Future tests with actual radioactive UNF cladding are planned.

Collins, Emory D [ORNL; DelCul, Guillermo D [ORNL; Terekhov, Dmitri [ORNL; Emmanuel, N. V. [Chemical Vapor Metal Refining, Inc.

2011-01-01T23:59:59.000Z

122

SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS  

SciTech Connect (OSTI)

ABSTRACT SCALE UP OF CERAMIC WASTE FORMS FOR THE EBR-II SPENT FUEL TREATMENT PROCESS Matthew C. Morrison, Kenneth J. Bateman, Michael F. Simpson Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 The ceramic waste process is the intended method for disposing of waste salt electrolyte, which contains fission products from the fuel-processing electrorefiners (ER) at the INL. When mixed and processed with other materials, the waste salt can be stored in a durable ceramic waste form (CWF). The development of the CWF has recently progressed from small-scale testing and characterization to full-scale implementation and experimentation using surrogate materials in lieu of the ER electrolyte. Two full-scale (378 kg and 383 kg) CWF test runs have been successfully completed with final densities of 2.2 g/cm3 and 2.1 g/cm3, respectively. The purpose of the first CWF was to establish material preparation parameters. The emphasis of the second pre-qualification test run was to evaluate a preliminary multi-section CWF container design. Other considerations were to finalize material preparation parameters, measure the material height as it consolidates in the furnace, and identify when cracking occurs during the CWF cooldown process.

Matthew C. Morrison; Kenneth J. Bateman; Michael F. Simpson

2010-11-01T23:59:59.000Z

123

Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics  

Science Journals Connector (OSTI)

Abstract Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette sample composition was similar to biomass fuels but had significant advantages due to addition of waste plastics that have high energy content compared to other waste types. Addition of PP and HDPE presented better benefits than addition of PET due to lower softening temperature and lower oxygen content. It should be noted that while harmful emissions such as dioxins, furans and mercury can result from burning plastics, WTE facilities have been able to control these emissions to meet US EPA standards. This research provides a drop-in coal replacement that reduces demand on landfill space and replaces a significant fraction of fossil-derived fuel with a renewable alternative.

JeongIn Gug; David Cacciola; Margaret J. Sobkowicz

2014-01-01T23:59:59.000Z

124

Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423  

SciTech Connect (OSTI)

Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can be accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been

Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo [Westinghouse Electric Company LLC,Cranberry Township, PA, 16066 (United States); Sartori, Alberto; Ricotti, Marco [Politecnico di Milano, Milan (Italy)

2012-07-01T23:59:59.000Z

125

Cellulosic materials recovered from steam classified municipal solid wastes as feedstocks for conversion to fuels and chemicals  

Science Journals Connector (OSTI)

A process has been developed for the treatment of municipal solid waste to separate and recover the cellulosic biomass from the nonbiomass components. ... highly suitable as a feedstock for conversion to fuel, fe...

Michael H. Eley; Gerald R. Guinn; Joyita Bagchi

1995-09-01T23:59:59.000Z

126

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011  

Broader source: Energy.gov [DOE]

The top ten urban areas across the U.S. accounted for nearly 40% of the total fuel wasted due to traffic congestion in 2011. Highway congestion caused vehicles in the combined urban areas of New...

127

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

128

Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel  

SciTech Connect (OSTI)

Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish; Zumhoff, Mac R.

2013-02-01T23:59:59.000Z

129

Epsilon metal waste form for immobilization of noble metals from used nuclear fuel  

Science Journals Connector (OSTI)

Abstract Epsilon metal (?-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500–2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

Jarrod V. Crum; Denis Strachan; Aashish Rohatgi; Mac Zumhoff

2013-01-01T23:59:59.000Z

130

The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model  

SciTech Connect (OSTI)

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

131

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. [Contains glossary  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

132

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 7  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

133

Microsoft Word - Fuel Cycle Potential Waste Inventory for Disposition R5a.docx  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Potential Fuel Cycle Potential Waste Inventory for Disposition Prepared for U.S. Department of Energy Used Nuclear Fuel Joe T. Carter, SRNL Alan J. Luptak, INL Jason Gastelum, PNNL Christine Stockman, SNL Andrew Miller, SNL July 2012 FCR&D-USED-2010-000031 Rev 5 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial

134

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

motor fuel containing at least 10% alcohol) or alternative fuels whenever feasible and cost effective. DOA must place a list of gasohol and alternative fueling station locations...

135

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

136

Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste  

Broader source: Energy.gov [DOE]

[In Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices)] This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation.

137

Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management  

Broader source: Energy.gov [DOE]

Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management

138

Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage  

SciTech Connect (OSTI)

It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

1984-01-01T23:59:59.000Z

139

A study of the pyrolysis behaviors of pelletized recovered municipal solid waste fuels  

Science Journals Connector (OSTI)

Pelletized recovered solid waste fuel is often applied in gasification systems to provide feedstock with a stabilized quality and high heating value and to avoid the bridging behavior caused by high moisture content, low particle density, and irregular particle size. However, the swelling properties and the sticky material generated from pyrolysis of the plastic group components also tend to trigger bridging in the retorting zone. It is well known that the plastic group materials, which occupy a considerable proportion of municipal solid waste, can melt together easily even under low temperature. This study investigates the pyrolysis behaviors of typical recovered solid waste pellets, including the devolatilization rate, heat transfer properties, char properties, and swelling/shrinkage properties, in a small fixed-bed facility over a wide temperature range, from 900 °C to 450 °C. The results are also compared with those from wheat straw pellets, a typical cellulosic fuel. Moreover, the SEM images and BET analysis of the char structure are further analyzed to provide additional explanation for the mechanisms of swelling/shrinkage phenomena observed during heating.

Chunguang Zhou; Qinglin Zhang; Leonie Arnold; Weihong Yang; Wlodzimierz Blasiak

2013-01-01T23:59:59.000Z

140

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

on   the   impact   of   waste   heat   load   on   waste  involve   coupling   waste   heat   load   with   metrics  radionuclides   in   the   waste,   heat   generated   by  

Djokic, Denia

2013-01-01T23:59:59.000Z

142

Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410  

SciTech Connect (OSTI)

Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for use as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)

Phillips, Chris; Willis, William; Carter, Robert [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Baker, Stephen [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)] [UK National Nuclear Laboratory, Warrington, Cheshire (United Kingdom)

2013-07-01T23:59:59.000Z

143

Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results  

SciTech Connect (OSTI)

This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

Rechard, R.P. [ed.

1995-03-01T23:59:59.000Z

144

Radioactive Waste Management at the New Conversion Facility of 'TVEL'{sup R} Fuel Company - 13474  

SciTech Connect (OSTI)

The project on the new conversion facility construction is being implemented by Joint Stock Company (JSC) 'Siberian Group of Chemical Enterprises' (SGChE) within TVEL{sup R} Fuel Company. The objective is to construct the up-to-date facility ensuring the industrial and environmental safety with the reduced impact on the community and environment in compliance with the Russian new regulatory framework on radioactive waste (RW) management. The history of the SGChE development, as well as the concepts and approaches to RW management implemented by now are shown. The SGChE future image is outlined, together with its objectives and concept on RW management in compliance with the new act 'On radioactive waste management' adopted in Russia in 2011. Possible areas of cooperation with international companies are discussed in the field of RW management with the purpose of deploying the best Russian and world practices on RW management at the new conversion facility. (authors)

Indyk, S.I.; Volodenko, A.V. [JSC 'TVEL', Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation)] [JSC 'TVEL', Russia, Moscow, 49 Kashirskoye Shosse, 115409 (Russian Federation); Tvilenev, K.A.; Tinin, V.V.; Fateeva, E.V. [JSC 'Siberian Group of Chemical Enterprises', Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)] [JSC 'Siberian Group of Chemical Enterprises', Russia, Seversk, 1 Kurchatov Street, 636000 (Russian Federation)

2013-07-01T23:59:59.000Z

145

United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management  

SciTech Connect (OSTI)

The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

Stewart, L.

2004-10-03T23:59:59.000Z

146

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

147

What are Spent Nuclear Fuel and High-Level Radioactive Waste ?  

SciTech Connect (OSTI)

Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

DOE

2002-12-01T23:59:59.000Z

148

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

SciTech Connect (OSTI)

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

149

E-Print Network 3.0 - alcohols catalyst names Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

synthesized catalysts for alcohol synthesis. We focus on structural... the use of biogas to create alcohol for fuel. Higher alcohols ... Source: Dunin-Borkowski, Rafal E. -...

150

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

151

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect (OSTI)

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

152

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

153

Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505  

SciTech Connect (OSTI)

One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

2013-07-01T23:59:59.000Z

154

Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells: Workshop Summary and Action Plan  

Broader source: Energy.gov [DOE]

This report discusses the results of a January 13, 2011, workshop that focused on utilizing biowaste as an energy feedstock and converting this feedstock into heat and/or power using fuel cells. DOD and DOE are collaborating under a Memorandum of Understanding (MOU) to pursue technology-driven solutions that reduce petroleum use, among other objectives. One of the solutions being explored under the MOU is leveraging waste as feedstock for fuel cell applications in fixed and deployed military operations.

155

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect (OSTI)

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

156

Waste degradation and mobilization in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of waste degradation and mobilization in performance assessments (PAs) conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. As understanding of the Yucca Mountain disposal system increased, the waste degradation module, or succinctly called the source-term, evolved from initial assumptions in 1984 to results based on process modeling in 2008. In early PAs, waste degradation had significant influence on calculated behavior but as the robustness of the waste container was increased and modeling of the container degradation improved, waste degradation had much less influence in later PAs. The variation of dissolved concentrations of radionuclides progressed from simple probability distributions in early \\{PAs\\} to functions dependent upon water chemistry in later PAs. Also, transport modeling of radionuclides in the waste, container, and invert were added in 1995; and, colloid-facilitated transport of radionuclides was added in 1998.

Rob P. Rechard; Christine T. Stockman

2014-01-01T23:59:59.000Z

157

Solid Recovered Fuel: Materials Flow Analysis and Fuel Property Development during the Mechanical Processing of Biodried Waste  

Science Journals Connector (OSTI)

This diagram shows the flow of actual mass from which it is useful to recover energy. ... The utilization of solid recovered fuels (SRF) for energy recovery has been increasing steadily in recent years, and this development is set to continue. ... To date, Korea has used four species of solid recovered fuels (SRFs) which have been certified by the Environmental Ministry of Korea: refuse-derived fuel (RDF), refused plastic fuel (RPF), tyre-derived fuel (TDF), and wood chip fuel (WCF). ...

Costas A. Velis; Stuart Wagland; Phil Longhurst; Bryce Robson; Keith Sinfield; Stephen Wise; Simon Pollard

2013-02-11T23:59:59.000Z

158

A Science-Based Approach to Understanding Waste Form Durability in Open and Closed Nuclear Fuel Cycles  

SciTech Connect (OSTI)

There are two compelling reasons for understanding source term and near-field processes in a radioactive waste geologic repository. First, almost all of the radioactivity is initially in the waste form, mainly in the spent nuclear fuel (SNF) or nuclear waste glass. Second, over long periods, after the engineered barriers are degraded, the waste form is a primary control on the release of radioactivity. Thus, it is essential to know the physical and chemical state of the waste form after hundreds of thousands of years. The United States Department of Energy's Yucca Mountain Repository Program has initiated a long-term program to develop a basic understanding of the fundamental mechanisms of radionuclide release and a quantification of the release as repository conditions evolve over time. Specifically, the research program addresses four critical areas: (a) SNF dissolution mechanisms and rates; (b) formation and properties of U{sup 6+}-secondary phases; (c) waste form-waste package interactions in the near-field; and (d) integration of in-package chemical and physical processes. The ultimate goal is to integrate the scientific results into a larger scale model of source term and near-field processes. This integrated model will be used to provide a basis for understanding the behavior of the source term over long time periods (greater than 10{sup 5} years). Such a fundamental and integrated experimental and modeling approach to source term processes can also be readily applied to development of advanced waste forms as part of a closed nuclear fuel cycle. Specifically, a fundamental understanding of candidate waste form materials stability in high temperature/high radiation environments and near-field geochemical/hydrologic processes could enable development of advanced waste forms ''tailored'' to specific geologic settings.

M.T. Peters; R.C. Ewing

2006-06-22T23:59:59.000Z

159

Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends  

Science Journals Connector (OSTI)

Abstract The need to produce energy from poor quality carbonaceous materials has increased, in order to reduce European dependency on imported fuels, diversify the use of new and alternative fuels and to guarantee secure energy production routes. The valorisation of a poor quality solid residual fuel (SRF), with high content of ash and volatile matter, through its conversion into fuel gas was studied. The rise of gasification temperature and equivalent ratio (ER) led to higher gas yields and to lower undesirable gaseous components, though higher ER values led to a gas with lower energetic content. To reduce the negative effect of SRF unfavourable characteristics and to diversify the feedstocks used, SRF blended with three different types of biomass wastes: forestry pine, almond shells and olive bagasse was co-gasified. The use of biomass wastes tested was valuable for SRF gasification, as there was an increase in the overall reactivity and in H2 production and a reduction of about 55% in tar released, without great changes in gas yield and in its HHV. The use of natural minerals mixed with silica sand was also studied with the aim of improving SRF gasification performance and fuel gas quality. The best results were obtained in presence of dolomite, as the lowest tar and H2S contents were obtained, while an increase in gas yield was observed. Co-gasification of this poor quality SRF blended with biomass wastes in presence of dolomite increased gas yield by 25% while tar contents decreased by 55%.

Filomena Pinto; Rui Neto André; Carlos Carolino; Miguel Miranda; Pedro Abelha; Daniel Direito; Nikos Perdikaris; Ioannis Boukis

2014-01-01T23:59:59.000Z

160

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

liquid fuels, fuels other than alcohol derived from biological materials, and electricity. Any portion of the credit not used in the year the AFV is purchased or converted...

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Extended Two Dimensional Nanotube and Nanowire Surfaces as Fuel Cell Catalysts  

E-Print Network [OSTI]

transportation field: solid oxide fuel cells require highto solid oxide, alkaline, and direct alcohol fuel cells.

Alia, Shaun Michael

2011-01-01T23:59:59.000Z

162

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

163

Development of hot corrosion resistant coatings for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Carbon dioxide emission reductions are being sought worldwide to mitigate climate change. These need to proceed in parallel with optimisation of thermal efficiency in energy conversion systems on economic grounds to achieve overall sustainability. The use of renewable energy is one strategy being adopted to achieve these needs; with one route being the burning of biomass and waste derived fuels in the gas turbines of highly efficient, integrated gasification combined cycle (IGCC) electricity generating units. A major factor to be taken into account with gas turbines using such fuels, compared with natural gas, is the potentially higher rates of hot corrosion caused by molten trace species which can be deposited on hot gas path components. This paper describes the development of hot corrosion protective coatings for such applications. Diffusion coatings were the basis for coating development, which consisted of chemical vapour deposition (CVD) trials, using aluminising and single step silicon-aluminising processes to develop new coating structures on two nickel-based superalloys, one conventionally cast and one single crystal (IN738LC and CMSX-4). These coatings were characterised using SEM/EDX analysis and their performance evaluated in oxidation and hot corrosion screening tests. A variant of the single step silicon-aluminide coating was identified as having sufficient oxidation/hot corrosion resistance and microstructural stability to form the basis for future coating optimisation.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

164

Evolution of repository and waste package designs for Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the evolution of the engineered barrier design for the proposed Yucca Mountain disposal system. Initially, the underground facility used a fairly standard panel and drift layout excavated mostly by drilling and blasting. By 1993, the layout of the underground facility was changed to accommodate construction by a tunnel boring machine. Placement of the repository in unsaturated zone permitted an extended period without backfilling; placement of the waste package in an open drift permitted use of much larger, and thus hotter packages. Hence in 1994, the underground facility design switched from floor emplacement of waste in small, single walled stainless steel or nickel alloy containers to in-drift emplacement of waste in large, double-walled containers. By 2000, the outer layer was a high nickel alloy for corrosion resistance and the inner layer was stainless steel for structural strength. Use of large packages facilitated receipt and disposal of high volumes of spent nuclear fuel. In addition, in-drift package placement saved excavation costs. Options considered for in-drift emplacement included different heat loads and use of backfill. To avoid dripping on the package during the thermal period and the possibility of localized corrosion, titanium drip shields were added for the disposal drifts by 2000. In addition, a handling canister, sealed at the reactor to eliminate further handling of bare fuel assemblies, was evaluated and eventually adopted in 2006. Finally, staged development of the underground layout was adopted to more readily adjust to changes in waste forms and Congressional funding.

