Sample records for waste agricultural crop

  1. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    E-Print Network [OSTI]

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

    2009-01-01T23:59:59.000Z

    feedstocks, such as agricultural wastes and energy crops,feedstocks, such as agricultural wastes and forestry wastes,biomass, such as agricultural waste corn stover (112.7

  2. Utilization of Agricultural WasteUtilization of Agricultural Waste for Composite Panelsfor Composite Panels

    E-Print Network [OSTI]

    Utilization of Agricultural WasteUtilization of Agricultural Waste for Composite Panelsfor to increase. There is potential for agricultural residue fiber toThere is potential for agricultural residue. The benefits of utilizing agricultural residues for woodbenefits of utilizing agricultural residues for wood

  3. Risk in agriculture : a study of crop yield distributions and crop insurance

    E-Print Network [OSTI]

    Gayam, Narsi Reddy

    2006-01-01T23:59:59.000Z

    Agriculture is a business fraught with risk. Crop production depends on climatic, geographical, biological, political, and economic factors, which introduce risks that are quantifiable given the appropriate mathematical ...

  4. TRADE COSTS AND THE GAINS FROM TRADE IN CROP AGRICULTURE

    E-Print Network [OSTI]

    Tullos, Desiree

    TRADE COSTS AND THE GAINS FROM TRADE IN CROP AGRICULTURE JEFFREY J. REIMER AND MAN LI We develop trade, and the elasticity of trade volumes to trade costs. The distribution of the gains from trade the extent by which changes in one country are transmitted to others. Key words: geography, grains, trade

  5. Cost Methodology for Biomass Feedstocks: Herbaceous Crops and Agricultural Residues

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Webb, Erin [ORNL; Sokhansanj, Shahabaddine [ORNL

    2009-12-01T23:59:59.000Z

    This report describes a set of procedures and assumptions used to estimate production and logistics costs of bioenergy feedstocks from herbaceous crops and agricultural residues. The engineering-economic analysis discussed here is based on methodologies developed by the American Society of Agricultural and Biological Engineers (ASABE) and the American Agricultural Economics Association (AAEA). An engineering-economic analysis approach was chosen due to lack of historical cost data for bioenergy feedstocks. Instead, costs are calculated using assumptions for equipment performance, input prices, and yield data derived from equipment manufacturers, research literature, and/or standards. Cost estimates account for fixed and variable costs. Several examples of this costing methodology used to estimate feedstock logistics costs are included at the end of this report.

  6. Climate impacts on agriculture: Implications for crop production

    SciTech Connect (OSTI)

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19T23:59:59.000Z

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  7. alternative agricultural crops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crops in new areas; (6) growing crops for new uses; (7) growing crops with new management techniques; (8) selling crops in new markets. Ernest Small 1999-01-01 2 ASSESSMENT...

  8. Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes

    E-Print Network [OSTI]

    Landis, Doug

    Implications of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural landscapes and generalist natural enemies in three model biofuel crops: corn, switch- grass, and mixed prairie, we tested

  9. Charles County- Agricultural Preservation Districts- Renewable Generation Allowed

    Broader source: Energy.gov [DOE]

    Charles County provides that producing energy "from solar, wind, biomass, and farm waste and residue crops" is a permitted agricultural use in areas zoned as Agricultural Preservation Districts.

  10. agronomie: agriculture and environment Nitrogen uptake capacities of maize and sorghum crops

    E-Print Network [OSTI]

    Boyer, Edmond

    agronomie: agriculture and environment Nitrogen uptake capacities of maize and sorghum crops to a larger quantity of intercepted radiation. The efficiency of transforming intercepted energy into aerial nitrogen input should enable this species to grow in extensive cropping conditions. Moreover, the higher N

  11. MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE

    E-Print Network [OSTI]

    1099 MOVEMENT OF FEMALE WHITE-TAILED DEER: EFFECTS OF CLIMATE AND INTENSIVE ROW-CROP AGRICULTURE in intensively (>80%) cultivated areas. From January 2001 to August 2002, we monitored movements of 77 (61 adult of seasonal migration, whereas crop emergence and harvest had minimal effects. Four deer (8%) dispersed a mean

  12. Robotics in Crop Production Department of Agricultural and Biological Engineering, University of Illinois at

    E-Print Network [OSTI]

    Robotics in Crop Production Tony Grift Department of Agricultural and Biological Engineering such as harvesting of citrus fruits, grapes, and raisins. An important part of Automation is the use of robots. Robotics in agriculture is not a new concept; in controlled environments (green houses), it has a his- tory

  13. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil

    E-Print Network [OSTI]

    Vermont, University of

    -crop agriculture in Brazil Gillian L. Galford a,b,, John F. Mustard a , Jerry Melillo b , Aline Gendrin a Nuclear na Agricultura, Universidade de São Paulo, Brazil e Escola Superior de Agricultura Luiz de Queiroz from natural vegetation and pastures to row-crop agricultural with the potential to affect regional

  14. Effects of cropping-system-related soil moisture and nutrient dynamics on the sustainability of semiarid dryland agriculture

    E-Print Network [OSTI]

    Norton, Jay B.

    Effects of cropping-system-related soil moisture and nutrient dynamics on the sustainability are to evaluate sustainability of conservation cropping systems in order to improve management approaches of semiarid dryland agriculture Project Summary We propose to investigate cropping-system-related soil

  15. 2 SPRAY OILS--BEYOND 2000 Modern use of petroleum-derived oils as agricultural crop

    E-Print Network [OSTI]

    Agnello, Arthur M.

    ,buttheseweretoophytotoxic.Eventually, researchersconcentratedondistillatesintherangebetween kerosene and lubricating oils.Three basic classes of carbon structures present in petroleum oils2 SPRAY OILS--BEYOND 2000 Abstract Modern use of petroleum-derived oils as agricultural crop (aromatics and other un- saturated components) in oils that were removable with sulfuric acid; the remainder

  16. Technical specifications for mechanical recycling of agricultural plastic waste

    SciTech Connect (OSTI)

    Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

    2013-06-15T23:59:59.000Z

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.

  17. www.landesbioscience.com GM Crops and Food: Biotechnology in Agriculture and the Food Chain 1 GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3:4, 1-5; October/November/December 2012; 2012 Landes Bioscience

    E-Print Network [OSTI]

    www.landesbioscience.com GM Crops and Food: Biotechnology in Agriculture and the Food Chain 1 GM Crops and Food: Biotechnology in Agriculture and the Food Chain 3:4, 1-5; October/November/December 2012

  18. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect (OSTI)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  19. GM Crops Are Not Containable: so what? E. Ann Clark, Plant Agriculture, University of Guelph (eaclark@uoguelph.ca) 2005 E. Ann Clark

    E-Print Network [OSTI]

    Clark, E. Ann

    GM Crops Are Not Containable: so what? E. Ann Clark, Plant Agriculture, University of Guelph years of commercial experience with GM crops allow us to explore two theses: 1. that the premise that GM field crops can co-exist without contaminating weedy relatives as well as non-GM crops is inconsistent

  20. Determine metrics and set targets for soil quality on agriculture residue and energy crop pathways

    SciTech Connect (OSTI)

    Ian Bonner; David Muth

    2013-09-01T23:59:59.000Z

    There are three objectives for this project: 1) support OBP in meeting MYPP stated performance goals for the Sustainability Platform, 2) develop integrated feedstock production system designs that increase total productivity of the land, decrease delivered feedstock cost to the conversion facilities, and increase environmental performance of the production system, and 3) deliver to the bioenergy community robust datasets and flexible analysis tools for establishing sustainable and viable use of agricultural residues and dedicated energy crops. The key project outcome to date has been the development and deployment of a sustainable agricultural residue removal decision support framework. The modeling framework has been used to produce a revised national assessment of sustainable residue removal potential. The national assessment datasets are being used to update national resource assessment supply curves using POLYSIS. The residue removal modeling framework has also been enhanced to support high fidelity sub-field scale sustainable removal analyses. The framework has been deployed through a web application and a mobile application. The mobile application is being used extensively in the field with industry, research, and USDA NRCS partners to support and validate sustainable residue removal decisions. The results detailed in this report have set targets for increasing soil sustainability by focusing on primary soil quality indicators (total organic carbon and erosion) in two agricultural residue management pathways and a dedicated energy crop pathway. The two residue pathway targets were set to, 1) increase residue removal by 50% while maintaining soil quality, and 2) increase soil quality by 5% as measured by Soil Management Assessment Framework indicators. The energy crop pathway was set to increase soil quality by 10% using these same indicators. To demonstrate the feasibility and impact of each of these targets, seven case studies spanning the US are presented. The analysis has shown that the feedstock production systems are capable of simultaneously increasing productivity and soil sustainability.

  1. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25T23:59:59.000Z

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

  2. Taking the "waste" out of "wastewater" for human water security and ecosystem sustainability

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    over a Israel agricultural wastewater reuse e Residence veryenergy for waste- water treatment. Furthermore, agriculturalagricultural crops, gardens, golf courses, and conservation areas. Primary concerns associated with wastewater

  3. Regulation of GM Crops in Canada: Science-Based or...... ? E. Ann Clark, Plant Agriculture, University of Guelph, Guelph (eaclark@uoguelph.ca) 2004 E. Ann Clark

    E-Print Network [OSTI]

    Clark, E. Ann

    Regulation of GM Crops in Canada: Science-Based or...... ? E. Ann Clark, Plant Agriculture spokesperson making an empassioned plea for science-based decisionmaking on GM crops? What a curious arguing regulatory system actually is science-based, rather than simply a way to facilitate the flow of GM crops

  4. agricultural wastes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Agriculture, Forestry, and Veterinary Medicine, or DAFVM Ray, David 48 Action Plan Agricultural Sciences Environmental Sciences and Ecology Websites Summary: Action Plan...

  5. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect (OSTI)

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01T23:59:59.000Z

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  6. Multi-Attribute Modelling of Economic and Ecological Impacts of Agricultural Innovations on Cropping Systems

    E-Print Network [OSTI]

    Bohanec, Marko

    requires reversible private net-benefits from GM crops, such as net-benefits accruing to farmers with the adoption of a new technology. This factor is the so called hurdle rate. Hurdle rates associated to GM crops be inferred from time series data on farmer gross margins and secondary literature, by assuming that GM crops

  7. agriculture process waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Radhika M 2014-01-01 117 Waste to Energy (WTE): Conventional and Plasma-assisted Gasification - Experimental and Modeling Studies. Open Access Theses and Dissertations...

  8. agricultural waste management: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Microbiological Waste Steam Sterilization 1. temperature of at least 121 of household bleach diluted 1:10 with water or b. a solution of 70% by volume of 2-propanol...

  9. An assessment of biofuel use and burning of agricultural waste in the developing world Rosemarie Yevich

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41% and 51% of the biofuel use.9Pg C (as CO2) from burning of biofuels and field residues together is small, but non-negligible when

  10. An assessment of biofuel use and burning of agricultural waste in the developing world

    E-Print Network [OSTI]

    Jacob, Daniel J.

    in Asia, and 21% and 13% in Africa and Latin America, respectively. Agricultural waste supplies about 33% of total biofuel use, providing 39%, 29%, and 13% of biofuel use in Asia, Latin America, and Africa, and 41 and industry. The emission of 0.9 Pg C (as CO2) from burning of biofuels and field residues together is small

  11. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    Carter, Colin A.; Novan, Kevin; Rausser, Gordon; Iho, Antti; Parker, Doug; Zilberman, David

    2013-01-01T23:59:59.000Z

    Agricultural Economics • University of California Animal WasteAgricultural and Food Markets Gordon Rausser..4 Animal Waste

  12. CROP SCIENCE, VOL. 49, JULYAUGUST 2009 1523 Agricultural production in the United States and Europe

    E-Print Network [OSTI]

    Sims, Gerald K.

    and Europe has changed dramatically in the last 60 yr. One significant change has been replacement of manyKenzie et al., 1999; Tracy and Zhang, 2008). Weed Biomass and Species Composition as Affected was to evaluate how an integrated crop­livestock system would influence weed biomass and weed species composition

  13. Framtidens lantbruk / Future Agriculture Future Agriculture

    E-Print Network [OSTI]

    Framtidens lantbruk / Future Agriculture Future Agriculture ­ Livestock, Crops and Land Use Report from a multidisciplinary research platform. Phase I (2009 ­ 2012) #12;Future Agriculture ­ Livestock Waldenström Utgivningsår: 2012, Uppsala Utgivare: SLU, Framtidens lantbruk/Future Agriculture Layout: Pelle

  14. Development and application of WRF3.3-CLM4crop to study of agriculture - climate interaction

    E-Print Network [OSTI]

    Lu, Yaqiong

    2013-01-01T23:59:59.000Z

    Global Climate Change and United-States Agriculture, Nature,climate modeling Land surface modeling Agriculture and climate interaction Land use change

  15. Plant Science 200: Modern Crop Production Instructor

    E-Print Network [OSTI]

    Chen, Kuang-Yu

    classification, soil conservation and tillage. Crop classification and morphology (distinguish among the grains Crop Production Introduction Crop Importance Soil Survey/Soil Conservation Crop Classification /Sustainable Agriculture #12;References on Reserve in Chang Library: Forages: An Introduction to Grassland

  16. Using Animal Manure and Wastewater for Crops and Pastures

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Using Animal Manure and Wastewater for Crops and Pastures * Assistant Professor and Extension Agricultural Engineering Specialist Waste Management; The Texas A&M University System. E-47 9-00 Know and Take Credit for your N, P and K Saqib Mukhtar* E ffluent from animal manure and wastewater impoundments

  17. College of Agriculture, Food and Environment SAG Sustainable Agriculture

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture, Food and Environment SAG Sustainable Agriculture KEY: # = new course INTRODUCTION TO SUSTAINABLE AGRICULTURE. (3) Broad introduction to the environmental, economic and cultural agriculture are discussed along with pertinent soil, crop and livestock management practices. Relationships

  18. Session Title Climate Smart Agriculture

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    Session Title Climate Smart Agriculture Session Date Khosla (moderator) Professor, Soil and Crop Sciences College of Agricultural Climate Smart Agriculture is a multi-disciplinary approach to practice agriculture

  19. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    SciTech Connect (OSTI)

    Singh, B.

    1980-05-01T23:59:59.000Z

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  20. Greenhouse gases and agriculture. Book chapter

    SciTech Connect (OSTI)

    Jackson, R.B.

    1993-01-01T23:59:59.000Z

    Agriculture ranks third in its contribution to Earth's anthropogenically enhanced greenhouse effect. (Energy use and production and chlorofluorocarbons are ranked first and second, respectively.) Specifically, greenhouse gas sources and sinks are increased, and sinks are decreased, by conversion of land to agricultural use, using fertilizers, cultivating paddy rice, producing other plant and animal crops, and by creating and managing animal and plant wastes. However, some of these same activities increase greenhouse gas sinks and decrease greenhouse gas sources so the net effects are not obvious. The paper identifies the agricultural inputs, outputs, and wastes that alter atmospheric concentrations of carbon dioxide, methane, and nitrous oxides, and discusses agriculture's net impact on greenhouse gas fluxes.

  1. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires

    E-Print Network [OSTI]

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-01-01T23:59:59.000Z

    2009). Regulation of agricultural waste burning occurs atuse and burning of agricultural waste in the developingStates, for example, agricultural waste burning is managed

  2. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential

    SciTech Connect (OSTI)

    Briassoulis, D., E-mail: briassou@aua.gr [Agricultural University of Athens, Agricultural Engineering Department, 75 Iera Odos Str., 11855 Athens (Greece); Hiskakis, M.; Babou, E. [Agricultural University of Athens, Agricultural Engineering Department, 75 Iera Odos Str., 11855 Athens (Greece); Antiohos, S.K., E-mail: santiohos@titan.gr [Titan Cement Company S.A., Group R and D and Quality Department, Kamari Plant, P.O. Box 18, 19200 Elefsina (Greece); Papadi, C., E-mail: c.papadi@polyeco.gr [Polyeco S.A., 16 km National Road Athens-Korinthos, Aspropyrgos 19300 (Greece)

    2012-06-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Definition of parameters characterising agricultural plastic waste (APW) quality. Black-Right-Pointing-Pointer Analysis of samples to determine APW quality for recycling or energy recovery. Black-Right-Pointing-Pointer Majority of APW samples from various countries have very good quality for recycling. Black-Right-Pointing-Pointer Upper limit of 50% w/w soil contamination in APW acceptable for energy recovery. Black-Right-Pointing-Pointer Chlorine and heavy metals content in APW below the lowest limit for energy recovery. - Abstract: A holistic environmentally sound waste management scheme that transforms agricultural plastic waste (APW) streams into labelled guaranteed quality commodities freely traded in open market has been developed by the European research project LabelAgriWaste. The APW quality is defined by the APW material requirements, translated to technical specifications, for recycling or energy recovery. The present work investigates the characteristics of the APW quality and the key factors affecting it from the introduction of the virgin product to the market to the APW stream reaching the disposer. Samples of APW from different countries were traced from their application to the field through their storage phase and transportation to the final destination. The test results showed that the majority of APW retained their mechanical properties after their use preserving a 'very good quality' for recycling in terms of degradation. The degree of soil contamination concerning the APW recycling and energy recovery potential fluctuates depending on the agricultural plastic category and application. The chlorine and heavy metal content of the tested APW materials was much lower than the maximum acceptable limits for their potential use in cement industries.

  3. Farmer Seed Exchange and Crop Diversity in a Changing Agricultural Landscape in the Southern Highlands of Ethiopia

    E-Print Network [OSTI]

    Zavaleta, Erika

    Highlands of Ethiopia Leah H. Samberg & Carol Shennan & Erika Zavaleta Published online: 9 March 2013 # Springer Science+Business Media New York 2013 Introduction The southern highlands of Ethiopia are home government agricultural extension services. In Ethiopia, as much as 90 % of seed planted each year is drawn

  4. Agriculture and Environmental Quality

    E-Print Network [OSTI]

    Ma, Lena

    ALS 3133 Agriculture and Environmental Quality 3 credits Spring 2014 Instructor Susan Curry scurry://lss.at.ufl.edu Overview: Analysis of the effects of agriculture on environmental quality with emphasis on agricultural wastes and practices, the potential for using agricultural systems for disposal of other wastes

  5. alternative cropping systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and environmental health is a key challenge for agricultural sustainability. Most crop production Sims, Gerald K. 33 Dryland Winter Wheat and Grain Sorghum Cropping...

  6. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    use and burning of agricultural waste in the developingsa- vanna, forest, agricultural waste, and peat fires toex- tratropics, 15%), agricultural waste burning (3%), and

  7. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect (OSTI)

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07T23:59:59.000Z

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

  8. The research programme Future Agriculture

    E-Print Network [OSTI]

    The research programme Future Agriculture ­ livestock, crops and land use Welcome to a lunch.slu.se/futureagriculture For questions, please contact KatarinaVrede (katarina.vrede@slu.se) About Future Agriculture ­ livestock, crops and land use The changes and challenges facing agriculture in the future will be substantial, not only

  9. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    agricultural  cropsagricultural  wastes  and  residues, operations.     Agricultural wastes and residues include, Agricultural crops and agricultural wastes and residues.  

  10. University College Dublin Agriculture, Food Science and Human Nutrition AgriculturAl Science

    E-Print Network [OSTI]

    Buehrer, R. Michael

    1 University College Dublin Agriculture, Food Science and Human Nutrition AgriculturAl Science DN250 Agricultural Science Dn250AeS Agri-environmental Sciences Dn250AcP Animal and crop Production Dn Engineering Technology DN250FAM Food and Agribusiness Management #12;1 Contents Agricultural Science DN250 1

  11. ProClim-Flash | No 57, June 201318 Figure 1: Swiss CH4 fluxes from (a) anthropogenic (agriculture, energy, waste) and (b) natural contributors (wetlands, lakes and

    E-Print Network [OSTI]

    , energy, waste) and (b) natural contributors (wetlands, lakes and reservoirs, wild animals, forest uptake. company Meteotest for the year 2007. This inven- tory has now been updated for 2011 and extended with new hydroelectric res- ervoirs are included. The agricultural sector with its emissions from ruminants and manure

  12. Agriculture and Environmental Quality

    E-Print Network [OSTI]

    Ma, Lena

    ALS 3133 Agriculture and Environmental Quality 3 credits Spring 2014 Instructor Susan Curry scurry Website is through E-Learning: http://lss.at.ufl.edu Overview: Analysis of the effects of agriculture on environmental quality with emphasis on agricultural wastes and practices, the potential for using agricultural

  13. Clean Development Mechanism agricultural methodologies could help California to achieve AB 32 goals

    E-Print Network [OSTI]

    Dinar, Ariel; Larson, Donald F; Frisbie, J. Aapris

    2012-01-01T23:59:59.000Z

    electricity by burning agricultural waste and the generationagricultural projects, mostly those that manage organic wastesAgricultural miti- gation projects, those that convert organic waste

  14. An Internship in crop chemical protection

    E-Print Network [OSTI]

    McHam, Charles

    1991-01-01T23:59:59.000Z

    AN INTERNSHIP IN CROP CHEMICAL PROTECTION A PROFESSIONAL PAPER BY CHARLES McHAM Submitted to the College of Agriculture and Life Sciences of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF AGRICULTURE August 1991 Department of Agricultural Education Agricultural Development AN INTERNSHIP IN CROP CHEMICAL PROTECTION A PROFESSIONAL PAPER BY CHARLES McHAM Approved as to style and content by: Dr. Don R. Herring, C ir, Graduate Committee Dr...

  15. agricultural biotechnology products: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: in France (excluding agriculture waste) 1, the recycling of urban organic waste is a strong environmental, the development of the agricultural recycling of...

  16. Variable Crop Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Sammons, Ray

    1980-01-01T23:59:59.000Z

    )OC lAL45.7 173 1. 1224 Texas Agricultural Extension Service The Texas A&M University System Daniel C. Pfannstiel,Director colleg e Station, Texas / f , ' '~ :';,; ,,: ''': ~ " k , -~. _Variable _Crop Share _Leases ... Marvin... Sartin and Ray Sammons* Renting or leasing farmland is part of many modern farming operations and increases average farm size in U. S. agriculture. Economies of size are vitally import ant to farm operations as they strive to cope with the continuous...