Rob P. Rechard; Michael D. Voegele

2014-01-01T23:59:59.000Z

165

Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests  

SciTech Connect (OSTI)

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

Wilson, C.N.

1990-09-01T23:59:59.000Z

166

Development of Technology for Immobilization of Waste Salt from Electrorefining Spent Nuclear Fuel in Zeolite-A for Eventual Disposition in a Ceramic Waste Form  

SciTech Connect (OSTI)

The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

Michael F. Simpson; Prateek Sachdev

2008-04-01T23:59:59.000Z

167

Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

2012-03-15T23:59:59.000Z

168

REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES  

SciTech Connect (OSTI)

In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is divided into Part 1 that defines time-dependent releases from each regional site, Part 2 that defines transport conditions through the groundwater, and Part 3 that defines transport through surface water and populations using the surface waters for drinking.

W. Lee Poe, Jr

1998-10-01T23:59:59.000Z

169

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel  

Broader source: Energy.gov [DOE]

The Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel report assesses the technical options for the safe and permanent disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) managed by the Department of Energy. Specifically, it considers whether DOE-managed HLW and SNF should be disposed of with commercial SNF and HLW in one geologic repository or whether there are advantages to developing separate geologic disposal pathways for some DOE-managed HLW and SNF. The report recommends that the Department begin implementation of a phased, adaptive, and consent-based strategy with development of a separate mined repository for some DOE-managed HLW and cooler DOE-managed SNF.

170

Waste package degradation from thermal and chemical processes in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of waste container degradation in performance assessments conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. As understanding of the Yucca Mountain disposal system increased, modeling of container degradation evolved from a component of the source term in 1984 to a separate module describing both container and drip shield degradation in 2008. A thermal module for evaluating the influence of higher heat loads from more closely packed, large waste packages was also introduced. In addition, a module for evaluating drift chemistry was added in later \\{PAs\\} to evaluate the potential for localized corrosion of the outer barrier of the waste container composed of Alloy 22, a highly corrosion-resistant nickel–chromium–tungsten–molybdenum alloy. The uncertainty of parameters related to container degradation contributed significantly to the estimated uncertainty of performance measures (cumulative release in assessments prior to 1995 and individual dose, thereafter).

Rob P. Rechard; Joon H. Lee; Ernest L. Hardin; Charles R. Bryan

2014-01-01T23:59:59.000Z

171

Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry  

SciTech Connect (OSTI)

An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

Biegalski, S R; Whitney, S M; Buchholz, B

2005-08-24T23:59:59.000Z

172

WASTE/BY-PRODUCT HYDROGEN DOE/DOD Workshop  

E-Print Network [OSTI]

; 6 Waste/Byproduct HydrogenWaste/By product Hydrogen Waste H2 sources include: Waste biomass: biogas Waste/Byproduct Hydrogen Waste/By product Hydrogen Fuel FlexibilityFuel Flexibility Biogas: generated

173

Results of the feasibility studies awarded under PL 96-126 and PL 96-304 for alcohol fuel production. Final report  

SciTech Connect (OSTI)

The results from the feasibility study grants are summarized. The grants were to allow assessment of the technical and economic feasibility of construction and operation of commercial-scale alcohol fuel production facilities. Summarized are the process designs, financial and economic analyses, marketing analyses, and the environmental assessments. Use of current technology was declared to be adequate; no patents evolved from the studies. Suitable sites, served by transportation and utilities were located. Feedstock, energy sources, and raw materials were determined to be available. Environmental guidelines were found to be attainable and socioeconomic impacts and public acceptance of the projects were reported. Most of the proposed plants were declared to be economically feasible with profitability increasing with plant size. Financing was reported constrained by premium interest rates, an insecure ethanol market, and financial institution requirements for loan guarantees or high-equality loans.

Hosking, R.W.; Anderson, J.V.; Jones, K.W.; Plaster, D.S.

1982-03-01T23:59:59.000Z

174

Vehicle engine use when no longer in transit; exceptions -Vehicle idling gets zero miles per gallon; unnecessary idling wastes fuel and pollutes.  

E-Print Network [OSTI]

gallon; unnecessary idling wastes fuel and pollutes. Running an engine at low speed (idling) also causes the point of view of both emissions and fuel consumption. Unless exempted in the following sectionVehicle engine use when no longer in transit; exceptions - Vehicle idling gets zero miles per

Powers, Robert

175

NOx is emitted. In addition, extended idling can result in a consid-erable waste of fuel and cause wear on truck engines. More than  

E-Print Network [OSTI]

wear on truck engines. More than 2 million gal of diesel is wasted on a daily basis nationwide (6). Studies (5) have shown that a long-haul truck can idle away more than a gallon of diesel fuel per hour emissions and fuel consumption, · Examination of factors affecting results and analysis, and · Measurement

176

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

177

Biodegradation of Fuel Oil Hydrocarbons in Soil Contaminated by Oily Wastes Produced During Onshore Drilling Operations  

Science Journals Connector (OSTI)

The petroleum industry generates high amount of oily wastes during drilling, storage and refining operations. Onshore drilling operations produce oil based wastes, typically 100–150m-3 well. The drilling cuttings...

Qaude-Henri Chaîneau; Jean-Louis Morel; Jean Oudot

1995-01-01T23:59:59.000Z

178

Fuel Gas Production from Organic Wastes by Low Capital Cost Batch Digestion  

Science Journals Connector (OSTI)

The technical background is reviewed on energy recovery from biomass--i.e., all organic wastes, especially municipal solid wastes, but also including agricultural residues and crops grown specifically for ener...

Donald L. Wise; Alfred P. Leuschner…

1986-01-01T23:59:59.000Z

179

Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain  

SciTech Connect (OSTI)

Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m{sup 2}, including the rock salt dump. The space required for the underground facilities amounts to 1.2 km{sup 2}, approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented.

Huertas, F.; Ulibarri, A. [ENRESA, Madrid (Spain)

1993-12-31T23:59:59.000Z

180

Direct conversion of surplus fissile materials, spent nuclear fuel, and other materials to high-level-waste glass  

SciTech Connect (OSTI)

With the end of the cold war the United States, Russia, and other countries have excess plutonium and other materials from the reductions in inventories of nuclear weapons. The United States Academy of Sciences (NAS) has recommended that these surplus fissile materials (SFMs) be processed so they are no more accessible than plutonium in spent nuclear fuel (SNF). This spent fuel standard, if adopted worldwide, would prevent rapid recovery of SFMs for the manufacture of nuclear weapons. The NAS recommended investigation of three sets of options for disposition of SFMs while meeting the spent fuel standard: (1) incorporate SFMs with highly radioactive materials and dispose of as waste, (2) partly burn the SFMs in reactors with conversion of the SFMs to SNF for disposal, and (3) dispose of the SFMs in deep boreholes. The US Government is investigating these options for SFM disposition. A new method for the disposition of SFMs is described herein: the simultaneous conversion of SFMs, SNF, and other highly radioactive materials into high-level-waste (HLW) glass. The SFMs include plutonium, neptinium, americium, and {sup 233}U. The primary SFM is plutonium. The preferred SNF is degraded SNF, which may require processing before it can be accepted by a geological repository for disposal.

Forsberg, C.W.; Elam, K.R.

1995-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Assessment of National Nuclear Fuel Cycle for Transmutations of High Level Nuclear Waste  

Science Journals Connector (OSTI)

The advanced fuel cycle initiative (AFCI) has been investigated for the safe processing of the spent nuclear fuels (SNFs), which has focused mainly ... of the SNFs considering the characteristics of the nuclear m...

Taeho Woo

2012-01-01T23:59:59.000Z

182

Viability of waste-based cooking fuels for Developing countries : combustion emissions and field feasibility  

E-Print Network [OSTI]

Biomass-derived cooking fuels are used by three billion people worldwide. The drawbacks of such fuels, typically wood or wood-derived charcoal, include health hazards, negative environmental effects, and perpetuation of ...

Banzaert, Amy, 1976-

2013-01-01T23:59:59.000Z

183

Ceramic-composite waste forms from the electrometallurgical treatment of spent nuclear fuel  

Science Journals Connector (OSTI)

Argonne National Laboratory is developing a method to treat spent nuclear fuel in a molten-salt electrorefiner. Glass...

C. Pereira; M. Hash; M. Lewis; M. Richmann

1997-07-01T23:59:59.000Z

184

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Broader source: Energy.gov [DOE]

Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

185

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles  

E-Print Network [OSTI]

Nuclear   Fuel”,   Nuclear  Engineering  and  Technology,  in   Engineering  -­?  Nuclear  Engineering   and  the  in  Engineering  -­?  Nuclear  Engineering   and  the  

Djokic, Denia

2013-01-01T23:59:59.000Z

186

E-Print Network 3.0 - alcohols quarterly technical Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Denmark, Fysikvej, Building 307, DK-2800 Lyngby, Denmark. The development... the use of biogas to create alcohol for fuel. Higher alcohols are favorable due to their high energy...

187

A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles.  

E-Print Network [OSTI]

??The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as… (more)

Djokic, Denia

2013-01-01T23:59:59.000Z

188

E-Print Network 3.0 - american ref-fuel waste-to-energy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Technology Council (WTERT) Collection: Renewable Energy 50 Leaching of Dioxins from Municipal Waste Combustor Residues Summary: 12, 12th North American...

189

Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions  

SciTech Connect (OSTI)

Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.

Hyukjin Oh; Kalyan Annamalai; John M. Sweeten [Texas A& amp; M University, College Station, TX (United States). Department of Mechanical Engineering

2008-04-15T23:59:59.000Z

190

Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls  

SciTech Connect (OSTI)

In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system.

Rinard, P.M.; Menlove, H.O.

1996-03-01T23:59:59.000Z

191

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov (indexed) [DOE]

Draft Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Table of Contents Summary Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Summary U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal

192

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Tax Exemption Biodiesel producers that produce biodiesel from waste vegetable oil feedstock are exempt from the state special fuel tax. Waste vegetable oil is used...

193

EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

Summary-1995.html[6/27/2011 12:08:32 PM] Summary-1995.html[6/27/2011 12:08:32 PM] SUMMARY DOE/EIS-0203-F Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement Summary April 1995 U.S. Department of Energy Office of Environmental Management Idaho Operations Office Department of Energy Washington, DC 20585 April 1995 Dear Citizen: This is a summary of the Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement. The Department of Energy and

194

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Broader source: Energy.gov (indexed) [DOE]

CMS to develop a membrane CMS to develop a membrane vapor processor that recovers fuel vapors from gasoline refueling with 99 percent efficiency. This membrane system enables gasoline stations to surpass environmental regulations while reducing fuel losses. Compact Membrane Systems, Inc. (CMS) was founded in 1993 in Wilmington, DE, with the acquisition of rights to certain DuPont polymer membrane patents. CMS focuses

195

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and prescribed methods for the inspection and testing of alcohol blended fuels, petroleum products, biodiesel, and biodiesel blends; Labeling requirements for devices...

196

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and blended exclusively...

197

Minimally refined biomass fuel  

DOE Patents [OSTI]

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

198

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, electricity, and fuels containing at least 85% ethanol, methanol, ether, or another alcohol....

199

Waste biomass from production process co-firing with coal in a steam boiler to reduce fossil fuel consumption: A case study  

Science Journals Connector (OSTI)

Abstract Waste biomass is always generated during the production process in industries. The ordinary way to get rid of the waste biomass is to send them to landfill or burn it in the open field. The waste may potentially be used for co-firing with coal to save fossil fuel consumption and also reduce net carbon emissions. In this case study, the bio-waste from a Nicotiana Tabacum (NT) pre-treatment plant is used as the biomass to co-fire with coal. The samples of NT wastes were analysed. It was found that the wastes were of the relatively high energy content which were suitable for co-firing with coal. To investigate the potential and benefits for adding NT wastes to a Fluidised Bed Combustion (FBC) boiler in the plant, detailed modelling and simulation are carried out using the European Coal Liquefaction Process Simulation and Evaluation (ECLIPSE) process simulation package. The feedstock blending ratios of NT waste to coal studied in this work are varied from 0% to 30%. The results show that the addition of NT wastes may decrease the emissions of CO2 and \\{SOx\\} without reducing the boiler performance.

Hongyan Gu; Kai Zhang; Yaodong Wang; Ye Huang; Neil Hewitt; Anthony P Roskilly

2013-01-01T23:59:59.000Z

200

Spent Fuel and Waste Management Activities for Cleanout of the 105 F Fuel Storage Basin at Hanford  

SciTech Connect (OSTI)

Clean-out of the F Reactor fuel storage basin (FSB) by the Environmental Restoration Contractor (ERC) is an element of the FSB decontamination and decommissioning and is required to complete interim safe storage (ISS) of the F Reactor. Following reactor shutdown and in preparation for a deactivation layaway action in 1970, the water level in the F Reactor FSB was reduced to approximately 0.6 m (2 ft) over the floor. Basin components and other miscellaneous items were left or placed in the FSB. The item placement was performed with a sense of finality, and no attempt was made to place the items in an orderly manner. The F Reactor FSB was then filled to grade level with 6 m (20 ft) of local surface material (essentially a fine sand). The reactor FSB backfill cleanout involves the potential removal of spent nuclear fuel (SNF) that may have been left in the basin unintentionally. Based on previous cleanout of four water-filled FSBs with similar designs (i.e., the B, C, D, and DR FSBs in the 1980s), it was estimated that up to five SNF elements could be discovered in the F Reactor FSB (1). In reality, a total of 10 SNF elements have been found in the first 25% of the F Reactor FSB excavation. This paper discusses the technical and programmatic challenges of performing this decommissioning effort with some of the controls needed for SNF management. The paper also highlights how many various technologies were married into a complete package to address the issue at hand and show how no one tool could be used to complete the job; but by combining the use of multiple tools, progress is being made.

Morton, M. R.; Rodovsky, T. J.; Day, R. S.

2002-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

DEVELOPMENT OF FUEL AND VALUE-ADDED CHEMICALS FROM PYROLYSIS OF WOOD/WASTE PLASTIC MIXTURE.  

E-Print Network [OSTI]

??Highly oxygenated compounds in bio-oil produce negative properties that have hampered fuel development. Copyrolysis with plastics has increased hydrogen content in past research. Py-GC/MS analyses… (more)

Bhattacharya, Priyanka

2008-01-01T23:59:59.000Z

202

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

203

EQ6 Calculations for Chemical Degradation Of N Reactor (U-Metal) Spent Nuclear Fuel Waste Packages  

SciTech Connect (OSTI)

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the N Reactor, a graphite moderated reactor at the Department of Energy's (DOE) Hanford Site (ref. 1). The N Reactor core was fueled with slightly enriched (0.947 wt% and 0.947 to 1.25 wt% {sup 235}U in Mark IV and Mark IA fuels, respectively) U-metal clad in Zircaloy-2 (Ref. 1, Sec. 3). Both types of N Reactor SNF have been considered for disposal at the proposed Yucca Mountain site. For some WPs, the outer shell and inner shell may breach (Ref. 3) allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing two multi-canister overpacks (MCO) with either six baskets of Mark IA or five baskets of Mark IV intact N Reactor SNF rods (Ref. 1, Sec. 4) and two high-level waste (HLW) glass pour canisters (GPCs) arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which fissile uranium will remain in the WP after corrosion/dissolution of the initial WP configuration (2) The extent to which fissile uranium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations) of the simulations, is limited to time periods up to 6.35 x 10{sup 5} years. This longer time frame is closer to the one million year time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years, most of the materials of interest (fissile materials) will have either been removed from the WP, reached a steady state, or been transmuted.

P. Bernot

2001-02-27T23:59:59.000Z

204

Fusion transmutation of waste and the role of the In-Zinerator in the nuclear fuel cycle.  

SciTech Connect (OSTI)

The Z-Pinch fusion experiment at Sandia National Laboratories has been making significant progress in developing a high-energy fusion neutron source. This source has the potential to be used for the transmutation of nuclear waste. The goal of this research was to do a scoping-level design of a fusion-based transmuter to determine potential transmutation rates along with the fusion yield requirements. Two ''In-Zinerator'' designs have been developed to transmute the long-lived actinides that dominate the heat production in spent fuel. The first design burns up all transuranics (TRU) in spent fuel (Np, Pu, Am, Cm), and the second is focused only on burning up Am and Cm. The TRU In-Zinerator is designed for a fuel cycle requiring burners to get rid of all the TRU with no light water reactor (LWR) recycle. The Am/Cm In-Zinerator is designed for a fuel cycle with Np/Pu recycling in LWRs. Both types of In-Zinerators operate with a moderate fusion source driving a sub-critical actinide blanket. The neutron multiplication is 30, so a great deal of energy is produced in the blanket. With the design goal of generating 3,000 MW{sub th}, about 1,200 kg/yr of actinides can be destroyed in each In-Zinerator. Each TRU In-Zinerator will require a 20 MW fusion source, and it will take a total of 20 units (each producing 3,000 MWth) to burn up the TRU as fast as the current LWR fleet can produce it. Each Am/Cm In-Zinerator will require a 24 MW fusion source, and it will take a total of 2 units to burn up the Am/Cm as fast as the current LWR fleet can produce it. The necessary fusion yield could be achieved using a 200-240 MJ target fired once every 10 seconds.

Cipiti, Benjamin B.

2006-06-01T23:59:59.000Z

205

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

206

Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth  

Broader source: Energy.gov [DOE]

Discusses results of cold- and hot-start transient tests using gasoline and 3 alcohol-gasoline blends (50% and 85% ethanol, and 83% iso-butanol)

207

Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spend Nuclear Fuel and High-Leval Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov (indexed) [DOE]

Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada Volume I Impact Analyses Chapters 1 through 13 U.S. Department of Energy Office of Civilian Radioactive Waste Management DOE/EIS-0250F-S1D October 2007 Printed on recycled paper with soy ink. COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DOE/EIS-0250F-S1D) (Repository SEIS). CONTACTS: For more information about this document, For general information on the DOE NEPA process, write

208

STABILIZING GLASS BONDED WASTE FORMS CONTAINING FISSION PRODUCTS SEPARATED FROM SPENT NUCLEAR FUEL  

SciTech Connect (OSTI)

A model has been developed to represent the stresses developed when a molten, glass-bonded brittle cylinder (used to store nuclear material) is cooled from high temperature to working temperature. Large diameter solid cylinders are formed by heating glass or glass-bonded mixtures (mixed with nuclear waste) to high temperature (915°C). These cylinders must be cooled as the final step in preparing them for storage. Fast cooling time is desirable for production; however, if cooling is too fast, the cylinder can crack into many pieces. To demonstrate the capability of the model, cooling rate cracking data were obtained on small diameter (7.8 cm diameter) glass-only cylinders. The model and experimental data were combined to determine the critical cooling rate which separates the non-cracking stable glass region from the cracked, non-stable glass regime. Although the data have been obtained so far only on small glass-only cylinders, the data and model were used to extrapolate the critical-cooling rates for large diameter ceramic waste form (CWF) cylinders. The extrapolation estimates long term cooling requirements. While a 52-cm diameter cylinder (EBR-II-waste size) can be cooled to 100°C in 70 hours without cracking, a 181.5-cm diameter cylinder (LWR waste size) requires 35 days to cool to 100°C. These cooling times are long enough that verification of these estimates are required so additional experiments are planned on both glass only and CWF material.

Kenneth J. Bateman; Charles W. Solbrig

2008-07-01T23:59:59.000Z

209

Development of a Fuel Containing Material Removal and Waste Management Strategy for the Chernobyl Unit 4 Shelter  

SciTech Connect (OSTI)

A study was performed to develop a strategy for the removal of fuel-containing material (FCM) from the Chernobyl Unit 4 Shelter and for the related waste management. This study was performed during Phase 1 of the Shelter Implementation Plan (SIP) and was funded by the Chernobyl Shelter Fund. The main objective for Phase 2 of the SIP is to stabilize the Shelter and to construct a New Confinement (NC) by the year 2007. In addition, the SIP includes studies on the strategy and on the conceptual design implications of the removal of FCM from the Shelter. This is considered essential for the ultimate goal, the transformation of the Shelter into an environmentally safe system.

Tokarevsky, V. V.; Shibetsky, Y. A.; Leister, P.; Davison, W. R.; Follin, J. F.; McNair, J.; Lins, W.; Edler, G.

2002-02-27T23:59:59.000Z

210

Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes various hazards identified between 1978 when Yucca Mountain, located in arid southern Nevada, was first proposed as a potential site and 2008 when the license application to construct a repository for spent nuclear fuel and high-level radioactive waste was submitted. Although advantages of an arid site are many, hazard identification and scenario development have generally recognized fractures in the tuff as important features; climate change, water infiltration and percolation, and an oxidizing environment as important processes; and igneous activity, seismicity, human intrusion, and criticality as important disruptive events to consider at Yucca Mountain. Some of the scientific and technical challenges encountered included a change in the repository design from in-floor emplacement with small packages to in-drift emplacement with large packages without backfill. This change, in turn, increased the importance of igneous and seismic hazards.

Rob P. Rechard; Geoff A. Freeze; Frank V. Perry

2014-01-01T23:59:59.000Z

211

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1  

SciTech Connect (OSTI)

This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

212

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Summary  

SciTech Connect (OSTI)

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

213

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A  

SciTech Connect (OSTI)

This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

Not Available

1994-06-01T23:59:59.000Z

214

Semi-pilot scale test for production of hydrogen-rich fuel gas from different wastes by means of a gasification and smelting process with oxygen multi-blowing  

Science Journals Connector (OSTI)

In Europe, most wastes are deposited in landfills, but a European Council directive has called for a 30% reduction of the landfill amount. Though the cement industry commonly burns waste as an alternative fuel together with fossil fuel (so-called waste co-incineration), it is necessary to reconsider this co-incineration from the viewpoints of sustainable development and cement quality. Gasification and smelting processes (GSPs) for waste can convert waste to slag and fuel gas, which can be used by the energy sector and industry, so these processes are desirable in that they provide wide social benefit. Considering its low environmental impact and good economic performance, a GSP that uses a one-process furnace and oxygen multi-blowing was tested on a semi-pilot scale (1.7 tons/day) to convert different wastes (municipal waste, plastic waste and refuse of polyvinyl chloride with a chlorine content of 48%) to slag and hydrogen-rich fuel gas. The results show that the techniques applied in this test increase the quality of the produced fuel gas, strictly control pollutants, and prolong the life of the plant. Furthermore, the tested GSP has the potential to be linked with a hydrogen-based system through its production of hydrogen-rich fuel gas.

R. Kikuchi; H. Sato; Y. Matsukura; T. Yamamoto

2005-01-01T23:59:59.000Z

215

HD Applications of Significantly Downsized SI Engines Using Alcohol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SI Engines Using Alcohol DI for Knock Avoidance Direct injection of a second fuel (ethanol or methanol) is explored as a means of avoiding knock in turbocharged,...

216

Investigation of chemical looping combustion by solid fuels. 2. redox reaction kinetics and product characterization with coal, biomass, and solid waste as solid fuels and CuO as an oxygen carrier  

SciTech Connect (OSTI)

This paper is the second in a series of two on the investigation of the chemical looping combustion (CLC) of solid fuels. The first paper put forward the concept of the CLC of solid fuels using a circulating fluidized bed as a reactor and Cu-CuO as the oxygen carrier, which was based on an analysis of oxygen transfer capability, reaction enthalpy, and chemical equilibrium. In this second paper, we report the results of the evaluation of the reduction of CuO reduced by solid fuels such as coal and some other 'opportunity' solid fuels. Tests on the reduction of CuO by the selected solid fuels were conducted using simultaneous differential scanning calorimetry and thermogravimetric analysis, which simulates a microreactor. An attached mass spectrometer (MS) was used for the characterization of evolved gaseous products. The X-ray diffractometer (XRD) and scanning electron microscope (SEM) were used for the characterization of the solid residues. Results strongly supported the feasibility of CuO reduction by selected solid fuels. CuO can be fully converted into Cu in a reduction process, either in a direct path by solid fuels, which was verified by MS analysis under a N{sub 2} atmosphere, or in an indirect path by pyrolysis and gasification products of solid fuels in the reducer. No Cu{sub 2}O exists in reducing atmospheres, which was characterized by an XRD analysis and mass balance calculations. No carbon deposit was found on the surface of the reduced Cu, which was characterized by SEM analysis. CuO reduction by solid fuels can start at temperatures as low as approximately 500 C. Tests indicated that the solid fuels with higher reactivity (higher volatile matter) would be desirable for the development of the chemical looping combustion process of solid fuels, such as sub-bituminous Powder River Basin coal and solid waste and biomass. 4 refs., 12 figs., 3 tabs.

Yan Cao; Bianca Casenas; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2006-10-15T23:59:59.000Z

217

Nuclear Waste Disposal: Amounts of Waste  

Science Journals Connector (OSTI)

The term nuclear waste...embraces all residues from the use of radioactive materials, including uses in medicine and industry. The most highly radioactive of these are the spent fuel or reprocessed wastes from co...

2005-01-01T23:59:59.000Z

218

Waste/By-Product Hydrogen  

Broader source: Energy.gov [DOE]

Presentation by Ruth Cox, Fuel Cell and Hydrogen Energy Association, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

219

Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases  

Science Journals Connector (OSTI)

Abstract This paper reports on results of hot corrosion tests carried out on silicon–aluminide coatings developed for hot components of gas turbines burning biomass and waste derived fuel gases. The corrosion tests of the silicon–aluminide coatings, applied to superalloys IN738LC and CMSX-4, each consisted of five 100 h periods; at 700 °C for the type II tests and at 900 °C for the type I tests. Deposits of Cd + alkali and Pb + alkali were applied before each exposure. These deposits had been previously identified as being trace species produced from gasification of biomass containing fuels which after combustion had the potential to initiate hot corrosion in a gas turbine. Additionally, gases were supplied to the furnace to simulate the atmosphere anticipated post-combustion of these biomass derived fuel gases. Results of the type I hot corrosion tests showed that these novel coatings remained in the incubation stage for at least 300 h, after which some of the coating entered propagation. Mass change results for the first 100 h confirmed this early incubation stage. For the type II hot corrosion tests, differences occurred in oxidation and sulphidation rates between the two substrates; the incubation stages for CMSX-4 samples continued for all but the Cd + alkali high salt flux samples, whereas, for IN738LC, all samples exhibited consistent incubation rates. Following both the type I and type II corrosion tests, assessments using BSE/EDX results and XRD analysis confirmed that there has to be remnant coating, sufficient to grow a protective scale. In this study, the novel silicon–aluminide coating development was based on coating technology originally evolved for gas turbines burning natural gas and fossil fuel oils. So in this paper comparisons of performance have been made with three commercially available coatings; a CoCrAlY overlay, a platinum-aluminide diffusion, and triple layer nickel–aluminide/silicon–aluminide-diffusion coatings. These comparisons showed that the novel single-step silicon–aluminide coatings provide equal or superior type II hot corrosion resistance to the best of the commercial coatings.

A. Bradshaw; N.J. Simms; J.R. Nicholls

2013-01-01T23:59:59.000Z

220

The Integrated Data Base program: An executive-level data base of spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect (OSTI)

The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. As such, it should be as convenient to utilize as is practical. Examples of summary-level tables and figures are presented, as well as more-detailed graphics describing waste-form distribution by site and line charts illustrating historical and projected volume (or mass) changes. This information is readily accessible through the annual IDB publication. Other presentation formats are also available to the DOE community through a simple request to the IDB Program.

Klein, J.A.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Statement of Intent by The United States Department of Energy and Atomic Energy of Canada Limited in the Field of Used Fuel and Radioactive Waste Management, Decommissioning and Environmental Restoration  

Broader source: Energy.gov [DOE]

Statement of Intent by The United States Department of Energy and Atomic Energy of Canada Limited in the Field of Used Fuel and Radioactive Waste Management, Decommissioning and Environmental Restoration.

222

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

223

EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

Broader source: Energy.gov (indexed) [DOE]

02-1995/voli.html[6/27/2011 12:23:34 PM] 02-1995/voli.html[6/27/2011 12:23:34 PM] DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement VOLUME II VOLUME II Part A COVER SHEET RESPONSIBLE AGENCIES: Lead Federal Agency: U.S. Department of Energy Cooperating Federal Agency: U.S. Department of the Navy TITLE: Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement. CONTACT: For further information on this Environmental Impact Statement call or contact: DOE Idaho Operations Office Bradley P. Bugger Office of Communications 850 Energy Drive, MS 1214 Idaho Falls, ID 83403-3189

224

EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

02-1995/voli.html[6/27/2011 12:23:34 PM] 02-1995/voli.html[6/27/2011 12:23:34 PM] DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs Final Environmental Impact Statement VOLUME II VOLUME II Part A COVER SHEET RESPONSIBLE AGENCIES: Lead Federal Agency: U.S. Department of Energy Cooperating Federal Agency: U.S. Department of the Navy TITLE: Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement. CONTACT: For further information on this Environmental Impact Statement call or contact: DOE Idaho Operations Office Bradley P. Bugger Office of Communications 850 Energy Drive, MS 1214 Idaho Falls, ID 83403-3189

225

DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

W. L. Poe, Jr.; P.F. Wise

1998-11-01T23:59:59.000Z

226

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov (indexed) [DOE]

Contents Contents CR-iii TABLE OF CONTENTS Section Page 8. Transportation Modes, Routes, Affected Environment, and Impacts............................................ CR8-1 8.1 General Opposition to Transporting Spent Nuclear Fuel and High-Level Radioactive Waste ............................................................................................................ CR8-6 8.2 Number of Shipments ..................................................................................................... CR8-37 8.3 Transportation Modes and Routes .................................................................................. CR8-41 8.3.1 State Highway 127, Hoover Dam, Nevada Department of Transportation Alternatives ..............................................................................................................

227

Zymomonas mobilis Mutants with an Increased Rate of Alcohol Production  

Science Journals Connector (OSTI)

...University of Florida, Gainesville, Florida 32611 Received...retention of higher rates of ethanol production...beverages and fuel, variations...maintenance of higher rates of glycolysis...Department of Energy, Office of...Agriculture, Alcohol Fuels Program. We...