  17. The 2008 Farm Bill What's In It For Specialty Crops

    E-Print Network [OSTI]

    ­ Promote diversification of rural areas through biobased energy ­ Enhance efficiency of bioenergy Show 21st Century Challenges, The Farm Bill, and Purdue Agriculture Sonny Ramaswamy ·Grand challenges. · Agricultural Competitiveness ­ Improving crop and animal agriculture; enhancing farm productivity and income

  18. Virginia Agricultural Experiment Station Bulletin 00-2 Using GIS as an Agricultural

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    Agricultural Experiment Station Bulletin 00-2 ______________________________________________________________________________ Using GIS as an Agricultural Land-Use Planning Tool Amber L. (Williams) Coleman John M. Galbraith Department of Crop and Soil Environmental Science College of Agriculture and Life Sciences Virginia Tech

  19. agricultural landscapes challenges: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Three Biofuel Crops for Beneficial Arthropods in Agricultural Landscapes Mary A Science+Business Media, LLC. 2010 Abstract Production of biofuel feedstocks in agricultural...

  20. agricultural engineering manual: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crops, crop residues, forest residues, animal wastes, and landfills. Major biofuels are biodiesel, ethanol, and methane. Biofuels Lee, Dongwon 34 Published by the American...

  1. Irrigation Systems for Forage Crops.

    E-Print Network [OSTI]

    Henggeler, Joseph C.

    1988-01-01T23:59:59.000Z

    TDDe Z TA24S.7 8873 NO.1611 1?1611 ' Texas Agricultural Extension Service l'BRARY FEB 0 1 1989 texas A&M University Irrigation Systems for Forage Crops Texas Agricultural Extension Service ? Zerle L. Carpenter, Director ? The Texas A...&M University System ? College Station, Texas (Blank Pa,ge -In. O-riIIJIal BuIIetinl . 1?? .. , * ): . Irrigation Systems for Forage Crops Joseph C. Henggeler* Several types of irrigation systems can be chosen for irrigating forage crops for grazing...

  2. Clean energy funds: An overview of state support for renewable energy

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Milford, Lew; Stoddard, Michael; Porter, Kevin

    2001-01-01T23:59:59.000Z

    as wood, agricultural, or food wastes, energy crops, biogas,as wood, agricultural, or food wastes, energy crops, biogas,

  3. Novel Techniques and Their Wide Applications to Health Foods, Medical and Agricultural Biotechnology in Relation to Policy Making on Genetically Modified Crops and Foods

    E-Print Network [OSTI]

    Baianu, I C; Lozano, P; Lin, H C

    2004-01-01T23:59:59.000Z

    Selected applications of novel techniques in Agricultural Biotechnology, Health Food formulations and Medical Biotechnology are being reviewed with the aim of unraveling future developments and policy changes that are likely to open new markets for Biotechnology and prevent the shrinking or closing of existing ones. Amongst the selected novel techniques with applications in both Agricultural and Medical Biotechnology are: immobilized bacterial cells and enzymes, microencapsulation and liposome production, genetic manipulation of microorganisms, development of novel vaccines from plants, epigenomics of mammalian cells and organisms, and biocomputational tools for molecular modeling related to disease and Bioinformatics. Both fundamental and applied aspects of the emerging new techniques are being discussed in relation to their anticipated, marked impact on future markets and present policy changes that are needed for success in either Agricultural or Medical Biotechnology. The novel techniques are illustrated ...

  4. Agriculture and the greenhouse effect

    SciTech Connect (OSTI)

    Not Available

    1988-03-01T23:59:59.000Z

    This article discusses research of the US Department of Agriculture's Agricultural Research Service and the US Department of Energy's Carbon Dioxide Research Division to anticipate the effects of increased atmospheric carbon dioxide on American agriculture. Experiments involving exposure of plants to elevated CO/sub 2/ and attempts to model the productivity of crops as atmospheric CO/sub 2/ increases are described. The scientists quoted in the article are optimistic, emphasizing the beneficial effects of the elevated CO/sub 2/ on crops and speculating that problems caused by associated climate changes can be accommodated by movement of crop regions and by introduction of new varieties.

  5. Animal Waste Technology Fund (Maryland)

    Broader source: Energy.gov [DOE]

    A bill passed in 2012 transferred responsibility for animal waste management technology projects to the Maryland Department of Agriculture. The Department will maintain the Animal Waste Technology...

  6. Crop Management and Diagnostic Clinic IMPACT REPORT

    E-Print Network [OSTI]

    Farritor, Shane

    management. The response rate to the survey was 23% and in- cluded: 127 agricultural advisors influencingCrop Management and Diagnostic Clinic IMPACT REPORT University of Nebraska­Lincoln * Institute profitability and protect the environment through research-based management practices. Partnership The Crop

  7. AgriculturAl Development

    E-Print Network [OSTI]

    1 SLU Global AgriculturAl ScienceS for globAl Development -- Slu's contribution #12;2 the mission of the Swedish university of Agricultural Sciences (Slu) is "to develop the understanding, management for global Development (pgu). research capacity building provision of expertise Agricultural Sciences

  8. Oklahoma Agriculture Agriculture

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Oklahoma Agriculture Agriculture #12;Oklahoma Agriculture 2011Oklahoma Agriculture 2011 Oklahoma well-being of our communities and the counties in which they are located. Oklahoma State University Resources Oklahoma State University #12;Farm Operations · 86,600 farms; 4th in the nation · Average age

  9. Relation of the Potash Removed by Crops to the Active, Total, Acid-Soluble, and Acid-Insoluble Potash of the Soil.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1927-01-01T23:59:59.000Z

    . Save all platinum waste and mix nothing else with it. Acid-Soluble Potash in Soils Weigh 10 grams of soil into a small pyres Erlenmeyer flask provided with a rubber stopper carrying 2...227-A210-GM-L180 TEXAS AGRICULTURAL EXPERIMENT STATION B. YOUNGBLOOD, DIRECTOR COLLEGE STATION, BRAZOS COUNTY. TEXAS DIVISION OF CHEMISTRY RELATION OF THE POTASH REMOVED BY CROPS TO THE ACTIVE, TOTAL, ACID- SOLUBLE, AND ACID-INSOLUBLE POTASH...

  10. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires

    E-Print Network [OSTI]

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-01-01T23:59:59.000Z

    Good Practice Guideline reports requires information on crop produc- tivity and ?re use activity to estimate agricultural

  11. Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1

    E-Print Network [OSTI]

    Miami, University of

    for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

  12. Chengci Chen, Ph.D. Professor of Agronomy (Cropping Systems)

    E-Print Network [OSTI]

    Dyer, Bill

    of Agriculture Promotion and Tenure Committee member, 2010-2011, 2013-present Western Society of Crop ScienceChengci Chen, Ph.D. Professor of Agronomy (Cropping Systems) Central Agricultural Research Center and oilseed bioenergy feedstock productions; nutrient management, water quality and water use efficiency

  13. Test of a solar crop dryer Danish Technological Institute

    E-Print Network [OSTI]

    Test of a solar crop dryer Danish Technological Institute Danish Institute of Agricultural Sciences Aidt Miljø A/S SEC-R-6 #12;Test of a solar crop dryer Søren Østergaard Jensen Danish Technological/S January 2001 #12;Preface The report describes the tests carried out on a solar crop dryer. The work

  14. AGRICULTURAL REPORT MAY 2008

    E-Print Network [OSTI]

    supply will shape the future of the agricultural industry. We will discuss each in turn. Ethanol and energy Ethanol will be using almost 30% of the U.S. corn crop by 2009 with total ethanol production reaching almost 14 billion gallons. Numerous analysts have suggested that total demand for ethanol longer

  15. futuresMICHIGAN AGRICULTURAL

    E-Print Network [OSTI]

    that Michigan's climate has been following a global trend toward warming. Other MAES scientists are studying how this warming trend will affect agricultural crops, weeds, insects and diseases. One component of global warming Leadership Council to study and identify trends, causes and consequences of urban sprawl, and to provide

  16. Peace Corps | Agriculture Agriculture Volunteers

    E-Print Network [OSTI]

    Kaminsky, Werner

    Peace Corps | Agriculture Agriculture Volunteers Agriculture is the primary economic activity Volunteers contribute sustain- able solutions to a community's agricultural issues and help preserve natural resources. Programs and Sample Projects Agriculture and Forestry Extension · Collaborate with farmers

  17. Post-DiplomaBachelorofScience AgriculturalStudies

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    Agricultural Technology: General Agriculture (prior to 2004), Animal Science, Financial Management (prior information. Assiniboine Community College Agribusiness Lakeland College Agri-Business Agro-Environmental Technology Animal Health Technology Animal Science Technology Crop Technology Diversified Livestock

  18. College of Agricultural, Human, and Natural Resource Sciences Response to University-wide Degree and Major Audit

    E-Print Network [OSTI]

    Collins, Gary S.

    Environmental Soil Management Sustainable Agriculture Drop Combine with Crop Science to form B.S. in Crop Keep as "B.S. Crop and Soil Sciences" with three majors: · Turfgrass Management · Crop Biotechnology of establishment. AFS ­ Major in Agriculture and Food Systems Agri-Food Production Management: Agri-Food Business

  19. Introduction Agriculture/Agricultural Science

    E-Print Network [OSTI]

    Banbara, Mutsunori

    38 Introduction Guide Entrance Life Career Inquiries Agriculture/Agricultural Science Mission and goal of the Graduate School of Agricultural Science The mission of agricultural science organization which aims to realize this agricultural ideal, the Graduate School of Agricultural Science's basic

  20. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  1. Japanese Sugar Cane as a Forage Crop.

    E-Print Network [OSTI]

    Leidigh, A. H. (Arthur Henry); McNess, George Thomas; Laude, H. H. (Hilmer Henry)

    1916-01-01T23:59:59.000Z

    AGRICULTURAL EXPERIMENT STAT10 N BULLETIN NO. 195 AUGUST, 1916 DIVISION OF AGRONOMY JAPANESE SUGAR CANE AS A FORAGE CROP BY A. H. LEIDIGH, B. S., Agronomist, IN CONSULTATION WITH G. T. McNESS, Superintendent, Substation No. 11, Nacogdoches, and H. H.... LAUDE, B. S., Superintendenr, Substation No. 4, Beaumont I POSTOFFICE: COLLEGE STATION, BRAZOS COUNTY, TEXAS AUSTIN, TEXAS VON BOECKMANN-JONES CO., PRINTERS 1916 AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, A. hq.. D. C. L...

  2. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    for Hawaii. Some agricultural wastes and sugar industrygrains; to any kind of agricultural waste containing cellu~municipal solid wastes, agricultural residues, and crops

  3. Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2

    E-Print Network [OSTI]

    DeLucia, Evan H.

    219 Current biofuel feedstock crops such as corn lead to large environmental losses of N through biofuel crops established on a rich Mollisol soil. Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops Candice M. Smith, Mark B. david,* Corey A. Mitchell, Michael d. Masters

  4. Water footprint assessment of crop production in Shaanxi, China

    E-Print Network [OSTI]

    Vellekoop, Michel

    #12;i Water footprint assessment of crop production in Shaanxi, China Bachelor Thesis Civil, Yangling, China Keywords: Agricultural crops, water footprint, Shaanxi province, CROPWAT #12;ii #12;iii ABSTRACT The water footprint, introduced by professor A.Y. Hoekstra, is an indicator of freshwater use

  5. October 2009 Minnesota Crop Cost & Return Guide for 2010

    E-Print Network [OSTI]

    Minnesota, University of

    funding was provided by the state of Minnesota's ReInvest in Minnesota Clean Energy Program. #12, spring wheat, sugar beets, and alfalfa hay) as well as potential energy crops (grassland crops, hybrid National Agricultural Statistics Service (NASS) regions and for Minnesota as a whole (see Figure 1

  6. Agricultural Management Practices And Soil Quality

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Agricultural Management Practices And Soil Quality: Measuring, assessing, and comparing laboratory and field test kit indicators of soil quality attributes. Publication 452-400 #12;Agricultural Management Associate, respectively, Crop and Soil Environmental Sciences, Virginia Tech #12;1 Introduction What makes

  7. Genetic Engineering for Modern Agriculture

    E-Print Network [OSTI]

    Blumwald, Eduardo

    reserved 1543-5008/10/0602-0443$20.00 Key Words abiotic stress, climate change, field conditions, global warming, stress combination, stress tolerance, transgenic crops Abstract Abiotic stress conditions such as drought, heat, or salinity cause exten- sive losses to agricultural production worldwide. Progress

  8. Three Essays On Agricultural and Forestry Offsets In Climate Change Mitigation

    E-Print Network [OSTI]

    Feng, Siyi

    2012-07-16T23:59:59.000Z

    major crops. The implementation of climate change mitigation strategies, such as the expansion of bioenergy production, causes demand for the agricultural sector to increase substantially. The new demand would cause noticeable leakage effect if crop...

  9. Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences

    E-Print Network [OSTI]

    Department of Crop production Ecology Treatment and utilization of pulp industry residues using Short Resources and Agricultural Sciences Department of Crop production Ecology #12; Treatment and utilization and paper, mining and metal processing, food processing industry and communal sewage plants. Paper industry

  10. The Economic Impact of Drought and Mitigation in Agriculture

    E-Print Network [OSTI]

    Yang, Zong-Liang

    The Economic Impact of Drought and Mitigation in Agriculture Texas Drought and Beyond CIESS Austin · In Agriculture, it Began in 2010 ­ Wheat and other winter grazing crops are planted in the Fall ­ Lost value ­ Infrastructure losses #12;Agricultural Costs of Drought · Estimated $7.62 Billion ­ Corn, cotton, wheat, hay $4

  11. International Agriculture Fellowship: A Gates Foundation Grand Challenges Exploration in Endophytic Biological Control

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    International Agriculture Fellowship: A Gates Foundation Grand Challenges Exploration in Endophytic Challenges Explorations Grant (see program overview) to develop crop seeds with endophytic fungal

  12. University of Wisconsin-Madison Department of Agricultural & Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    University of Wisconsin-Madison Department of Agricultural & Applied Economics Staff Paper No. 561 and Nguyen Van Chan __________________________________ AGRICULTURAL & APPLIED ECONOMICS the nominal objectives-- reduced growth rates of air pollution, water pollution and solid waste--will also

  13. USDA / NRCS Waste Utilization Standard and Management Plans

    E-Print Network [OSTI]

    Mukhtar, Saqib

    agricultural wastes such as manure, wastewater, or other organic residues. #12;Waste Utilization Standard (633 and poultry operations; solids and wastewater from municipal treatment plants; and agricultural processing This practice applies where agricultural wastes including animal manure and contaminated water from livestock

  14. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Sustainable alternatives to traditional plastics and conventional plastic waste

    E-Print Network [OSTI]

    to traditional plastics and conventional plastic waste management in the agricultural setting of the UBC Farm alternatives to traditional plastics and conventional plastic waste management in the agricultural setting ................................................................................................................. 9 Agricultural plastics

  15. Agricultural Environmental

    E-Print Network [OSTI]

    Agricultural Policy / Environmental eXtender Model Theoretical Documentation Version 0806 December 2012 #12;2 Agricultural Policy/Environmental eXtender Model Theoretical Documentation Version 0806 J............................................................................................................................. 11 Air Temperature and Solar Radiation

  16. Agricultural Environmental

    E-Print Network [OSTI]

    Agricultural Policy / Environmental eXtender Model Theoretical Documentation Version 0604 BREC Report # 2008-17 June 2008 #12;2 Agricultural Policy/Environmental eXtender Model Theoretical............................................................................................................................. 11 Air Temperature and Solar Radiation

  17. Agriculture INTRODUCTION

    E-Print Network [OSTI]

    Sohoni, Milind

    1 Agriculture INTRODUCTION 1.1 Although its share in Gross Domestic Product (GDP) has declined from over half at Independence to less than one-fifth currently, agriculture remains the predominant sector in it as the principal occupation. Agriculture still contributes significantly to export earnings and is an important

  18. Future Agriculture / Framtidens lantbruk Welcome to a lunch seminar June 11, 2013

    E-Print Network [OSTI]

    Future Agriculture / Framtidens lantbruk Welcome to a lunch seminar June 11, 2013 "Zero Agriculture ­ livestock, crops and land use, is a research program- me developed at the Swedish University of Agricultural Sciences (SLU). In Future Agriculture researchers work together with industry, interest groups

  19. SNES 2000: Environmental Sciences Colloquium Garbage and Waste Management

    E-Print Network [OSTI]

    Keinan, Alon

    September 28 Barbara Eckstrom, Solid Waste Manager, Tompkins County Solid Waste Management Division. October October 26 Solid waste management Jean Bonhotal, Cornell Waste Management Institute, Crop & Soil ScienceSNES 2000: Environmental Sciences Colloquium Fall 2012 Garbage and Waste Management Friday

  20. College of Agriculture & Life Sciences Agricultural Technology

    E-Print Network [OSTI]

    Virginia Tech

    College of Agriculture & Life Sciences Agricultural Technology Applied Agricultural Management Option Checksheet for Students Graduating in Calendar Year 2013 Associate of Agriculture Degree Required Agricultural Technology Core Courses (31 credits) 3 AT 0104 Computer Applications 3 AT 0114 Applied

  1. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  2. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  3. Crops sought as high chemical energy source

    SciTech Connect (OSTI)

    Rawls, R.

    1983-08-29T23:59:59.000Z

    The U.S. Dept of Agriculture's Agricultural Research Service is searching for native plants that are not now being grown as commercial crops but that could be grown profitably to produce easily extractable, high-energy organic products. Usually these products are hydrocarbons or whole plant oils; protein content and plant fiber content are also considered. One such plant being investigated is smooth sumac, a woody perennial that is native to North America and is a particularly good source of polyphenols, resins and oils.

  4. Post-DiplomaBachelorofArts AgriculturalStudies

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    Health Technology Lakeland College Agri-Business Agro-Environmental Technology Animal Health Technology train in the interrelationships among agricultural, social, economic and environmental systems. Approved Animal Science Technology Crop Technology Diversified Livestock Production (prior to 2004) Herd Health

  5. CROP & SOIL SCIENCES Soybean Breeding

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Soybean Breeding Committee Membership Dr. Joseph Bouton - committee chair Dr. Brian Schwartz Department of Crop & Soil Sciences Department of Crop & Soil Sciences University & Soil Sciences Department of Crop & Soil Sciences University of Georgia University of Georgia Center

  6. CROP & SOIL SCIENCES Forage Breeding

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Forage Breeding Committee Membership Dr. Joseph Bouton - committee chair Dr. Brian Schwartz Department of Crop & Soil Sciences Department of Crop & Soil Sciences University & Soil Sciences Department of Crop & Soil Sciences University of Georgia University of Georgia Center

  7. Conversion of Waste Biomass into Useful Products 

    E-Print Network [OSTI]

    Holtzapple, M.

    1998-01-01T23:59:59.000Z

    Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

  8. Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian-Pacific Countries

    E-Print Network [OSTI]

    McCarl, Bruce A.

    into energy crop production will most likely carry this price through increased purchasing cost and all energy the production of energy crops and other agricultural mitigation strategies. This analysis estimates the economicGreenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian

  9. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application

    E-Print Network [OSTI]

    Boyer, Edmond

    field receiving repeated urban waste compost application Vilim Filipovi1,2,3 , Yves Coquet2 , Valérie properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity and compost application on transport processes. A modeling study was performed to evaluate how the presence

  10. NOZZLE FUZZY CONTROLLER OF AGRICULTURAL SPRAYING ROBOT AIMING

    E-Print Network [OSTI]

    NOZZLE FUZZY CONTROLLER OF AGRICULTURAL SPRAYING ROBOT AIMING TOWARD CROP ROWS Jianqiang Ren robot aiming toward crop-rows based on fuzzy control theory was studied in this paper to solve, rule-base and inference mechanism. Considering the actual application, the fuzzy controller

  11. agronomie: agriculture and environment Estimation des apports de produits phytosanitaires

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a method to evaluate the input of agrochemicals on an agricultural watershed. First, land use was estimated (RGA). Second, the input of agrochemicals on each cropping was estimated, since 1970, from a survey of agrochemicals was computed as the product of the input of agrochemicals on each cropping and the surface area

  12. Biophysical modeling of NO emissions from agricultural soils for use in regional

    E-Print Network [OSTI]

    Boyer, Edmond

    Biophysical modeling of NO emissions from agricultural soils for use in regional chemistry-transport and12 crop management practices, along with the resolution of the climate and soil input maps.13 14 and agronomic factors, including cropping practices, soil characteristics and cli-17 mate. Crop management

  13. innovati nNovel Biomass Conversion Process Results in Commercial Joint Venture

    E-Print Network [OSTI]

    biomass feedstocks such as corn stover, agricultural waste, and energy crops. The pretreatment enables

  14. Agricultural Centers AGRICULTURAL CENTER PROGRAM OBJECTIVES

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Agricultural Centers AGRICULTURAL CENTER PROGRAM OBJECTIVES: Conduct research related to the prevention of occu- pational disease and injury of agricultural workers and their families. Develop, implement, and evaluate educational and outreach programs for promoting health and safety for agricultural

  15. Organic agriculture cannot replace conventional agriculture

    E-Print Network [OSTI]

    Kolokolnikov, Theodore

    Organic agriculture cannot replace conventional agriculture Sina Adl , David Iron and Theodore Agriculture | Pathogen Dispersal Introduction Organic farming [1, 2] is gaining in popularity in Eu- rope, because or- ganic agriculture avoids using environmentally harmful chem- icals that pollute soil

  16. Agronomy Journal Volume 106, Issue 2 2014 545 Crop Ecology & Physiology

    E-Print Network [OSTI]

    Minnesota, University of

    , Jerry L. Hatfield, Mark W. Heuer, Daniel M. Howard, Monique Y. Leclerc, Henry W. Loescher, Oliver North America as the major agricultural crops (Gilmanov et al., 2013), and the present study expands

  17. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect (OSTI)

    Torok, Tamas

    2013-02-04T23:59:59.000Z

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  18. The Effect of Sulphur on Yield of Certain Crops.

    E-Print Network [OSTI]

    Reynolds, E. B. (Elbert Brunner)

    1930-01-01T23:59:59.000Z

    TFXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR College Station, Brazos County, Texas BUL - LETIN NO. 408 FEBRUARY, 1930 DIVISION OF AGRONOMY THE EFFECT OF SULPHUR ON YIELD OF CERTAIN CROPS -- AGRICULTURAL AND MECHANICAL.... H. ROGERS, Feed Inspector W. H. WOOD, Feed Inspector I<. I,. KIRKLAND. B. S., Fred Inspector . W. D. NORTHCUTT, JR., B. S., Feed Inspector SIDNEY D. REYNOLDS, JR., Feed Inspector P. A. MOORE, Feed Inspector SUBSTATIONS No. 1, Beeville, Bee...

  19. Integrating agricultural pest biocontrol into forecasts of energy biomass production

    E-Print Network [OSTI]

    Gratton, Claudio

    Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

  20. FACULTY OF AGRICULTURAL AND FOOD SCIENCES

    E-Print Network [OSTI]

    Shihadeh, Alan

    ;EXECUTIVE SUMMARY Research funds and income from service contracts amounted to 3,885,726 US$. Research funds)/Initiative for Biodiversity Studies in Arid Regions (IBSAR) at AUB, Service Contracts and International Agencies accounted and wild life. Service contracts involved agricultural extension, crop production, dairy stock improvement

  1. Michigan State University Agricultural Experiment Station

    E-Print Network [OSTI]

    Douches, David S.

    Michigan State University Agricultural Experiment Station In Cooperation with the Michigan Potato Industry Commission Michigan Potato Research Report 2005 Volume 37 #12;Funding: Fed. Grant/MPIC 2005 POTATO. Hammerschmidt and W. Kirk Departments of Crop and Soil Sciences and Plant Pathology Michigan State University

  2. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION 2004 Michigan Potato Research Report Volume 36 Left to Right: Ben Kudwa, MPIC; Caryn of Crop and Soil Sciences Michigan State University East Lansing, MI 48824 Cooperators: R.W. Chase, Ray

  3. Michigan State University Agricultural Experiment Station

    E-Print Network [OSTI]

    Douches, David S.

    Michigan State University Agricultural Experiment Station In Cooperation with the Michigan Potato Industry Commission Michigan Potato Research Report 2005 Volume 37 #12;2005 POTATO BREEDING AND GENETICS Department of Crop and Soil Sciences Michigan State University East Lansing, MI 48824 Cooperators: R.W. Chase

  4. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION MICHIGAN POTATO RESEARCH REPORT 2003 Volume 35 Click Here to Open the 2003 Potato, S. Cooper, L. Frank, J. Driscoll, and E. Estelle Department of Crop and Soil Sciences Michigan State

  5. MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION

    E-Print Network [OSTI]

    Douches, David S.

    MICHIGAN STATE UNIVERSITY AGRICULTURAL EXPERIMENT STATION IN COOPERATION WITH THE MICHIGAN POTATO INDUSTRY COMMISSION 2004 Michigan Potato Research Report Volume 36 Left to Right: Ben Kudwa, MPIC; Caryn and W. Kirk Departments of Crop and Soil Sciences and Plant Pathology Michigan State University East

  6. Wisconsin Agriculture SPECIAL ARTICLE

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF Wisconsin Agriculture 2009 · SPECIAL ARTICLE: Bioenergy and Agriculture in Wisconsin Economy Department of Agricultural and Applied Economics College of Agricultural and Life Sciences of Wisconsin Agriculture, 2009 An annual report by the University of Wisconsin-Madison Department

  7. Investigating citizens' preferences for recycling Residual Organic Products in agriculture: a choice experiment approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in France (excluding agriculture waste) [1], the recycling of urban organic waste is a strong environmentalInvestigating citizens' preferences for recycling Residual Organic Products in agriculture or mineral fertilizers. The paper addresses in particular 3 environmental effects: the organic waste

  8. Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops

    E-Print Network [OSTI]

    Landis, Doug

    biofuel crops Ben P. Werling a, , Timothy D. Meehan b , Claudio Gratton b , Douglas A. Landis April 2011 Accepted 22 June 2011 Available online 28 June 2011 Keywords: Biofuels Biodiversity Biological control Land use change a b s t r a c t Cultivation of biofuel crops could change agricultural

  9. Future Agriculture When: 29th of Mars 2012, 13.0014.30

    E-Print Network [OSTI]

    Future Agriculture When: 29th of Mars 2012, 13.00­14.30 Where: Loftets Hörsal, Duhrevägen 8, Ultuna.magnusson@slu.se). The seminar will be filmed and posted on the Future Agriculture website: www.slu.se/futureagriculture. Future Agriculture ­ livestock, crops and land use, is a research pro- gramme developed at the Swedish University

  10. Estimated Costs of Crop Production in Iowa 2001

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa ­ 2001 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative

  11. Estimated Costs of Crop Production in Iowa 2000

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa ­ 2000 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agriculture cooperatives around the state. These costs estimates are representative

  12. Estimated Costs of Crop Production in Iowa 2005

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa ­ 2005 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  13. Estimated Costs of Crop Production in Iowa 2002

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa ­ 2002 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  14. Estimated Costs of Crop Production in Iowa 2006

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa ­ 2006 The estimated costs of corn, corn silage. They include the annual Iowa Farm Business Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  15. Technical reports and extension papers and presentations (last 10 years only) 162. Clark, E. Ann. 2009. GM crops: 12 years is long enough. Presented to the Kootenay Local

    E-Print Network [OSTI]

    Clark, E. Ann

    . 2009. GM crops: 12 years is long enough. Presented to the Kootenay Local Agriculture Society, Lister, B. Canadian Organic Grower (Winter 08): 58-60 155. Clark, E. Ann. 2008. GM Crop Failure. International Herald shapes our attitudes? Genetically Modified Language. A discourse of arguments for GM crops and food

  16. Agronomy Journal Volume 104, Issue 2 2012 215 CropEconomics,Production&Management

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    of energy input in wheat production (Hoeppner et al., 2006; Piringer and Steinberg, 2006). Introducing pea of produced grain annually (National Agricultural Statistical Ser- vice [USDA], 2010). The widely adopted Agricultural Statistical Service [USDA], 2010). Many benefits of pea and lentil, as rotational crops, have been

  17. About California Agriculture

    E-Print Network [OSTI]

    Editors, The

    2012-01-01T23:59:59.000Z

    Form 3579” to California Agriculture at the address above. ©Submissions. California Agriculture manages the peer reviewour Writing CALIFORNIA AGRICULTURE • VOLUME 66 , NUMBER 4

  18. About California Agriculture

    E-Print Network [OSTI]

    Editor, The

    2013-01-01T23:59:59.000Z

    Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 2Carol Lovatt California Agriculture (ISSN 0008-0845, print,

  19. About California Agriculture

    E-Print Network [OSTI]

    Editor, The

    2013-01-01T23:59:59.000Z

    Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 1Carol Lovatt California Agriculture (ISSN 0008-0845, print,

  20. Regional Uptake and Release of Crop Carbon in the United States

    SciTech Connect (OSTI)

    West, Tristram O.; Bandaru, Varaprasad; Brandt, Craig C.; Schuh, A.E.; Ogle, S.M.

    2011-08-03T23:59:59.000Z

    Carbon fixed by agricultural crops in the US creates regional CO2 sinks where it is harvested and regional CO2 sources where it is released back to the atmosphere. The quantity and location of these fluxes differ depending on the annual supply and demand of crop commodities. Data on the harvest of crop biomass, storage, import and export, and on the use of biomass for food, feed, fiber, and fuel were compiled to estimate an annual crop carbon budget for 2000 to 2008. Net sources of CO2 associated with the consumption of crop commodities occurred in the Eastern Uplands, Southern Seaboard, and Fruitful Rim regions. Net sinks associated with the production of crop commodities occurred in the Heartland, Northern Crescent, Northern Great Plains, and Mississippi Portal regions. The national crop carbon budget was balanced to within 0.7 to 6.6% yr-1 during the period of this analysis.

  1. Pennsylvania Agricultural

    E-Print Network [OSTI]

    Guiltinan, Mark

    - mental regulations cover industrial pollution as well as pollution controls for agriculture. Two of PA but must be kept on the farm and made available upon request. Plans NPDES Permits The National Pollutant Discharge Elimination System (NPDES) permit is a requirement for construction activities that disturb 1 acre

  2. Radioactive Waste Radioactive Waste

    E-Print Network [OSTI]

    Slatton, Clint

    form · Separate liquid from solid · Radionuclide · Separate all but H3/C14 #12;#12;Radioactive Waste;Radioactive Waste H3/C14 solids Type B (non-incinerable) metal glass hazardous materials #12;#12;Radioactive#12;Radioactive Waste at UF Bldg 831 392-8400 #12;Radioactive Waste · Program is designed to

  3. CROP & SOIL SCIENCES Irrigation Specialist

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Irrigation Specialist Committee Membership Dr. John Beasley - committee chair Dr. Jared Whitaker Department of Crop & Soil Sciences Department of Crop & Soil Sciences University: (229) 386-7308 Fax: (912) 681-0376 Dr. Robert Carrow Dr. Mark Risse Department of Crop & Soil Sciences

  4. CROP & SOIL SCIENCES Quantitative Genomics

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Quantitative Genomics Committee Membership Dr. Scott Jackson - committee chair Dr. Peng-Wah Chee Department of Crop & Soil Sciences Department of Crop & Soil Sciences University of Horticulture Department of Crop & Soil Sciences University of Georgia University of Georgia 2360 Rainwater Rd

  5. Effect of crop residue harvest on long-term crop yield, soil erosion, and carbon balance: tradeoffs for a sustainable bioenergy feedstock

    SciTech Connect (OSTI)

    Gregg, Jay S.; Izaurralde, Roberto C.

    2010-08-26T23:59:59.000Z

    Agricultural residues are a potential feedstock for bioenergy production, if residue harvest can be done sustainably. The relationship between crop residue harvest, soil erosion, crop yield and carbon balance was modeled with the Erosion Productivity Impact Calculator/ Environment Policy Integrated Climate (EPIC) using a factorial design. Four crop rotations (winter wheat [Triticum aestivum (L.)] – sunflower [Helianthus annuus]; spring wheat [Triticum aestivum (L.)] – canola [Brassica napus]; corn [Zea mays L.] – soybean [Glycine max (L.) Merr.]; and cotton [Gossypium hirsutum] – peanut [Arachis hypogaea]) were simulated at four US locations each, under different topographies (0-10% slope), and management practices [crop residue removal rates (0-75%), conservation practices (no till, contour cropping, strip cropping, terracing)].

  6. Economic Value of Agricultural

    E-Print Network [OSTI]

    Economic Value of Agricultural Research Public Investment in Texas Agricultural Research Yields Significant Economic Returns #12;Texas agricultural producers and especially consumers benefit directly from public investment in agricultural research. According to a 2006 study (Huffman and Evenson), the overall

  7. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema (OSTI)

    Francesco Danuso

    2010-01-08T23:59:59.000Z

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  8. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect (OSTI)

    Danuso, Francesco (University of Udine) [University of Udine

    2008-06-18T23:59:59.000Z

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed. SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Joergensen, 1994) in which systems are modeled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  9. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    SciTech Connect (OSTI)

    Francesco Danuso

    2008-06-18T23:59:59.000Z

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  10. Fluidized bed gasification of agricultural residue 

    E-Print Network [OSTI]

    Groves, John David

    1979-01-01T23:59:59.000Z

    is the only energy derived from such a system. The biomass energy project, of' which this re- search into gasification is a part, was designed to investi- gate both combustion and gasification as means to recover energy from agricultural wastes...FLUIDIZED BED GASIFICATION OF AGRICULTURAL RESIDUES A Thesis by JOHN DAVID GROVES Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1979 Major...

  11. futuresfuturesMICHIGAN AGRICULTURAL

    E-Print Network [OSTI]

    researcher Kurt Thelen is exploring two intriguing possibilities: Can a brownfield site pro- duce crops

  12. Water, Agriculture + settlement design in the arid lower Colorado River Basin : 3 new models

    E-Print Network [OSTI]

    Wirth, Timo Matti

    2011-01-01T23:59:59.000Z

    This thesis investigates possible conversions of an increasingly unviable type of irrigated agricultural landscape, seen under the influences of three simultaneous processes: urban growth, change of cropping practice and ...

  13. Evaluation of "Dry Year Option" Water Transfers from Agricultural to Urban Use 

    E-Print Network [OSTI]

    McCarl, Bruce A.; Jones, Lonnie L.; Lacewell, Ronald D.

    1997-01-01T23:59:59.000Z

    This study investigated the economics of an Edwards Aquifer region "dry-year option" buyout directed toward decreasing agricultural water use in an effort to augment springflow. The research involved several phases. First, we applied crop growth...

  14. College of Agricultural Sciences College of Agricultural Sciences

    E-Print Network [OSTI]

    Stephens, Graeme L.

    College of Agricultural Sciences _______________ 2.5 Page 1 College of Agricultural Sciences Office UNDERGRADUATE MAJORS Agricultural Business Agricultural Economics Agricultural Education Animal Science Equine UNDERGRADUATE MINORS Agricultural and Resource Economics Entomology Horticulture Environmental Horticulture

  15. College of Agricultural Sciences College of Agricultural Sciences

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    College of Agricultural Sciences College of Agricultural Sciences Office in Shepardson Building MAJORS Agricultural Business Agricultural Education Animal Science Environmental and Natural Resource Sciences UNDERGRADUATE MINORS Agricultural and Resource Economics Agricultural Literacy Entomology

  16. College of Agricultural Sciences College of Agricultural Sciences

    E-Print Network [OSTI]

    College of Agricultural Sciences _______________ 2.5 Page 1 College of Agricultural Sciences Office for Research UNDERGRADUATE MAJORS Agricultural Business Agricultural Economics Agricultural Education Animal Sciences UNDERGRADUATE MINORS Agricultural and Resource Economics Entomology Environmental Horticulture

  17. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    increasie nutrient efficiency. GM crops were introduced on aThese first generation GM crops are characterized primarilygenetically modified (GM) crops—also known as either biotech

  18. Smarter Cropping: Internet program helps farmers make decisions about crops

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    Story by Kathy Wythe tx H2O | pg. 26 Smarter Cropping Internet program helps farmers make decisions about crops Along the coastal plains of Texas, farmers and crop managers are using the Internet to make more informed decisions about growing...

  19. Modeling Policy and Agricultural Decisions in Afghanistan

    E-Print Network [OSTI]

    Widener, Michael J; Gros, Andreas; Metcalf, Sara; Bar-Yam, Yaneer

    2011-01-01T23:59:59.000Z

    Afghanistan is responsible for the majority of the world's supply of poppy crops, which are often used to produce illegal narcotics like heroin. This paper presents an agent-based model that simulates policy scenarios to characterize how the production of poppy can be dampened and replaced with licit crops over time. The model is initialized with spatial data, including transportation network and satellite-derived land use data. Parameters representing national subsidies, insurgent influence, and trafficking blockades are varied to represent different conditions that might encourage or discourage poppy agriculture. Our model shows that boundary-level interventions, such as targeted trafficking blockades at border locations, are critical in reducing the attractiveness of growing this illicit crop. The principle of least effort implies that interventions decrease to a minimal non-regressive point, leading to the prediction that increases in insurgency or other changes are likely to lead to worsening conditions,...

  20. WTERT (Greece and U.S.) PARTICIPATION IN ISWA-APESB 2009 WORLD CONGRESS:"Turning Waste into

    E-Print Network [OSTI]

    Management 3. Waste To Energy 4. Waste&Climate Change 5. IberoAmerican Symposium Regarding Waste to Energy in compost for agricultural use. The Composting Plant has the capacity to treat about 60.000 tons/

  1. NEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    NEBRASKA WATER RESOURCES RESEARCH INSTITUTE 212 AGRICULTURAL ENGINEERING BUILDING THE UNIVERSITY Resources Research Institute, 212 Agricultural ~ngineering, East Campus. OBJECTIVES OF THE NWRRI The Hater for centralization of data collection, analysis, storage and retrieval waste-water reuse economics of pollution

  2. Crop Insurance Terms and Definitions

    E-Print Network [OSTI]

    Stokes, Kenneth; Waller, Mark L.; Outlaw, Joe; Barnaby, G. A. Art

    2008-10-17T23:59:59.000Z

    This publication is a glossary of terms used by the crop insurance industry. There are definitions for terms used in crop insurance documents and for terms pertaining to coverage levels, farming, reports, units and parties to contracts....

  3. agricultural crops uranium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inorganic elements were also identified during 430 Clean Air Act Requirements: Uranium Mill Tailings Environmental Sciences and Ecology Websites Summary: :www.epa.govradiation...

  4. agricultural crop residues: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.2.1 Regional demand for energy ...85 5.2.2 Biomass feedstocks availability and cost ...85 5.2.3 Transportation and cost......

  5. agricultural crops grown: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mills make as fine a flour as could be desired." Taylor (log), who went by horseback from San Antonio to El Paso and on to California in 1876, observed wheat..., he reports (1876)...

  6. Energy Intensity of Agriculture and Food Systems

    E-Print Network [OSTI]

    Wang, Changlu

    dependencies in the light of energy price volatility and concerns as to long-term fossil energy availabilities ENERGY USE. . . . . . . . . . 232 6. FOOD WASTE AND ENERGY USE. . . . . . . . . . . . . Energy Intensity of Agriculture and Food Systems Nathan Pelletier,1 Eric Audsley,2 Sonja Brodt,3

  7. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

  8. Missouri Agriculture Outlook Conference

    E-Print Network [OSTI]

    Noble, James S.

    Missouri Agriculture Outlook Conference Conference Information This conference will discuss the drivers of Missouri agricultural and bio-fuel markets and the implications for Missouri farmsDr.JonHagler, DirectoroftheMissouriDepartment ofAgriculture. · Outlookpresentationsderivedfrom thelatestbaselineresultsof

  9. Agricultural Leadership, Education, & Communications

    E-Print Network [OSTI]

    Agricultural Leadership, Education, & Communications ALEC 102 Fall 2006 Course Title: Critical Issues in Agricultural Leadership and Education Credit: 1 Hour Instructors: Ms. Summer Felton; 119A! This introductory course is designed for students entering in the Agricultural Leadership & Development degree

  10. Agricultural Waste Management System Component Design

    E-Print Network [OSTI]

    Mukhtar, Saqib

    ......................................................................10­72 (c) Land application of municipal sludge ......................................................10­72 (d) Biogas production

  11. Insects Attacking Vegetable Crops.

    E-Print Network [OSTI]

    Newton, Weldon H.; Deer, James A.; Hamman, Philip J.; Wolfenbarger, Dan A.; Harding, James A.; Schuster, Michael F.

    1964-01-01T23:59:59.000Z

    of economic importance. Worms cause consider- able damage to grain sorghum heads, but they are cannibalistic and usually only one larva reaches full growth in each head as well as in each corn ear. BLACK CUTWORM, Agrotis ipsilon (Hufnagel) Cutworms.... They frequently do considerable damage to corn ears, similar to that caused by corn ear- worms. These worms also feed as "budworms" in grain sorghum and corn whorls. Unfolding leaves from whorls of such attacked crops are per- forated with holes. Like...

  12. Insects Attacking Vegetable Crops

    E-Print Network [OSTI]

    Newton, Weldon H.; Deer, James A.; Hamman, Philip J.; Wolfenbarger, Dan A.; Harding, James A.; Schuster, Michael F.

    1964-01-01T23:59:59.000Z

    THAT SUCK THE JUICES FROM FOLIAGE, FRUITS, STEMS AND ROOTS, CAUSING DISCOLORATION, STUNTING AND OTHER DAMAGE APHIDS Aphids are small, sluggish, soft-bodied insects often called plant lice. A number of species attack various crops, sucking plant sap..., peppers or dark brown with black leg joints, eyes and and tomatoes. cornicles. Aphids build up very rapidly and leave copious quantities of honeydew on leaves. Adults POPLAR PETIOLE GALL APHID, Pemphigus and nymphs suck juices from leaves, sapping...

  13. College of Agriculture, Forestry, and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    40 College of Agriculture, Forestry, and Life Sciences 40 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences (virtual- nity and Economic Development Concentration; Agricultural Education; Agricultural Mechanization

  14. The role of short-rotation woody crops in sustainable development

    SciTech Connect (OSTI)

    Shepard, J.P. [National Council of the Paper Industry for Air and Stream Improvement, Medford, MA (United States); Tolbert, V.R. [Oak Ridge National Lab., TN (United States)

    1996-12-31T23:59:59.000Z

    One answer to increase wood production is by increasing management intensity on existing timberland, especially in plantation forests. Another is to convert land currently in agriculture to timberland. Short-rotation woody crops can be used in both cases. But, what are the environmental consequences? Short-rotation woody crops can provide a net improvement in environmental quality at both local and global scales. Conversion of agricultural land to short-rotation woody crops can provide the most environmental quality enhancement by reducing erosion, improving soil quality, decreasing runoff, improving groundwater quality, and providing better wildlife habitat. Forest products companies can use increased production from intensively managed short-rotation woody crop systems to offset decreased yield from the portion of their timberland that is managed less intensively, e.g. streamside management zones and other ecologically sensitive or unique areas. At the global scale, use of short-rotation woody crops for bioenergy is part of the solution to reduce greenhouse gases produced by burning fossil fuels. Incorporating short-rotation woody crops into the agricultural landscape also increases storage of carbon in the soil, thus reducing atmospheric concentrations. In addition, use of wood instead of alternatives such as steel, concrete, and plastics generally consumes less energy and produces less greenhouse gases. Cooperative research can be used to achieve energy, fiber, and environmental goals. This paper will highlight several examples of ongoing cooperative research projects that seek to enhance the environmental aspects of short-rotation woody crop systems. Government, industry, and academia are conducting research to study soil quality, use of mill residuals, nutrients in runoff and groundwater, and wildlife use of short-rotation woody crop systems in order to assure the role of short-rotation crops as a sustainable way of meeting society`s needs.

  15. FACT SHEETUNITED STATES DEPARTMENT OF AGRICULTURE FARM SERVICE AGENCY

    E-Print Network [OSTI]

    Keinan, Alon

    and forest lands will be rededicated to new shrub willow planting for biomass purposes. To support shrub enrollment. The 3,500 acres will be planted in 2013 and 2014 to provide a steady supply of this biomassFACT SHEETUNITED STATES DEPARTMENT OF AGRICULTURE FARM SERVICE AGENCY Page 1 June 2012 Biomass Crop

  16. Roadmap for Agriculture

    E-Print Network [OSTI]

    Buckel, Jeffrey A.