Y. A. Osman; L. O. Ingram

1987-07-01T23:59:59.000Z

228

Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds  

Science Journals Connector (OSTI)

Combustion of biomass and municipal solid wastes is one of the key areas in the global cleaner energy strategy. But there is still a lack of detailed and systematically theoretical study on the packed bed burning of biomass and municipal solid wastes. The advantage of theoretical study lies in its ability to reveal features of the detailed structure of the burning process inside a solid bed, such as reaction zone thickness, combustion staging, rates of individual sub-processes, gas emission and char burning characteristics. These characteristics are hard to measure by conventional experimental techniques. In this paper, mathematical simulations as well as experiments have been carried out for the combustion of wood chips and the incineration of simulated municipal solid wastes in a bench-top stationary bed and the effects of primary air flow rate and moisture level in the fuel have been assessed over wide ranges. It is found that volatile release as well as char burning intensifies with an increase in the primary air flow until a critical point is reached where a further increase in the primary air results in slowing down of the combustion process; a higher primary airflow also reduces the char fraction burned in the final char-burning-only stage, shifts combustion in the bed to a more fuel-lean environment and reduces CO emission at the bed top; an increase in the moisture level in the fuel produces a higher flame front temperature in the bed at low primary air flow rates.

Y.B Yang; V.N Sharifi; J Swithenbank

2004-01-01T23:59:59.000Z

229

Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada  

SciTech Connect (OSTI)

In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

Sweeney, Robin L,; Lechel, David J.

2003-02-25T23:59:59.000Z

230

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B  

SciTech Connect (OSTI)

Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

Not Available

1994-06-01T23:59:59.000Z

231

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

232

Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility  

SciTech Connect (OSTI)

As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to overpressure--external to T Plant, was included for completeness but is not within the scope of the hazards evaluation. Container failures external to T Plant will be addressed as part of the transportation analysis. This document describes the HazOp analysis performed for the activities associated with the storage of SNF sludge in the T Plant.

SCHULTZ, M.V.

2000-08-22T23:59:59.000Z

233

EQ6 Calculation for Chemical Degradation of Shippingport LWBR (TH/U Oxide) Spent Nuclear Fuel Waste Packages  

SciTech Connect (OSTI)

The Monitored Geologic Repository (MGR) Waste Package Department of the Civilian Radioactive Waste Management System Management & Operating contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Shippingport Light Water Breeder Reactor (LWBR) (Ref. 1). The Shippingport LWBR SNF has been considered for disposal at the potential Yucca Mountain site. Because of the high content of fissile material in the SNF, the waste package (WP) design requires special consideration of the amount and placement of neutron absorbers and the possible loss of absorbers and SNF materials over geologic time. For some WPs, the outer shell corrosion-resistant material (CRM) and the corrosion-allowance inner shell may breach (Refs. 2 and 3), allowing the influx of water. Water in the WP will moderate neutrons, increasing the likelihood of a criticality event within the WP; and the water may, in time, gradually leach the fissile components and neutron absorbers from the WP, further affecting the neutronics of the system. This study presents calculations of the long-term geochemical behavior of WPs containing a Shippingport LWBR SNF seed assembly, and high-level waste (HLW) glass canisters arranged according to the codisposal concept (Ref. 4). The specific study objectives were to determine: (1) The extent to which criticality control material, suggested for this WP design, will remain in the WP after corrosion/dissolution of the initial WP configuration (such that it can be effective in preventing criticality); (2) The extent to which fissile uranium and fertile thorium will be carried out of the degraded WP by infiltrating water (such that internal criticality is no longer possible, but the possibility of external criticality may be enhanced); and (3) The nominal chemical composition for the criticality evaluations of the WP design, and to suggest the range of parametric variations for additional evaluations. The scope of this calculation, the chemical compositions (and subsequent criticality evaluations), of the simulations are limited to time periods up to 3.17 x 10{sup 5} years. This longer time frame is closer to the one million year time horizon recently recommended by the National Academy of Sciences to the Environmental Protection Agency for performance assessment related to a nuclear repository (Ref. 5). However, it is important to note that after 100,000 years, most of the materials of interest (fissile and absorber materials) will have either been removed from the WP, reached a steady state, or been transmuted. The calculation included elements with high neutron-absorption cross sections, notably gadolinium (Gd), as well as the fissile materials. The results of this analysis will be used to ensure that the type and amount of criticality control material used in the WP design will prevent criticality.

S. Arthur

2000-09-14T23:59:59.000Z

234

Fuel Switching Strategies for the 1990s  

E-Print Network [OSTI]

, petroleum coke, waste hydrocarbons (such as recovered from lubricants), biomass, and in the near future, methanol and other oxygenates or alcohols. Coal may also conceivably be a long-term sWitching candidate when utilized in a number of advanced open... under mos t conditions, in a manner that generates less NO x than heavier fuels such as coal, coke, and residual oil. Achieving NO x reductions with the latter is often a matter of capital investments and operating costs in either combustion...

Cascone, R.

235

Fuels options conference  

SciTech Connect (OSTI)

The proceedings of the Fuels Options Conference held May 9-10, 1995 in Atlanta, Georgia are presented. Twenty-three papers were presented at the conference that dealt with fuels outlook; unconventional fuels; fuel specification, purchasing, and contracting; and waste fuels applications. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1995-09-01T23:59:59.000Z

236

Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.  

SciTech Connect (OSTI)

The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

Ebert, W. E.

2006-01-31T23:59:59.000Z

237

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

238

Nuclear waste storage bill passes Congress  

Science Journals Connector (OSTI)

Nuclear waste storage bill passes Congress ... The law sets up provisions to evaluate ways to store spent nuclear fuel and wastes. ...

1983-01-03T23:59:59.000Z

239

End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.  

SciTech Connect (OSTI)

This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

Weiner, Ruth F.; Blink, James A. (Lawrence Livermore National Laboratory, Livermore, CA); Rechard, Robert Paul; Perry, Frank (Los Alamos National Laboratory, Los Alamos, NM); Jenkins-Smith, Hank C. (University of Oklahoma, Norman, OK); Carter, Joe (Savannah River Nuclear Solutions, Aiken, SC); Nutt, Mark (Argonne National Laboratory, Argonne, IL); Cotton, Tom (Complex Systems Group, Washington DC)

2010-09-01T23:59:59.000Z

240

Draft Supplemental Environmental Impact Statement for a Geologice Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mounta  

Broader source: Energy.gov (indexed) [DOE]

v v COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy (DOE) TITLE: Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor (DOE/EIS-0250F-S2D; the Nevada Rail Corridor SEIS), and Draft Environmental Impact Statement for a Rail Alignment for the Construction and Operation of a Railroad in Nevada to a Geologic Repository at Yucca Mountain, Nye County, Nevada (DOE/EIS-0369D; the Rail Alignment EIS) CONTACTS: For more information about this document, write or call: For general information on the DOE NEPA process, write or call: U.S. Department of Energy Office of Civilian Radioactive Waste Management

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov (indexed) [DOE]

Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada DOE/EIS-0250 Errata Sheet Since release of the Final EIS for Yucca Mountain on February 14, 2002 as part of the Site Recommendation documentation required under the Nuclear Waste Policy Act, as amended, the Department of Energy (DOE) has identified a variety of errors in the document. These errors were found to include: editing errors - errors in editorial style, rounding, and unit conversions data entry errors, errors in typing a number transcription errors - errors in transcribing information from one part of the document to another, failures to update the text from the most current analyses at the time of the

242

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

243

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and 68-1359...

244

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

products that have been denatured. Methyl alcohol is a motor fuel that is most commonly derived from wood products. (Reference South Dakota Statutes 10-47B-3 and 10-47B-4...

245

E-Print Network 3.0 - alcohol chemical tests Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Higher Alcohols using Electron... and better production paths. One of these is using biogas to create alcohol as a fuel. ... Source: Dunin-Borkowski, Rafal E. - Department of...

246

Examining Hot Fuels  

ScienceCinema (OSTI)

Nuclear Engineer Jon Carmack talks about his nuclear fuels research at the Idaho National Laboratory, and how it may lead to solutions for nuclear waste.

Jon Carmack

2010-01-08T23:59:59.000Z

247

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. Eligible buses must pass inspection in accordance with the...

248

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

249

Fuel Recovery: Valorization of RDF and PDF  

Science Journals Connector (OSTI)

Energy recovery of used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel recovery for co-combustion with conventional fuels. Recovered fuels are refuse derived fuel (RDF) wh...

Martin Frankenhaeuser; Helena Manninen

1996-01-01T23:59:59.000Z

250

Progression of performance assessment modeling for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the evolution of consequence modeling for a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The discussion includes four early performance assessments (PAs) conducted between 1982 and 1995 to support selection and to evaluate feasibility and three major \\{PAs\\} conducted between 1998 and 2008 to evaluate viability, recommend the site, and assess compliance. Modeling efforts in 1982 estimated dose to individuals 18 km from the site caused by volcanic eruption through the repository. Modeling in 1984 estimated releases via the groundwater pathway because of container corrosion. In combination, this early analysis supported the first environmental assessment. Analysts in 1991 evaluated cumulative release, as specified in the 1985 US radiation protection standards, via the groundwater pathway over 104 yr at a 5-km boundary by modeling waste degradation and flow/transport in the saturated and unsaturated zones. By 1992, however, the US Congress mandated a change to a dose measure. Thus, the 1993 and 1995 performance assessments improved modeling of waste container degradation to provide better estimates of radionuclide release rates out to 106 yr. The 1998 viability assessment was a major step in modeling complexity. Dose at a 20-km boundary from the repository was evaluated through 106 yr for undisturbed conditions using more elaborate modeling of flow and the addition of modules for modeling infiltration, drift seepage, the chemical environment, and biosphere transport. The 2000 assessment for the site recommendation refined the analysis. Seepage modeling was greatly improved and waste form degradation modeling included more chemical dependence. The 2008 compliance assessment for the license application incorporated the influence of the seismicity on waste package performance to evaluate dose at an ~18-km boundary.

Rob P. Rechard; Michael L. Wilson; S. David Sevougian

2014-01-01T23:59:59.000Z

251

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Broader source: Energy.gov (indexed) [DOE]

Municipal Waste Planning, Recycling and Waste Reduction Act Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Pennsylvania Program Type Environmental Regulations

252

Material Recovery and Waste Form Development FY 2014 Accomplishments Report  

SciTech Connect (OSTI)

Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

Lori Braase

2014-11-01T23:59:59.000Z

253

Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media  

SciTech Connect (OSTI)

For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

Steindler, M.J.; Ader, M.; Barletta, R.E.

1980-09-01T23:59:59.000Z

254

DOE/EIS-0203-SA-01; Supplement Analysis of the INEEL Portion of the April 1995 Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact  

Broader source: Energy.gov (indexed) [DOE]

Operations Office 850 Energy Drive Idaho Falls, Idaho 83401-1563 November 2002 SUBJECT: Conclusions of the Supplement Analysis of the DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs EIS (1995 EIS) ~ Dear Citizen: The Record of Decision (ROD) for the DOE Programmatic Spent Nuclear Fuel Management and INEL Environmental Restoration and Waste Management Programs EIS (1995 EIS) left several decisions concerning INEEL proposed actions outstanding. That is, decisions were deferred .pending further project definition, funding priorities, or appropriate review under NEPA" In May 2000 a team of DOE-ID program representatives and subject area technical specialists (interdisciplinary

255

A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository  

SciTech Connect (OSTI)

The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as well as non-radioactive traffic fatalities. The Yucca Mountain EIS Transportation Database was developed using Microsoft Access 97{trademark} software and the Microsoft Windows NT{trademark} operating system. The database consists of tables for storing data, forms for selecting data for querying, and queries for retrieving the data in a predefined format. Database queries retrieve records based on input parameters and are used to calculate incident-free and accident doses using unit risk factors obtained from RADTRAN results. The next section briefly provides some background that led to the development of the database approach used in preparing the Yucca Mountain DEIS. Subsequent sections provide additional details on the database structure and types of impacts calculated using the database.

Ralph Best; T. Winnard; S. Ross; R. Best

2001-08-17T23:59:59.000Z

256

Vehicle Technologies Office: Fuel Efficiency and Emissions |...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

257

Available Options for Waste Disposal [and Discussion  

Science Journals Connector (OSTI)

...vitrified high-activity waste in properly selected deep...alternatives to present projects of waste disposal, but rather as...benefits will be different. Long-term storage of either spent fuel or vitrified waste, although not an alternative...

1986-01-01T23:59:59.000Z

258

Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel  

Science Journals Connector (OSTI)

In addition, measurements were taken of the basic engine operational parameters such as engine speed, engine load, fuel consumption, pressure and temperature in the intake and exhaust systems, and the concentration of gaseous components and particulates in the exhaust gases. ... As can be seen, the torque and, consequently, the power of the engine are almost identical for both fuels WCO75 and D2, which is surprising, because the calorific value of the WCO is approximately 13% lower than that of D2 fuel. ... A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification. ...

Ales Hribernik; Breda Kegl

2009-02-11T23:59:59.000Z

259

An Investigation of the Use of Fully Ceramic Microencapsulated Fuel for Transuranic Waste Recycling in Pressurized Water Reactors  

SciTech Connect (OSTI)

An investigation of the utilization of TRistructural- ISOtropic (TRISO)-coated fuel particles for the burning of plutonium/neptunium (Pu/Np) isotopes in typical Westinghouse four-loop pressurized water reactors is presented. Though numerous studies have evaluated the burning of transuranic isotopes in light water reactors (LWRs), this work differentiates itself by employing Pu/Np-loaded TRISO particles embedded within a silicon carbide (SiC) matrix and formed into pellets, constituting the fully ceramic microencapsulated (FCM) fuel concept that can be loaded into standard LWR fuel element cladding. This approach provides the capability of Pu/Np burning and, by virtue of the multibarrier TRISO particle design and SiC matrix properties, will allow for greater burnup of Pu/Np material, plus improved fuel reliability and thermal performance. In this study, a variety of heterogeneous assembly layouts, which utilize a mix of FCM rods and typical UO2 rods, and core loading patterns were analyzed to demonstrate the neutronic feasibility of Pu/Np-loaded TRISO fuel. The assembly and core designs herein reported are not fully optimized and require fine-tuning to flatten power peaks; however, the progress achieved thus far strongly supports the conclusion that with further rod/assembly/core loading and placement optimization, Pu/Np-loaded TRISO fuel and core designs that are capable of balancing Pu/Np production and destruction can be designed within the standard constraints for thermal and reactivity performance in pressurized water reactors.

Gentry, Cole A [ORNL] [ORNL; Godfrey, Andrew T [ORNL] [ORNL; Terrani, Kurt A [ORNL] [ORNL; Gehin, Jess C [ORNL] [ORNL; Powers, Jeffrey J [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL

2014-01-01T23:59:59.000Z

260

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Generating power with waste wood  

SciTech Connect (OSTI)

Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

Atkins, R.S.

1995-02-01T23:59:59.000Z

262

Bioelectrochemical Integration of Waste Heat Recovery, Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolytic cell, designed to integrate waste heat recovery (i.e a microbial heat recovery cell or MHRC), can operate as a fuel cell and convert effluent streams into...

263

Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and 14C-based methodologies  

Science Journals Connector (OSTI)

Abstract 14C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). 14C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

G.K.P. Muir; S. Hayward; B.G. Tripney; G.T. Cook; P. Naysmith; B.M.J. Herbert; M.H Garnett; M. Wilkinson

2014-01-01T23:59:59.000Z

264

Nuclear Waste Disposal Plan Drafted  

Science Journals Connector (OSTI)

Nuclear Waste Disposal Plan Drafted ... Of all the issues haunting nuclear power plants, that of disposing of the radioactive wastes and spent nuclear fuel they generate has been the most vexing. ...