    A Science Roadmap for Food and Agriculture A Science Roadmap for Food and Agriculture Prepared and Policy (ESCOP)-- Science and Technology Committee November 2010 #12;2 pA Science Roadmap for Food and Agriculture #12;A Science Roadmap for Food and Agriculture p i About this Publication To reference

  17. Agricultural and Food Sciences

    E-Print Network [OSTI]

    Faculty of Agricultural and Food Sciences (FAFS) #12;88 Faculty of Agricultural and Food Sciences (FAFS) Graduate Catalogue 2013­14 Faculty of Agricultural and Food Sciences (FAFS) Officers aims to offer specialized training in a variety of fields in food and agriculture, and to prepare

  18. environment and agriculture

    E-Print Network [OSTI]

    environment and agriculture environmentagriculture.curtin.edu.au Bachelor of Science - majorS in agriculture, environmental Biology or coaStal Zone management Science and engineering #12;t he department of environment and agriculture caters for students who are passionate about agriculture, biology, conserving

  19. Agricultural and Food Sciences

    E-Print Network [OSTI]

    Faculty of Agricultural and Food Sciences (FAFS) #12;86 Faculty of Agricultural and Food Sciences (FAFS) Undergraduate Catalogue 2014­15 Faculty of Agricultural and Food Sciences (FAFS) Officers-level courses in agriculture were offered by the School of Arts and Sciences at AUB as early as 1914. Between

  20. AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: risks And concerns

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    in VirginiA: risks And concerns G.K. Evanylo, ExtEnsion spEcialist, DEpartmEnt of crop anD soil EnvironmEntal and organic matter for improving soil tilth, water-holding capacity, soil aeration, and an energy source. Transportation and application scheduling that is compatible with agricultural planting, harvesting, and possible

  1. Undergraduate Education The College of Agricultural Sciences will provide undergraduate degrees in Agricultural Business, Agricultural Economics,

    E-Print Network [OSTI]

    Undergraduate Education The College of Agricultural Sciences will provide undergraduate degrees in Agricultural Business, Agricultural Economics, Agricultural Education, Animal Sciences, Equine Sciences, economics, business, and communications. The program in Agricultural Education recently has been renovated

  2. Forage Crops in Northwest Texas.

    E-Print Network [OSTI]

    Conner, A. B. (Arthur Benjamin)

    1908-01-01T23:59:59.000Z

    ...................... Preparing. Seeding and Cultivating the Land 18 I I Harvesting the Crop; Yield per Acre ............................ 18 I ! FORAGE CROPS AT AMARILLO ....................................... 18... are the disk harrow, the spike-toothed harrow, tne sled-cultivator. and the ordinary large shovel cultivator. In some portions of this territory from ten to twelve successive crops of sorghum have been grown on the same land; this, however, is not a common...

  3. Identifying the requirements of an agricultural robot for sensing and adjusting soil nutrient and pH levels

    E-Print Network [OSTI]

    Teague, Nicole (Nicole Dawn)

    2011-01-01T23:59:59.000Z

    The nutrient requirements of soils using in agriculture for crop production were examined to determine the needs of a robotic system used to detect and regulate the nutrition levels of the soil. Nitrogen, phosphorus, and ...

  4. Analysis of factor productivity in agricultural systems in Zimbabwe and application of Geographic Information Systems in soil erosion prediction

    E-Print Network [OSTI]

    Mugabe, Phanuel

    1994-01-01T23:59:59.000Z

    photographs were digitized into an Arc/Info GIS. This was used to determine the area under crops and grazing. Range forage production figures in kilograms per hectare for the area were obtained from Agricultural Technical and Extension Services inventories...

  5. The Conversion of Waste to Energy

    E-Print Network [OSTI]

    John, T.; Cheek, L.

    1980-01-01T23:59:59.000Z

    quent slagging of cyclones and boilers. (3) Large fan power requirements. The gasification of solid wastes may be advantageous especially when converting equipment designed to burn oil or gas. Fixed bed gasifiers have been found to be a problem... costing $78,000 and saving $33,000/year. Fluidized beds are used for a variety of combustion applications including wood and agricultural wastes, waste treatment sludge, and chemical incineration. A fluidized bed can be used to recover non...

  6. Sustainable Agricultural Residue Removal for Bioenergy: A Spatially Comprehensive National Assessment

    SciTech Connect (OSTI)

    D. Muth, Jr.; K. M. Bryden; R. G. Nelson

    2013-02-01T23:59:59.000Z

    This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform a spatially comprehensive assessment of sustainably removable agricultural residues across the conterminous United States. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10 – 100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time.

  7. USDA Agricultural Conservation Easement Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture's (USDA's) Agricultural Conservation Easement Program (ACEP) provides financial and technical assistance to help conserve agricultural lands, wetlands, and their related benefits.

  8. Immigration reform and California agriculture

    E-Print Network [OSTI]

    Martin, Philip

    2013-01-01T23:59:59.000Z

    reform and California agriculture Philip Martin Professor,proposals for California agriculture. Immigration reformCenter. 196 CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 4

  9. Networks, Local Institutions and Agriculture

    E-Print Network [OSTI]

    Udry, Chris

    2009-01-01T23:59:59.000Z

    Working Paper Series Agriculture for Development Paper No.Institutions and Agriculture. Chris Udry Yale UniversityMay 2009 Conference on “Agriculture for Development in Sub-

  10. Climate Change and Agriculture Reconsidered

    E-Print Network [OSTI]

    Fisher, Anthony

    2009-01-01T23:59:59.000Z

    2009 Paper 1080 Climate Change and Agriculture Reconsideredby author(s). Climate Change and Agriculture Reconsideredimpact of climate change on agriculture, there still exists

  11. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

  12. Estimated Costs of Crop Production in Iowa -2011 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2011 File A1-20 T heestimatedcostsofcorn the annual Iowa Farm Business Association record summaries, production and costs data from the Departments of selected agricultural coop- eratives and other input suppliers around the state. These costs estimates

  13. Estimated Costs of Crop Production in Iowa -2014 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2014 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Busi- ness Association record summaries, production and costs data from, and a survey of selected agricultural cooperatives and other input suppliers around the state. These cost

  14. Estimated Costs of Crop Production in Iowa -2013 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2013 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Busi- ness Association record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These cost

  15. Estimated Costs of Crop Production in Iowa -2012 File A1-20

    E-Print Network [OSTI]

    Duffy, Michael D.

    Estimated Costs of Crop Production in Iowa - 2012 File A1-20 T he estimated costs of corn, corn. They include the annual Iowa Farm Business Asso- ciation record summaries, production and costs data from and a survey of selected agricultural cooperatives and other input suppliers around the state. These costs

  16. October 23, 2007 Artificial Chromosome Poised to Pump Up GM Crops with Extra Genes

    E-Print Network [OSTI]

    Copenhaver, Gregory P.

    of multigene "stacks" may help biofuel plants and other crops reach their potential A new method for creating and whistles such as better drought resistance, easier refinement into biofuels or even the ability spent thousands of years breeding plants for agriculture, but biofuels need much more work to reach

  17. Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute

    E-Print Network [OSTI]

    California at Davis, University of

    Russell Ranch Sustainable Agriculture Facility Agricultural Sustainability Institute College of Agricultural and Environmental Sciences University of California, Davis Kate Scow, Deputy Director of Agricultural Sustainability Institute Professor, Department of LAWR With input from Steve Kaffka, Ford Denison

  18. College of Agriculture, Food and Environment AEC Agricultural Economics

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture, Food and Environment AEC Agricultural Economics KEY: # = new course THE ECONOMICS OF FOOD AND AGRICULTURE. (3 of agriculture in both a national and international dimension. Students who have completed ECO 201

  19. College of Agriculture, Food and Environment GEN General Agriculture

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture, Food and Environment GEN General Agriculture KEY: # = new course * = course IN AGRICULTURE. (3) Anintroductorycourserequiringcriticalanalysisofthemajorsocial. Prereq: Students enrolled in the College of Agriculture; freshmen only in fall semesters and transfers

  20. Indian Agricultural Statistics Research Institute (Indian Council of Agricultural Research)

    E-Print Network [OSTI]

    Rodriguez, Carlos

    #12;Indian Agricultural Statistics Research Institute (Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute (ICAR), Library Avenue, Pusa, New Delhi-110012 : July 2011 All Rights Reserved 2011, Indian Agricultural Statistics Research Institute (ICAR), New Delhi

  1. European Commission Agriculture and

    E-Print Network [OSTI]

    European Commission Agriculture and Rural Development Good practice guidance on the sustainable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5. Sustainable mobilisation of wood: good practices Commission (EC) DG Agriculture and Rural Development 130, Rue de la Loi B ­ 1049 Brussels, Belgium Phone: +32

  2. Waste Plastics as Fuel The concept of PlastofuelTM is the use of waste

    E-Print Network [OSTI]

    Demirel, Melik C.

    Waste Plastics as Fuel The concept of PlastofuelTM is the use of waste agricultural plastic as a fuel source. The PlastofuelTM process creates a dense plastic nugget of compressed shredded plastic that can be burned cleanly in a high temperature combustion process. The shredded plastic is composed

  3. The Environmental Impacts of Subsidized Crop Insurance

    E-Print Network [OSTI]

    LaFrance, Jeffrey T.; Shimshack, J. P.; Wu, S. Y.

    2001-01-01T23:59:59.000Z

    May 1996): 428-438. Environmental Impacts of Subsidized CropPaper No. 912 THE ENVIRONMENTAL IMPACTS OF SUBSIDIZED CROPsuch copies. The Environmental Impacts of Subsidized Crop

  4. Montana State University 1 College of Agriculture

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Montana State University 1 College of Agriculture Graduate Programs Available Agricultural Education Program (http:// catalog.montana.edu/graduate/agriculture/agricultural- education) · M.S. in Agricultural Education (http://catalog.montana.edu/graduate/ agriculture/agricultural-education) Department

  5. International Programs in Agriculture

    E-Print Network [OSTI]

    International Programs in Agriculture MessagefromtheDirector­ Staying Ahead of Globalization and more prosperous place for all. Fortunately, Purdue International Programs in Agriculture (IPIA) has natural disasters caution us to remember the power of nature. The United Nations Food and Agriculture

  6. Missouri Agriculture Outlook Conference

    E-Print Network [OSTI]

    Noble, James S.

    Missouri Agriculture Outlook Conference Conference Information Join us to discuss the drivers of Missouri agricultural and bio-fuels markets and participate in a special review of international policy implications for Missouri agriculture. Registration Deadline To guarantee space availability, please register

  7. Division of Agriculture,

    E-Print Network [OSTI]

    Ray, David

    DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

  8. AGRICULTURAL AND BIOLOGICAL

    E-Print Network [OSTI]

    Gilbert, Matthew

    AGRICULTURAL AND BIOLOGICAL ENGINEERING UNDERGRADUATE PROGRAM Prepare... yourself for a career in integrating life and engineering for systems in agriculture, food, environment, and energy, and to contribute to the world's largest industry. COLLEGE OF ACES COLLEGE OF ENGINEERING #12;AGRICULTURAL AND BIOLOGICAL

  9. Growing Hawaii's agriculture industry,

    E-Print Network [OSTI]

    Program Overview Growing Hawaii's agriculture industry, one business at a time Website: http-3547 agincubator@ctahr.hawaii.edu Grow Your Business If you are looking to start an agriculture-related business with our program · Positively impact the agriculture industry in Hawaii with their success

  10. Process Manual Biological & Agricultural

    E-Print Network [OSTI]

    Boas, Harold P.

    · · · · ·t t ·t ·t t t ·t . ~ t · · Process· Manual Biological & Agricultural Engineering MANUAL FOR THE BIOLOGICAL AND AGRICULTURAL ENGINEERING DEPARTMENT TexasA&MUniversity Article I. NAME The name ofthis organization shall be the Biological and Agricultural Engineering Department (abbreviated

  11. Agriculture KENNETH L. KOONCE

    E-Print Network [OSTI]

    Harms, Kyle E.

    COLLEGE OF Agriculture KENNETH L. KOONCE Dean M. E. GARRISON Associate Dean JACQUELINE M. MALLET BAKER Recruitment Coordinator 104 Agricultural Administration Building 225/578-2362 FAX 225/578-2526 Student Services 138 Agricultural Administration Building 225/578-2065 FAX 225/578-2526 The College

  12. Funding Source Agricultural

    E-Print Network [OSTI]

    Arnold, Jonathan

    Funding Source General Research Agricultural Experiment Station Instruction Public Service,145,610$ 3,716,162DEPARTMENT OF AGRICULTURE $ 1,799,873 $ 8,322,303 $ 30,128,910 $ 0$ 85,000$ 2,127 $ 0$ 4,920,977$ 0US DEPARTMENT OF AGRICULTURE / HATCH $ 0 $ 0 $ 4,920,977 $ 15,348,823FOUNDATION

  13. 2, 485518, 2006 Agricultural

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CPD 2, 485­518, 2006 Agricultural sustainability F. Hole Title Page Abstract Introduction Discussions is the access reviewed discussion forum of Climate of the Past Agricultural sustainability (frank.hole@yale.edu) 485 #12;CPD 2, 485­518, 2006 Agricultural sustainability F. Hole Title Page

  14. AGRICULTURAL EDUCATION Curriculum Checksheet

    E-Print Network [OSTI]

    Rutledge, Steven

    \\ AGRICULTURAL EDUCATION Curriculum Checksheet 123 Credits This checksheet describes the curricular requirements for both the Bachelor of Science degree in Agricultural Education with a concentration in "Teaching" and for the teacher licensing program in agricultural education. The courses listed are courses

  15. Meats & Products Agricultural Inputs

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Meats & Products Agricultural Inputs Processing Idaho B20 C C B Meats and Livestock Products Index to agriculture? Legend Overall weighted grade Weighted rank Northwest Midwest Southwest East Meats & ProductsProcessingessing Maine B11 B A A Meats & Products Agricultural Inputs Processing New York F49 F F F soductsoducts

  16. U.S. Agriculture and International Trade

    E-Print Network [OSTI]

    McCorkle, Dean; Benson, Geoffrey A.; Marchant, Mary; Rosson, C. Parr

    1999-06-23T23:59:59.000Z

    by high tariffs and nontariff barriers. International trade has a major impact on U.S. agriculture. Exports are crucial, providing a market for a major share of crop production and a growing share of meat output. In 1996, 28 percent of U.S. farm cash... upheavals in the countries of the for- mer Soviet Union will not end soon and this will be an impediment to economic growth and expanded trade. The most recent trade agreement under the General Agreement on Tariffs and Trade (GATT), the so-called Uruguay...

  17. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    forecasting drought effects on agriculture based on waterEffects of 2009 Drought on San Joaquin Valley Agriculture

  18. Plot size and location within a cotton block: their effects on the canopy temperature function and crop water stress index

    E-Print Network [OSTI]

    Gaitan, Camilo Alberto

    1988-01-01T23:59:59.000Z

    PLOT SIZE AND LOCATION WITHIN A COTTON BLOCK: THEIR EFFECTS ON THE CANOPY TEMPERATURE FUNCTION AND CROP WATER STRESS INDEX A Thesis CAMILO ALBERTO GAITAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Agricultural Engineering PLOT SIZE AND LOCATION WITHIN A COTTON BLOCK: THEIR EFFECTS ON THE CANOPY TEMPERATURE FUNCTION AND CROP WATER STRESS INDEX A Thesis by CAMILO ALBERTO...

  19. 1973 projections of consumption, production, prices and crop values for Texas winter lettuce and early spring onions 

    E-Print Network [OSTI]

    Furrh, Samuel Roger

    1970-01-01T23:59:59.000Z

    1973 PROJECTIONS OF CONSUMPTION, PRODUCTION, PRICES AND CROP VALUES FOR TEXAS WINTER LETTUCE AND EARLY SPRING ONIONS A Thesis by SAMUEL ROGER FURRH Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE Augus t, l 9 70 Major Subject: Agricultural Economics 1973 PROJECTIONS OF CONSUMPTION, PRODUCTION, PRICES AND CROP VALUES FOR TEXAS WINTER LETTUCE AND EARLY SPRING ONIONS A Thesis SAMUEL ROGER FURRH Ap...

  20. Assistant Professor Cropping Systems Specialist

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Assistant Professor Cropping Systems Specialist Department of Plant and Soil Sciences POSITION DESCRIPTION The Department of Plant and Soil Sciences, Oklahoma State University is seeking, implementing, and evaluating educational programs to meet the needs of producers for improving existing

  1. Cover Crops for the Garden

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    matter for your soil or compost pile. Organic matter is thatin the spring or made into compost, cover crops will act asgathered up and added to your compost pile. The first method

  2. Miscanthus: A Review of European Experience with a Novel Energy Crop

    SciTech Connect (OSTI)

    Scurlock, J.M.O.

    1999-02-01T23:59:59.000Z

    Miscanthus is a tall perennial grass which has been evaluated in Europe over the past 5-10 years as a new bioenergy crop. The sustained European interest in miscanthus suggests that this novel energy crop deserves serious investigation as a possible candidate biofuel crop for the US alongside switchgrass. To date, no agronomic trials or trial results for miscanthus are known from the conterminous US, so its performance under US conditions is virtually unknown. Speculating from European data, under typical agricultural practices over large areas, an average of about 8t/ha (3t/acre dry weight) may be expected at harvest time. As with most of the new bioenergy crops, there seems to be a steep ''learning curve.'' Establishment costs appear to be fairly high at present (a wide range is reported from different European countries), although these may be expected to fall as improved management techniques are developed.

  3. CROP & SOIL SCIENCES Extension Peanut Agronomist

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Extension Peanut Agronomist Committee Membership Dr. J. Michael Moore - committee chair Dr. Clint Waltz Department of Crop & Soil Sciences Department of Crop & Soil Sciences-7300 Fax: (229) 386-7308 Fax: (770) 412-4734 Dr. Eric Prostko Dr. Guy Collins Department of Crop & Soil

  4. CROP & SOIL SCIENCES Cotton Physiologist Tifton campus

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Cotton Physiologist ­ Tifton campus Committee Membership Dr. Stanley Culpepper - committee chair Dr. John Beasley Department of Crop & Soil Sciences Department of Crop & Soil Sciences & Soil Sciences Department of Crop & Soil Sciences University of Georgia-SE District University

  5. CROP & SOIL SCIENCES Water Policy and Management

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Water Policy and Management Committee Membership Dr. David Radcliffe - committee chair Dr. George Vellidis Department of Crop & Soil Sciences Department of Crop & Soil Sciences & Soil Sciences Department of Crop & Soil Sciences University of Georgia University of Georgia Stripling

  6. Advancing Cellulosic Ethanol for Large Scale Sustainable Transportation

    E-Print Network [OSTI]

    Wyman, C

    2007-01-01T23:59:59.000Z

    resources – Agricultural wastes • Sugar cane bagasse • Cornwaste disposal Low impact biomass crops Can improve air quality • Economic Abundant, inexpensive, domestic feedstock Low cost potential without subsidies Agricultural and

  7. Perceptions of agricultural producers as participants of domestic farm policy programs: implications for education

    E-Print Network [OSTI]

    Parker, Rebecca Hall

    2004-11-15T23:59:59.000Z

    -peril crop insurance (MPCI) for all crops. It was viewed as a replacement for disaster programs (Anderson, Richardson, & Smith, 1999). The Agriculture and Food Act of 1981 set target prices for a four year period. Rice allotments and marketing quotas... Service, Farm policy: The 2002 farm bill provisions and economic implications, 2003). The commodity programs in the 2002 Farm Act will provide income support for wheat, feed grains, upland cotton, rice and oilseed through 3 programs: direct payments...

  8. K. A. Garrett and C. M. Cox. Applied biodiversity science: Managing emerging diseases in agriculture and linked natural systems using 1 ecological principles. Pages 368-386 in Infectious disease ecology: The effects of ecosystems on disease and of disease

    E-Print Network [OSTI]

    Garrett, Karen A.

    in agriculture and linked natural systems using 1 ecological principles. Pages 368-386 in Infectious disease in Agriculture and Linked Natural Systems Using Ecological Principles K. A. Garrett and C. M. Cox Summary particular crop species or genotypes are very common. Nonetheless, production agriculture is dominated

  9. Agricultural Biotechnology in California and the EU

    E-Print Network [OSTI]

    Hochman, Gal; Rausser, Gordon; Sexton, Steve; Zilberman, David

    2008-01-01T23:59:59.000Z

    derived from genetically modified (GM) crops. In the Unitedof GM foods—foods derived from GM crops or containingingredients derived from GM crops—has not elicited strong

  10. Wisconsin Agriculture Department of Agricultural and Applied Economics

    E-Print Network [OSTI]

    Radeloff, Volker C.

    Wisconsin Agriculture 2012 STATUS OF Department of Agricultural and Applied Economics · Status­Extension College of Agricultural & Life Sciences UNIVERSITY OF WISCONSIN­MADISON #12;#12;Status of Wisconsin Agriculture, 2012 An annual report by the Department of Agricultural and Applied Economics, UW

  11. Sustainable Agriculture Loan Program

    Broader source: Energy.gov [DOE]

    The Minnesota Sustainable Agriculture Loan program will provide loans to Minnesota residents actively engaged in farming for capital expenditures which enhance the environmental and economic...

  12. Climate change effects on agriculture: Economic responses to biophysical shocks

    SciTech Connect (OSTI)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2013-12-16T23:59:59.000Z

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  13. Observations on European Agriculture.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1911-01-01T23:59:59.000Z

    of Manure ............................................. 9 ........................................ ~pplication of Manure 11 ............................ ............. dffects of Manure -- 12 ............................... rhird-Purchase of Imported....i& includes leguminous crops to gather nitrogen from the air, and thereby enrich the soil. The crops are never turned under but q fed and the manure saved. Second, it is due to a general use of a system of grain and live. stock farming in which all...

  14. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534) and identity of liquid waste Biohazard symbol Address: UCSD 9500 Gilman Drive La Jolla, CA 92093 (858) 534

  15. Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste

    E-Print Network [OSTI]

    Tsien, Roger Y.

    2/2009 Biohazardous Waste Disposal Guidelines Sharps Waste Solid Lab Waste Liquid Waste Animals Pathological Waste Description Biohazard symbol Address: UCSD 200 West Arbor Dr. San Diego, CA 92103 (619 (9:1) OR Biohazard symbol (if untreated) and identity of liquid waste Biohazard symbol Address

  16. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31T23:59:59.000Z

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

  17. Administration ....................................................................................................................................3 School of Agriculture Faculty ............................................................................

    E-Print Network [OSTI]

    ....................................................................................................................................3 School of Agriculture Faculty .............................................................................................................4 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY .............................................................................................................17 Research Projects School of Agriculture

  18. Administration....................................................................................................................................3 School of Agriculture Faculty..............................................................................

    E-Print Network [OSTI]

    ....................................................................................................................................3 School of Agriculture Faculty.............................................................................................................4 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY .............................................................................................................17 Research Projects School of Agriculture

  19. Administration....................................................................................................................................3 School of Agriculture Faculty..............................................................................

    E-Print Network [OSTI]

    ....................................................................................................................................3 School of Agriculture Faculty.............................................................................................................4 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY .............................................................................................................18 Research Projects School of Agriculture

  20. Administration ............................................................................................................2 School of Agriculture Faculty .........................................................................................3

    E-Print Network [OSTI]

    ............................................................................................................2 School of Agriculture Faculty .........................................................................................3 Agricultural and Biological Engineering ­ ABE Agricultural Economics ­ AG ECON Agronomy ­ AGRY Research Projects School of Agriculture

  1. Essays on Development, Ownership Structure, and Agriculture

    E-Print Network [OSTI]

    Moorthy, Aravind

    2012-01-01T23:59:59.000Z

    of climate change on Indian agriculture. ” Manuscript,study of climate change impacts on Indian agriculture hasclimate change on agricultural output, because of the relevance of agriculture

  2. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Intermountain Research Station General. in the aircraft nuclear propulsion department at the National Reactor Testing Station in Idaho. In 1961 Rothermel.S. Department of Agriculture, Fire Laboratory at Missoula was conceived in the aftermath of the Mann Gulch fire

  3. Interdisciplinary Pest Management Potentials of Cover Cropping Systems

    E-Print Network [OSTI]

    Bachie, Oli Gurmu

    2011-01-01T23:59:59.000Z

    Cover Crops: Cowpea, Sunn Hemp, and Velvetbean. HottscienceCover Crops: Cowpea, Sunn Hemp, and Velvetbean. Hottsciencethan grasses using sun hemp mulches. While cover cropping

  4. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  5. agriculture agricultural knowledge: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: May 2011 New Challenges in Agricultural Modeling: Relating Enegy and Farm of Education, Office of Civil Rights. 12;1 New Challenges in Agricultural...

  6. Public Parking > Agriculture Building Parkade**

    E-Print Network [OSTI]

    Saskatchewan, University of

    Engineering Poultry Science Kirk Hall Agriculture Agriculture and Agri-Food Canada SCIENCE PLACE VETERINARY > Agriculture Building Parkade** > Pay Parking Lots** > Stadium Parkade** > Diefenbaker Lot > Health Sciences Parkade** Disabled Persons' Parking* Motorcyle Parking* Faculty & Sta Parking Lots* Student Parking Lots

  7. Oregon Agriculture and the Economy

    E-Print Network [OSTI]

    Tullos, Desiree

    Oregon Agriculture and the Economy: An Update Oregon State University Extension Service Rural Analyst Department of Agricultural and Resource Economics Oregon State University #12;Contents ...........................................................................................................................................12 Agricultural Support Services, Wholesale Trade, Transportation and Warehousing, Retail Trade

  8. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  9. Pollution prevention opportunity assessment: USDA Beltsville Agricultural Research Center

    SciTech Connect (OSTI)

    Sobol, S.P.

    1993-02-01T23:59:59.000Z

    A pollution prevention opportunity assessment (PPOA) was performed during the spring of 1991 which identified areas for waste reduction at the U.S. Department of Agriculture's Beltsville Agricultural Research Center (BARC), Beltsville, Maryland. The areas selected for this joint EPA/USDA study included general hazardous materials handling and usage, total Kjeldahl nitrogen (TKN) analyses, and high performance liquid chromatography (HPLC) analyses. One pollution prevention option applicable to total Kjeldahl analyses involved use of an automated nitrogen analyzer. Acid and base wastes are virtually eliminated and costs for chemicals and labor are reduced significantly. Other pollution prevention options for total Kjeldahl include phenate auto analyzer, micro analysis, and alternate catalyst. Pollution prevention options for HPLC included solid phase extraction, supercritical fluid extraction, solvent recovery, and column/particle size reduction. The approach used to conduct this PPOA is present in EPA's Waste Minimization Opportunity Assessment Manual (EPA/625/7-88/003).

  10. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes...

  11. Bioelectrochemical Integration of Waste Heat Recovery, Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MHRC System Concept ADVANCED MANUFACTURING OFFICE Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with...

  12. Second International Symposium on Integrated Crop-Livestock Systems Porto Alegre, Brazil -8-12 October 2012

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    agricultural development and conservation of biodiversity at the landscape scale remain to be identified. We the inclusion of grasslands in the cropping system (in time, space and according to management practices at the landscape scale gives them a status of common good: a good that should be collectively managed to maximize

  13. Department of Crop and Soil Sciences PhD Graduate Research Assistantship: Soil Science/Soil Quality/Soil Physics

    E-Print Network [OSTI]

    Flury, Markus

    Department of Crop and Soil Sciences PhD Graduate Research Assistantship: Soil Science/Soil Quality/Soil Physics Position Summary: Plastic mulches are used in agriculture to conserve water, suppress weeds, and increase soil temperatures. However, plastic mulches need to be disposed off at the end

  14. Vegetable Crops Hotline index 2005 MANAGEMENT TIPS

    E-Print Network [OSTI]

    Ginzel, Matthew

    Labeled for Row Middle Use in Vegetable Crops 446 Kudzu Turning Over New Leaves in Indiana Counties 447

  15. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    Carter, Colin A.; Novan, Kevin; Rausser, Gordon; Iho, Antti; Parker, Doug; Zilberman, David

    2013-01-01T23:59:59.000Z

    to allocate crops for biofuels rather than for food. Whencountries in the form of biofuels policies, which tend to

  16. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment

    E-Print Network [OSTI]

    Angenent, Lars T.

    and agricultural processing, centralized and decentralized wastewater treatment plants, and solid waste recoveryInteraction between temperature and ammonia in mesophilic digesters for animal waste treatment, and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During period 1 (day 0

  17. CropIrri: A DECISION SUPPORT SYSTEM FOR CROP IRRIGATION MANAGEMENT

    E-Print Network [OSTI]

    CropIrri: A DECISION SUPPORT SYSTEM FOR CROP IRRIGATION MANAGEMENT Yi Zhang1 , Liping Feng1,* 1: A field crop irrigation management decision-making system (CropIrri) was developed based on the soil water of optimal irrigation methods and irrigation decision support system have obtained important achievements (J

  18. CROP & SOIL SCIENCES Small Grain Breeding

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Small Grain Breeding Committee Membership Dr. Paul Raymer - committee chair Dr. Scott Jackson Department of Crop & Soil Sciences Department of Crop & Soil Sciences University & Soil Sciences Department of Horticulture University of Georgia University of Georgia 2360 Rainwater Rd

  19. Regional Focus on GM Crop Regulation

    E-Print Network [OSTI]

    Church, George M.

    Regional Focus on GM Crop Regulation THE RECENT MEDIA COVERAGE OF THE DEVEL- opments in Brazil for com- mercial genetically modified (GM) crops in both the scientific and regulatory arena. The release of GM crops in these coun- tries might result in the unintentional entry of GM seeds into neighboring

  20. Virginia Tech Shenandoah Valley Agricultural

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    and Environment, Virginia Tech, Dr. John Fike, Crop and Soil Environmental Sciences, Virginia Tech and Patti Fescue-based Pastures ­ Dr. Ben Tracy, Crop and Soil Environmental Sciences, Virginia Tech and Gordon Jones, Graduate Student, Crop and Soil Environmental Sciences, Virginia Tech 3:25 ­ 3:40 Early Weaning

  1. Meeting the Radiative Forcing Targets of the Representative Concentration Pathways in a World with Agricultural Climate Impacts

    SciTech Connect (OSTI)

    Kyle, G. Page; Mueller, C.; Calvin, Katherine V.; Thomson, Allison M.

    2014-02-28T23:59:59.000Z

    This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.

  2. College of Agriculture, Forestry, and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    40 College of Agriculture, Forestry, and Life Sciences 40 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The mission of the College of Agriculture, Forestry, and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens

  3. College of Agriculture, Forestry and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    43 College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The College of Agriculture, Forestry and Life Scienc- es (CAFLS) supports Clemson University's land-grant mission to provide education, research and service to the public. The College of Agriculture

  4. ABT Agricultural Biotechnology College of Agriculture, Food and Environment

    E-Print Network [OSTI]

    MacAdam, Keith

    ABT Agricultural Biotechnology College of Agriculture, Food and Environment KEY: # = new course or first semester transfer students in Agricultural Biotechnology. ABT 120 GENETICS AND SOCIETY. (3 with the common experimental methods used in agricultural biotechnology. Students will be presented with several

  5. College of Agriculture, Forestry, and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    46 College of Agriculture, Forestry, and Life Sciences 46 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences offers graduate programs in 17 traditional disciplines in agriculture, forestry, and a wide variety of biological sciences, from

  6. College of Agriculture, Forestry, and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    44 College of Agriculture, Forestry, and Life Sciences 44 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences offers graduate programs in 17 traditional disciplines in agriculture, forestry, and a wide variety of biological sciences, from

  7. College of Agriculture, Forestry and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    42 College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens of South

  8. College of Agriculture, Forestry and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Bolding, M. Chad

    College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research and service in agriculture, forestry and life sciences that will benefit the citizens of South

  9. College of Agriculture, Forestry, and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    39 College of Agriculture, Forestry, and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The College of Agriculture, Forestry, and Life Sci- ences (www.clemson.edu/CAFLS) offers a broad. The undergraduate academic programs include Agricultural and Applied Economics with a Community and Economic

  10. College of Agriculture, Forestry and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    20 College of Agriculture, Forestry and Life Sciences 20 COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research and service in agriculture, forestry and life sciences that will benefit the citizens of South

  11. College of Agriculture, Forestry and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Bolding, M. Chad

    40 College of Agriculture, Forestry and Life Sciences 40 COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens of South

  12. College of Agriculture, Forestry and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    41 College of Agriculture, Forestry and Life Sciences COLLEGE OF AGRICULTURE, FORESTRY AND LIFE SCIENCES The mission of the College of Agriculture, Forestry and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens of South

  13. College of Agriculture, Forestry, and Life Sciences AGRICULTURE,

    E-Print Network [OSTI]

    Stuart, Steven J.

    20 College of Agriculture, Forestry, and Life Sciences 20 COLLEGE OF AGRICULTURE, FORESTRY, AND LIFE SCIENCES The mission of the College of Agriculture, Forestry, and Life Sciences is to provide teaching, research, and service in agriculture, forestry, and life sciences that will benefit the citizens

  14. College of Agriculture, Food and Environment AEN Agricultural Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Agriculture, Food and Environment AEN Agricultural Engineering KEY: # = new course of engineering systems, earthwork computations, and introduction to boundary surveys for Agriculture students in the College of Agriculture and/or consent of instructor. AEN 220 FARM TRACTORS AND ENGINES. (3) Principles

  15. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  16. Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural landscape

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Evaluating atmospheric CO2 inversions at multiple scales over a highly inventoried agricultural the results to an inventory of CO2 fluxes. Statistics from densely monitored crop production, consisting primarily of corn and soybeans, provided the backbone of a well studied bottom-up inventory flux estimate

  17. How are greenhouse gases related to agriculture? Greenhouse gases such as carbon dioxide occur

    E-Print Network [OSTI]

    levels are causing Earth's average global temperature to rise. Consequently, we experience changes States. How will climate change affect Michigan field crop agriculture? Global warming is likely to bring naturally in the atmosphere and keep the Earth warm, allowing us to survive on Earth. Over the last 200

  18. Texas Agricultural Extension Service The Texas A&M University System

    E-Print Network [OSTI]

    Mukhtar, Saqib

    Texas Agricultural Extension Service The Texas A&M University System Rhizobium Inoculation for implementing or adjusting an N fertilizer program to compensate for loss of fixed N to the peanut. A good time products packaged for other crops, such as peanuts, to guar. I can=t recommend this practice until I see

  19. TexasAgriculturalExtensionService The Texas A&M University System

    E-Print Network [OSTI]

    Mukhtar, Saqib

    TexasAgriculturalExtensionService The Texas A&M University System SCS-1999-23Soil and Crop Sciences in less than ideal conditions. Due to the relative success in achieving good stands under optimum rainfall conditions, farmers in the higher rainfall regions of the state may traditionally use practices which

  20. Division of Agricultural Sciences and Natural Resources Oklahoma State University Oklahoma Cooperative Extension Fact Sheets

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Division of Agricultural Sciences and Natural Resources · Oklahoma State University HLA-6710 of Principles and Practices Cultural Practices A healthy crop is less susceptible to most diseases. As a general rule, pathogens do not thrive under good cultural conditions but take advantage of cultural errors

  1. Potential Water Use Conflicts Generated by Irrigated Agriculture in Rhode Island

    E-Print Network [OSTI]

    Gold, Art

    Potential Water Use Conflicts Generated by Irrigated Agriculture in Rhode Island Arthur Gold. Drought stress regularly occurs in turf and nursery crops planted on loam and sandy loam soils. Epstein rain in the summer for sandy loam soils and after 6 days without rain on silt loam soils. Supplemental

  2. rBST Adoption in the United States: A Retrospective Look at a "Juggernaut" Agricultural

    E-Print Network [OSTI]

    Foltz, Jeremy D.

    agricultural biotechnology had been trotted out after some of the genetically modified crops that were also in the United States over Monsanto's intent to market recombinant bovine somatotropin (rBST), a genetically engineered hormone that stimulates treated cows to produce more milk. The Food and Drug Administration

  3. Agricultural Economic Impacts of Climate Change in Yolo County (Preliminary) Study objective

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Document the history and projections of agriculturally relevant climate change in Yolo County and assess 319 333 502 Projections IGCC B1 and A2 climate projections differ and show ups and downs though 2050 and downs over the period. We fit statistical models to the crop acreage history as functions of prices

  4. Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence

    E-Print Network [OSTI]

    Vertes, Akos

    Evolving Comparative Advantage and the Impact of Climate Change in Agricultural Markets: Evidence the implications of climate change for a variety of crops and locations around the world. The goal of the present the surface of the Earth, we ...nd small adverse e¤ects of climate change for the median country in the world

  5. Solanaceae Coordinated Agricultural Project Dedicated to the Improvement of Potato and Tomato

    E-Print Network [OSTI]

    Douches, David S.

    SolCAP Solanaceae Coordinated Agricultural Project Dedicated to the Improvement of Potato are dedicated to the improvement of the Solanaceae crops: potato and tomato. Through innovative researchCAP Project Participants #12;SolCAP Project OverviewResearch - Education - Extension [Potato Example] mRNA > c

  6. Power Lines and Crops Can Be Good Neighbors

    SciTech Connect (OSTI)

    none,

    2010-08-01T23:59:59.000Z

    Two of the Pacific Northwest’s greatest economic assets are its wealth of agriculture and its clean and reliable electricity fueled largely by hydropower. Sometimes the two intersect. Transmission lines carrying electricity to the region’s farms, businesses and homes must, of necessity, span large areas where people grow crops and orchards. To ensure a safe and reliable flow of electricity across these expanses, trees and other vegetation must be managed to certain standards. At the same time, the Bonneville Power Administration — which owns and operates three-quarters of the region’s high-voltage transmission — recognizes the importance of our region’s agricultural bounty. We are committed to working with individuals and agricultural communities to facilitate ongoing land-use activities in transmission rights-of-way as long as those uses are compatible with transmission safety and reliability standards. Our goal with vegetation management is to keep you and your property safe while protecting the reliability of our region’s electricity system. By working together, BPA and landowners can protect the system and public safety.

  7. MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT

    E-Print Network [OSTI]

    of solid and liquid wastes generated at mushroom producing facilities. Environmental guidelines#12;MUSHROOM WASTE MANAGEMENT PROJECT LIQUID WASTE MANAGEMENT PHASE I: AUDIT OF CURRENT PRACTICE The Mushroom Waste Management Project (MWMP) was initiated by Environment Canada, the BC Ministry

  8. The Impact of Tenure Arrangements and Crop Rotations on Upper Gulf Coast Rice Farms.

    E-Print Network [OSTI]

    Perry, Gregory M.; Rister, M. Edward; Richardson, James W.; Grant, Warren R.; Sij, John W. Jr

    1986-01-01T23:59:59.000Z

    I ____J - TDOC Z TA245 .7 8873 N0.1530 The Impact Of Tenure Arrangements And Crop Rotations On Upper Gulf Coast Rice Farms The Texas Agricultural Experiment Station/ Neville P. Clarke, Director/ The Texas A&M University System/ College... .. . .. . . .................. . . . . . .. . ... .. .... ... 88 PREFACE This bulletin reports economic analyses of the effects of important variables affecting the viability of rice-soybean farming operations in the Texas Upper Gulf Coast region. The study attempts to recognize many factors that affect...

  9. AGRICULTURE, 2003 Current Wisconsin Farm Financial Conditions

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2003 Current Wisconsin Farm Financial Conditions Situation and Challenges Department of Agricultural and Applied Economics College of Agricultural and Life Sciences OF WISCONSIN AGRICULTURE, 2003 An Annual Report by: Department of Agricultural and Applied Economics College

  10. BC Agriculture Climate Change Adaptation

    E-Print Network [OSTI]

    Pedersen, Tom

    BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report executive summary #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

  11. BC Agriculture Climate Change Adaptation

    E-Print Network [OSTI]

    Pedersen, Tom

    BC Agriculture Climate Change Adaptation Risk + Opportunity Assessment Provincial Report #12;published March 2012 by the British Columbia Agriculture & Food Climate Action Initiative www.BCAgClimateAction.ca project funding provided by Agriculture and Agri-food Canada BC Ministry of Agriculture BC Ministry

  12. Purdue Agriculture Annual Statistical Report

    E-Print Network [OSTI]

    Purdue Agriculture Research Works Annual Statistical Report 2005-2006 Purdue AGrICuLTure Read the full report on the Web www.ag.purdue.edu/arp/stat_report_05-06 #12;Purdue AGrICuLTure Purdue Agriculture Research Works Here's why. We are riding the wave of revolutionary changes brought about

  13. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect (OSTI)

    Liang Sai [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang, Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Xu Yijian [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); China Academy of Urban Planning and Design, Beijing 100037 (China)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  14. Agro-energy: Redefining energy and agriculture in Iowa

    SciTech Connect (OSTI)

    Cooper, J.T. [Chariton Valley RC& D, Inc., Centerville, IA (United States)

    1995-11-01T23:59:59.000Z

    Recent advantages in technology are leading to increased interest in agriculture as a source of energy. The replacement of fossil fuels with biomass is quite feasible in the near future. Investigation of renewable energy in Iowa has centered around the use of agricultural crops to generate electrical energy. Switchgrass, a native grass of Iowa, is one of the most promising biomass producers. Chariton Valley RC&D Inc., a USDA sponsored rural development organization based in southern Iowa and IES Utilities, a major Iowa energy company, are leading a statewide coalition of public and private interests to merge Iowa`s agricultural potential with long-term energy requirements to develop a locally sustainable source of biomass fuel. Many of the sois of southern Iowa are best suited to the production of forages and trees. Farm program changes, and the eventual end of the Conservation Reserve Program (CRP) make adding value and establishing long term markets for perennial forage crops vital for the area`s continued prosperity. Ten percent of the total land in the four county Chariton Valley area is in CRP -- 140,000 acres. Thousands more acres of marginal lands not in CRP, have limited production potential and would be available for biomass production. The associated benefits to water quality, sustainable soil capabilities and the local economy are phenomenal. IES Utilities is working with Iowa State University, R.W. Beck and other private industry interests to identify and develop the technology to convert agricultural crops to energy. The long term plan calls for 35 MW of electrical power production using a dedicated supply of biomass to be established in southern Iowa. This facility would use approximately 30,000 to 40,000 acres. Co-firing biomass with coal appears to provide a short cut to commercial use of biomass and will enhance interest in emerging advanced technologies.

  15. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  16. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

    1998-01-01T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  17. Evaluating Crop-Share Leases.

    E-Print Network [OSTI]

    Sartin, Marvin; Brints, Norman

    1979-01-01T23:59:59.000Z

    -SHARE LEASES Marvin Sartin and Norman Brints* There are many approaches for evaluating a crop-share lease. The easiest and most commonly used method relies on history and tradition. Throughout most of Texas, share leases have tra ditionally been one...-third for grain and one-fourth for cotton. While such agreements continue, the economic factors governing farming operations have changed, thus creating a need for reexamin ing terms of share leases. An accepted approach to evaluating sharing arrangements...

  18. Video Article Continuously-Stirred Anaerobic Digester to Convert Organic Wastes into

    E-Print Network [OSTI]

    Angenent, Lars T.

    Video Article Continuously-Stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System@cornell.edu URL: http://www.jove.com/video/3978/ DOI: 10.3791/3978 Keywords: Anaerobic Digestion, Bioenergy, Biogas, Methane, Organic Waste, Methanogenesis, Energy Crops, Date Published: // Citation: Usack

  19. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses

    SciTech Connect (OSTI)

    D.R. Coyle; J. Blake; K. Britton; M.; Buford; R.G. Campbell; J. Cox; B. Cregg; D. Daniels; ,; M. Jacobson; K. Johnsen; T. McDonald; K. McLeod; E.; Nelson; D. Robison; R. Rummer; F. Sanchez; J.; Stanturf; B. Stokes; C. Trettin; J. Tuskan; L. Wright; ,; S. Wullschleger

    2003-12-31T23:59:59.000Z

    Coleman, M.D., et. al. 2003. Production of Short-Rotation Woody Crops Grown with a Range of Nutrient and Water Availability: Establishment Report and First-Year Responses. Report. USDA Forest Service, Savannah River, Aiken, SC. 26 pp. Abstract: Many researchers have studied the productivity potential of intensively managed forest plantations. However, we need to learn more about the effects of fundamental growth processes on forest productivity; especially the influence of aboveground and belowground resource acquisition and allocation. This report presents installation, establishment, and first-year results of four tree species (two cottonwood clones, sycamore, sweetgum, and loblolly pine) grown with fertilizer and irrigation treatments. At this early stage of development, irrigation and fertilization were additive only in cottonwood clone ST66 and sweetgum. Leaf area development was directly related to stem growth, but root production was not always consistent with shoot responses, suggesting that allocation of resources varies among treatments. We will evaluate the consequences of these early responses on resource availability in subsequent growing seasons. This information will be used to: (1) optimize fiber and bioenergy production; (2) understand carbon sequestration; and (3) develop innovative applications such as phytoremediation; municipal, industrial, and agricultural wastes management; and protection of soil, air, and water resources.