1984-01-09T23:59:59.000Z

265

Hydrothermal Processing of Wet Wastes  

Broader source: Energy.gov [DOE]

Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

266

EIS-0250-S1: Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov [DOE]

The Proposed Action defined in the Yucca Mountain FEIS is to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain to dispose of spent nuclear fuel and high-level radioactive waste. The Proposed Action includes transportation of these materials from commercial and DOE sites to the repository.

267

Unsaturated flow modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the progression of modeling efforts of infiltration, percolation, and seepage conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository in the unsaturated zone for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. Scientific understanding of infiltration in a desert environment, unsaturated percolation flux in fractures and matrix of the volcanic tuff, and seepage into an open drift in a thermally perturbed environment was initially lacking in 1984. As understanding of the Yucca Mountain disposal system increased through site characterization and in situ testing, modeling of infiltration, percolation, and seepage evolved from simple assumptions in a single model in 1984 to three modeling modules each based on several detailed process models in 2008. Uncertainty in percolation flux through Yucca Mountain was usually important in explaining the observed uncertainty in performance measures:cumulative release in assessments prior to 1995 and individual dose, thereafter.

Rob P. Rechard; Jens T. Birkholzer; Yu-Shu Wu; Joshua S. Stein; James E. Houseworth

2014-01-01T23:59:59.000Z

268

Chernobyl’s waste site  

SciTech Connect (OSTI)

An analysis of the prospects for using the Chernobyl exclusion zone for development of a spent fuel store, waste disposal site and other nuclear facilities.

Schmieman, Eric A.; Paskevych, Sergiy; Sizov, Andrey; Batiy, Valeriy

2007-02-15T23:59:59.000Z

269

Spent fuel test-climax: a test of geologic storage of high-level waste in granite  

SciTech Connect (OSTI)

A test of retrievable geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site (NTS) of the US Department of Energy. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.5 years out of reactor core (about 1.6 kW/canister thermal output) were emplaced in a storage drift along with 6 electrical simulator canisters. Two adjacent drifts contain electrical heaters, which are operated to simulate within the test array the thermal field of a large repository. Fuel was loaded during April to May 1980 and initial results of the test will be presented.

Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

1981-01-01T23:59:59.000Z

270

Pilot-scale testing of a fuel oil-explosives cofiring process for recovering energy from waste explosives: Final report  

SciTech Connect (OSTI)

The US Army generates and stores a significant quantity of explosives and explosive-related materials that do not meet specifications for their primary use. Current explosives disposal processes do not recover any resources from these materials. The heat of combustion of these materials is typically 9 to 15 kJ/g (4000 to 6500 Btu/lb), which is 21 to 33% of the high heating value of No. 2 fuel oil. One secondary use for explosives is to cofire them with other fuels to recover their energy content. Bench-scale testing has shown that cofiring is feasible and safe within certain guidelines. To further evaluate cofiring, a proof-of-principle test was conducted in a 300-kW (10/sup 6/ Btu/h) combustion chamber. The test program was discontinued before completion because of failures largely unrelated to the explosives contained in the fuel. This report presents the results of the proof-of-principle tests, as well as design and operational changes that would eliminate problems encountered during the course of the test program. It is clearly feasible to cofire explosives and fuel oil. However, more data are needed before the process can be tested in a production boiler, furnace, or incinerator. 20 refs., 14 figs., 9 tabs.

Bradshaw, W.M.

1988-08-01T23:59:59.000Z

271

Biodiesel production from Stauntonia chinensis seed oil (waste from food processing): Heterogeneous catalysis by modified calcite, biodiesel purification, and fuel properties  

Science Journals Connector (OSTI)

Abstract In the present research, the potential of Stauntonia chinensis (SC) seed oil obtained from processing waste was investigated for the first time as biodiesel feedstock, including physicochemical properties of the oil, the heterogeneous catalysis process, purification, and fuel properties. A 29.37 ± 0.64 wt.% of oil content and 2.41 mg KOH/g of acid value was found. Under the optimised reaction conditions in the presence of modified calcite, an 88.02% of yield and a 98.90 wt.% of FAME content were achieved. According to EN 14124 (2012), SC biodiesel exhibited superior fuel properties compared to the most of other feedstock oils since it had an ideal fatty acid composition (low Cn:0 (8.06 wt.%), high Cn:1 (80.16 wt.%), and low Cn:2,3 (8.45 wt.%)). It was absolutely vital that the use of SC seed oil as a biodiesel feedstock would not compete with its use in food. In summary, SC seed oil should be recommended as a promising feedstock for biodiesel.

Rui Wang; Lili Sun; Xiaolin Xie; Lizhi Ma; Zhigang Liu; Xiaoyan Liu; Ning Ji; Guofang Xie

2014-01-01T23:59:59.000Z

272

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

273

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

274

Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification  

SciTech Connect (OSTI)

This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

Brady Hansen; William Miller

2011-10-28T23:59:59.000Z

275

Nuclear waste management. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

Progress and activities are reported on the following: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization programs, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, monitoring of unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions technology, spent fuel and fuel pool integrity program, and engineered barriers. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-04-01T23:59:59.000Z

276

Hazardous Wastes Management (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) Hazardous Wastes Management (Alabama) < Back Eligibility Commercial Construction Developer Industrial Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations Safety and Operational Guidelines This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and investigations. The legislation also states responsibilities of generators and transporters of hazardous waste as well as responsibilities of hazardous waste storage and treatment facility and hazardous waste disposal site operators. There

277

Alternative Fuels Data Center: Biobutanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biobutanol to someone Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Biobutanol Biobutanol is a 4-carbon alcohol (butyl alcohol) produced from the same feedstocks as ethanol including corn, sugar beets, and other biomass feedstocks. Butanol is generally used as an industrial solvent in products such as lacquers and enamels, but it also can be blended with other fuels

278

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

279

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

280

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel

Gary S. Hoovler; M. Neil Baldwin; Ray L. Eng; Fred G. Welfare

282

Update to Assessment of Direct Disposal in Unsaturated Tuff of Spent Nuclear Fuel and High-Level Waste Owned by U.S. Department of Energy  

SciTech Connect (OSTI)

The overall purpose of this study is to provide information and guidance to the Office of Environmental Management of the U.S. Department of Energy (DOE) about the level of characterization necessary to dispose of DOE-owned spent nuclear fuel (SNF). The disposal option modeled was codisposal of DOE SNF with defense high-level waste (DHLW). A specific goal was to demonstrate the influence of DOE SNF, expected to be minor, in a predominately commercial repository using modeling conditions similar to those currently assumed by the Yucca Mountain Project (YMP). A performance assessment (PA) was chosen as the method of analysis. The performance metric for this analysis (referred to as the 1997 PA) was dose to an individual; the time period of interest was 100,000 yr. Results indicated that cumulative releases of 99Tc and 237Np (primary contributors to human dose) from commercial SNF exceed those of DOE SNF both on a per MTHM and per package basis. Thus, if commercial SNF can meet regulatory performance criteria for dose to an individual, then the DOE SNF can also meet the criteria. This result is due in large part to lower burnup of the DOE SNF (less time for irradiation) and to the DOE SNF's small percentage of the total activity (1.5%) and mass (3.8%) of waste in the potential repository. Consistent with the analyses performed for the YMP, the 1997 PA assumed all cladding as failed, which also contributed to the relatively poor performance of commercial SNF compared to DOE SNF.

P. D. Wheatley (INEEL POC); R. P. Rechard (SNL)

1998-09-01T23:59:59.000Z

283

High level nuclear waste  

SciTech Connect (OSTI)

The DOE Division of Waste Products through a lead office at Savannah River is developing a program to immobilize all US high-level nuclear waste for terminal disposal. DOE high-level wastes include those at the Hanford Plant, the Idaho Chemical Processing Plant, and the Savannah River Plant. Commercial high-level wastes, for which DOE is also developing immobilization technology, include those at the Nuclear Fuel Services Plant and any future commercial fuels reprocessing plants. The first immobilization plant is to be the Defense Waste Processing Facility at Savannah River, scheduled for 1983 project submission to Congress and 1989 operation. Waste forms are still being selected for this plant. Borosilicate glass is currently the reference form, but alternate candidates include concretes, calcines, other glasses, ceramics, and matrix forms.

Crandall, J L

1980-01-01T23:59:59.000Z

284

22 - Radioactive waste disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses the disposal of radioactive wastes that arise from a great variety of sources, including the nuclear fuel cycle, beneficial uses of isotopes, and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. The spent fuel is accumulating, awaiting the development of a high-level waste repository. It is anticipated that a multi-barrier system involving packaging and geologic media will provide protection of the public over the centuries. The favored method of disposal is in a mined cavity deep underground. In some countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is done by casks and containers designed to withstand severe accidents. Low-level wastes come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2001-01-01T23:59:59.000Z

285

YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM  

SciTech Connect (OSTI)

The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

G. Housley; C. Shelton-davis; K. Skinner

2005-08-26T23:59:59.000Z

286

2011 Alkaline Membrane Fuel Cell Workshop Final Report  

Broader source: Energy.gov (indexed) [DOE]

Alcohol Fuel Applications and Power Ranges Application Description Power Range Military Remote sensor <10 W Soldier power 20-50 W Battery charger 300 W Commercial Consumer...

287

EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor  

Broader source: Energy.gov [DOE]

This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

288

Radioactive Waste Radioactive Waste  

E-Print Network [OSTI]

#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to;Radioactive Waste · Program requires · Generator support · Proper segregation · Packaging · labeling #12;Radioactive Waste · What is radioactive waste? · Anything that · Contains · or is contaminated

Slatton, Clint

289

WORLDWIDE FOCUS ON NUCLEAR WASTE  

Science Journals Connector (OSTI)

WORLDWIDE FOCUS ON NUCLEAR WASTE ... Volume grows and years pile up, but world lacks consensus on disposing of nuclear waste ... WHAT TO DO WITH SPENT nuclear fuel and high-level radioactive waste is a problem shared by much of the world. ...

JEFF JOHNSON

2001-06-18T23:59:59.000Z

290

Waste-to-Energy Workshop  

Broader source: Energy.gov [DOE]

The Waste to Energy Roadmapping Workshop was held on November 5, 2014, in Arlington, Virginia. This workshop gathered waste-to-energy experts to identify the key technical barriers to the commercial deployment of liquid transportation fuels from wet waste feedstocks.

291

Used Fuel Disposition Campaign Disposal Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

292

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blends must comply with ASTM specification D7467-10. Biodiesel produced from palm oil is not considered biodiesel fuel unless the palm oil is waste oil or grease collected...

293

Waste-to-Energy Technologies and Project Development | Department...  

Office of Environmental Management (EM)

Waste-to-Energy Technologies and Project Development Waste-to-Energy Technologies and Project Development Presentation at Waste-to-Energy using Fuel Cells Webinar, July 13, 2011...

294

Basis for Section 3116 Determination for Salt Waste Disposal...  

Office of Environmental Management (EM)

gallons 1 2 (Mgal) of liquid radioactive waste stored in underground waste storage tanks at SRS. Much of this waste resulted from the reprocessing of spent nuclear fuel for...

295

Fuel Cells Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

296

Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy  

E-Print Network [OSTI]

The new incinerator (or waste-to-energy plant) in the Alpinedecreasing. Indeed waste-to- energy plants and recyclingDerived Fuel) and sent to a waste-to- energy plants, are now

Mengozzi, Alessandro

2010-01-01T23:59:59.000Z

297

Nuclear waste management. Quarterly progress report, January-March 1980  

SciTech Connect (OSTI)

Reported are: high-level waste immobilization, alternative waste forms, nuclear waste materials characterization, TRU waste immobilization, TRU waste decontamination, krypton solidification, thermal outgassing, iodine-129 fixation, unsaturated zone transport, well-logging instrumentation development, mobile organic complexes of fission products, waste management system and safety studies, assessment of effectiveness of geologic isolation systems, waste/rock interactions, engineered barriers, criteria for defining waste isolation, and spent fuel and pool component integrity. (DLC)

Platt, A.M.; Powell, J.A. (comps.)

1980-06-01T23:59:59.000Z

298

WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED,  

E-Print Network [OSTI]

Fuel oil and Turkey Based Biofuel Energy Rocovery 12,000 Industrial Waste $30,000 $500 $29,500 1500WASTE DESCRIPTION TYPE OF PROJECT POUNDS REDUCED, REUSED, RECYCLED OR CONSERVED IN 2006 WASTE TYPE DESCRIPTION DETAILS * Aerosol Can Disposal System Recycling 528 66 pounds of hazardous waste per unit $7

299

Canister arrangement for storing radioactive waste  

DOE Patents [OSTI]

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01T23:59:59.000Z

300

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Metal Encapsulation of Ceramic Nuclear Waste  

Science Journals Connector (OSTI)

A conceptual flow sheet is presented for encapsulating a ceramic waste form in solid lead, using existing or ... encapsulation might be applied to other solid radioactive wastes from the nuclear fuel cycle. It is...

L. J. Jardine; M. J. Steindler

1979-01-01T23:59:59.000Z

302

Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania)  

Open Energy Info (EERE)

Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Pennsylvania Name Municipal Waste Planning, Recycling and Waste Reduction Act (Pennsylvania) Policy Category Other Policy Policy Type Environmental Regulations Affected Technologies Biomass/Biogas, Coal with CCS, Concentrating Solar Power, Energy Storage, Fuel Cells, Geothermal Electric, Hydroelectric, Hydroelectric (Small), Natural Gas, Nuclear, Solar Photovoltaics, Wind energy Active Policy Yes Implementing Sector State/Province Program Administrator Pennsylvania Department of Environmental Protection

303

Energy from waste via coal/waste co-firing  

SciTech Connect (OSTI)

The paper reviews the feasibility of waste-to-energy plants using the cocombustion of coal with refuse-derived fuels. The paper discusses the types of wastes available: municipal solid wastes, plastics, tires, biomass, and specialized industrial wastes, such as waste oils, post-consumer carpet, auto shredder residues, and petroleum coke. The five most common combustion systems used in co-firing are briefly described. They are the stoker boiler, suspension-fired boilers, cyclone furnaces, fluidized bed boilers, and cement kilns. The paper also discusses the economic incentives for generating electricity from waste.

Winslow, J.; Ekmann, J.; Smouse, S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Harding, S.

1996-12-31T23:59:59.000Z

304

Alternative Fuels Data Center: Methanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Methanol to someone by Methanol to someone by E-mail Share Alternative Fuels Data Center: Methanol on Facebook Tweet about Alternative Fuels Data Center: Methanol on Twitter Bookmark Alternative Fuels Data Center: Methanol on Google Bookmark Alternative Fuels Data Center: Methanol on Delicious Rank Alternative Fuels Data Center: Methanol on Digg Find More places to share Alternative Fuels Data Center: Methanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Methanol Methanol (CH3OH), also known as wood alcohol, is an alternative fuel under the Energy Policy Act of 1992. As an engine fuel, methanol has chemical and physical fuel properties similar to ethanol. Methanol use in vehicles has declined dramatically since the early 1990s, and automakers no longer

305

Results from past performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes the progression of results through four early performance assessments (PAs) conducted to support selection and to evaluate feasibility and three major \\{PAs\\} conducted to evaluate viability, recommend the site, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. The early \\{PAs\\} in 1984, 1991, 1993, and 1995 evaluated cumulative release over 104 yr at a 10-km or 5-km boundary as specified in the draft and final 1985 radiation protection standard, respectively. During the early PAs, the fission products 99Tc, 129I, and activation products 14C, and 36Cl were identified as important radionuclides at the beginning of the regulatory period. The actinide, 237Np, often dominated at the end of the regulatory period. Package and repository design options were evaluated during the early \\{PAs\\} but modeling did not identify strong preferences. In 1992 Congress mandated a change to a dose measure. Dose at a 20-km boundary from the repository was evaluated through 106 yr for the undisturbed scenario class via the groundwater pathway for the Congressionally mandated viability assessment in 1998. For the assessment for the site recommendation in 2000, doses from igneous eruption dominated in the first ~3000 yr, doses from igneous intrusion between ~3000 yr and ~40,000 yr, and doses from the undisturbed scenario class through 106 yr. The 2008 compliance assessment for the license application incorporated the influence of the seismic scenario class on waste package performance. The compliance assessment found that doses from the igneous intrusive scenario class and the combined undisturbed and seismic scenario class were important contributors at the ~18-km boundary. In the compliance PA, 99Tc and 129I fission products and 14C activation product were important in the first 104 yr. Beyond 104 yr, actinides 239Pu, 242Pu, 237Np, and 238U decay product 226Ra were important. In all PAs, parameters of the natural barrier were important, but in the three latter PAs, the slow degradation of the large, in-drift container had an important role in explaining the uncertainty in the peak dose.