  20. Students' Perceptions of International Agriculture After an International Agricultural Experience 

    E-Print Network [OSTI]

    Miller, Kasey Lynn

    2012-02-14T23:59:59.000Z

    /schedule, language, safety and health, and time away from home; finally, benefits included experience in international agriculture and natural resources, culture, international travel, global perspective, and education. This study found that international agriculture...

  1. Estimating crop net primary production using inventory data and MODIS-derived parameters

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03T23:59:59.000Z

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  2. College of Agriculture and Life Sciences

    E-Print Network [OSTI]

    Buehrer, R. Michael

    College of Agriculture and Life Sciences Alumni Organization With a special presentation. Agricultural Research and Extension Center With updates from: Alan Grant, Dean, College of Agriculture and Life

  3. Maximizing (Productivity and Efficiency) in Contemporary Agriculture

    E-Print Network [OSTI]

    Fixen, Paul

    2009-01-01T23:59:59.000Z

    Paris, France. Dupont. 2009. Agriculture is up to globalFAO. 2008. State of Food and Agriculture (page 62).Food and Agriculture Organization of the United Nations.

  4. Essays on Development, Ownership Structure, and Agriculture

    E-Print Network [OSTI]

    Moorthy, Aravind

    2012-01-01T23:59:59.000Z

    change on Indian agriculture. ” Manuscript, Department ofJ. Parikh. “Indian agriculture and climate sensitivity. ”3):353–368, 1979. Food and Agriculture Organization of the

  5. Farm Workers and Unions in California Agriculture

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    and Unions in California Agriculture Philip Martin June 30,unions and immigration in California agriculture 2. scanningbargaining agreements signed in CA agriculture (http://

  6. Three ACE awards for California Agriculture

    E-Print Network [OSTI]

    Editors, by

    2012-01-01T23:59:59.000Z

    2012): Can Cali- fornia Agriculture disprove the allegedweed. Three ACE awards for California Agriculture TheCalifornia Agriculture team has won three awards from the

  7. Enzymes with agriculture and biofuel applications | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzymes with agriculture and biofuel applications Enzymes with agriculture and biofuel applications Released: November 20, 2014 Enzyme insights may help agriculture, biofuels Plant...

  8. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

  9. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    18-673389 Keywords: cassava; bioethanol; biofuel; metabolicRecently, cassava-derived bioethanol production has beenbenefits compared to other bioethanol- producing crops in

  10. Science & Research Agriculture & Food

    E-Print Network [OSTI]

    Science & Research Agriculture & Food Climate & Environment Consumers EU Priorities 2020 EU Treaty for nuclear fusion project ITER | EurActiv http://www.euractiv.com/en/science/funding-crisis-for-nuclear for nuclear fusion project ITER A multi-billion euro international research project has run into deep

  11. AGRICULTURAL REPORT FEBRUARY 2010

    E-Print Network [OSTI]

    trading framework. The largest GHG market in the world is the European Union-Emissions Trading Scheme' sulfur diox- ide (SO2) emissions trading program Greenhouse Gas Emissions Offsets from Agriculture and states have enacted policies individually or in cooperation to reduce GHG emissions through an emissions

  12. AGRICULTURAL REPORT OCTOBER 2006

    E-Print Network [OSTI]

    as Indiana agriculture enters the energy business in a big way. The advent of four new Indiana ethanol plants. Ethanol means theres a monstrous increase in the need for corn production in 2007, and beyond. Acres have of the process to produce ethanol from cellulose (plant material). Indiana biofuels are both ethanol (corn

  13. 2012 Annual Report Agricultural

    E-Print Network [OSTI]

    Goodman, Robert M.

    Covered iii Funding Sources; Expenditure Breakdown Commercial Agriculture 1 Putting New Jersey Vintages for Librarians Economic Development 25 Food Industry Gateway 26 New Jersey Clean Energy Resource Network counties: Rutgers Cooperative Extension Statistics NJAES plays a significant role in the state's economic

  14. Agriculture Residential College

    E-Print Network [OSTI]

    Architecture Students Design Build Solar Pavilion in Old South Baton Rouge Louisiana Sustainable BuildingAgriculture Residential College LSU Sustainability Denise Newell LSU Planning, Design-year institutions Denise S. Newell, PE LEED AP Sustainability Manager scribner@lsu.edu Contact Info "If you had

  15. Agricultural biotechnology and Indian newspapers

    E-Print Network [OSTI]

    Sivakumar, Gayathri

    2004-11-15T23:59:59.000Z

    This study is designed to look into how agricultural biotechnology is covered by Indian newspapers. A through study of the literature showed that agricultural biotechnology is a much debated topic and there is a vast difference between the concerns...

  16. Assistant Professor Agricultural Systems Modeler

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    Assistant Professor Agricultural Systems Modeler Department of Plant and Soil Sciences Division of Agricultural Sciences and Natural Resources Oklahoma State University ­ Stillwater, Oklahoma POSITION DESCRIPTION The Department of Plant and Soil Sciences, Oklahoma State University is seeking applicants

  17. CROP & SOIL SCIENCES Statewide Variety Testing Program Coordinator

    E-Print Network [OSTI]

    Arnold, Jonathan

    CROP & SOIL SCIENCES Statewide Variety Testing Program Coordinator Committee Membership Dr. Jerry Johnson - committee chair Dr. Paul Raymer Department of Crop & Soil Sciences Department of Crop & Soil Department of Crop & Soil Sciences Department of Crop & Soil Sciences University of Georgia University

  18. Agricultural and Resource Economics Update

    E-Print Network [OSTI]

    Carter, Colin A.; Novan, Kevin; Rausser, Gordon; Iho, Antti; Parker, Doug; Zilberman, David

    2013-01-01T23:59:59.000Z

    despite globalization tendencies elsewhere in the economy.globalization in the non-agricultural sectors of the world economy.

  19. Sponsorship includes: Agriculture in the

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Sponsorship includes: · Agriculture in the Classroom · Douglas County Farm Bureau · Gifford Farm · University of Nebraska Agricultural Research and Development Center · University of Nebraska- Lincoln Awareness Coalition is to help youth, primarily from urban communities, become aware of agriculture

  20. Agricultural Sciences for Global Development

    E-Print Network [OSTI]

    Agricultural Sciences for Global Development ­ SLU's contribution Research Capacity building Provision of expertise The mission of the Swedish University of Agricultural Sciences (SLU) is "to develop in rural areas, and agriculture plays an essential role in their livelihoods. Nevertheless, FAO estimates

  1. A Guide to Brazil's Agricultural

    E-Print Network [OSTI]

    Perkins, Richard A.

    to the preparation of technical regulations, in 2007, Brazil adopted the Guide of Good Regulatory Practices, whichA Guide to Brazil's Agricultural Machinery Compliance Requirements #12;A Guide to Brazil's Agricultural Machinery Compliance Requirements July 2012 #12;1 A Guide to Importing Agricultural Machinery

  2. Statistical Review of California's Organic Agriculture

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Statistical Review of California's Organic Agriculture 2005 ­ 2009 Karen Klonsky Kurt Richter Agricultural Issues Center University of California March 2011 #12;Statistical Review of California's Organic Agriculture 2005 ­ 2009 Karen Klonsky Extension Specialist Department of Agricultural and Resource Economics

  3. AGRICULTURE, 2001 Current Wisconsin Farm Financial Conditions

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2001 Current Wisconsin Farm Financial Conditions Situation and Outlook for Farm Products and Inputs Special Articles · Outlook for the National Economy and Agricultural Policies · Smart Growth and Wisconsin Agriculture · The Wisconsin Agricultural Economy: A Broader

  4. Agricultural Mitigation and Offsets: Policy Issues, Progress

    E-Print Network [OSTI]

    Agricultural Mitigation and Offsets: Policy Issues, Progress Purdue Climate Change Research Center, 2010 #12;Agricultural Mitigation and Offsets: Policy Issues, Progress Presentation Overview: Global Climate Change...and Agriculture Policy Landscape: US and International Agricultural Offsets and Policy

  5. REALIZATION OF THE REGIONAL ADVANTAGEOUS AGRICULTURAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    REALIZATION OF THE REGIONAL ADVANTAGEOUS AGRICULTURAL INDUSTRIES ANALYSIS SYSTEM Kaimeng Sun Institute of Agricultural Information, Chinese Academy of Agricultural Sciences, Beijing,P. R. China 100081 Abstract: In this paper, a system for analyzing the strategic adjustment of regional agricultural

  6. CURRENT SITUATION AND COUNTERMEASURES OF AGRICULTURAL

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CURRENT SITUATION AND COUNTERMEASURES OF AGRICULTURAL INFORMATION CONSTRUCTION IN JIAMUSI AREA of agricultural information construction in Jiamusi area, the achievements obtained from agricultural information, the existing problems of agricultural information construction are found. The reasons of these problems

  7. Waste processing air cleaning

    SciTech Connect (OSTI)

    Kriskovich, J.R.

    1998-07-27T23:59:59.000Z

    Waste processing and preparing waste to support waste processing relies heavily on ventilation. Ventilation is used at the Hanford Site on the waste storage tanks to provide confinement, cooling, and removal of flammable gases.

  8. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  9. Waste Disposal (Illinois)

    Broader source: Energy.gov [DOE]

    This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

  10. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  11. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01T23:59:59.000Z

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies.

  12. Agriculture Taxes in Texas

    E-Print Network [OSTI]

    Jones, Lonnie L.; Stallmann, Judith I.

    2002-02-18T23:59:59.000Z

    farmers, ranchers and agribusiness firms, including: a73 Exemption from state and local sales and use taxes on purchased farm inputs and products. a73 The provision for local property tax pro- ductivity valuation for open space land. a73 Exemption from... and local level and the provision for open space productivity valuation of land used in agriculture, timber or wildlife production. Sales tax exemptions Farmers and ranchers are exempt from state and local sales taxes for several items, including most...

  13. Agriculture, technology, and conflict

    E-Print Network [OSTI]

    Zilverberg, Cody John

    2009-05-15T23:59:59.000Z

    Agricultural Research CIIDH Centro Internacional para Investigaciones en Derechos Humanos (International Center for Human Rights Research) CPR Comunidad de Poblaci?n en Resistencia (Community in Resistance) departamento A Guatemalan political unit similar... the guerrillas were active. Among the victims were ?men, women and children of all social strata: workers, professionals, church members, politicians, peasants, students and academics; in ethnic terms, the vast majority were Mayans? (Tomuschat, et al., 1999...

  14. ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues...

    Energy Savers [EERE]

    ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a Densified Large Square Bale Format ABSTRACT: Bioenergy Harvesting Technologies to Supply Crop Residues In a...

  15. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  16. Composting Waste Alternatives University of Florida Soil and Water Science Department

    E-Print Network [OSTI]

    Ma, Lena

    1 Composting ­ Waste Alternatives M.J. Depaz University of Florida Soil and Water Science to agricultural fields. Agricultural soils in Florida have low residual fertility due to erosion, nutrient run-off, leaching, and organic matter loss (Crecchio et al., 2001). Low residual fertility has lead

  17. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Environmental Management (EM)

    Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing Facility October...

  18. WASTE TO WATTS Waste is a Resource!

    E-Print Network [OSTI]

    Columbia University

    to Climate protection in light of the· Waste Framework Directive. The "energy package", e.g. the RenewablesWASTE TO WATTS Waste is a Resource! energy forum Case Studies from Estonia, Switzerland, Germany Bossart,· ABB Waste-to-Energy Plants Edmund Fleck,· ESWET Marcel van Berlo,· Afval Energie Bedrijf From

  19. Energy-conserving perennial agriculture for marginal land in southern Appalachia. Final technical report

    SciTech Connect (OSTI)

    Williams, G.

    1982-01-30T23:59:59.000Z

    USDA economists predict the end of surplus farm production in the US within this decade. More and more marginal land will be cropped to provide feed for the growing world population and to produce energy. Much of this potential cropland in Southern Appalachia is poorly suited to annual crops, such as corn. Perennial crops are much better suited to steep, rocky, and wet sites. Research was undertaken on the theoretical potentials of perennial species with high predicted yields of protein, carbohydrates, or oils. Several candidate staple perennial crops for marginal land in Southern Appalachia were identified, and estimates were made of their yields, energy input requirements, and general suitabilities. Cropping systems incorporating honeylocust, persimmon, mulberry, jujube, and beech were compared with corn cropping systems. It appears that these candidate staple perennials show distinct advantages for energy conservation and environmental preservation. Detailed economic analyses must await actual demonstration trials, but preliminary indications for ethanol conversion systems with honeylocust are encouraging. It is suggested that short-term loans to farmers undertaking this new type of agriculture would be appropriate to solve cash-flow problems.

  20. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15T23:59:59.000Z

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application, indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  1. agriculture agricultural research: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application I areas that apply) Discipline Areas Outcome Areas Populations Animal Science Chronic Disease Children Leistikow, Bruce N. 49 Saskatchewan Agricultural...

  2. Effects of alkyl polyglycoside (APG) on composting of agricultural wastes

    SciTech Connect (OSTI)

    Zhang Fabao [Soil and Fertilizer Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640 (China); Gu Wenjie, E-mail: guwenjie1982@yahoo.cn [Soil and Fertilizer Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640 (China); Xu Peizhi; Tang Shuanhu; Xie Kaizhi; Huang Xu; Huang Qiaoyi [Soil and Fertilizer Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640 (China)

    2011-06-15T23:59:59.000Z

    Composting is the biological degradation and transformation of organic materials under controlled conditions to promote aerobic decomposition. To find effective ways to accelerate composting and improve compost quality, numerous methods including additive addition, inoculation of microorganisms, and the use of biosurfactants have been explored. Studies have shown that biosurfactant addition provides more favorable conditions for microorganism growth, thereby accelerating the composting process. However, biosurfactants have limited applications because they are expensive and their use in composting and microbial fertilizers is prohibited. Meanwhile, alkyl polyglycoside (APG) is considered a 'green' surfactant. This study aims to determine whether APG addition into a compost reaction vessel during 28-day composting can enhance the organic matter degradation and composting process of dairy manure. Samples were periodically taken from different reactor depths at 0, 3, 5, 7, 14, 21, and 28 days. pH levels, electrical conductivity (EC), ammonium and nitrate nitrogen, seed germination indices, and microbial population were determined. Organic matter and total nitrogen were also measured. Compared with the untreated control, the sample with APG exhibited slightly increased microbial populations, such as bacteria, fungi, and actinomycetes. APG addition increased temperatures without substantially affecting compost pH and EC throughout the process. After 28 days, APG addition increased nitrate nitrogen concentrations, promoted matter degradation, and increased seed germination indices. The results of this study suggest that the addition of APG provides more favorable conditions for microorganism growth, slightly enhancing organic matter decomposition and accelerating the composting process, improving the compost quality to a certain extent.

  3. Agricultural Waste Solutions Inc AWS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgoura Hills, California:AgriFuel Company

  4. Plant genetics, sustainable agriculture and global food security.

    E-Print Network [OSTI]

    Ronald, Pamela

    2011-01-01T23:59:59.000Z

    pact of commercialized GM crops. Nat. Biotechnol. 28: 319–of Commercialized Biotech/GM Crops. In- ternational Service2009 The global pipeline of new GM crops: implications of

  5. Radically rethinking agriculture for the 21st century.

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Commercialized Biotech/GM Crops: 2008 (International Servicestatistics are available, GM crops were grown on almost 30012). The world has consumed GM crops for 13 years without

  6. Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas

    E-Print Network [OSTI]

    from agricultural wastes." Napa Wine Company's wastewater comes from grape disposal, wine makingMSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery

  7. MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT

    E-Print Network [OSTI]

    Richner, Heinz

    i MATERIAL FLUX ANALYSIS (MFA) FOR PLANNING OF DOMESTIC WASTES AND WASTEWATER MANAGEMENT: CASE of Nonthaburi, Statistical office of Nonthaburi and Agricultural extension office of Pak Kret for their kind nutrient management, organic waste, wastewater and septage that contained high concentration of nutrients

  8. Management of lignite fly ash for improving soil fertility and crop productivity

    SciTech Connect (OSTI)

    Ram, L.C.; Srivastava, N.K.; Jha, S.K.; Sinha, A.K.; Masto, R.E.; Selvi, V.A. [Central Fuel Research Institute, Dhanbad (India)

    2007-09-15T23:59:59.000Z

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and bioferfertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  9. Collection Policy: SOIL, CROP AND ATMOSPHERIC SCIENCES Subject Scope | Priority Tables | Other policies . . .

    E-Print Network [OSTI]

    Angenent, Lars T.

    ; weed science; soil/ root zone processes; manure and sludge management; water quality 1.6 Noteworthy, oil, fiber and sugar crops. Forage crops. Forest crops. Weeds. Tropical crops. Non-traditional crops

  10. Potential Yield Mapping of Dedicated Energy Crops

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in every state and territory Regional Feedstock Partnership U.S. Department of Agriculture Sustainable Feedstock Production Regional Competitive Grants U.S....

  11. The effect of various cropping systems upon the stability of aggregates: the rate of water infiltration, and the organic matter content of three soil conditions in the Texas Blacklands.

    E-Print Network [OSTI]

    Quintero, Angel H

    1951-01-01T23:59:59.000Z

    of the soil snd its relation to water oonserxation and to crop production has been recognised for a long tixm by uorkmrs e~ in agricultural research Soil fertility and plant growth are affected by a nuaber of faotarsx among which structurex organic matter.... . . , ?, ~ . ~ ~ ~ 31 ~ ~ ~ 32 ~ ~ ~ 33 Average pex'oentages of organic carbon in tbe surface layer of three land classes in 6 different cropping systelwl ~ ? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ? ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 34 Analysis of varianoe of organic oarbon in tbs...

  12. Crop Management Factors: What is Important?

    E-Print Network [OSTI]

    Kastens, Terry L.; Dhuyvetter, Kevin C.; Nivens, Heather; Klinefelter, Danny A.

    1999-09-29T23:59:59.000Z

    Crop Management Factors: What is Important? Terry L. Kastens, Kevin C. Dhuyvetter, Heather Nivens and Danny Klinefelter* Defining Good Farm Management Economically, a well-managed farm is one that consistently makes greater prof- its than similarly...

  13. Modelling the UK perennial energy crop market 

    E-Print Network [OSTI]

    Alexander, Peter Mark William

    2014-11-27T23:59:59.000Z

    Biomass produced from perennial energy crops, Miscanthus and willow or poplar grown as short-rotation coppice, is expected to contribute to UK renewable energy targets and reduce the carbon intensity of energy production. ...

  14. Aphids on Cruciferous Crops: Identification and Management

    E-Print Network [OSTI]

    Liu, Tong-Xian; Sparks Jr., Alton N.

    2001-08-10T23:59:59.000Z

    At least five species of aphids attack cruciferous crops (cabbage, collards, cauliflower, broccoli, kale and others). This publication explains the characteristics that can help producers identify aphids and the damage they cause. Suggestions...

  15. Features . . . Cover Crop Value to Cotton

    E-Print Network [OSTI]

    Watson, Craig A.

    .............................................................................................Page 6 Fuel Prices Projections - Encouraging News .......................Page 7 Agronomy Notes VolumeFeatures . . . Cotton Cover Crop Value to Cotton Cotton Price and Rotation ..............................................................Page 5 Miscellaneous Large differences in nitrogen prices.......................................Page 6

  16. Cassava, a potential biofuel crop in China

    E-Print Network [OSTI]

    Jansson, C.

    2010-01-01T23:59:59.000Z

    as a means to produce novel biodiesel crops. We also don’tto oil Ethanol and biodiesel are the two major bio-basedin transportation. Compared to biodiesel, the net energy

  17. Free membership Agriculture Alzheimer Astronomy

    E-Print Network [OSTI]

    Lovley, Derek

    Membership Free membership signup! Categories Agriculture Alzheimer Astronomy Astrophysics Bacteria that was released to the environment as a result of ore milling, nuclear fuel fabrication or processing activities

  18. Manure to Energy: Understanding Processes, Principles and Jargon 

    E-Print Network [OSTI]

    Mukhtar, Saqib

    2006-11-30T23:59:59.000Z

    . This publication uses the following figure as a simple illustration of potential sources of energy from biomass, including trees, agricultural crops, animal manure and municipal solid waste. The biomass will be field-harvested, preprocessed and transported... to bio-refineries for treatment and Figure 1. Future of agriculture: supply of food fiber and bio-fuels. Forest Residues Agricultural Crops Aquatic Biomass Root Crops Agricultural Residues Silage/Hay Animal Manure Cities Municipal Solid Wastes...

  19. Hanford Site annual dangerous waste report: Volume 1, Part 1, Generator dangerous waste report, dangerous waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, weight, and waste designation.

  20. Covering Note INTER-ACADEMY REPORT ON GM CROPS

    E-Print Network [OSTI]

    Dhingra, Narender K.

    Covering Note for INTER-ACADEMY REPORT ON GM CROPS (Updated) The Inter-Academy Report on GM crops the main conclusions and recommendations. The literature on GM crops is voluminous. More than a hundred seek to enunciate a national strategy on GM crops. The rest deals with concerns, surveillance etc. #12

  1. Waste Description Pounds Reduced,

    E-Print Network [OSTI]

    -labeled oligonucleotides Waste minimization 3,144 Radiological waste (396 ft3 ); Mixed waste (35 gallons); Hazardous Waste of radioactivity, thus avoiding radiological waste generation. This process won a 2008 DOE P2 Star Award environmentally friendly manor. BNL pays shipping fees to the recycling facility. Building demolition recycling

  2. Agricultural Leadership, Education & Communications 301 Topics in Agricultural Leadership & Education

    E-Print Network [OSTI]

    Agricultural Leadership, Education & Communications 301 Topics in Agricultural Leadership@aged.tamu.edu; 862-3693 "While scholars may disagree on the origins of leadership, there's a strong consensus." Kouzes, J. & Posner, B. 1995. The Leadership Challenge. p. 337 NATURE OF THE COURSE: This course

  3. Cole Museum/AMS New Agriculture Building

    E-Print Network [OSTI]

    Chandler-Wilde, Simon N.

    Cole Museum/AMS New Agriculture Building Whiteknights Hall Windsor Hall Students Union Shop IMA 3rd House Annexe 59 Agricultural and Food Economics D8 Agriculture, Policy & Development 59 Agriculture D8 Agriculture, Policy & Development 48 Allen Laboratory D5 The Allen Laboratory 41 Alumni Office D4 Whiteknights

  4. Public Policy and Agriculture Dr. Jeff Burkhardt

    E-Print Network [OSTI]

    Hill, Jeffrey E.