Rob P. Rechard

2014-01-01T23:59:59.000Z

306

Furfuryl alcohol cellular product  

DOE Patents [OSTI]

Self-extinguishing rigid foam products are formed by polymerization of furfuryl alcohol in the presence of a lightweight, particulate, filler, zinc chloride and selected catalysts.

Sugama, T.; Kukacka, L.E.

1982-05-26T23:59:59.000Z

307

Waste/By-Product Hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WASTE/BY-PRODUCT HYDROGEN WASTE/BY-PRODUCT HYDROGEN Ruth Cox DOE/DOD Workshop January 13, 2011 January 13, 2011 Fuel Cell and Hydrogen Energy Association The Fuel Cell and Hydrogen Energy Association FCHEA ƒ Trade Association for the industry ƒ Member driven - Market focused ƒ Developers, suppliers, customers, nonprofits, government Ad ƒ Advocacy ƒ Safety and standardization ƒ Education ƒ Strategic Alliances Fuel Cell and Hydrogen Energy Association O M b Our Members 5 W t /B d t H d Waste/By-product Hydrogen Overview Overview ƒ Growing populations, rising standards of living, and increased urbanization leads to a escalating volume of waste leads to a escalating volume of waste. ƒ Huge volumes of waste are collected in dumps, creating a major environmental issue. ƒ ƒ Wastewater treatment plants generate noxious gasses that are released in Wastewater treatment plants generate noxious gasses that are released in

308

Transport modeling in performance assessments for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste  

Science Journals Connector (OSTI)

Abstract This paper summarizes modeling of radionuclide transport in the unsaturated and saturated zone conducted between 1984 and 2008 to evaluate feasibility, viability, and assess compliance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nevada. One dimensional (1-D) transport for a single porosity media without lateral dispersion was solved in both the saturated zone (SZ) and unsaturated zone (UZ) for the first assessment in 1984 but progressed to a dual-porosity formulation for the UZ in the second assessment in 1991. By the time of the viability assessment, a dual-permeability transport formulation was used in the UZ. With the planned switch to a dose performance measure, individual dose from a drinking water pathway was evaluated for the third assessment in 1993 and from numerous pathways for the viability assessment in 1998 and thereafter. Stream tubes for transport in the SZ were initially developed manually but progressed to particle tracking in 1991. For the viability assessment, particle tracking was used to solve the transport equations in the 3-D UZ and SZ flow fields. To facilitate calculations, the convolution method was also used in the SZ for the viability assessment. For the site recommendation in 2001 and licensing compliance analysis in 2008, the 3-D transport results of the SZ were combined with 1-D transport results, which evaluated decay of radionuclides, in order to evaluate compliance with groundwater protection requirements. Uncertainty in flow within the unsaturated and saturated zone was generally important to explaining the spread in the individual dose performance measure.

Rob P. Rechard; Bill W. Arnold; Bruce A. Robinson; James E. Houseworth

2014-01-01T23:59:59.000Z

309

Chapter 22 - Radioactive Waste Disposal  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses safe disposal of radioactive waste in order to provide safety to workers and the public. Radioactive wastes arise from a great variety of sources, including the nuclear fuel cycle, and from beneficial uses of isotopes and radiation by institutions. Spent fuel contains uranium, plutonium, and highly radioactive fission products. In the United States spent fuel is accumulating, awaiting the development of a high-level waste repository. A multi-barrier system involving packaging and geological media will provide protection of the public over the centuries the waste must be isolated. The favored method of disposal is in a mined cavity deep underground. In other countries, reprocessing the fuel assemblies permits recycling of materials and disposal of smaller volumes of solidified waste. Transportation of wastes is by casks and containers designed to withstand severe accidents. Low-level wastes (LLWs) come from research and medical procedures and from a variety of activation and fission sources at a reactor site. They generally can be given near-surface burial. Isotopes of special interest are cobalt-60 and cesium-137. Transuranic wastes are being disposed of in the Waste Isolation Pilot Plant. Establishment of regional disposal sites by interstate compacts has generally been unsuccessful in the United States. Decontamination of defense sites will be long and costly. Decommissioning of reactors in the future will contribute a great deal of low-level radioactive waste.

Raymond L. Murray

2009-01-01T23:59:59.000Z

310

Chapter 13 - Energy Conversion of Biomass and Recycling of Waste Plastics Using Supercritical Fluid, Subcritical Fluid and High-Pressure Superheated Steam  

Science Journals Connector (OSTI)

Abstract Utilization of unused or waste biomass as fuels is receiving much attention owing to the reduction of CO2 emission and the development of alternative energy to expensive fossil fuels. On the other hand, the recycling of waste plastics is important for the prevention of the exhaustion of fossil resources. In this chapter, typical several examples of the energy conversion of biomass and the recycling of waste plastics using supercritical fluid, subcritical fluid, and high-pressure superheated steam were introduced: (1) bioethanol production from paper sludge with subcritical water, (2) hydrogen production from various biomass with high-pressure superheated steam, (3) production of composite solid fuel from waste biomass and plastics with subcritical water, (4) waste treatment and recovery of thermal energy with high-pressure superheated steam oxidation, (5) recycling of carbon fiber-reinforced plastic with high-pressure superheated steam and supercritical alcohol, (6) recycling of laminate film with subcritical water, and (7) recycling of cross-linked polyethylene with supercritical methanol.

Idzumi Okajima; Takeshi Sako

2014-01-01T23:59:59.000Z

311

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Management Management Waste Management Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Read more Tank Waste and Waste Processing The Department has approximately 88 million gallons of liquid waste stored in underground tanks and approximately 4,000 cubic meters of solid waste derived from the liquids stored in bins. The current DOE estimated cost for retrieval, treatment and disposal of this waste exceeds $50 billion to be spent over several decades.

312

U.S. Nuclear Waste Technical Review Board Performance Evaluation  

E-Print Network [OSTI]

Addendum A Addendum A U.S. Nuclear Waste Technical Review Board Performance Evaluation Fiscal Year 2005 The U.S. Nuclear Waste Technical Review Board The Nuclear Waste Policy Amendments Act nuclear fuel and defense high-level radioactive waste. The Act also estab lished the U.S. Nuclear Waste

313

DOE/EIS-0250D; Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov (indexed) [DOE]

U.S. Department of Energy (DOE) U.S. Department of Energy (DOE) TITLE: Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada CONTACT: For more information on this Environmental Impact Statement (EIS), write or call: Wendy R. Dixon, EIS Project Manager Yucca Mountain Site Characterization Office Office of Civilian Radioactive Waste Management U.S. Department of Energy P.O. Box 30307, Mail Stop 010 North Las Vegas, Nevada 89036-0307 Telephone: (800) 967-3477 The EIS is also available on the Internet at the Yucca Mountain Project website at http://www.ymp.gov and on the DOE National Environmental Policy Act (NEPA) website at http://tis.eh.doe.gov/nepa/. For general information on the DOE NEPA process, write or call:

314

THERMAL IMPACT OF WASTE EMPLACEMENT AND SURFACE COOLING ASSOCIATED WITH GEOLOGIC DISPOSAL OF NUCLEAR WASTE  

E-Print Network [OSTI]

d long-term storage and even methods for centralized waste •long-term storage of spent fuel, interim storage of high levei wastestorage of solid wastes of IAEA categories 3 and 4. 5) studies of long-term

Wang, J.S.Y.

2010-01-01T23:59:59.000Z

315

Solid-state NMR characterisation of transition-metal bearing nuclear waste glasses.  

E-Print Network [OSTI]

??Alkali borosilicate glass is used to immobilise high-level radioactive waste generated from the reprocessing of spent nuclear fuel. However, poorly soluble waste products such as… (more)

Greer, Brandon

2012-01-01T23:59:59.000Z

316

The Ethics of Nuclear Waste in Canada: Risks, Harms and Unfairness.  

E-Print Network [OSTI]

??The Nuclear Waste Management Organization (NWMO)  – the crown corporation responsible for the long-term storage of nuclear fuel waste in Canada  – seeks to bury… (more)

Wilding, Ethan

2010-01-01T23:59:59.000Z

317

Supported metal catalysts for alcohol/sugar alcohol steam reforming  

SciTech Connect (OSTI)

Despite extensive studies on hydrogen production via steam reforming of alcohols and sugar alcohols, catalysts typically suffer a variety of issues from poor hydrogen selectivity to rapid deactivation. Here, we summarize recent advances in fundamental understanding of functionality and structure of catalysts for alcohol/sugar alcohol steam reforming, and provide perspectives on further development required to design highly efficient steam reforming catalysts.

Davidson, Stephen; Zhang, He; Sun, Junming; Wang, Yong

2014-08-21T23:59:59.000Z

318

Research on Fuels & Lubricants | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels lDimethyl Ether Rheology and Materials Studies Natural Oils - The Next Generation of Diesel Engine Lubricants? Combined Heat and Power, Waste Heat, and District Energy...

319

Description of the Canadian Particulate-Fill WastePackage (WP) System for Spent-Nuclear Fuel (SNF) and its Applicability to Ligh-Water Reactor SNF WPS with Depleted Uranium-Dioxide Fill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3502 3502 Chemical Technology Division DESCRIPTION OF THE CANADIAN PARTICULATE-FILL WASTE-PACKAGE (WP) SYSTEM FOR SPENT-NUCLEAR FUEL(SNF) AND ITS APPLICABILITY TO LIGHT- WATER REACTOR SNF WPS WITH DEPLETED URANIUM-DIOXIDE FILL Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge, Tennessee 37831-6180 Tel: (423) 574-6783 Fax: (423) 574-9512 Email: forsbergcw@ornl.gov October 20, 1997 _________________________ Managed by Lockheed Martin Energy Research Corp. under contract DE-AC05-96OR22464 for the * U.S. Department of Energy. iii CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

320

Rethinking the light water reactor fuel cycle  

E-Print Network [OSTI]

The once through nuclear fuel cycle adopted by the majority of countries with operating commercial power reactors imposes a number of concerns. The radioactive waste created in the once through nuclear fuel cycle has to ...

Shwageraus, Evgeni, 1973-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste  

SciTech Connect (OSTI)

The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through the system without requiring any equipment or process changes. (10) Although the above attempt failed, the plant is still interested in producing briquettes. (11) An economic analysis of investing in a production facility manufacturing such briquettes was conducted to determine the economic viability of the project. Such a project is estimated to have an internal rate of return of 14% and net present value of about $400,000. (12) An engineering independent study class (4 students) is now working on selecting a site near the power plant and determining the layout of the future plant that will produce briquettes.

H. Carrasco; H. Sarper

2006-06-30T23:59:59.000Z

322

A Perspective on Nuclear Waste  

Science Journals Connector (OSTI)

The management of spent nuclear fuel and high-level nuclear waste has the deserved reputation as one of ... facing the United States and other nations using nuclear reactors for electric power generation. This pa...

D. Warner North

1999-08-01T23:59:59.000Z

323

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

324

Alcoholic biofuels as an admixture component for conventional and alternative diesel combustion processes  

Science Journals Connector (OSTI)

Biogenic admixture increases the possible savings in carbon dioxide emissions and reduces the dependency on fossil fuels. In this context especially alcohols not only provide the opportunity to optimize the tr...

Dipl.-Ing. Michael Kaack; Dr.-Ing. Christian Weiskirch…

2009-07-01T23:59:59.000Z

325

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management  

SciTech Connect (OSTI)

This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

Not Available

1994-06-01T23:59:59.000Z

326

Recommended surrogate PCB waste feed and fuel compositions to meet requirements given in Spec. K/D 5552 for test burns in the Martin Marietta Energy Systems Inc. incinerator  

SciTech Connect (OSTI)

Waste feed heats of combustion, principle organic hazardous constituents (POHCs), ash contents, and organic chlorine concentrations are specified in Table 3 of Spec. No. K/D-5552 for test burns 1 through 7 in the Martin Marietta Energy Systems, Inc. incinerator. The first four tests are intended to demonstrate that the incinerator will meet RCRA emission standards, HCl removal efficiencies, and requirements for destruction of POHCs. A mix containing 1,2-dichloro-, 1,2,4-trichloro-, and 1,2,4,5-tetrachlorobenzenes with a small amount of hexachlorobenzene is recommended as a PCB surrogate for test burns 5 and 6 to simulate the destructibility of PCBs in plant wastes. The mix would be diluted with appropriate amounts of dimethyl malonate and kerosene to obtain a homogeneous solution having the required heat of combustion and chlorine content for the liquid waste feeds. For test burn 7 the polychlorinated benzene mix would contain a small amount of hexachlorobenzene with larger amounts of 1,2,4,5-tetrachloro- and 1,2,4-trichlorobenzenes. The composition of the polychlorinated mixes is such that they should be comparable to Aroclor 1254 in overall destructibility by incineration, and achievement of a DRE for hexachlorobenzene greater than 99.99% in the test burns should provide assurance that the incinerator will be able to destroy PCBs in Aroclor 1260, which is the most refractory PCB mix present in plant wastes. If hexachlorobenzene is not available for these tests, hexachlorocyclopentadiene is recommended as a substitute for hexachlorobenzene in tests 5-7, which involve a PCB surrogate, and hexachloroethane is recommended as the alternative solid waste feed for test 4. Solutions containing kerosene and methanol are recommended as liquid fuels for tests 1 and 4 to achieve the required heats of combustion, while a dimethyl malonate-methanol solution is recommended to achieve the 7000 Btu/lb heat of combustion for test burn 2.

Anderson, R.W.

1984-12-28T23:59:59.000Z

327

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

328

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

329

Alcohol | OpenEI  

Open Energy Info (EERE)

Alcohol Alcohol Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by the transportation industry. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption transportation industry UN Data application/xml icon UN Data: consumption by transportation industry XML (xml, 95 KiB) text/csv icon UN Data: consumption by transportation industry XLS (csv, 21.6 KiB)

330

Waste Management | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 27, 2011 July 27, 2011 End of Year 2010 SNF & HLW Inventories Map of the United States of America that shows the location of approximately 64,000 MTHM of Spent Nuclear Fuel (SNF) & 275 High-Level Radioactive Waste (HLW) Canisters. July 27, 2011 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended.

331

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

332

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

333

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

334

Long-term management of high-level radioactive waste (HLW) and...  

Broader source: Energy.gov (indexed) [DOE]

Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) Long-term management of high-level radioactive waste (HLW) and spent nuclear fuel (SNF)...

335

Development of a fuel-tolerant diesel for alternative fuels  

Science Journals Connector (OSTI)

There is a growing requirement for engines operating on a wider range of fuels than when fuel supplies were more stable. The diesel engine, with its high compression ratio and absence of part-load throttling, offers high efficiency. Some widely available alternative fuels, in particular alcohol from biomass, present problems because of their low cetane number. The authors report the development of a diesel engine using a combustion system incorporating a high-energy, multi-strike spark to promote smooth combustion. Results obtained with this engine using ethanol are presented to illustrate its ability to handle fuels of very low cetane numbers.