    Public Policy and Agriculture Dr. Jeff Burkhardt With Dr. John VanSickle Food & Resource Economics & Agriculture? #12;Why Public Policy for Food & Agriculture? · Economic instability #12;Why Public Policy for Food & Agriculture? · Economic instability · Globalization #12;Why Public Policy for Food & Agriculture

  5. Recent Agricultural Ergonomics Research at UC Davis

    E-Print Network [OSTI]

    Nguyen, Danh

    Page 1 Recent Agricultural Ergonomics Research at UC Davis Fadi Fathallah Biological and Agricultural Engineering UC Agricultural Ergonomics Research Center Western Center for Agricultural Health and Safety WCAHS Seminar, December 5, 2011 Recent Agricultural Ergonomics Research at UC Davis Fadi Fathallah

  6. AGRICULTURE, 2002 Current Wisconsin Farm Financial Conditions

    E-Print Network [OSTI]

    Radeloff, Volker C.

    STATUS OF WISCONSIN AGRICULTURE, 2002 Current Wisconsin Farm Financial Conditions Situation of the Wisconsin Cranberry Industry Department of Agricultural and Applied Economics College of Agricultural-Extension #12;STATUS OF WISCONSIN AGRICULTURE, 2002 An Annual Report by: Department of Agricultural and Applied

  7. AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: MAnAging Biosolids for AgriculturAl use

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    AgriculturAl lAnd ApplicAtion of Biosolids in VirginiA: MAnAging Biosolids for AgriculturAl use Introduction Although biosolids supply some of all of the essen- tial plant nutrients and soil property for determining biosolid application rates on agricultural land can be summa- rized as follows: 1) Determine

  8. E-Print Network 3.0 - alternative pretreatment modalities Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    converts raw biomass to ethanol in high yields. The process was developed... biomass feedstocks such as corn stover, agricultural waste, and energy crops. The pretreatment...

  9. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    1999-12-01T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  10. Agriculture and Natural Resources Family and Consumer Sciences 4-H Youth Development Community and Economic Development COOPERATIVE EXTENSION SERVICE

    E-Print Network [OSTI]

    Hayes, Jane E.

    and other waste. Sometimes nutrients are even lost to the air, soil, or water. Nutrient management allows is nutrient management plan- ning, which involves monitoring and recording all aspects of soil fertility, manure sampling, and crop production so that air, soil, and water resources are not compromised

  11. Radioactive Waste Management (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

  12. Higher U.S. Crop Prices Trigger Little Area Expansion so Marginal Land for Biofuel Crops Is Limited

    SciTech Connect (OSTI)

    Swinton, S.; Babcock, Bruce; James, Laura; Bandaru, Varaprasad

    2011-06-12T23:59:59.000Z

    By expanding energy biomass production on marginal lands that are not currently used for crops, food price increases and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states

  13. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Dale, L; Opilla, R; Surles, T

    1980-09-01T23:59:59.000Z

    Technologies available for the production of ethanol from whole corn are reviewed. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. The use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - is reviewed as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. The environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass are covered. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  14. Alcohol production from agricultural and forestry residues

    SciTech Connect (OSTI)

    Opilla, R.; Dale, L.; Surles, T.

    1980-05-01T23:59:59.000Z

    A variety of carbohydrate sources can be used as raw material for the production of ethanol. Section 1 is a review of technologies available for the production of ethanol from whole corn. Particular emphasis is placed on the environmental aspects of the process, including land utilization and possible air and water pollutants. Suggestions are made for technological changes intended to improve the economics of the process as well as to reduce some of the pollution from by-product disposal. Ethanol may be derived from renewable cellulosic substances by either enzymatic or acid hydrolysis of cellulose to sugar, followed by conventional fermentation and distillation. Section 2 is a review of the use of two agricultural residues - corn stover (field stalks remaining after harvest) and straw from wheat crops - as a cellulosic feedstock. Two processes have been evaluated with regard to environmental impact - a two-stage acid process developed by G.T. Tsao of Purdue University and an enzymatic process based on the laboratory findings of C.R. Wilke of the University of California, Berkeley. Section 3 deals with the environmental residuals expected from the manufacture of methyl and ethyl alcohols from woody biomass. The methanol is produced in a gasification process, whereas ethanol is produced by hydrolysis and fermentation processes similar to those used to derive ethanol from cellulosic materials.

  15. Heavy metals in composted municipal solid wastes for

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Heavy metals in composted municipal solid wastes for amendment of agricultural soils/ Métaux lourds dans le compost de déchets municipaux pour application agricole Valérie Duchesneau, #4634809 EVS4904 métaux lourds des compostes de déchets municipaux? http://www.ecometiers.com/fiche/images/43.jpg La

  16. Waste Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE AwardsDNitrate Salt Bearing Waste

  17. AgExcellence 2006 The College of Agriculture and Montana Agricultural Experiment Station in Review

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    AgExcellence 2006 The College of Agriculture and Montana Agricultural Experiment Station in Review #12;ACAdEMiC pRogRAMS College of Agriculture Baccalaureate: Agricultural Education Options: AgRelations Teaching Agricultural Operations Technology MasterofScience: Agricultural Education Baccalaureate

  18. Status of Wisconsin Agriculture, 2012 An annual report by the Department of Agricultural and

    E-Print Network [OSTI]

    Radeloff, Volker C.

    Status of Wisconsin Agriculture, 2012 An annual report by the Department of AgriculturalSconSin agriculture 2012 i #12;ii StatuS of WiSconSin agriculture 2012 #12;Preface Status of Wisconsin Agriculture is an annual agricultural situation and outlook report authored (except where noted) by faculty

  19. UWA Institute of Agriculture 1 "Sustaining productive agriculture for a growing world"

    E-Print Network [OSTI]

    Tobar, Michael

    UWA Institute of Agriculture 1 "Sustaining productive agriculture for a growing world" Agriculture Science graduates show their talents at the Young Professionals in Agriculture Forum Institute of Agriculture photo:MrPeterMaloney The Australian Institute of Agricultural Science and Technology (AIAST

  20. REVIEW ARTICLE Models to support cropping plan and crop rotation decisions.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . To support farmers and efficiently allocate scarce resources, decision support models are developed. DecisionREVIEW ARTICLE Models to support cropping plan and crop rotation decisions. A review Jérôme Dury /Published online: 8 July 2011 # INRA and Springer Science+Business Media B.V. 2011 Abstract Farmers must

  1. Fecundity selection in a sunflower crop-wild study: can ecological data predict crop allele changes?

    E-Print Network [OSTI]

    Cummings, Charity L.; Alexander, Helen M.; Snow, Allison A.; Rieseberg, Loren H.; Kim, Min Ju; Culley, Theresa M.

    2002-12-01T23:59:59.000Z

    escape rates via crop–weed mating. Conservation Biology 5:531–535. Klinger, T., and N. C. Ellstrand. 1994. Engineered genes in wild populations: fitness of weed–crop hybrids of Raphanus sativus. Ecological Applications 4:117–120. Langevin, S. A., K. Clay...

  2. Improving the Profitability of Willow Crops--Identifying Opportunities with a Crop Budget Model

    E-Print Network [OSTI]

    Vermont, University of

    for energy generation and bioproducts. However, since willow crops are not widely grown in North America understood. We developed a budget model, EcoWillow v1.4 (Beta), that allows users to analyze the entire . Coppice . Willow. Economics . Management . Profitability Introduction Perennial energy crops like short

  3. The Potential for Pennsylvania Crops as Biofuels Higher energy costs over the past few years have created opportunities for the use of crops and crop residues

    E-Print Network [OSTI]

    Lee, Dongwon

    The Potential for Pennsylvania Crops as Biofuels Higher energy costs over the past few years have Potential for Pennsylvania Crops as Biofuels 2 Soybeans Soybean acreage is on the increase in Pennsylvania

  4. MODERN AGRICULTURAL DIGITAL MANAGEMENT NETWORK INFORMATION

    E-Print Network [OSTI]

    MODERN AGRICULTURAL DIGITAL MANAGEMENT NETWORK INFORMATION SYSTEM OF HEILONGJIANG RECLAMATION AREA@126.com Abstract: To meet the need of agriculture management modernization of Heilongjiang reclamation area, further boost large-scale integration level of modern agriculture production and boost management

  5. Agricultural Engineering and Farm Building Collection /

    E-Print Network [OSTI]

    Handy, Todd C.

    Agricultural Engineering and Farm Building Collection / Leonard Staley (collector) Compiled on Agricultural Engineering File List Catalogue entry (UBC Library catalogue) #12;Collection Description Agricultural Engineering and Farm Building Collection / Leonard Staley (collector). ­ 1953-1976. 60 cm

  6. STRATEGIC PLAN THE COLLEGE OF AGRICULTURAL

    E-Print Network [OSTI]

    STRATEGIC PLAN For THE COLLEGE OF AGRICULTURAL SCIENCES COLORADO STATE UNIVERSITY In association with Colorado Agricultural Experiment Station Colorado Cooperative Extension December 1, 2005 1 #12;STRATEGIC PLAN FOR THE COLLEGE OF AGRICULTURAL SCIENCES COLORADO STATE UNIVERSITY IN ASSOCIATION

  7. Agricultural Research for Development Scales & Diversity

    E-Print Network [OSTI]

    Agricultural Research for Development Scales & Diversity SLU, Uppsala 28-29 September 2011 28th September 2011 (morning) Agricultural Investments ..... Shenggen Fan, IFPRI Livestock production­ Global and local importance and development John McDermott, ILRI Smallholder agricultural intensification ­ means

  8. Plant Breeding Program COLLEGE OF AGRICULTURAL

    E-Print Network [OSTI]

    Bradford, Kent

    Plant Breeding Program COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES Office of the Dean Cereal Breeding Program 51 Acknowlegements 51 COLLEGE OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES Office in production agriculture, which included plant breeding, was necessary for California farmers to thrive

  9. 2012-2013 Series College of Agriculture

    E-Print Network [OSTI]

    Hayes, Jane E.

    2012-2013 Series College of Agriculture and School of Human Environmental Sciences University about the accreditation of University of Kentucky. AgriculturalBiotechnology Agriculturalbiotechnologyencompassescellularandmolecularapproaches to the manipulation and improvement of agricultural plants, animals and microorganisms

  10. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  11. Radioactive Waste Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-02-06T23:59:59.000Z

    To establish policies and guidelines by which the Department of Energy (DOE) manages tis radioactive waste, waste byproducts, and radioactively contaminated surplus facilities.

  12. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  13. Transuranic Waste Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    The guide provides criteria for determining if a waste is to be managed in accordance with DOE M 435.1-1, Chapter III, Transuranic Waste Requirements.

  14. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    1 Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives...

  15. Waste Treatment Plant Overview

    Office of Environmental Management (EM)

    contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the...

  16. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  17. Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan

    SciTech Connect (OSTI)

    Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

  18. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  19. Radioactive and chemotoxic wastes: Only radioactive wastes?

    SciTech Connect (OSTI)

    Eletti, G.F.; Tocci, M. [ENEA DISP, Rome (Italy)

    1993-12-31T23:59:59.000Z

    Radioactive waste arising from Italian Nuclear Power Plants and Research Centers, classified as 1st and 2nd Category wastes, are managed only as radioactive wastes following the Technical Guide No. 26 issued by the Italian Regulatory Body: ENEA DISP on 1987. A very important Regulatory Regime revision for Italian Nuclear Activities started at the end of 1991. This paper considers the need to develop a new strategy dedicated to mixed waste in line with current international trends.

  20. Growth Through Agriculture (GTA) Program (Montana)

    Broader source: Energy.gov [DOE]

    The Agriculture Development Council is tasked with enhancing the future development of agriculture in Montana through establishing policies and priorities, and awarding loans or grants that have a...

  1. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  2. Press Conference Call Tomorrow: Agriculture Secretary Vilsack...

    Office of Environmental Management (EM)

    Agriculture Secretary Vilsack and Energy Secretary Chu to Discuss Efforts to Reduce U.S. Oil Dependence Press Conference Call Tomorrow: Agriculture Secretary Vilsack and Energy...

  3. agriculture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Agriculture, Forestry, and Veterinary Medicine, or DAFVM Ray, David 29 Action Plan Agricultural Sciences Environmental Sciences and Ecology Websites Summary: Action Plan...

  4. Three ACE awards for California Agriculture

    E-Print Network [OSTI]

    Editors, by

    2012-01-01T23:59:59.000Z

    Editor Janet White accepted the awards during the 2012 ACEa noxious weed. Three ACE awards for California AgricultureAgriculture team has won three awards from the Association

  5. Greenhouse gas mitigation by agricultural intensification

    E-Print Network [OSTI]

    Burney, J. A; Davis, S. J; Lobell, D. B

    2010-01-01T23:59:59.000Z

    et al. (2007) Agriculture. Climate Change 2007: Mitigationagriculture’s future contributions to climate change,agriculture greenhouse gas emissions mitigation carbon price | land use change | climate

  6. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    SciTech Connect (OSTI)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong; Bandaru, Varaprasad; West, Tristram O.; Wise, Marshall A.; Izaurralde, Roberto C.; Calvin, Katherine V.

    2014-01-19T23:59:59.000Z

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.

  7. New directions at TVA with special reference to agricultural research

    SciTech Connect (OSTI)

    Williams, R.J.; Rylant, K.E.

    1994-03-01T23:59:59.000Z

    Public Support for the Tennessee Valley Authority`s (TVA) fertilizer research and development program in Muscle Shoals, Alabama, ended in fiscal year 1993. TVA`s research center at Muscle Shoals, formerly known as the National Fertilizer and Environmental Research Center, is now the TVA Environmental Research Center. Efforts at the Center have diversified to include research and support areas of Agricultural Research and Practices, Atmospheric Sciences, Biotechnology, Waste Management, and Remediation, Environmental Site Remediation, Support Services, Environmental Management, and Technology Transfer. ``We`re building on the expertise and success of our earlier research and focusing our new projects on emerging problems of the 21st century,`` TVA`s Chairman Craven Crowell said in prepared remarks to Congress on March 2, 1994. Agricultural Research in TVA has been aligned with corporate objectives to develop solutions to environmental problems of regional, national and international significance because the agency`s business incorporates a broad mix of responsibilities, including power generation, navigation, flood control, shoreline management, recreation, environmental research, and economic development. Agricultural strategies for watershed protection lie at the core of TVA`s new agricultural research agenda. The major influences for this agenda are TVA`s direct stewardship responsibilities for the 60,000 miles of streams that feed the 652-mile-long Tennessee River; the 11,000 miles of shoreline; and 470,000 acres of TVA-managed public land.

  8. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  9. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  10. Trends and implications of biological analyses for agricultural operations

    SciTech Connect (OSTI)

    Ash, D.H.; Salladay, D.G.

    1994-10-01T23:59:59.000Z

    State and federal legislatures, regulatory agencies, the agricultural community, and the public at large have increasing concerns about groundwater contamination and other environmental issues. The U.S. Congress has requested all federal agencies working with agriculture to address these issues. Even with current pressures to {open_quotes}cut government spending,{close_quotes} public pressure prevails to clean up polluted sites and to prevent future contamination. Farmers, agrichemical dealers and producers, and related trade associations have voiced concern about regulations affecting their industries. Over the last three decades positive changes have evolved in the disposal or final resolution of agricultural wastes from indiscriminate disposal on land and in water, through regulated land filling and incineration to a point where biological treatment/remediation strategies are coming to the forefront. These biological strategies bring with them different requirements for analytical methods. In March of this year the Environmental Protection Agency (EPA) and ARA organized a work group which met in Cincinnati, Ohio, to discuss the bioremediation of pesticide-laden soil. This work group consisted of EPA researchers, regulators, and administrators; state ag-environmental technologists and program directors; ag-chemical producer, remediation program managers, university ag researchers, USDA researchers, and TVA technologists. Consensus was quickly obtained on the utter unaffordability of current chemical and thermal treatment schemes for agricultural wastes, contaminated soils, and rinsewaters. Consensus was also reached that conventional analytical methods are too expensive and complicated for use in the field demonstration/application of the bioremediation-type processes. Thus the group recommended and supported field agrichemical dealer demonstrations of landfarming and composting with an emphasis on the need to develop low cost, easy toxicological measurements.

  11. Seasonality and Its Effects on Crop Markets

    E-Print Network [OSTI]

    Tierney Jr., William I.; Waller, Mark L.; Amosson, Stephen H.

    1999-07-12T23:59:59.000Z

    consistent than the highs) and then rely on magnitude to predict the high. For example, a particular crop?s seasonal low may have occurred in October-November 80 percent of the time. The seasonal high was 12 to 15 percent above the seasonal low 75 percent... of the time. Based on this analysis, one would expect the seasonal low to come at harvest (in October or November) and the high to be 12 to 15 percent above the low. Of the two, timing is the more important for speculative purposes, whereas magnitude is often...

  12. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  13. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  14. Central Waste Complex (CWC) Waste Analysis Plan

    SciTech Connect (OSTI)

    ELLEFSON, M.D.

    2000-01-06T23:59:59.000Z

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage at the Central Waste Complex (CWC), which is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include the source special nuclear and by-product material components of mixed waste, radionuclides are not within the scope of this document. The information on radionuclides is provided only for general knowledge. This document has been revised to meet the interim status waste analysis plan requirements of Washington Administrative Code (WAC) 173 303-300(5). When the final status permit is issued, permit conditions will be incorporated and this document will be revised accordingly.

  15. Economic and Physical Modeling of Land Use in GCAM 3.0 and an Application to Agricultural Productivity, Land, and Terrestrial Carbon

    SciTech Connect (OSTI)

    Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Luckow, Patrick; Edmonds, James A.

    2014-09-01T23:59:59.000Z

    We explore the impact of changes in agricultural productivity on global land use and terrestrial carbon using the new agriculture and land use modeling approach developed for Global Change Assessment Model (GCAM) version 3.0. This approach models economic land use decisions with regional, physical, and technological specificity while maintaining economic and physical integration with the rest of the GCAM model. Physical land characteristics and quantities are tracked explicitly, and crop production practices are modeled discretely to facilitate coupling with physical models. Economic land allocation is modeled with non-linear functions in a market equilibrium rather than through a constrained optimization. In this paper, we explore three scenarios of future agriculture productivity in all regions of the globe over this century, ranging from a high growth to a zero growth level. The higher productivity growth scenario leads to lower crop prices, increased production of crops in developing nations, preservation of global forested lands and lower terrestrial carbon emissions. The scenario with no productivity improvement results in higher crop prices, an expansion of crop production in the developed world, loss of forested lands globally, and higher terrestrial carbon emissions.

  16. agricultural nitrogen pollution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 80 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  17. agricultural vocational education: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 108 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  18. agricultural cooperative ludanice: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 104 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  19. agriculture development mead: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 122 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  20. agriculture habitat loss: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 82 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  1. agricultural regions adjoining: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 45 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  2. agricultural liming techniques: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 31 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  3. agricultural cooperatives: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 11 Air Temperature and Solar Radiation 104 Agricultural Environmental Geosciences Websites Summary: Agricultural...

  4. agricultural soil contaminated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Agricultural Countermeasure Strategies for a Hypothetical Contamination Environmental Management and Restoration Websites Summary: Optimal Agricultural...

  5. Pet Waste Management

    E-Print Network [OSTI]

    Mechell, Justin; Lesikar, Bruce J.

    2008-08-28T23:59:59.000Z

    :Roundwormsusuallytransmittedfromdogstohumans, oftenwithoutnoticeablesymptoms.Maycausevisionloss,rash,fever orcough. JustinMechellandBruceLesikar* *Extension Assistant, Biological and Agricultural Engineering; and Professor, Associate Department Head and Extension Program Leader for Biological and Agricultural Engineering...

  6. Understanding radioactive waste

    SciTech Connect (OSTI)

    Murray, R.L.

    1981-12-01T23:59:59.000Z

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  7. Radioactive mixed waste disposal

    SciTech Connect (OSTI)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01T23:59:59.000Z

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  8. Multiplex detection of agricultural pathogens

    DOE Patents [OSTI]

    Siezak, Thomas R.; Gardner, Shea; Torres, Clinton; Vitalis, Elizabeth; Lenhoff, Raymond J.

    2013-01-15T23:59:59.000Z

    Described are kits and methods useful for detection of agricultural pathogens in a sample. Genomic sequence information from agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay and/or an array assay to successfully identify the presence or absence of pathogens in a sample.

  9. Multiplex detection of agricultural pathogens

    DOE Patents [OSTI]

    McBride, Mary Teresa (Brentwood, CA); Slezak, Thomas Richard (Livermore, CA); Messenger, Sharon Lee (Kensington, CA)

    2010-09-14T23:59:59.000Z

    Described are kits and methods useful for detection of seven agricultural pathogens (BPSV; BHV; BVD; FMDV; BTV; SVD; and VESV) in a sample. Genomic sequence information from 7 agricultural pathogens was analyzed to identify signature sequences, e.g., polynucleotide sequences useful for confirming the presence or absence of a pathogen in a sample. Primer and probe sets were designed and optimized for use in a PCR based, multiplexed Luminex assay to successfully identify the presence or absence of pathogens in a sample.

  10. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07.

  11. Radium bearing waste disposal

    SciTech Connect (OSTI)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Schofield, W.D. [Foster Wheeler Environmental Corp. (United States)

    1995-07-01T23:59:59.000Z

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  12. AGRICULTURAL AND BIOLOGICAL ENGINEERING PURSUE A GRADUATE DEGREE IN

    E-Print Network [OSTI]

    Gilbert, Matthew

    AGRICULTURAL AND BIOLOGICAL ENGINEERING PURSUE A GRADUATE DEGREE IN AGRICULTURAL AND BIOLOGICAL ENGINEERING Department of Agricultural and Biological Engineering 338 Agricultural Engineering Sciences of Agricultural and Biological Engineering offers a limited number of graduate fellowships and assistantships

  13. "Celebrate Agriculture" 8:30 Registration

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    "Celebrate Agriculture" 8:30 Registration 9:00 ­ 9:05 Welcome Waded Cruzado, Montana State University President 9:05 ­ 9:25 Montana and U.S. Agriculture Outlook George Haynes, Agriculture Policy Specialist Department of Agricultural Economics & Economics 9:30 ­ 9:50 Cattle Cycles Gary Brester, Professor

  14. The Value Chain of Colorado Agriculture

    E-Print Network [OSTI]

    Stephens, Graeme L.

    The Value Chain of Colorado Agriculture Gregory Graff, Ryan Mortenson, Rebecca Goldbach, Dawn of Agricultural and Resource Economics, College of Agricultural Sciences, and the Office of Engagement Colorado the Colorado Department of Agriculture and the Colorado State University Office of Engagement. The authors

  15. Deproletarianizing Agriculture Lemmens, P.C.

    E-Print Network [OSTI]

    Boyer, Edmond

    Deproletarianizing Agriculture Lemmens, P.C. ISDA 2010, Montpellier, June 28-30, 2010 1 DEPROLETARIANIZING AGRICULTURE RECOVERING AGRICULTURE FROM AGRIBUSINESS AND THE NEED FOR A COMMONS-BASED, OPEN SOURCE AGRICULTURE Dr. Pieter LEMMENS Wageningen University Centre for Methodical Ethics and Technology Assessment

  16. 2014-2015Series College of Agriculture,

    E-Print Network [OSTI]

    MacAdam, Keith

    2014-2015Series College of Agriculture, Food and Environment University of Kentucky is accredited of University of Kentucky. Agricultural Economics The Agricultural Economics program enables graduates to pursue and production. Opportunities are also available in public policy for agriculture and rural America

  17. RULES AND REGULATIONS Title 7--AGRICULTURE

    E-Print Network [OSTI]

    Guiltinan, Mark

    RULES AND REGULATIONS Title 7--AGRICULTURE DEPARTMENT OF AGRICULTURE [7 PA. CODE CH. 130b] Nutrient Management Certification [35 Pa.B. 6504] The Department of Agriculture (Department), under section 7(a or the Senate or House Agricultural and Rural Affairs Committees regarding the proposed rulemaking

  18. Agricultural&Life Sciences UNIVERSITY OF WISCONSINMADISON

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    College of Agricultural&Life Sciences UNIVERSITY OF WISCONSIN­MADISON 2012-2014 128th year #12;Farm Reunion, back cover 1 The College of Agricultural and Life Sciences, home of the Farm and Industry Short in agriculture for individuals planning careers in production agriculture and related agribusinesses." Objectives

  19. 2012-2013 Series College of Agriculture

    E-Print Network [OSTI]

    Hayes, Jane E.

    2012-2013 Series College of Agriculture and School of Human Environmental Sciences University about the accreditation of University of Kentucky. AgriculturalEconomics The Agricultural Economics for agriculture and rural America and environmental economics. These career opportunities may be found in both

  20. Agricultural Issues Center AIC Issues Brief

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Number 36 March 2010 Agricultural Issues Center AIC Issues Brief California International Agriculture Exports in 2008 In 2008, the value of California agriculture exports reached an all time high AIC estimates of the international agricultural exports for 2008, and provides revisions for 2007

  1. The Value Chain of Colorado Agriculture

    E-Print Network [OSTI]

    .S. agricultural policy, on the global food system, and on technological change in agricultural production. Greg. Thilmany's specialty is in the economics of value-added market differentiation of food products, such as local, organic, and specialty products. At CSU she teaches courses on agricultural finance, agricultural

  2. Agricultural productivity and industrialization: A reformulation

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    Agricultural productivity and industrialization: A reformulation Debasis Mondal Sept 20, 2014 Abstract In this paper we examine the role of agricultural productivity on the process of industrialization industrialization by releasing labor from agriculture to industry. In fact, when agriculture is highly productive

  3. SOIL QUALITY AND CROP Dick Wolkowski

    E-Print Network [OSTI]

    Balser, Teri C.

    Protection Soil pH Crop residue Tillage intensity Soil test P and K Water availability Bulk density Soil SOIL QUALITY Inherent properties Texture Organic matter Aggregation Water holding capacity - Nutrient cycling - 1 g of soil has 100,000,000 bacteria #12;Water Soil particle Plant root SOIL IS HABITAT

  4. Crop Rotations in the Brazos River Valley.

    E-Print Network [OSTI]

    Whiteley, Eli L.; Hipp, Billy W.

    1966-01-01T23:59:59.000Z

    and California in- volving the modification of physical properties of soil by crops and management was made by Uhland (22) . He reported that (1) plants with deep and well-developed root systems, such as alfalfa and kudzu, may be cxpected to increase...

  5. affecting lilium crops: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number and the course Weiblen, George D 299 Improvements of switchgrass as a bioenergy crop. InGenetic Improvement of Bioenergy Crops. Edited by Vermerris W CiteSeer...

  6. Genetically modified food and crops: perceptions of risks 

    E-Print Network [OSTI]

    Hall, Clare R.

    2010-01-01T23:59:59.000Z

    The debate around genetically modified food and crops has proved to be complex and far-reaching, involving diverse stakeholder groups and many issues. Although the extent of global uptake of GM crops has been substantial (23 countries and 114...

  7. Microbiological and nutritional aspects of pendulous crop in turkey poults

    E-Print Network [OSTI]

    Wheeler, Harry Ogden

    1959-01-01T23:59:59.000Z

    with pendulous crop-------------- 39 2. "Milking" of turkey poult with, pendulous crop? - ---------- --- 40 3* Turkey poult after draining the crop, amount of fluid drained is shown in the 1 liter graduated cylinder? --------- ? ? - ---- 41 4. Blood alcohol... levels of poults on glucose monohydrate, starch and practiced type diets (4-week average)------ - ------- ? ------42 5. Weekly blood alcohols on turkey poults-? ----? --- -? *---43 JE vitro alcohol production by organism isolated from crop of turkey...

  8. Slide 1 of 19NCA -Agriculture with a California Focus Agriculture with a California

    E-Print Network [OSTI]

    Grotjahn, Richard

    Slide 1 of 19NCA - Agriculture with a California Focus Agriculture with a California Focus (NCA 2013 #12;Slide 2 of 19NCA - Agriculture with a California Focus Authors of Chapter 6: Agriculture · Convening Lead Authors · Jerry Hatfield, U.S. Department of Agriculture · Gene Takle, Iowa State University

  9. COLLEGE OF AGRICULTURE AND LIFE SCIENCES CHECKSHEET for a MINOR in INTERNATIONAL AGRICULTURAL AND LIFE SCIENCES

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES CHECKSHEET for a MINOR in INTERNATIONAL AGRICULTURAL AND LIFE SCIENCES Offered by Academic Programs in the College of Agriculture and Life Sciences Effective for Students Graduating 2015 The minor in International Agricultural and Life Sciences focuses on agricultural

  10. AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural, Food & Bioenergy TradeFood & Bioenergy Trade AgFoodTradeAgFoodTrade New Issues in Agricultural,New Issues in Agricultural, Food & Bioenergy TradeFood & Bioenergy Trade AgFoodTradeAgFoodTrade New Issues in Agricultural

  11. Minor in Agricultural Systems Management The Department of Biological and Agricultural Engineering

    E-Print Network [OSTI]

    Minor in Agricultural Systems Management Offered by The Department of Biological and Agricultural Engineering College of Agriculture and Life Sciences The minor in Agricultural Systems Management is available is to provide students, majoring in other fields, with a fundamental knowledge of the fields of agricultural

  12. College of Agriculture and Life Sciences Civic Agriculture and Food Systems Minor

    E-Print Network [OSTI]

    Virginia Tech

    College of Agriculture and Life Sciences Civic Agriculture and Food Systems Minor The proposed Civic Agriculture and Food Systems (CAFS) minor within the College of Agriculture and Life Sciences agriculture and food system that relies on local resources and serves local markets and citizens. The minor

  13. Agricultural & Resource Economics Department Agricultural Business Management Minor (Code No. 104): 2010-11

    E-Print Network [OSTI]

    Tullos, Desiree

    Agricultural & Resource Economics Department Agricultural Business Management Minor (Code No. 104 Required Classes (10 credits) Management in Agriculture AREC 211 (4) Marketing in Agriculture AREC 221 (3 a minimum of 10 credits) Agricultural Markets & Trade enforced: AREC 221 & AREC 300 AREC 370 (3) not offered

  14. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  15. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  16. Waste Management Quality Assurance Plan

    E-Print Network [OSTI]

    Waste Management Group

    2006-01-01T23:59:59.000Z

    Revision 6 Waste Management Quality Assurance Plan Waste6 WM QA Plan Waste Management Quality Assurance Plan LBNL/4 Management Quality Assurance

  17. waste | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlternativesSupplements to Coal - Feedstock Flexibility Waste Streams Gasification can be applied to a variety of waste streams, of which municipal solid waste (MSW) and...

  18. Five year rollover hedges for agricultural lenders

    E-Print Network [OSTI]

    Floyd, John Christopher

    1988-01-01T23:59:59.000Z

    FIVE YEAR ROLLOVER HEDGES FOR AGRICULTURAL LEADERS A Professional Paper by John Christopher Floyd. Jr. Submitted to the College of Agriculture of Texas ARM University In Partial Fulfillment of the Requirements for the Degree of Master... of Agriculture May, 19BB Advisor Or. David J. Leatham Major Subject: Agricultural Economics FIVE YEAR ROLLOVER HEDGE FOR AGRICULTURAL LEMDERS A Professional Paper by John Christopher Floyd, Jr. Approved as to style and content by: an. Advis ry C...

  19. Agricultural Cooperatives' Self-Inflicted Wounds.

    E-Print Network [OSTI]

    Black, William E.; Knutson, Ronald D.

    1986-01-01T23:59:59.000Z

    Tooe Z TA245.7 8873 NO.1537 s vi' 8-1537 ~xas Agricultural Extension Service VJtk HU'f1Urt; PIYJ/ltk -----.-- Agricultural Cooperatives' 8elf-1 nfl icted Wounds LIBRARY JUl 1986 1 exas A iversity Texas Agricultural Extension Service.... Zerle L. Carpenter, Director The Texas A&M University System. College Station, Texas [Blank Page in Original Bulletin] AGRICULTURAL COOPERATIVES' SELF-INFLICTED WOUNDS William E. Black and Ronald D. Knutson * Agricultural cooperatives...

  20. Less Acres and Variable Yield Mark Ohio's Crops

    E-Print Network [OSTI]

    Jones, Michelle

    developing technologies and cropping systems that are efficient in capturing solar energy, sus- tainable overLess Acres and Variable Yield Mark Ohio's Crops From 1994 to 2004, the combined acreage of soybean Pathology Dr. Mark Loux Horticulture and Crop Science Dr. Robert Mullen School of Natural Resources Dr. Mark

  1. ORIGINAL PAPER Genetically modified crops and aquatic ecosystems

    E-Print Network [OSTI]

    Gruner, Daniel S.

    of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document studies are necessary to inform the risk assessment for a specific GM crop should be done on a case

  2. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S....

  3. CliCrop: a Crop Water-Stress and Irrigation Demand Model for an Integrated Global Assessment Model Approach

    E-Print Network [OSTI]

    Fant, C.A.

    This paper describes the use of the CliCrop model in the context of climate change general assessment

  4. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. The purpose of the Manual is to catalog those procedural requirements and existing practices that ensure that all DOE elements and contractors continue to manage DOE's radioactive waste in a manner that is protective of worker and public health and safety, and the environment. Does not cancel other directives.

  5. EXTENSION CENTER FOR FOOD, AGRICULTURAL AND NATURAL RESOURCE SCIENCES Strengthening Minnesota's food, agriculture,

    E-Print Network [OSTI]

    Netoff, Theoden

    -increasing list of goods, services, and aesthetic values. RESOURCES: Extension's Center for Food, Agricultural agricultural and forestry practices that are economically and environmentally sustainable · Finding solutionsEXTENSION CENTER FOR FOOD, AGRICULTURAL AND NATURAL RESOURCE SCIENCES Strengthening Minnesota

  6. Agriculture-related radiation dose calculations

    SciTech Connect (OSTI)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01T23:59:59.000Z

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  7. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  8. Waste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in SingaporeStatus in Singapore

    E-Print Network [OSTI]

    Columbia University

    ;20031970 The Solid Waste Challenge Waste Explosion 1,200 t/d1,200 t/d 6,900 t/d6,900 t/d #12;Waste ManagementWaste Management and WasteWaste Management and Waste--toto--EnergyEnergy Status in Singapore #12;Singapore's Waste Management · In 2003, 6877 tonnes/day (2.51 M tonnes/year) of MSW collected

  9. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  10. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  11. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  12. Crop acreage estimators based on satellite imagery

    E-Print Network [OSTI]

    Vidart, Stephane

    1983-01-01T23:59:59.000Z

    acreages have been pooled during the creation of the two data sets. Each data set refers to a particular part of the state of Texas. The two regions are shown in Figure 1. The partitioning is made according to crop reporting districts (CRD), which... studies are reported: (1) a comparison of sample behavior with theoretical asymptotic behavior, (2) an evaluation using CAMS data and fixed size sampling units of the improvement of the estimators under the new decision process over the old multinomial...

  13. Solid waste handling

    SciTech Connect (OSTI)

    Parazin, R.J.

    1995-05-31T23:59:59.000Z

    This study presents estimates of the solid radioactive waste quantities that will be generated in the Separations, Low-Level Waste Vitrification and High-Level Waste Vitrification facilities, collectively called the Tank Waste Remediation System Treatment Complex, over the life of these facilities. This study then considers previous estimates from other 200 Area generators and compares alternative methods of handling (segregation, packaging, assaying, shipping, etc.).

  14. Systems and methods for autonomously controlling agricultural machinery

    DOE Patents [OSTI]

    Hoskinson, Reed L.; Bingham, Dennis N.; Svoboda, John M.; Hess, J. Richard

    2003-07-08T23:59:59.000Z

    Systems and methods for autonomously controlling agricultural machinery such as a grain combine. The operation components of a combine that function to harvest the grain have characteristics that are measured by sensors. For example, the combine speed, the fan speed, and the like can be measured. An important sensor is the grain loss sensor, which may be used to quantify the amount of grain expelled out of the combine. The grain loss sensor utilizes the fluorescence properties of the grain kernels and the plant residue to identify when the expelled plant material contains grain kernels. The sensor data, in combination with historical and current data stored in a database, is used to identify optimum operating conditions that will result in increased crop yield. After the optimum operating conditions are identified, an on-board computer can generate control signals that will adjust the operation of the components identified in the optimum operating conditions. The changes result in less grain loss and improved grain yield. Also, because new data is continually generated by the sensor, the system has the ability to continually learn such that the efficiency of the agricultural machinery is continually improved.

  15. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Composting at UBC: An Agriculture Practice that Benefits the Whole Community

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report Composting at UBC of a project/report". #12;Composting at UBC: An Agriculture Practice that Benefits the Whole Community Group 6 by our group was that even though UBC had an existing composting system, 70% of its waste stream is still

  16. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19T23:59:59.000Z

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  17. Final Report Waste Incineration

    E-Print Network [OSTI]

    solid waste, the composition and com- bustion of it. A main focus is on the European emission from municipal solid waste incineration. In the latter area, concepts of treatment, such as physical with municipal solid waste incineration (MSWI) and the problems that occur in connection to this. The emphasis

  18. Rethinking the Waste Hierarchy

    E-Print Network [OSTI]

    principles of EU waste policies. The environmental damage caused by waste depends on which type of manage, Environmental Assessment Institute For further information please contact: Environmental Assessment Institute.imv.dk #12;Environmental Assessment Institute Rethinking the Waste Hierarchy March 2005 Recommendations

  19. Agricultural Business Curriculum (BS) (effective Spring Quarter 2011)

    E-Print Network [OSTI]

    Selmic, Sandra

    Agricultural Business Curriculum (BS) (effective Spring Quarter 2011) Freshman year Animal Science 111............................................3 Agricultural Business 230 Sophomore Year Accounting 201...................................................3 Agricultural Business 220

  20. Determinants of sustainability in urban and peri-urban agriculture

    E-Print Network [OSTI]

    Buerkert, Andreas; Schlecht, Eva; Predotova, Martina; Diogo, Rodrigue V.C.; Kehlenbeck, Katja; Gebauer, Jens

    2009-01-01T23:59:59.000Z

    Journal of Food Agriculture, Nutrition and Development 7:1-and Sustainability in Sub-Saharan African Agriculture.Agriculture, Ecosystems and Environment Bernholt H,

  1. Urban agriculture is a gateway to healthy foods

    E-Print Network [OSTI]

    Pérez, John A

    2013-01-01T23:59:59.000Z

    healthy tomorrow. Urban agriculture has multiple benefitsWestlake. 192 CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 4Editorial Urban agriculture is a gateway to healthy foods A

  2. agricultural production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 61 College of Agriculture, Food and Environment SAG Sustainable Agriculture Physics Websites Summary: College of Agriculture, Food...

  3. agricultural production energeticky: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 61 College of Agriculture, Food and Environment SAG Sustainable Agriculture Physics Websites Summary: College of Agriculture, Food...

  4. agricultural products: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 61 College of Agriculture, Food and Environment SAG Sustainable Agriculture Physics Websites Summary: College of Agriculture, Food...

  5. Radically rethinking agriculture for the 21st century.

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    titled “Adapting Agriculture to Climate Change: What Will It7). Climate change will further affect agriculture as theclimate change have profound implications for the ability of agriculture

  6. Communication and its effects on perceptions of agriculture in agricultural education courses versus non agricultural education courses

    E-Print Network [OSTI]

    Thompson, Jennifer Lynn

    2004-01-01T23:59:59.000Z

    to agriculture (Holz-Clasue and Jost, 1995). This conclusion suggests that the demographic factors in addition to communication have an influence on student's views and perceptions of agriculture. Across the country stereotypical views of agriculture prevail... often in the critical years when student's opinions and perceptions are being molded. In a study conducted by Holz-Clause and Jost (1995) researchers found that youth paralleled agriculture with farining. This study also showed that they made...

  7. Improving Biomass Yields: High Biomass, Low Input Dedicated Energy Crops to Enable a Full Scale Bioenergy Industry

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Ceres is developing bigger and better grasses for use in biofuels. The bigger the grass yield, the more biomass, and more biomass means more biofuel per acre. Using biotechnology, Ceres is developing grasses that will grow bigger with less fertilizer than current grass varieties. Hardier, higher-yielding grass also requires less land to grow and can be planted in areas where other crops can’t grow instead of in prime agricultural land. Ceres is conducting multi-year trials in Arizona, Texas, Tennessee, and Georgia which have already resulted in grass yields with as much as 50% more biomass than yields from current grass varieties.

  8. Agricultural Sciences Strategic Plan 20082013

    E-Print Network [OSTI]

    Kaye, Jason P.

    Agricultural Sciences Strategic Plan 2008­2013 July 1, 2008, to June 30, 2013 Submitted; water; energy; and food, diet, and health.These initiatives, identified through a highly participatory process that drew on internal and external stakeholder input, were chosen especially for their congruence

  9. commercializaTion office Agriculture

    E-Print Network [OSTI]

    Arnold, Jonathan

    Technology commercializaTion office Agriculture ·Biotechnology ·Blueberries ·Cotton ·Forages Utilization, Renewable Energy ·Algalbiofuels ·Biodiesel ·Biomassengineering ·Biomasspre,skincare,andwoundhealing ·Vaccines Information Technology ·Bioinformaticstools ·Imagerenderingandenhancement ·3

  10. Child Labor in Texas Agriculture

    E-Print Network [OSTI]

    Smith, David

    2005-04-28T23:59:59.000Z

    classification by the Federal Insec- ticide, Fungicide and Rodentcide Act 9. Handling or using of blasting agents 10. Transporting, transferring or applying of anhy- drous ammonia It is illegal to employ a child less than 14 years old in agricultural employment...

  11. Purdue extension Agricultural&Biological

    E-Print Network [OSTI]

    for an extended period and encourage biological treatment to minimize organic matter (BOD), nitrogenPurdue extension Don Jones Agricultural&Biological Engineering Alan Sutton AnimalSciences Purdue structures must be designed and managed to contain manure, wastewater, contaminated runoff, and ma- nure

  12. COLLEGE OF AGRICULTURAL SCIENCES AND NATURAL RESOURCES

    E-Print Network [OSTI]

    Powers, Robert

    COLLEGE OF AGRICULTURAL SCIENCES AND NATURAL RESOURCES REVISION OF MINOR1 (Return completed form of _________________________________bulletin. College of Agricultural Sciences & Natural Resources (Circle One) 12 hour minor 18 hour minor

  13. Source selection of agricultural journalists in Texas

    E-Print Network [OSTI]

    Banks, Penelope Jean

    1998-01-01T23:59:59.000Z

    Journalists rely on sources in their daily routines, and the sources they choose affect news content over time. Agricultural journalists are no exception. Eleven agricultural journalists in Texas were studied to determine what types of sources...

  14. BIOLOGICAL & AGRICULTURAL ENGINEERING DEPARTMENT POSITION ANNOUNCEMENT

    E-Print Network [OSTI]

    BIOLOGICAL & AGRICULTURAL ENGINEERING DEPARTMENT POSITION ANNOUNCEMENT Position Title: Assistant/Associate Professor and Extension Specialist (Water/Wastewater Engineering) Appointment: 70% Texas A&M Agri) and other environmental issues of concern to rural communities, agricultural producers, agri

  15. Radioactive Waste Management Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This Manual further describes the requirements and establishes specific responsibilities for implementing DOE O 435.1, Radioactive Waste Management, for the management of DOE high-level waste, transuranic waste, low-level waste, and the radioactive component of mixed waste. Change 1 dated 6/19/01 removes the requirement that Headquarters is to be notified and the Office of Environment, Safety and Health consulted for exemptions for use of non-DOE treatment facilities. Certified 1-9-07. Admin Chg 2, dated 6-8-11, cancels DOE M 435.1-1 Chg 1.

  16. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  17. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13T23:59:59.000Z

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  18. A national research & development strategy for biomass crop feedstocks

    SciTech Connect (OSTI)

    Wright, L.L.; Cushman, J.H.

    1997-07-01T23:59:59.000Z

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limits of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.

  19. oday the spotlight in the United States is on the increasing world demand for

    E-Print Network [OSTI]

    Mukhtar, Saqib

    . Future of agriculture: supply of food fiber and bio-fuels. Forest Residues Agricultural Crops Aquatic sources, such as bio fuels, forests, wind, solar and animal manure. While demand for hydrocarbon energy of energy from biomass, including trees, agricultural crops, animal manure and municipal solid waste

  20. AGRICULTURAL EDUCATION RELATIONS OPTION ADVISING PACKET

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    - Biometry 3 A Core 3 AGED 312R- Communicating Agriculture 3 AGED 301- Rural Electrification 3 BIOO262IN