A.W.E. Henham; R.A. Johns; S. Newnham

1991-01-01T23:59:59.000Z

336

Evaporation Characteristics of a Liquid Bio-Fuel from Chicken Litter .  

E-Print Network [OSTI]

??Alternative fuels are becoming more important as fossil fuels become more expensive. This thesis describes the production and properties of a bio-oil produced from waste… (more)

Tolonen, Erik

2013-01-01T23:59:59.000Z

337

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents [OSTI]

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

338

Method for aqueous radioactive waste treatment  

DOE Patents [OSTI]

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

1994-01-01T23:59:59.000Z

339

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington Dear Speaker Pelosi, Senator Byrd, and Secretary Bodman: The Nuclear Waste Technical Review Board, and transporting high-level radioactive waste and spent nuclear fuel. The Board is required to report its findings

340

United States Nuclear Waste Technical Review Board  

E-Print Network [OSTI]

United States Nuclear Waste Technical Review Board Experience Gained From Programs to Manage High-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other Countries A Report to Congress and the Secretary of Energy April 2011 #12;#12;U.S. Nuclear Waste Technical Review Board Experience Gained From

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

342

Production of Mixed Alcohols from Bio-syngas over Mo-based Catalyst  

Science Journals Connector (OSTI)

A series of Mo-based catalysts prepared by sol-gel method using citric acid as complexant were successfully applied in the high efficient production of mixed alcohols from bio-syngas derived from the biomass gasification. The Cu1Co1Fe1Mo1Zn0.5? 6%K catalyst exhibited a higher activity on the space-time yield of mixed alcohols compared with the other Mo-based catalysts. The carbon conversion significantly increases with rising temperature below 340 °C but the alcohol selectivity has an opposite trend. The maximum mixed alcohols yield derived from biomass gasification is 494.8 g/(kgcatal·h) with the C2+ (C2—C6 higher alcohols) alcohols of 80.4% under the tested conditions. The alcohol distributions are consistent with the Schulz-Flory plots except methanol. In the alcohols products the C2+ alcohols (higher alcohols) dominate with a weight ratio of 70%–85%. The Mo-based catalysts have been characterized by X-ray diffraction and N2 adsorption/desorption. The clean bio-fules of mixed alcohols derived from bio-syngas with higher octane values could be used as transportation fuels or petrol additives.

Song-bai Qiu; Wei-wei Huang; Yong Xu; Lu Liu; Quan-xin Li

2011-01-01T23:59:59.000Z

343

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

344

West Valley Demonstration Project DOE Manual 435.1-1 Waste Incidental...  

Broader source: Energy.gov (indexed) [DOE]

435.1, provides that the DOE may determine that certain waste from reprocessing spent nuclear fuel is waste incidental to reprocessing, is not high-level waste and may be...

345

The Measurement of Thermal Diffusivity of Simulated Glass Forming Nuclear Waste Melts  

Science Journals Connector (OSTI)

High-level nuclear waste is generated during reprocessing of nuclear reactor fuels. At present, these wastes are stored at various locations in the United States until a final waste form (i.e., glass, SYNROC, ......

James U. Derby; L. David Pye; M. J. Plodinec

1983-01-01T23:59:59.000Z

346

Steam thermolysis of discarded tires: testing and analysis of the specific fuel consumption with tail gas burning, steam generation, and secondary waste slime processing  

Science Journals Connector (OSTI)

This paper presents the process of steam thermolysis of shredded used tires for obtaining from them liquid fuel and technical carbon carried out in a screw reactor with heating due to the partial burning of obtai...

V. A. Kalitko; Morgan Chun Yao Wu…

2009-03-01T23:59:59.000Z

347

Thermal Utilization of Solid Recovered Fuels in Pulverized Coal Power Plants and Industrial Furnaces as Part of an Integrated Waste Management Concept  

Science Journals Connector (OSTI)

Solid Recovered Fuels (SRF) are highly heterogeneous mixtures generated...CEN/TC 343 2003...). They are composed of a variety of materials of which some although recyclable in theory, may have become in forms tha...

G. Dunnu; J. Maier; A. Gerhardt

2009-01-01T23:59:59.000Z

348

Fifth National Report for the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management  

Broader source: Energy.gov [DOE]

This Fifth United States of America (U.S.) National Report updates the Fourth Report published in October 2011, under the terms of the Joint Convention on the Safety of Spent Fuel Management and on...

349

Alcohol Poisoning Death in New Mexico  

E-Print Network [OSTI]

Alcohol poisoning results from the rapid ingestion of large quantities of alcohol, which can lead to very high blood alcohol concentrations and death. In the past several years, the highly publicized alcohol-poisoning

unknown authors

350

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

351

Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

M. J. Appel and J. M. Capron

2007-07-25T23:59:59.000Z

352

Nuclear waste management technical support in the development of nuclear waste form criteria for the NRC. Task 1. Waste package overview  

SciTech Connect (OSTI)

In this report the current state of waste package development for high level waste, transuranic waste, and spent fuel in the US and abroad has been assessed. Specifically, reviewed are recent and on-going research on various waste forms, container materials and backfills and tentatively identified those which are likely to perform most satisfactorily in the repository environment. Radiation effects on the waste package components have been reviewed and the magnitude of these effects has been identified. Areas requiring further research have been identified. The important variables affecting radionuclide release from the waste package have been described and an evaluation of regulatory criteria for high level waste and spent fuel is presented. Finally, for spent fuel, high level, and TRU waste, components which could be used to construct a waste package having potential to meet NRC performance requirements have been described and identified.

Dayal, R.; Lee, B.S.; Wilke, R.J.; Swyler, K.J.; Soo, P.; Ahn, T.M.; McIntyre, N.S.; Veakis, E.

1982-02-01T23:59:59.000Z

353

Synthetic fuels handbook: properties, process and performance  

SciTech Connect (OSTI)

The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

Speight, J. [University of Utah, UT (United States)

2008-07-01T23:59:59.000Z

354

Fuel Cycle Utilizing Plutonium-238 as a“Heat Spike” for Proliferation Resistance  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel Cycle

W. R. Waltz; W. L. Godfrey; A. K. Williams

355

E-Print Network 3.0 - a-1 fuel production Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, &...

356

E-Print Network 3.0 - analysis phwr fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Biomaterials Waste Cooking Oil Crops Intermediate Products Conversion... Technologies Bioenergy Products Ethanol Biodiesel Electricity & Heat Other Fuels, Chemicals, & ......

357

Geothermal source potential and utilization for alcohol production  

SciTech Connect (OSTI)

A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

Austin, J.C.

1981-11-01T23:59:59.000Z

358

Fuel-Slurry Integrated Gasifier/Gas Turbine (FSIG/GT) Alternative for Power Generation Applied to Municipal Solid Waste (MSW)  

Science Journals Connector (OSTI)

The gas is cleaned to bring the particle content and size as well alkaline concentration within the acceptable limits for injections into standard gas turbines. ... The proper disposal and use of Municipal Solid Wastes (MSW) for power generation remains among the most pressing problems of medium to large cities. ... Bubble sizes and raising velocities through the gasifier bed (Configuration A). ...

Marcio L. de Souza-Santos; Kevin B. Ceribeli

2013-11-22T23:59:59.000Z

359

Workshop on the source term for radionuclide migration from high-level waste or spent nuclear fuel under realistic repository conditions: proceedings  

SciTech Connect (OSTI)

Sixteen papers were presented at the workshop. The fourteen full-length papers included in the proceedings were processed separately. Only abstracts were included for the following two papers: Data Requirements Based on Performance Assessment Analyses of Conceptual Waste Packages in Salt Repositories, and The Potential Effects of Radiation on the Source Term in a Salt Repository. (LM)

Hunter, T.O.; Muller, A.B. (eds.)

1985-07-01T23:59:59.000Z

360

Production of Biofuels from High-Acid-Value Waste Oils  

Science Journals Connector (OSTI)

Production of Biofuels from High-Acid-Value Waste Oils ... (1) Biofuel is derived from a renewable, domestic resource, thereby relieving reliance on petroleum fuel imports. ...

Junming Xu; Guomin Xiao; Yonghong Zhou; Jianchun Jiang

2011-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Canister design for deep borehole disposal of nuclear waste .  

E-Print Network [OSTI]

??The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories… (more)

Hoag, Christopher Ian.

2006-01-01T23:59:59.000Z

362

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

363

Shipping Radioactive Waste by Rail from Brookhaven National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications West Valley Demonstration Project Low-Level Waste Shipment Nuclear Fuel Storage and Transportation Planning Project Overview Prairie Island Indian...

364

Nuclear waste management. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

The status of the following programs is reported: high-level waste immobilization; alternative waste forms; Nuclear Waste Materials Characterization Center; TRU waste immobilization; TRU waste decontamination; krypton solidification; thermal outgassing; iodine-129 fixation; monitoring and physical characterization of unsaturated zone transport; well-logging instrumentation development; mobility of organic complexes of fission products in soils; waste management system studies; waste management safety studies; assessment of effectiveness of geologic isolation systems; waste/rock interactions technology; systems study on engineered barriers; criteria for defining waste isolation; spent fuel and fuel pool component integrity program; analysis of spent fuel policy implementation; asphalt emulsion sealing of uranium tailings; application of long-term chemical biobarriers for uranium tailings; and development of backfill material.

Platt, A.M.; Powell, J.A. (comps.)

1980-09-01T23:59:59.000Z

365

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...4). Although disposal of HLW remains...for long-term disposal is through deep...successful waste-disposal program has eluded...geologic repository at Yucca Mountain, Nevada. Authorized...Administration withdrew funding for Yucca Mountain...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

366

Chapter 30 Waste Management: General Administrative Procedures (Kentucky) |  

Broader source: Energy.gov (indexed) [DOE]

Chapter 30 Waste Management: General Administrative Procedures Chapter 30 Waste Management: General Administrative Procedures (Kentucky) Chapter 30 Waste Management: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous

367

Hazardous Waste Management (North Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

(North Carolina) (North Carolina) Hazardous Waste Management (North Carolina) < Back Eligibility Commercial Industrial Construction Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Carolina Program Type Environmental Regulations Safety and Operational Guidelines Siting and Permitting Provider Department of Environment and Natural Resources These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for surface impoundments and location standards for facilities. An applicant applying for a permit for a hazardous waste facility shall

368

List of Municipal Solid Waste Incentives | Open Energy Information  

Open Energy Info (EERE)

Waste Incentives Waste Incentives Jump to: navigation, search The following contains the list of 172 Municipal Solid Waste Incentives. CSV (rows 1 - 172) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Clean Energy Project Grants (Texas) State Grant Program Texas Commercial Industrial Utility Biomass Municipal Solid Waste No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes Alternative Energy Law (AEL) (Iowa) Renewables Portfolio Standard Iowa Investor-Owned Utility Anaerobic Digestion

369

Georgia Waste Control Law (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Waste Control Law (Georgia) Waste Control Law (Georgia) Georgia Waste Control Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Provider Georgia Department of Natural Resources The Waste Control Law makes it unlawful to dump waste in any lakes, streams

370

Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

Not Available

1994-05-01T23:59:59.000Z

371

Process for immobilizing plutonium into vitreous ceramic waste forms  

DOE Patents [OSTI]

Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

Feng, X.; Einziger, R.E.

1997-08-12T23:59:59.000Z

372

Process for immobilizing plutonium into vitreous ceramic waste forms  

DOE Patents [OSTI]

Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

Feng, X.; Einziger, R.E.

1997-01-28T23:59:59.000Z

373

Alternative fuels for low emissions and improved performance in CI and heavy duty engines  

SciTech Connect (OSTI)

Contents include: Limited durability of the diesel engine with a dual-fuel system on neat sunflower oil; Analysis and testing of a high-pressure micro-compressor; Spark-assisted alcohol operation in a low heat rejection engine; Combustion improvement of heavy-duty methanol engine by using autoignition system; Clean Fleet Alternative Fuels demonstration project; Vehicle fuel economy -- the Clean Fleet Alternative Fuels project; Safety and occupational hygiene results -- Clean Fleet Alternative Fuels project; Vehicle reliability and maintenance -- Clean Fleet Alternative Fuels project; Flammability tests of alcohol/gasoline vapors; Flame luminosity enhancement of neat methanol fuel by non-aromatic hydrocarbon additives; and more.

NONE

1995-12-31T23:59:59.000Z

374

Handbook of fuel cell performance  

SciTech Connect (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

375

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Broader source: Energy.gov (indexed) [DOE]

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

376

Independent regulatory examination of radiation situation in the areas of spent nuclear fuel and radioactive wastes storage in the Russian far east  

Science Journals Connector (OSTI)

......submarines performing reception and storage of spent nuclear fuel (SNF...as well as for temporary storage and reloading of SNF after...seaweeds, bottom sediments, seawater, sea fish, mushrooms, local...for LRW treatment, the LRW storage facility, SRW storage facility......

N. K. Shandala; S. M. Kiselev; A. I. Lucyanec; A. V. Titov; V. A. Seregin; D. V. Isaev; S. V. Akhromeev

2011-07-01T23:59:59.000Z

377

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

378

Definition: Fuel cell | Open Energy Information  

Open Energy Info (EERE)

Fuel cell Fuel cell Jump to: navigation, search Dictionary.png Fuel cell An electrochemical device that converts chemical energy directly into electricity. View on Wikipedia Wikipedia Definition A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used. Fuel cells are different from batteries in that they require a constant source of fuel and oxygen/air to sustain the chemical reaction; however, fuel cells can produce electricity continually for as long as these inputs are supplied. In 1838, German physicist Christian Friedrich Schönbein invented the first

379

Spent fuel pyroprocessing demonstration  

SciTech Connect (OSTI)

A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

McFarlane, L.F.; Lineberry, M.J.

1995-05-01T23:59:59.000Z

380

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Low Level Waste Disposition - Quantity and Inventory | Department of  

Broader source: Energy.gov (indexed) [DOE]

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

382

Procuring Fuel Cells for Stationary Power: A Guide for Federal...  

Broader source: Energy.gov (indexed) [DOE]

low natural gas prices, and opportunity fuels, which means the ability to use waste biogas from wastewater treatment plants or landfills. On the bottom is an illustration that...

383

National Report Joint Convention on the Safety of Spent Fuel...  

Office of Environmental Management (EM)

National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

384

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities we’ve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

385

Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030  

SciTech Connect (OSTI)

The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-10T23:59:59.000Z

386

Energy Integration and Analysis of Solid Oxide Fuel Cell Based Microcombined Heat and Power Systems and Other Renewable Systems Using Biomass Waste Derived Syngas  

Science Journals Connector (OSTI)

(2, 3) The microgeneration or self-generation concept for dwellings is associated with several advantages, such as (1) cutting emissions of greenhouse gases, (2) reducing the number of people living in fuel poverty, (3) reducing the demands on transmission systems and distribution systems, (4) reducing the need for those systems to be modified, (5) enhancing the availability of electricity and heat for consumers, and (6) encouraging consumer engagement with energy efficient technologies. ... The SOFC can utilize heat of oxidization of gaseous fuels, such as hydrogen, syngas, and natural gas, in the anode in the presence of an oxidant in the cathode, to produce electricity. ... The biomass gasification plant under consideration comprises gasifiers, gas cooling and clean up technologies, gas turbines, heat recovery steam generators (HRSG), etc. ...

Jhuma Sadhukhan; Yingru Zhao; Matthew Leach; Nigel P. Brandon; Nilay Shah

2010-10-08T23:59:59.000Z

387

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

and compostable material was generally burned in backyards. In 1970, the Clean Air Act was passed restricting the burning of leaves and other yard waste. ' These wastes were then disposed in landfills. As landfills reached capacity, commu- nities composted... separation pro- grams because of their "throw-away" mentality. " ~ln in r ttgtt Incineration is the controlled burning of the combustible fraction of solid waste. The first electrical generating station in the United States that was fueled by solid waste...

Haney, Brenda Ann

2012-06-07T23:59:59.000Z

388

State Level Incentives for Biogas-Fuel Cell Projects  

Broader source: Energy.gov [DOE]

State policy and legislative outlook for biogas and fuel cells. Presented by Norma McDonald, Organic Waste Systems, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

389

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

390

Biogas Impurities and Cleanup for Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impurities and Cleanup for Fuel Cells Impurities and Cleanup for Fuel Cells Dennis Papadias and Shabbir Ahmed Argonne National Laboratory Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 Biogas is the product of anaerobic decomposition of organic waste Municipal solid wastes (MSW)  For every 1 million tons of MSW: - 432,000 cubic feet per day of landfill gas (LFG) for a period of 20 years - 1 MW of electricity 1 Sewage sludge/waste water (WWTP or ADG)  A typical WWTP processes 100 gallons per day (GD) for every person served - 1 cubic foot of digester gas can be produced per 100 gallons of wastewater  100 kW of electricity 1 can be generated from 4.5 MGD of waste water Agricultural waste (i.e. dairy waste)  About 70-100 ft 3 /day of digester gas is produced

391

Handbook of industrial and hazardous wastes treatment. 2nd ed.  

SciTech Connect (OSTI)

This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis (eds.)

2004-06-15T23:59:59.000Z

392

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

393

Alcohol Use, Comorbidity, and Mortality  

E-Print Network [OSTI]

with alcohol use: previous heart attack, previous stroke,and prior history of heart attack, stroke, hypertension, andNonsmoker Hypertension, % Heart attack, % Stroke, % Diabetes

2006-01-01T23:59:59.000Z

394

Alcohol policy process in Thailand.  

E-Print Network [OSTI]

??The thesis describes and analyses the Thai alcohol policy process in the period 1997 - 2006, in order to investigate the characteristics and areas for… (more)

Thaksaphon, Thamarangsi

2008-01-01T23:59:59.000Z

395

Disposal of Hanford Site Tank Wastes  

Science Journals Connector (OSTI)

Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at ...

M. J. Kupfer

1994-01-01T23:59:59.000Z

396

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

397

Nuclear Waste: Knowledge Waste?  

Science Journals Connector (OSTI)

...06520, USA. Nuclear power is re-emerging...proclaiming a “nuclear renaissance...example, plant safety...liabilities, terrorism at plants and in transport...high-level nuclear wastes (HLW...factor in risk perceptions...supporting nuclear power in the abstract...

Eugene A. Rosa; Seth P. Tuler; Baruch Fischhoff; Thomas Webler; Sharon M. Friedman; Richard E. Sclove; Kristin Shrader-Frechette; Mary R. English; Roger E. Kasperson; Robert L. Goble; Thomas M. Leschine; William Freudenburg; Caron Chess; Charles Perrow; Kai Erikson; James F. Short

2010-08-13T23:59:59.000Z

398

Alternative Fuels Data Center: Ethanol Production Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Production Ethanol Production Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Credit County governments are eligible to receive waste reduction credits for using yard clippings, clean wood waste, or paper waste as feedstock for the

399

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

400

Ethanol Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

402

Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste  

E-Print Network [OSTI]

waste (i.e, mixture of biohazardous and chemical or radioactive waste), call Environment, Health2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619

Tsien, Roger Y.

403

Hazardous Waste Management (Indiana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) Hazardous Waste Management (Indiana) < Back Eligibility Agricultural Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Indiana Program Type Environmental Regulations Provider Indiana Department of Environmental Management The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental Management is tasked regulating hazardous waste management facilities and practices. Provisions pertaining to permitting, site approval, construction, reporting, transportation, and remediation practices and fees are discussed in these

404

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

405

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

406

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect (OSTI)

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

407

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Broader source: Energy.gov (indexed) [DOE]

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

408

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Broader source: Energy.gov (indexed) [DOE]

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

409

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Broader source: Energy.gov (indexed) [DOE]

2 Standards Applicable to Generators of Hazardous Waste 2 Standards Applicable to Generators of Hazardous Waste (Kentucky) Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also

410

Georgia Hazardous Waste Management Act | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

411

Waste Heat Recapture from Supermarket Refrigeration Systems  

SciTech Connect (OSTI)

The objective of this project was to determine the potential energy savings associated with improved utilization of waste heat from supermarket refrigeration systems. Existing and advanced strategies for waste heat recovery in supermarkets were analyzed, including options from advanced sources such as combined heat and power (CHP), micro-turbines and fuel cells.

Fricke, Brian A [ORNL

2011-11-01T23:59:59.000Z

412

Nuclear Waste Repository Plan Approved by Senate  

Science Journals Connector (OSTI)

Bill calls for selection of permanent repository site by 1989, building of a retrievable waste facility, cash payments states with storage sites ... After considerable debate, the Senate has approved a plan aimed at getting the federal government's effort to find a long-term storage site for spent nuclear fuel and highlevel nuclear wastes off dead center and out of the political crossfire. ...

JANICE LONG

1987-12-07T23:59:59.000Z

413

Radioactive waste material melter apparatus  

DOE Patents [OSTI]

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

414

Gene therapy in alcoholic rats  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

70 70 Sept. 9, 2001 Gene Therapy Reduces Drinking in "Alcoholic" Rats UPTON, NY - Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have shown that increasing the level of a brain protein important for transmitting pleasure signals can turn rats that prefer alcohol into light drinkers, and those with no preference into near teetotalers. The findings, published in the first September 2001 issue of the Journal of Neurochemistry (Vol. 78, No. 5), may have implications for the prevention and treatment of alcoholism in humans. "This is a preliminary study, but when you see a rat that chooses to drink 80 to 90 percent of its daily fluid as alcohol, and then three days later it's down to 20 percent, that's a dramatic drop in alcohol intake - a very clear change in behavior," said Panayotis Thanos, the lead researcher. "This gives us great hope that we can refine this treatment for future clinical use."

415

A case study on the influence of THM coupling on the near field safety of a spent fuel repository in sparsely fractured granite  

E-Print Network [OSTI]

geological disposal of spent CANDU fuel in Canada, a safetyhypothetical repository for spent CANDU fuel in the Canadianbuffer. The waste form: CANDU reactors in Canada are fuelled

Nguyen, T.S.

2009-01-01T23:59:59.000Z

416

Talk, No Action On Nuclear Waste Plan  

Science Journals Connector (OSTI)

Talk, No Action On Nuclear Waste Plan ... “Nowhere” was how an exasperated Lt. Gen. Brent Scowcroft, chairman of the Blue Ribbon Commission on America’s Nuclear Future, described the status of the U.S.’s search for a place to store spent commercial nuclear fuel and other radioactive waste. ... Although the blue-ribbon commission had completed its seminal report on nuclear waste in January, Scowcroft noted that action on its recommendations was “nowhere.” ...

JEFF JOHNSON

2012-09-30T23:59:59.000Z

417

Model documentation: Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

Not Available

1994-04-01T23:59:59.000Z

418

Nuclear waste programs; Semiannual progress report, October 1991--March 1992  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Waste Programs of the Chemical Technology Division (CMT), Argonne National Laboratory, in the period October 1991-March 1992. In these programs, studies are underway on the performance of waste glass and spent fuel in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories

Bates, J.K.; Bradley, C.R.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Emery, J.W.; Feng, X.; Finn, P.A.; Gerding, T.J.; Hoh, J.C. [and others

1993-11-01T23:59:59.000Z

419

Solid Waste Reduction, Recovery, and Recycling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Reduction, Recovery, and Recycling Reduction, Recovery, and Recycling Solid Waste Reduction, Recovery, and Recycling < Back Eligibility Investor-Owned Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Wisconsin Program Type Environmental Regulations Provider Department of Natural Resources This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource recovery from solid waste. The statute also notes that research, development and innovation in the design, management and operation of solid waste reduction, reuse, recycling,

420

Coal/waste cofiring: International survey of combustion practices  

SciTech Connect (OSTI)

Coal is an abundant fuel resource worldwide with an historically stable price. The use of coal is expected to increase, particularly in developing countries; and, as industrialization increases, so will the amount of various waste materials and the environmental problems associated with their disposal. Therefore, coal/waste cofiring can offer an environmentally sound, economic approach to both waste remediation and energy production. This paper highlights the results of an international survey of coal/waste cofiring by describing the principal wastes used and the combustion technologies employed. Also provided are examples of cofiring and areas where cofired fuel parameters will have an effect on boiler performance.

Harding, N.S.; Smouse, S.M.; Ekmann, J.M.; Winslow, J.S. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Ramezan, M. [Burns and Roe Services Corp., Pittsburgh, PA (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tax Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Tax Exemption Biodiesel producers that produce biodiesel from waste vegetable oil feedstock are exempt from the state special fuel tax. Waste vegetable oil means used cooking oil gathered from restaurants or commercial food

422

Alternative Waste Forms for Electro-Chemical Salt Waste  

SciTech Connect (OSTI)

This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

2009-10-28T23:59:59.000Z

423

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

424

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

425

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

426

Solid Waste Program (Alabama) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program (Alabama) Program (Alabama) Solid Waste Program (Alabama) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties. Solid waste refers to any garbage, rubbish, construction or demolition debris, ash, or sludge from a waste treatment facility, water supply plant, or air pollution control facility, and any other discarded materials, including solid, liquid, semisolid, or contained gaseous material resulting

427

Radioactive waste at Ward Valley  

Science Journals Connector (OSTI)

...Data Base for 1992: U.S. Spent Fuel and Radioactive Waste Inventories, Projections and Characteristics, publi. DOE/RW-0006, Rev. 8 (U.S. Department of Energy, Washington, DC, 1989), p. 113. 2. T. Taylor, quoted by S. Salesky...

Earl Budin

1995-09-22T23:59:59.000Z

428

Strategy for the Management and Disposal of Used Nuclear Fuel and  

Broader source: Energy.gov (indexed) [DOE]

Strategy for the Management and Disposal of Used Nuclear Fuel and Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste The Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

429

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

430

Fuel Cycle Technology Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Technology Documents Fuel Cycle Technology Documents January 11, 2013 Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Issued on January 11, 2013, the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste is a framework for moving toward a sustainable program to deploy an integrated system capable of transporting, storing, and disposing of used nuclear fuel and high-level radioactive waste from civilian nuclear power generation, defense, national security and other activities. October 30, 2012 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security

431

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect (OSTI)

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2008-01-01T23:59:59.000Z

432

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect (OSTI)

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2009-01-01T23:59:59.000Z

433

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

434

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

435

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19  

SciTech Connect (OSTI)

Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

Schneider, K.J.

1982-09-01T23:59:59.000Z

436

E85 Fuel Dispensers Lacking UL Listing  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alcohol Alcohol and Gambling Enforcement Buresu of Crmrnal Apprehension Drrder and Vehicle Serwces Hom~e land Security and Emergency Managomcnt M~nnesota State Patrol Office of Cornmuntcations Off~ce of Justice Programs State Fire Marshal and Pipdine Safety State Fire Marshal and Pipeline Safety 444 Cedar Street Suite 145 Saint Paul. Minnesota 5 5 10 1-5 14.5 Phone: 651.ZU1.7200 Fax: 651.215.05G TTY: 651.282.6555 www.dps.state.mn.us Mn State Fire Marshal Update October 23.2006 E-85 Fuel Dispensers Iack UL iisting We have become aware of the lack of an approved national standard for the disperlsers and connected appurtenances involved in the dispensing of fuel which contains more than 1504 alcohol (E-85). The Mi nncsota State Fire Cvde currently requires all dispensing equipment

437

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

438

Nuclear Waste Policy Act.doc  

Broader source: Energy.gov (indexed) [DOE]

Civilian Radioactive Civilian Radioactive Waste Management Washington, D.C. 20585 March 2004 i THE NUCLEAR WASTE POLICY ACT OF 1982 1 An Act to provide for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel, to establish a program of research, development, and demonstration regarding the disposal of high-level radioactive waste and spent nuclear fuel, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SHORT TITLE AND TABLE OF CONTENTS Section 1. This Act may be cited as the "Nuclear Waste Policy Act of 1982". Sec. 1. Short title and table of contents...........................................................................i

439

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

440

Proceedings of conference on fleet use of unique automotive fuels  

SciTech Connect (OSTI)

Papers and/or summaries of presentations which were given at the conference are included in this volume. The conference was concerned with alcohol and emergency fuels. Topics covered include: ethanol supply; Texaco lead-free gasohol distribution; the BETC fleet test program; the army fleet test program; tri-butyl alcohol and methanol in gasoline (blending, distribution, utilization); the DOE alcohol fuels utilization program; DOE engineering and reliability fleet test results; federal emergency energy policy; emergency transportation resource management; EPA emergency action; DOE transportation emergency fuels program; and emergency fuels utilization guidebook. Summaries of the 2 panel discussions are also included. Separate abstracts of 5 papers have been prepared for inclusion in the Energy Data Base. There are 10 summaries in this document which have not been abstracted separately. (DMC)

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "waste alcohol fuels" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications  

SciTech Connect (OSTI)

Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

Eteman, Shahrokh

2013-06-30T23:59:59.000Z

442

Model documentation renewable fuels module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

NONE

1995-06-01T23:59:59.000Z

443

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect (OSTI)

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

444

Economic Modeling of Energy Supply from Burning Wood Wastes at British Columbia Pulp and Paper Mills  

Science Journals Connector (OSTI)

This paper analyzes the use of wood wastes to replace the extensive fossil-fuel consumption ... Columbia, and the further use of wood wastes to produce electricity at these mills. The ... would be willing to pay ...

A. J. Cox…

1980-01-01T23:59:59.000Z

445

Optimization of ethanol production from spent tea waste by Saccharomyces cerevisiae using statistical experimental designs  

Science Journals Connector (OSTI)

The aim of this study was to investigate the prospect for the use of spent tea waste (STW), an important municipal waste, as a potential substrate to generate hydrolysates for fuel ethanol production. Acid pretre...

Yasin Yücel; Sezer Göyc?nc?k

2014-07-01T23:59:59.000Z

446

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

447

Municipal Solid Waste Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies Municipal Solid Waste Resources and Technologies October 7, 2013 - 9:28am Addthis Black and white photo of a bulldozer pushing a large mound of trash in a landfill. The National Renewable Energy Laboratory's high-solids digester converts wastes to biogas and compost for energy production. This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector. Overview Municipal solid waste, also known as waste to energy, generates electricity by burning solid waste as fuel. This generates renewable electricity while also incinerating landfill and other municipal waste products such as trash, yard clippings and debris, furniture, food scraps, and other

448

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

449

Solid Waste Policies (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Policies (Iowa) Policies (Iowa) Solid Waste Policies (Iowa) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are required to establish and operate a comprehensive solid waste reduction program. These regulations discuss land application of processed wastes as well as requirements for sanitary landfills and for groundwater monitoring near land disposal sites

450

Waste-to-Energy Workshop Agenda  

Broader source: Energy.gov [DOE]

The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key technical barriers to the commercial deployment of liquid transportation fuels from waste feedstocks. As a part of this effort, BETO is organizing a Waste-to-Energy Roadmapping workshop. Workshop participants will join facilitated breakout sessions to discuss anaerobic digestion, hydrothermal liquefaction, and other processes that make productive use of wastewater residuals, biosolids, foodstuffs, and organic municipal solid waste. These discussions will be synthesized and used in developing a waste-to-energy technology roadmap.

451

Optimization of Waste Disposal - 13338  

SciTech Connect (OSTI)

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

452

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

453

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

454

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuel